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Abstract

We develop a general framework for producing deterministic primality
tests based on commutative group schemes over rings of integers. Our
focus is on the cases of algebraic tori and elliptic curves. The proposed
general machinery provides several series of tests which include, as special
cases, tests discovered by Gross and by Denomme and Savin for Mersenne

and Fermat primes, primes of the form 22l+1
−2l +1, as well as some new

ones.

Introduction

We propose several deterministic primality tests which involve various group
schemes such as tori and elliptic curves and fit into the frame of a general
test. Under a deterministic test we mean an explicitly computable necessary
and sufficient condition on an element of an infinite set of positive integers
which guarantees its primality. We stress that our conditions do not contain
a requirement of existence of a group scheme or a point on it with certain
properties. Such primality tests are not really deterministic because usually
there is no explicit procedure that would provide a group scheme or a point
required. The conditions in our tests always consist in divisibility of a certain
element in an explicitly defined recursive sequence by a tested number. This
reminds the first primality tests invented by Lucas and Pepin in the 19th century.
From the modern point of view, these tests are based on the squaring of a point
on an algebraic torus. Recently, several deterministic primality tests involving
elliptic curves were discovered by Gross [1] and Denomme and Savin [2]. In the
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present note, our purpose is to unify the aforementioned deterministic tests and
develop new ones for numbers which were not considered earlier.

We keep following the approach presented in our previous article [3] where
we introduced a procedure providing deterministic primality tests based on al-
gebraic groups and showed that Pepin’s test and the tests of Lucas–Lehmer type
can be viewed as a special case of our construction. In the present paper, we
modify and extend this procedure (Section 1) which allows us to shorten the
proofs of the toric tests for the numbers of the form h2n ± 1 (Sections 2 and
3) and include several elliptic tests for the same numbers (Sections 4 and 5).
Moreover, we develop elliptic tests for the numbers of the form g222n−1−g2n+1
(Section 5) and of the form g222n−g2n +1 (Section 6) which, as far as we know,
cannot be tested with a toric test.

In Section 4, we apply the general test to an elliptic curve given by the
equation y2 = x3 − dx, where d is not a square modulo the numbers tested
for primality. If, in addition, a tested number is prime and congruent to −1
modulo 4, then according to a result of Schoof [4] the groups of points of the
corresponding reduced elliptic curve must be cyclic. Thus we obtain an elliptic
test for the numbers of the form h2n − 1 which contains Gross’ elliptic test for
Mersenne numbers [1] as a special case.

Further we consider sets of tested numbers with the property that for any
possible prime divisor of a tested number, the corresponding group of points
admits a structure of a module over the ring of integers in a quadratic extension
of Q. This allows us to obtain a large variety of sets of tested numbers even if
the group of points is not cyclic. In Section 5, the general test is applied to the
same elliptic curve as in Section 4, but under the assumption that d is a fourth
power modulo the tested numbers. In this way we construct primality tests for
two families of numbers. The first consists of the numbers of the form g222n +1.
Taking g = 1 in this test provides a slight variation of the test introduced by
Denomme and Savin [2] for Fermat numbers. The second family consists of the
numbers of the form g222n−1 − g2n + 1. In the case where g = (−1)n(n−1)/2 we
get so-called Gauss–Mersenne norms. In [5], Chudnovsky brothers suggested to
use elliptic curves for checking primality of these numbers. However, they did
not formulate any deterministic test for them. In Section 6, we develop a test
for the numbers of the form g222n − g2n + 1 applying the general test to an
elliptic curve given by the equation y2 = x3 +e3 where e is not a square modulo
the tested numbers. This test contains the test for the numbers of the form
22l+1 − 22l

+ 1 described in [2] as a special case.

1 General test

We start with formulating a general deterministic primality test which is a
modification of the test introduced in [3].

Let P denote the set of prime positive integers. We fix an infinite set M of
positive integer numbers tested for primality. Usually M is defined as the image
of an explicit function of a positive integer argument. We also introduce a finite
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set S ⊂ P which contains 2 and assume that
(*) s - m for any s ∈ S, m ∈M .
Let G be a group scheme defined over ZS = {n1/n2 ∈ Q | n1, n2 ∈ Z, p - n2

for any p ∈ P \ S}. Let m be such that s - m for any s ∈ S. Denote by
rm : G(ZS) → G(Z/mZ) the reduction modulo m.

Suppose that we have an open affine subscheme U = Spec A of G, a function
f ∈ A on U , an increasing function ψ : R+ → R+, a function ρ : {2l | l ∈ Z} →
R+, a point α ∈ U(ZS) = HomZS

(A,ZS) (we regard R-valued points on U as
ZS-morphisms from A to R), and a function ξ : M → {2l | l ∈ Z} such that the
following assumptions are satisfied:

(i) for every p ∈ P \ S, η ∈ G(Fp), the order of η in G(Fp) is equal to 2 if
and only if η ∈ U(Fp) = HomZS

(A,Fp) and η(f) = 0;
(ii) for every p ∈ P \ S, we have #G(Fp) ≤ ψ(p);
(iii) for every p ∈ P, m ∈M , l ∈ Z, if p | m and in G(Fp) there is an element

of order 2l, then ρ(2l) ≤ #G(Fp);
(iv) for every p ∈ P ∩M , the order of rp(α) in G(Fp) is equal to ξ(p);
(v) for every m ∈M , we have ψ(

√
m) < ρ(ξ(m)).

Here are some comments on the meaning of these assumptions: (i) allows
one to detect elements of order 2, (ii) gives an upper estimate for the order of
the group under consideration, (iii) gives a lower estimate for the order of the
group through the order of one of its points, (iv) fixes the order of the point
in the case where the tested number is prime. Notice that if ρ(x) = x, then
assumption (iii) is automatically satisfied according to Lagrange’s theorem.

Then we can formulate the following primality test.

Theorem 1. Let G, U , f , ψ, ρ, α, ξ be as above. Then m ∈M is prime if and
only if rm(αξ(m)/2) ∈ U(Z/mZ) and rm(αξ(m)/2)(f) = 0.

Proof. If m ∈ P, then according to (iv), the order of rm(α) in G(Fm) is
ξ(m). Hence the order of rm(αξ(m)/2) in G(Fm) is 2, and according to (i),
rm(αξ(m)/2) ∈ U(Fm) and rm(αξ(m)/2)(f) = 0. Conversely, suppose that
rm(αξ(m)/2) ∈ U(Z/mZ) and rm(αξ(m)/2)(f) = 0. Let p be the smallest prime
divisor of m. Then rp(αξ(m)/2) ∈ U(Fp) and rp(αξ(m)/2)(f) = 0, and according
to (i), the order of rp(αξ(m)/2) in G(Fp) is 2. Therefore the order of rp(α) in
G(Fp) is ξ(m). Now (v), (iii) and (ii) imply ψ(

√
m) < ρ(ξ(m)) ≤ #G(Fp) ≤

ψ(p). Since ψ is an increasing function, we get
√
m < p. Thus m must be

prime.

2 Toric tests for m = h2n + 1

Fix an odd positive integer h and suppose that M ⊂ {h2n + 1 | n ≥ 1, h < 2n}.
We are going to check primality of the elements of M with the aid of the
multiplicative group scheme G = Spec ZS [x, x−1] with the unit x 7→ 1 and the
multiplication x 7→ x ⊗ x. Let p ∈ P \ S. Clearly, η is of order 2 in G(Fp) if
and only if η(x) + 1 = 0 for any η ∈ G(Fp). Further, #G(Fp) = p − 1 and the
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group G(Fp) is cyclic. Finally, if γ ∈ G(ZS) and
(γ(x)

p

)
= −1, then rp(γ) is not

a square in G(Fp).

Proposition 1. Let z ∈ S be such that
(

z
p

)
= −1 for any p ∈ P ∩M . Then

setting β(x) = z defines a point β ∈ G(ZS), and for any p = h2n + 1 ∈ P ∩M ,
the order of rp(α) in G(Fp) is equal to 2n, where α = βh.

Proof. Clearly G(Fp) ∼= Z/h2nZ. Since rp(β) is not a square in G(Fp) and h is
odd, rp(α) is not a square either. Thus rp(α) must be of order 2n.

Test 1 (cf. [3, Corollary 2.4]). Let z be as in Proposition 1. Then m =
h2n + 1 ∈M is prime if and only if m | zh2n−1

+ 1.

Proof. Take α as in Proposition 1. Then α2i

(x) = zh2i

for any i ≥ 0. Further,
take U = G, f = x + 1, ψ(x) = x − 1, ρ(x) = x and ξ(h2n + 1) = 2n. Then
assumptions (i) and (ii) are obviously satisfied, and according to Proposition 1,
assumption (iv) is also satisfied. Finally, assumption (v) follows from h2n +1 <
22n + 1 < (2n + 1)2. Thus Theorem 1 implies the required statement.

Example 1. Here are some possible choices of parameters satisfying the hy-
potheses of Proposition 1 and assumption (∗) for three values of z.

Case A: z = 3, S = {2, 3}.
I) h ≡ 1 (mod 6), M = {h22l + 1 | l ≥ 1, h < 22l}.
II) h ≡ −1 (mod 6), M = {h22l+1 + 1 | l ≥ 0, h < 22l+1}.
m ≡ −1 (mod 3) for any m ∈M ,

(
3
p

)
=

(
p
3

)
= −1 for any p ∈ P ∩M .

Case B: z = 5, S = {2, 5}.
I) h ≡ 1 or −3 (mod 10), M = {h24l + 1 | l ≥ 1, h < 24l}.
II) h ≡ 1 or 3 (mod 10), M = {h24l+1 + 1 | l ≥ 0, h < 24l+1}.
III) h ≡ −1 or 3 (mod 10), M = {h24l+2 + 1 | l ≥ 0, h < 24l+2}.
IV) h ≡ −1 or −3 (mod 10), M = {h24l+3 + 1 | l ≥ 0, h < 24l+3}.
m ≡ 2 or −2 (mod 5) for any m ∈M ,

(
5
p

)
=

(
p
5

)
= −1 for any p ∈ P ∩M .

Case C: z = 7, S = {2, 7}.
I) h ≡ −3 or ±5 (mod 14), M = {h23l + 1 | l ≥ 1, h < 23l}.
II) h ≡ ±1 or −5 (mod 14), M = {h23l+1 + 1 | l ≥ 0, h < 23l+1}.
III) h ≡ 1 or ±3 (mod 14), M = {h23l+2 + 1 | l ≥ 0, h < 23l+2}.
m ≡ −1,−2 or 3 (mod 7) for any m ∈M ,

(
7
p

)
=

(
p
7

)
= −1 for any p ∈ P∩M .

Pepin’s test for Fermat numbers [6, Theorem 4.1.2] is none other than Test 1
applied to Example 1 in case A-I, h = 1.

3 Toric tests for m = h2n − 1

Fix an odd positive integer h and suppose thatM ⊂ {h2n−1 | n ≥ 3, h < 2n−2}.
Let d ∈ Z be a square-free integer. We are going to check primality of the
elements of M with the aid of the Waterhouse–Weisfeiler group scheme (see
[7, Theorem 3.1]) G = Spec ZS [x, y]/(y2 − dx2 − x) with the unit x 7→ 0,
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y 7→ 0 and the multiplication x 7→ x ⊗ 1 + 1 ⊗ x + 2y ⊗ y + 2dx ⊗ x, y 7→
y ⊗ 1 + 1⊗ y + 2dy ⊗ x+ 2dx⊗ y.

Remark 1. We have γ2(x) = 4γ(x)(1 + dγ(x)) = 4γ(y)2 for any γ ∈ G(ZS).

Lemma 1. Let p ∈ P\S, η ∈ G(Fp). Then η is of order 2 in G(Fp) if and only
if η(1 + dx) = 0.

Proof. According to Remark 1, η2(x) = 0 if and only if either η(x) = 0 or
η(1 + dx) = 0. Since η(x) = 0 implies η(y) = 0, we obtain the required
statement.

Proposition 2. If p ∈ P \ S, then #G(Fp) = p−
(

d
p

)
, and the group G(Fp) is

cyclic.

Proof. This immediately follows from [7, Proposition 3.2] which states that the
special fibre of the group scheme G at p is either the norm torus (if p is inert), or
the multiplicative group (if p is split), or the additive group (if p is ramified).

Lemma 2. Let p ∈ P \ S, γ ∈ G(ZS). If
(γ(x)

p

)
= −1, then rp(γ) is not a

square in G(Fp).

Proof. It follows immediately from Remark 1.

Proposition 3. Let z ∈ P be such that
(

z
p

)
= −1 for any p ∈ P ∩M , and let

u, v ∈ ZS be such that
κu2 + µ = λzv2,

where κ ∈ {1,−z}, λ, µ ∈ {1, 2}. Then setting β(x) = −κv2/µ, β(y) = −κuv/µ
defines a point β ∈ G(ZS) with d = λz/κ, and for any p = h2n − 1 ∈ P ∩M ,
the order of rp(α) in G(Fp) is equal to 2n, where α = βh.

Proof. We have β(y)2−dβ(x)2 = (κ2u2v2−λzκv4)/µ2 = −κµv2/µ2 = β(x), and
hence β is a point on G. Furthermore, one can notice that

(
κ
p

)
=

(
λ
p

)
=

(
µ
p

)
= 1

for any p ∈ P ∩M , and hence
(

d
p

)
=

(β(x)
p

)
= −1. Then Proposition 2 implies

that G(Fp) ∼= Z/h2nZ. Further, Lemma 2 implies that rp(β) is not a square
in G(Fp). Since h is odd, rp(α) is not a square either. Thus rp(α) must be of
order 2n.

Test 2 (cf. [3, Corollary 3.6]). Let d, α be as in Proposition 3. Define a
sequence bi ∈ ZS by b0 = α(x), bi+1 = 4bi(1 + dbi). Then m = h2n − 1 ∈M is
prime if and only if m | 1 + dbn−1.

Proof. Take U = G, f = 1 + dx, ψ(x) = x + 1, ρ(x) = x and ξ(h2n − 1) =
2n. Then Lemma 1 implies that assumption (i) is satisfied. Assumption (ii)
follows from Proposition 2. According to Proposition 3, assumption (iv) is also
satisfied. Finally, assumption (v) follows from h2n−1 < (2n−2)2n < (2n−1)2.
Thus Theorem 1 implies that m is prime if and only if rm(α2n−1

)(1 + dx) = 0.
According to Remark 1, we have α2i

(x) = bi for any i ≥ 0 which gives the
required statement.

5



Example 2. Here are some possible choices of parameters satisfying the hy-
potheses of Proposition 3 and assumption (∗) for two values of z.

Case A: z = 3, S = {2, 3}.
1) κ = 1, λ = 1, µ = 2, u = 1, v = 1.
2) κ = 1, λ = 2, µ = 2, u = 2, v = 1.
3) κ = −3, λ = 2, µ = 1, u = 1/3, v = 1/3.
4) κ = −3, λ = 2, µ = 2, u = 2/3, v = 1/3.
I) h ≡ −1 (mod 6), M = {h22l − 1 | l ≥ 2, h < 22l − 2}.
II) h ≡ 1 (mod 6), M = {h22l+1 − 1 | l ≥ 1, h < 22l+1 − 2}.
m ≡ 1 (mod 3) for any m ∈M ,

(
3
p

)
= −

(
p
3

)
= −1 for any p ∈ P ∩M .

Case B: z = 5, S = {2, 5}.
1) κ = 1, λ = 1, µ = 1, u = 2, v = 1.
2) κ = 1, λ = 2, µ = 1, u = 3, v = 1.
3) κ = −5, λ = 1, µ = 1, u = 1/5, v = 2/5.
4) κ = −5, λ = 1, µ = 2, u = 1/5, v = 3/5.
I) h ≡ −1 or 3 (mod 10), M = {h24l − 1 | l ≥ 1, h < 24l − 2}.
II) h ≡ −1 or −3 (mod 10), M = {h24l+1 − 1 | l ≥ 1, h < 24l+1 − 2}.
III) h ≡ 1 or −3 (mod 10), M = {h24l+2 − 1 | l ≥ 1, h < 24l+2 − 2}.
IV) h ≡ 1 or 3 (mod 10), M = {h24l+3 − 1 | l ≥ 1, h < 24l+3 − 2}.
m ≡ 2 or −2 (mod 5) for any m ∈M ,

(
5
p

)
=

(
p
5

)
= −1 for any p ∈ P ∩M .

The classical Lucas–Lehmer test for Mersenne numbers [6, Theorem 4.2.6]
can be obtained by applying Test 2 to Example 2 in case A-1-II, h = 1, and
replacing the sequence bi by the sequence ai = 12bi + 2 (see [3, Corollary 3.8]).

4 Elliptic tests for m = h2n − 1

Fix an odd positive integer h and suppose that M ⊂ {h2n − 1 | n ≥ 3, h <
2n − 2(n+4)/2}. Let d ∈ ZS , p - d for any p ∈ P \ S. We are going to check
primality of the elements of M with the aid of the elliptic curve G given by the
equation y2 = x3 − dx.

Remark 2. We have η2(x) = (η(x)2+d)2

4(η(x)3−dη(x)) = (η(x)2+d)2

4η(y)2 for any η ∈ G(K)
different from the identity, where K is a field such that char K /∈ S.

Lemma 3. Let p ∈ P\S, η ∈ G(Fp). Then η is of order 2 in G(Fp) if and only
if η(x3 − dx) = 0.

Proof. It follows immediately from Remark 2.

Proposition 4. If p ∈ P \ S and p ≡ −1 (mod 4), then #G(Fp) = p + 1 and
either G(Fp) ∼= Z/(p + 1)Z or G(Fp) ∼= Z/2Z ⊕ Z/p+1

2 Z. The second case can
only occur if

(
d
p

)
= 1.
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Proof. According to [8, Theorem 5 in §18.4], we have #G(Fp) = p+1. Further,
[4, Lemma 4.8] implies that either G(Fp) ∼= Z/(p + 1)Z or G(Fp) ∼= Z/2Z ⊕
Z/p+1

2 Z. Finally, if
(

d
p

)
= −1, then Lemma 3 implies that there is only one

element of order 2 in G(Fp). Thus the second option for G(Fp) does not occur.

Lemma 4. Let p ∈ P \ S, γ ∈ G(ZS). If
(γ(x)

p

)
= −1, then rp(γ) is not a

square in G(Fp).

Proof. It immediately follows from Remark 2.

Proposition 5. Let z ∈ S be such that
(

z
p

)
= −1 for any p ∈ P ∩M . Let

u, v ∈ ZS be such that 1/v ∈ ZS and

κu2 + µ = λzv2,

where κ ∈ {1,−z}, λ, µ ∈ {1, 2}. Then setting β(x) = −κµ, β(y) = κ2µu
defines a point β ∈ G(ZS) with d = λµκ2zv2, and for any p = h2n− 1 ∈ P∩M ,
the order of rp(α) in G(Fp) is equal to 2n, where α = βh.

Proof. We have β(x)3 − dβ(x) = −κ3µ3 + λµκ2zv2κµ = κ3µ2(−µ + λzv2) =
κ3µ2κu2 = β(y)2, and hence β is a point on G. Furthermore, one can notice
that

(
κ
p

)
=

(
λ
p

)
=

(
µ
p

)
= 1 for any p ∈ P ∩M , and hence

(
d
p

)
=

(β(x)
p

)
= −1.

Then Proposition 4 implies that G(Fp) ∼= Z/h2nZ. Further, Lemma 4 implies
that rp(β) is not a square in G(Fp). Since h is odd, rp(α) is not a square either.
Thus rp(α) must be of order 2n.

Test 3. Let d, α be as in Proposition 5. Define a sequence bi ∈ ZS by b0 = α(x),
bi+1 = (b2i +d)2

4(b3i−dbi)
. Then m = h2n−1 ∈M is prime if and only if (m, b3i −dbi) = 1

for any 0 ≤ i ≤ n− 2 and m | b3n−1 − dbn−1.

Proof. Let U = Spec ZS [x, y]/(y2 − x3 + dx) be the standard affine chart of G.
Take f = x3 − dx, ψ(x) = (

√
x + 1)2, ρ(x) = x and ξ(h2n − 1) = 2n. Then

Lemma 3 implies that assumption (i) is satisfied. Assumption (ii) follows from
Hasse’s theorem. According to Proposition 5, assumption (iv) is also satisfied.
Finally, assumption (v) follows from h2n − 1 < (2n/2 − 1)4 which holds since
h < 2n− 4 · 2n/2 +6− 4 · 2−n/2. Thus Theorem 1 implies that m is prime if and
only if rm(α2n−1

) ∈ U(Z/mZ) and rm(α2n−1
)(x3− dx) = 0. Now if m ∈ P∩M ,

then rm(α2n−1
) ∈ U(Z/mZ) implies rm(α2i

) ∈ U(Z/mZ) for any 1 ≤ i ≤ n− 1.
Moreover, according to Remark 2, we get (m, rm(α2i−1

)(x3 − dx)) = 1 and
rm(α2i

)(x) ≡ bi (mod m) for any 1 ≤ i ≤ n − 1. Hence (m, b3i − dbi) = 1 for
any 0 ≤ i ≤ n − 2, and rm(α2n−1

)(x3 − dx) = 0 implies m | b3n−1 − dbn−1.
Conversely, if (m, b3i − dbi) = 1 for any 0 ≤ i ≤ n − 2 and m | b3n−1 − dbn−1,
then rm(α2i

) ∈ U(Z/mZ) and rm(α2i

)(x) ≡ bi (mod m) for any 1 ≤ i ≤ n− 1.
Therefore rm(α2n−1

)(x3 − dx) ≡ b3n−1 − dbn−1 ≡ 0 (mod m).
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The condition m | b3n−1 − dbn−1 in Test 3 can be replaced by the stronger
condition m | bn−1 since for any p ∈ P ∩M , b ∈ ZS we have p - b2 − d.

It is remarkable that the hypotheses of Proposition 5 are almost identical
to those of Proposition 3 (the only additional requirement is 1/v ∈ ZS). Thus
Test 3 can be applied to all cases in Example 2 except case B-4.

Gross’ elliptic test for Mersenne numbers [1, Proposition 2.2] is none other
than Test 3 applied to Example 2 in case A-2-II, h = 1.

5 Elliptic tests for m = g222n+1 and m = g222n−1−
g2n + 1

Fix an odd integer g and suppose that M ⊂ {g222n + 1 | n ≥ 3, |g| < 2n−1 − 2}
(resp. M ⊂ {g222n−1− g2n + 1 | n ≥ 3, |g| < 2n−1/2− 2}). Let d ∈ ZS , p - d for
any p ∈ P \ S. We are going to check primality of the elements of M with the
aid of the elliptic curve G given by the equation y2 = x3 − dx.

Let p ∈ P \ S, p ≡ 1 (mod 4), ε ∈ Fp be such that ε2 + 1 = 0. Define a map
i : G(Fp) → G(Fp) as follows: i(x, y) = (−x, εy). Clearly, i is an endomorphism
of G(Fp), and thus G(Fp) gets a structure of Z[i]-module.

Remark 3. We have η1+i(x) = η(y)2

(1+ε)2η(x)2 for any η ∈ G(Fp) different from
the identity, p ∈ P \ S, p ≡ 1 (mod 4).

Lemma 5 (cf. [2, Proposition 4]). Let p ∈ P \ S, p ≡ 1 (mod 4), be such
that #G(Fp) = h2n, 2 - h. Then G(Fp) ∼= Z[i]/(1+ i)nZ[i]⊕H as Z[i]-modules,
where H is a Z[i]-module, #H = h.

Proof. Since G(Fp) is a finitely generated Z[i]-module, it must be isomorphic
to ⊕k

l=1Z[i]/θlZ[i], where θ1, . . . , θk ∈ Z[i] are powers of primes in Z[i], and
#G(Fp) =

∏k
l=1N(θl). Since 1 + i is the only prime in Z[i] with norm divisible

by 2, there exists 0 ≤ k̃ ≤ k such that θl is a power of 1+i for any 1 ≤ l ≤ k̃, and
N(θl) is odd for any k̃ < l ≤ k. Put H = ⊕k

l=k̃+1
Z[i]/θlZ[i]. Finally, Remark 3

implies that in G(Fp) viewed as a Z[i]-module, there is precisely one element of
order 1 + i. Thus k̃ = 1 and G(Fp) is isomorphic to Z[i]/(1 + i)nZ[i]⊕H.

For m = g222n + 1 ∈M , define

m′ = 1 + g2ni, (1)

and for m = g222n−1 − g2n + 1 ∈M , define

m′ = 1 + g(−1)n(n−1)/2(−1 + i)2n−1. (2)

We have N(m′) = m where N : Q(i) → Q denotes the norm map. If p ∈ P∩M ,
then p′ must be prime in the ring Z[i].
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Proposition 6. If p = g222n + 1 ∈ P ∩M (resp. p = g222n−1 − g2n + 1 ∈
P ∩M) and

(
d
p′

)
4

= 1, then #G(Fp) = g222n (resp. #G(Fp) = g222n−1) and
G(Fp) ∼= Z/2nZ⊕Z/2nZ⊕H (resp. G(Fp) ∼= Z/2nZ⊕Z/2n−1Z⊕H) as abelian
groups, where H is an abelian group, #H = g2.

Proof. Take a, b ∈ Z such that p′ = a+ bi. Then a ≡ 1 (mod 4), b ≡ 0 (mod 4)
and p = a2 + b2. Therefore, according to [8, Theorem 5 in §18.4], we get

#G(Fp) = p+1−(a+bi)−(a−bi) = a2+b2+1−2a = N((a−1)+bi) = N(p′−1).

Thus #G(Fp) = g222n (resp. #G(Fp) = g222n−1). Finally, Lemma 5 implies
G(Fp) ∼= Z[i]/(1 + i)2nZ[i] ⊕ H (resp. G(Fp) ∼= Z[i]/(1 + i)2n−1Z[i] ⊕ H) as
Z[i]-modules. Since 1 and 1+ i generate Z[i] as abelian group, we conclude that
G(Fp) ∼= Z/2nZ⊕Z/2nZ⊕H (resp. G(Fp) ∼= Z/2nZ⊕Z/2n−1Z⊕H) as abelian
groups.

Lemma 6. Let m = g222n + 1 (resp. m = g222n−1 − g2n + 1), p ∈ P, p | m,
η ∈ G(Fp), l ∈ Z. If the order of η in G(Fp) is 2l, then #G(Fp) ≥ 22l−1.

Proof. The equation x2+1 ≡ 0 (mod p) has a solution. Indeed, ifm = g222n+1,
then one can take x = g2n, and if m = g222n−1 − g2n + 1, then one can take
x = g222n−1 since g222n−1 − g2n + 1 divides g424n−2 + 1. This implies p ≡ 1
(mod 4). Thus G(Fp) has a Z[i]-module structure. The ideal of Z[i] which
annihilates η must be either (1 + i)2lZ[i] or (1 + i)2l−1Z[i]. Then the Z[i]-
submodule of G(Fp) generated by η contains either 22l or 22l−1 elements.

Lemma 7. Let p ∈ P \ S, p ≡ 1 (mod 4), γ ∈ G(ZS). If
(γ(x)

p

)
= −1, then

rp(γ) does not belong to the submodule G(Fp)1+i of G(Fp).

Proof. It immediately follows from Remark 3.

Proposition 7. Let z, t ∈ S be such that
(

z
p

)
= −1,

(
zt
p

)
= 1 for any p ∈ P∩M .

Let u, v, w ∈ ZS be such that

κu2 + 1 = λzv2, κu2 + 2 = µtw2,

where κ, λ, µ ∈ {1, 2,−1,−2}. Then setting β(x) = eλzv2, β(y) = e2uvw defines
a point β ∈ G(ZS) with d = e2, e = κλµzt, and for any p = g222n + 1 ∈ P ∩M
(resp. p = g222n−1 − g2n + 1 ∈ P ∩M), the order of rp(α) in G(Fp) is equal to
2n, where α = βg2

.

Proof. We have β(x)3 − dβ(x) = e3λ3z3v6 − e3λzv2 = e3λzv2(λ2z2v4 − 1) =
e3λzv2(λzv2 − 1)(λzv2 + 1) = e4u2v2w2 = β(y)2 and hence β is a point on G.
Further, one can notice that

(
κ
p

)
=

(
λ
p

)
=

(
µ
p

)
= 1 for any p ∈ P ∩M , and

hence
(

d
p′

)
4
≡ d

p−1
4 = e

p−1
2 ≡

(
e
p

)
= 1 (mod p′),

(β(x)
p

)
= −1, where p′ is

given by formula (1) (resp. by formula (2)). Then Proposition 6 implies that
#G(Fp) = g222n (resp. #G(Fp) = g222n−1). Moreover, according to Lemma 5,
G(Fp) ∼= Z[i]/(1+i)2nZ[i]⊕H (resp. G(Fp) ∼= Z[i]/(1+i)2n−1Z[i]⊕H). Further,
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Lemma 7 implies that rp(β) does not belong to the submodule G(Fp)1+i of
G(Fp). Since g2 is odd, rp(α) does not belong to G(Fp)1+i either. Hence
rp(α)2

n−1
= rp(α)(−i)n−1(1+i)2n−2

is different from the identity in G(Fp). Since
G(Fp) ∼= Z/2nZ⊕Z/2nZ⊕H (resp. G(Fp) ∼= Z/2nZ⊕Z/2n−1Z⊕H), the order
of rp(α) must be equal to 2n.

Proposition 8. Let z, t ∈ S be such that
(

z
p

)
= −1,

(
zt
p′

)
4

= 1 for any p ∈ P∩M
where p′ is defined by formula (1) (resp. by formula (2)). Let u, v ∈ ZS be such
that

κu2 + µ2t = λ2zv4,

where κ, λ, µ ∈ {1, 2,−1,−2}. Then setting β(x) = κλ2zv2, β(y) = κ2λ2zuv
defines a point β ∈ G(ZS) with d = κ2λ2µ2zt, and for any p = g222n+1 ∈ P∩M
(resp. p = g222n−1 − g2n + 1 ∈ P ∩M), the order of rp(α) in G(Fp) is equal to
2n, where α = βg2

.

Proof. We have β(x)3 − dβ(x) = κ3λ6z3v6 − κ3λ4µ2z2tv2 = κ3λ4z2v2(λ2zv4 −
µ2t) = κ4λ4z2v2u2 = β(y)2 and hence β is a point on G. Further, one can notice
that

(
κ
p

)
=

(
λ
p

)
=

(
µ
p

)
= 1 for any p ∈ P ∩M , and hence,

(
d
p′

)
4

=
(

κ2λ2µ2

p′

)
4
≡

(κ2λ2µ2)
p−1
4 = (κλµ)

p−1
2 ≡

(
κλµ

p

)
= 1 (mod p′),

(β(x)
p

)
= −1. The end of the

proof is identical to that of Proposition 7.

Test 4. Let d, α be either as in Proposition 7 or as in Proposition 8. Define
a sequence bi ∈ ZS by b0 = α(x), bi+1 = (b2i +d)2

4(b3i−dbi)
. Then m = g222n + 1 ∈ M

(resp. m = g222n−1− g2n + 1 ∈M) is prime if and only if (m, b3i − dbi) = 1 for
any 0 ≤ i ≤ n− 2 and m | b3n−1 − dbn−1.

Proof. Let U = Spec ZS [x, y]/(y2 − x3 + dx) be the standard affine chart of
G. Take f = x3 − dx, ψ(x) = (

√
x + 1)2, ρ(x) = x2/2 and ξ(g222n + 1) = 2n

(resp. ξ(g222n−1−g2n +1) = 2n). Then Lemma 3 implies that assumption (i) is
satisfied. Assumption (ii) follows from Hasse’s theorem. Lemma 6 implies that
assumption (iii) is satisfied. According to Propositions 7 and 8 assumption (iv)
is also satisfied. Finally, assumption (v) follows from g222n+1 < (2(2n−1)/2−1)4

(resp. g222n−1 + |g|2n + 1 < (2(2n−1)/2 − 1)4) which holds for any n ≥ 3, since
g2 < 22n−2−4·2n−1+4 < 22n−2−4·2(2n−3)/2 (resp. g2 < 22n−1−4·2(2n−1)/2+4
and |g| < 2n − 23/2). Thus Theorem 1 implies that m is prime if and only if
rm(α2n−1

) ∈ U(Z/mZ) and rm(α2n−1
)(x3 − dx) = 0. The end of the proof is

identical to that of Test 3.

Ifm = g222n+1 (resp. m = g222n−1−g2n+1), then the conditionm | b3n−1−
dbn−1 in Test 4 can be replaced by the stronger condition m | b2n−1−d (resp. m |
bn−1). Indeed, for any p ∈ P∩M , Lemma 7 implies that rp(α) does not belong
to G(Fp)1+i. Then according to Proposition 6 the element rp(α2n−1

)1+i =
rp(α)(−i)n−1(1+i)2n−1

is different from (resp. equal to) the identity in G(Fp).
Hence by Remark 3 we obtain rp(α2n−1

)(x) 6= 0 (resp. rp(α2n−1
)(x) = 0).
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Example 3. Here are some possible choices of parameters satisfying the hy-
potheses of Proposition 7 and assumption (∗) for three pairs of values of z, t.

Case A: z = 5, t = 3, S = {2, 3, 5},
κ = 1, λ = 1, µ = 2, u = 2, v = 1, w = 1.
I) g ≡ ±1 or ±11 (mod 30), M = {g224l + 1 | l ≥ 2, g < 22l−1 − 2}.
II) g ≡ ±7 or ±13 (mod 30), M = {g224l+2 + 1 | l ≥ 1, g < 22l − 2}.
III) g ≡ 1 (mod 30), M = {g228l−1 − g24l + 1 | l ≥ 1, g < 24l−1/2}.
IV) g ≡ −7 (mod 30), M = {g228l+1 − g24l+1 + 1 | l ≥ 1, g < 24l+1/2}.
V) g ≡ −11 (mod 30), M = {g228l+3 − g24l+2 + 1 | l ≥ 1, g < 24l+3/2}.
VI) g ≡ −13 (mod 30), M = {g228l+5 − g24l+3 + 1 | l ≥ 0, g < 24l+5/2}.
m ≡ 2 or −2 (mod 5), m ≡ −1 (mod 3) for any m ∈M ,(

5
p

)
=

(
p
5

)
= −1,

(
3
p

)
=

(
p
3

)
= −1 for any p ∈ P ∩M .

Case B: z = 7, t = 3, S = {2, 3, 7},
κ = −2, λ = −1, µ = −2, u = 2, v = 1, w = 1.
I) g ≡ ±5,±11,±17 or ±19 (mod 42),

M = {g226l + 1 | l ≥ 1, g < 23l−1 − 2}.
II) g ≡ ±1,±5,±13 or ±19 (mod 42),

M = {g226l+2 + 1 | l ≥ 1, g < 23l − 2}.
III) g ≡ ±1,±11,±13 or ±17 (mod 42),

M = {g226l+4 + 1 | l ≥ 1, g < 23l+1 − 2}.
IV) g ≡ −11, 13 or 19 (mod 42),

M = {g224l−1 − g22l + 1 | l ≥ 2, g < 22l−1/2 − 2}.
V) g ≡ −1, 5 or 17 (mod 42),

M = {g224l+1 − g22l+1 + 1 | l ≥ 1, g < 22l+1/2 − 2}.
m ≡ −1,−2 or 3 (mod 7), m ≡ −1 (mod 3) for any m ∈M ,(

7
p

)
=

(
p
7

)
= −1,

(
3
p

)
=

(
p
3

)
= −1 for any p ∈ P ∩M .

Case C: z = 5, t = 7, S = {2, 5, 7},
κ = −1, λ = 1, µ = 2, u = 2/3, v = 1/3, w = 1/3.
I) g ≡ ±9,±11,±19 or ±31 (mod 70),

M = {g2212l + 1 | l ≥ 2, g < 26l−1 − 2}.
II) g ≡ ±3,±13,±17 or ±27 (mod 70),

M = {g2212l+2 + 1 | l ≥ 2, g < 26l − 2}.
III) g ≡ ±1,±9,±19 or ±29 (mod 70),

M = {g2212l+4 + 1 | l ≥ 2, g < 26l+1 − 2}.
IV) g ≡ ±3,±17,±23 or ±33 (mod 70),

M = {g2212l+6 + 1 | l ≥ 2, g < 26l+2 − 2}.
V) g ≡ ±1,±11,±29 or ±31 (mod 70),

M = {g2212l+8 + 1 | l ≥ 2, g < 26l+3 − 2}.
VI) g ≡ ±13,±23,±27 or ±33 (mod 70),

M = {g2212l+10 + 1 | l ≥ 2, g < 26l+4 − 2}.
VII) g ≡ −9,−29 or 31 (mod 70),

M = {g228l−1 − g24l + 1 | l ≥ 1, g < 24l−1/2 − 2}.
VIII) g ≡ 3, 13 or 33 (mod 70),

M = {g228l+1 − g24l+1 + 1 | l ≥ 1, g < 24l+1/2 − 2}.
IX) g ≡ −1,−11 or 19 (mod 70),
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M = {g228l+3 − g24l+2 + 1 | l ≥ 1, g < 24l+3/2 − 2}.
X) g ≡ 17,−23 or 27 (mod 70),

M = {g228l+5 − g24l+3 + 1 | l ≥ 1, g < 24l+5/2 − 2}.
m ≡ 2 or −2 (mod 5), m ≡ −1,−2 or 3 (mod 7) for any m ∈M ,(

5
p

)
=

(
p
5

)
= −1,

(
7
p

)
=

(
p
7

)
= −1 for any p ∈ P ∩M .

For any p ∈ P ∩M we have
(−1

p′

)
4
≡ (−1)

p−1
4 = 1 (mod p′). Besides, if

p′ = a+ bi with a, b ∈ Z, then a ≡ 1 (mod 4), b ≡ 0 (mod 4), and for any odd
q ∈ Z we have (−1)(q−1)/2q ≡ 1 (mod 4). Thus the biquadratic reciprocity law
[8, Theorem 2 in §9.9] implies

(
q
p′

)
4

=
( (−1)(q−1)/2q

p′

)
4

=
(

p′

q

)
4
.

Example 4. Here are some possible choices of parameters satisfying the hy-
potheses of Proposition 8 and assumption (∗) for five pairs of values of z, t.

Case A: z = 5, t = 3, S = {2, 3, 5},
κ = 2, λ = 1, µ = 1, u = 1, v = 1.
I) g ≡ 1 (mod 30), M = {g228l + 1 | l ≥ 1, g < 24l−1 − 2}.
II) g ≡ −7 (mod 30), M = {g228l+2 + 1 | l ≥ 1, g < 24l − 2}.
III) g ≡ −11 (mod 30), M = {g228l+4 + 1 | l ≥ 1, g < 24l+1 − 2}.
IV) g ≡ −13 (mod 30), M = {g228l+6 + 1 | l ≥ 0, g < 24l+2 − 2}.
m ≡ 2 (mod 5), m′ ≡ −1 (mod 2 + i), m′ ≡ −i (mod 2− i),
m′ ≡ 1 + i (mod 3) for any m ∈M ,

(
5
p

)
=

(
p
5

)
= −1,(

15
p′

)
4

=
(

p′

(2+i)·(2−i)·3
)
4

= (−1) · (−i) · (−i) = 1 for any p ∈ P ∩M .
V) g ≡ −1 (mod 30), M = {g228l + 1 | l ≥ 1, g < 24l−1 − 2}.
VI) g ≡ 7 (mod 30), M = {g228l+2 + 1 | l ≥ 1, g < 24l − 2}.
VII) g ≡ 11 (mod 30), M = {g228l+4 + 1 | l ≥ 1, g < 24l+1 − 2}.
VIII) g ≡ 13 (mod 30), M = {g228l+6 + 1 | l ≥ 0, g < 24l+2 − 2}.
m ≡ 2 (mod 5), m′ ≡ i (mod 2 + i), m′ ≡ −1 (mod 2− i),
m′ ≡ 1− i (mod 3) for any m ∈M ,

(
5
p

)
=

(
p
5

)
= −1,(

15
p′

)
4

=
(

p′

(2+i)·(2−i)·3
)
4

= i · (−1) · i = 1 for any p ∈ P ∩M .
IX) g ≡ 1 (mod 30), M = {g228l−1 − g24l + 1 | l ≥ 1, g < 24l−1/2}.
X) g ≡ −11 (mod 30), M = {g228l+3 − g24l+2 + 1 | l ≥ 1, g < 24l+3/2}.
m ≡ −2 (mod 5), m′ ≡ −1 (mod 2 + i), m′ ≡ i (mod 2− i),
m′ ≡ −1 + i (mod 3) for any m ∈M ,

(
5
p

)
=

(
p
5

)
= −1,(

15
p′

)
4

=
(

p′

(2+i)·(2−i)·3
)
4

= (−1) · i · i = 1 for any p ∈ P ∩M .
XI) g ≡ −7 (mod 30), M = {g228l+1 − g24l+1 + 1 | l ≥ 1, g < 24l+1/2}.
XII) g ≡ −13 (mod 30), M = {g228l+5 − g24l+3 + 1 | l ≥ 0, g < 24l+5/2}.
m ≡ −2 (mod 5), m′ ≡ −i (mod 2 + i), m′ ≡ −1 (mod 2− i),
m′ ≡ −1− i (mod 3) for any m ∈M ,

(
5
p

)
=

(
p
5

)
= −1,(

15
p′

)
4

=
(

p′

(2+i)·(2−i)·3
)
4

= (−i) · (−1) · (−i) = 1 for any p ∈ P ∩M .
Case B: z = 7, t = 3, S = {2, 3, 7}

κ = 1, λ = 1, µ = 1, u = 2, v = 1.
Case C: z = 7, t = 5, S = {2, 5, 7},

κ = 2, λ = 1, µ = 1, u = 1, v = 1.
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Case D: z = 3, t = 13, S = {2, 3, 7}
κ = −1, λ = 2, µ = 1, u = 1, v = 1.

Case E: z = 13, t = 5, S = {2, 5, 13},
κ = 2, λ = 1, µ = 1, u = 2, v = 1.

The test by Denomme and Savin for Fermat numbers [2, Theorem in §4] is
similar to the test which can be obtained by applying Test 4 to Example 3 in
case A-I, g = 1, and replacing the sequence bi by the sequence ai = bi/30.

If m = g222n−1−g2n+1 and g = (−1)1+n(n−1)/2, then m′ = 1−(−1+i)2n−1

is divisible by 2 − i, and hence m is divisible by 5. If g = (−1)n(n−1)/2, then
m′ = 1 + (−1 + i)2n−1 can be prime only if 2n− 1 is prime.

The numbers of the form m = 22n−1 − 2n + 1 which are not divisible by 5
belong to the sets mentioned in Example 3 for any n 6≡ 1 (mod 4), and thus
Test 4 can be applied to them. Indeed, if n ≡ 0 (mod 4), then m belongs to
the set from Example 3 in case A-III, g = 1, and if n ≡ 2 or 3 (mod 4), then
m is divisible by 5. Similarly, the numbers of the form m = 22n−1 + 2n + 1
which are not divisible by 5 belong to the sets mentioned in Example 3 for any
n. Indeed, if n ≡ 0 or 1 (mod 4), then m is divisible by 5. If n ≡ 2 (mod 4),
then m belongs to the set from Example 3 in case C-IX, g = −1, and if n ≡ 3
(mod 4), then m belongs to the set from Example 3 in case B-V, g = −1.

Notice that for m = g222n + 1 ∈ M (resp. m = 22n−1 ± 2n + 1 ∈ M) we
have m = h2n + 1 with h = g2 (resp. h = 2n−1 ± 1). Since h < 2n, one can
apply the approach of Section 2 to these numbers. In particular, the sets from
Example 3 (resp. the sets from Example 3 with |g| = 1) can be tested with
Test 1 applied to Example 1, where the value of z should correspond either to
z or to t from Example 3. The numbers g222n−1 − g2n + 1 with |g| 6= 1 cannot
be written in the form required in Sections 2 or 3, and thus the corresponding
toric test cannot be applied to them.

6 Elliptic tests for m = g222n − g2n + 1

Fix an odd integer g and suppose that M ⊂ {g222n − g2n + 1 | n ≥ 2, |g| <
2n − 2, 3 | g2n − 1}. Further suppose that 3 ∈ S. Let d ∈ ZS , p - d for any
p ∈ P \S. We are going to check primality of the elements of M with the aid of
the elliptic curve G given by the equation y2 = x3 + d.

Remark 4. We have η2(x) = η(x)4−8dη(x)
4(η(x)3+d) = η(x)4−8dη(x)

4η(y)2 for any η ∈ G(K)
different from the identity, where K is a field such that char K /∈ S.

Lemma 8. Let p ∈ P\S, η ∈ G(Fp). Then η is of order 2 in G(Fp) if and only
if η(x3 + d) = 0.

Proof. It follows immediately from Remark 4.

Denote ω = (−1+
√

3i)/2. Let p ∈ P\S, p ≡ 1 (mod 3), ζ ∈ Fp be such that
ζ2 + ζ + 1 = 0. Define a map ω : G(Fp) → G(Fp) as follows: ω(x, y) = (ζx, y).

13



Clearly, ω is an endomorphism of G(Fp), and thus G(Fp) gets a structure of
Z[ω]-module.

Lemma 9 (cf. [2, Proposition 10]). Let p ∈ P \ S, p ≡ 1 (mod 3), be such
that #G(Fp) = h22n, 2 - h. Then G(Fp) ∼= Z[ω]/2nZ[ω] ⊕H as Z[ω]-modules,
where H is a Z[ω]-module, #H = h.

Proof. Since G(Fp) is a finitely generated Z[ω]-module, it must be isomorphic
to ⊕k

l=1Z[ω]/θlZ[ω], where θ1, . . . , θk ∈ Z[ω] are powers of primes in Z[ω], and
#G(Fp) =

∏k
l=1N(θl). Since 2 is the only prime in Z[ω] with norm divisible

by 2, there exists 0 ≤ k̃ ≤ k such that θl is a power of 2 for any 1 ≤ l ≤ k̃,
and N(θl) is odd for any k̃ < l ≤ k. Put H = ⊕k

l=k̃+1
Z[ω]/θlZ[ω]. Further, it

is clear that Z[ω]/2jZ[ω] has 22j elements three of which are of order 2 for any
j ≥ 1. Finally, Remark 4 implies that in G(Fp) viewed as a Z[ω]-module, there
are at most three elements of order 2. Thus k̃ ≤ 1 and G(Fp) is isomorphic to
Z[ω]/2nZ[ω]⊕H.

For m = g222n − g2n + 1 ∈M , define

m′ = −1 + (g2n − 1)ω. (3)

We have N(m′) = m where N : Q(ω) → Q denotes the norm map. If p ∈ P∩M ,
then p′ must be prime in the ring Z[ω].

Proposition 9. If p = g222n − g2n + 1 ∈ P ∩ M and
(

4d
p′

)
6

= −ω2, then
#G(Fp) = g222n and G(Fp) ∼= Z/2nZ⊕Z/2nZ⊕H as abelian groups, where H
is an abelian group, #H = g2.

Proof. We have g2n − 1 ≡ 0 (mod 3). Therefore, according to [8, Theorem 4 in
§18.3], we get

#G(Fp) = p+ 1− ω(−1 + (g2n − 1)ω)− ω2(−1 + (g2n − 1)ω2)

= g222n − g2n + 1 + 1 + ω − g2nω2 + ω2 + ω2 − g2nω + ω = g222n.

Finally, Lemma 9 implies G(Fp) ∼= Z[ω]/2nZ[ω] ⊕ H as Z[ω]-modules. Thus
G(Fp) ∼= Z/2nZ⊕ Z/2nZ⊕H as abelian groups.

Lemma 10. Let m = g222n − g2n + 1 ∈M , p ∈ P, p | m, η ∈ G(Fp), l ∈ Z. If
the order of η in G(Fp) is 2l, then #G(Fp) ≥ 22l.

Proof. Since the equation x2 − x + 1 ≡ 0 (mod p) has a solution x = g2n, we
get p ≡ 1 (mod 3). Thus G(Fp) has a Z[ω]-module structure. The ideal of
Z[ω] which annihilates η must be 2lZ[ω]. Then the Z[ω]-submodule of G(Fp)
generated by η contains 22l elements.

Proposition 10. Let z ∈ S be such that
(

z
p

)
= −1 for any p ∈ P ∩M . Let

v ∈ ZS be such that
λ2v4 − 3λv2 + 3 = z,

14



where λ ∈ {1, 2,−1,−2}. Then setting β(x) = e(λv2 − 1), β(y) = e2v defines a
point β ∈ G(ZS) with d = e3, e = λz, and for any p = g222n− g2n +1 ∈ P∩M ,
the order of rp(α) in G(Fp) is equal to 2n, where α = βg2

.

Proof. We have β(x)3 + d = e3(λv2 − 1)3 + e3 = e3(λ3v6 − 3λ2v4 + 3λv2) =
e3λv2(λ2v4 − 3λv2 + 3) = e3λv2z = β(y)2 and hence β is a point on G. Fur-
ther, one can notice that

(
λ
p

)
= 1 for any p ∈ P ∩ M , and hence

(
4d
p′

)
6
≡

(4e3)
p−1
6 = 2

p−1
3 e

p−1
2 ≡

(
2
p′

)
3

(
e
p

)
= −

(
2
p′

)
3

(mod p′) (here p′ is given by for-
mula (3)). Applying the cubic reciprocity law [8, Theorem 1 in §9.3] we obtain(

4d
p′

)
6

= −
(

2
p′

)
3

= −
(

p′

2

)
3

= −
(−1−ω

2

)
3

= −ω2. Then Proposition 9 implies
that #G(Fp) = g222n and G(Fp) ∼= Z/2nZ ⊕ Z/2nZ ⊕ H, where #H = g2.
Now, we show that rp(β) is not a square in G(Fp). Let η ∈ G(Fp) be such
that η2 = rp(β). In G(Fp) there are four distinct elements, say δi, 1 ≤ i ≤ 4,
such that δ2i is the identity in G(Fp). Then we have (δiη)2 = rp(β) for any
1 ≤ i ≤ 4. Moreover, δiη(x) 6= δjη(x) for i 6= j, since otherwise rp(β)2 =
(δiη)2(δjη)2 = (δiηδjη)2 should be the identity in G(Fp), i.e. rp(β) should be
one of δi which is impossible. Thus according to Remark 4, the polynomial
P(x) = x4 − 4eux3 − 8e3x− 4e4u, where u = (λv2 − 1), has four distinct roots
in Fp. On the other hand, Fp(r), where r2 = z, is a quadratic extension of Fp,
and in the ring Fp(r)[x] we have the following decomposition of P:

P(x) = (x2 − 2e(u− r)x− 2e2(u− 1− r))(x2 − 2e(u+ r)x− 2e2(u− 1 + r)).

Hence the product of two of the roots of P must be equal to −2e2(λu2− 2 + r).
This implies that r must belong to Fp which gives a contradiction. Therefore
rp(β) is not a square in G(Fp). Since g2 is odd, rp(α) is not a square in G(Fp)
either. Thus rp(α) must be of order 2n.

Test 5. Let d, α be as in Proposition 10. Define a sequence bi ∈ ZS by b0 =
α(x), bi+1 = b4i−8dbi

4(b3i +d)
. Then m = g222n − g2n + 1 ∈ M is prime if and only if

(m, b3i + d) = 1 for any 0 ≤ i ≤ n− 2 and m | b3n−1 + d.

Proof. Let U = Spec ZS [x, y]/(y2 − x3 − d) be the standard affine chart of G.
Take f = x3+d, ψ(x) = (

√
x+1)2, ρ(x) = x2 and ξ(g222n−g2n+1) = 2n. Then

Lemma 8 implies that assumption (i) is satisfied. Assumption (ii) follows from
Hasse’s theorem. Lemma 10 implies that assumption (iii) is satisfied. According
to Proposition 10, assumption (iv) is also satisfied. Finally, assumption (v)
follows from g222n − g2n + 1 < (2n − 1)4 which holds for any n ≥ 2, since
g2 < 22n − 4 · 2n + 4 and |g| < 2 · 2n − 4. Thus Theorem 1 implies that m is
prime if and only if rm(α2n−1

) ∈ U(Z/mZ) and rm(α2n−1
)(x3 + d) = 0. Now if

m ∈ P ∩M , then rm(α2n−1
) ∈ U(Z/mZ) implies rm(α2i

) ∈ U(Z/mZ) for any
1 ≤ i ≤ n−1. Moreover, according to Remark 4, we get (m, rm(α2i−1

)(x3+d)) =
1 and rm(α2i

)(x) ≡ bi (mod m) for any 1 ≤ i ≤ n − 1. Hence (m, b3i + d) = 1
for any 0 ≤ i ≤ n − 2, and rm(α2n−1

)(x3 + d) = 0 implies m | b3n−1 + d.
Conversely, if (m, b3i + d) = 1 for any 0 ≤ i ≤ n − 2 and m | b3n−1 + d, then
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rm(α2i

) ∈ U(Z/mZ) and rm(α2i

)(x) ≡ bi (mod m) for any 1 ≤ i ≤ n − 1.
Therefore rm(α2n−1

)(x3 + d) ≡ b3n−1 + d ≡ 0 (mod m).

Example 5. Here are some possible choices of parameters satisfying the hy-
potheses of Proposition 10 and assumption (∗) for two values of z.

Case A: z = 7, S = {2, 3, 7}.
1) λ = −1, v = 1.
2) λ = 1, v = 2.
I) g ≡ −5, 13, or −17 (mod 42),

M = {g2212l − g26l + 1 | l ≥ 1, g < 26l − 2}.
II) g ≡ −13, 17 or −19 (mod 42),

M = {g2212l+2 − g26l+1 + 1 | l ≥ 1, g < 26l+1 − 2}.
III) g ≡ 1,−17 or 19 (mod 42),

M = {g2212l+4 − g26l+2 + 1 | l ≥ 0, g < 26l+2 − 2}.
IV) g ≡ −1, 11 or −19 (mod 42),

M = {g2212l+6 − g26l+3 + 1 | l ≥ 0, g < 26l+3 − 2}.
V) g ≡ 1,−5 or −11 (mod 42),

M = {g2212l+8 − g26l+4 + 1 | l ≥ 0, g < 26l+4 − 2}.
VI) g ≡ 5, 11 or −13 (mod 42),

M = {g2212l+10 − g26l+5 + 1 | l ≥ 0, g < 26l+5 − 2}.
m ≡ −1 or 3 (mod 7) for any m ∈M ,

(
7
p

)
=

(
p
7

)
= −1 for any p ∈ P ∩M .

Case B: z = 13, S = {2, 3, 13},
λ = −2, v = 1.

Since for n not divisible by 3 we have g222n − g2n + 1 = N(g(2ω)n + 1),
the number 22n − 2n + 1 can be prime only if n is either divisible by 3 or
equal to a power of 2. The test by Denomme and Savin for the numbers of
the form 22l+1 − 22l

+ 1 [2, Theorem in §9] can be obtained by applying Test 5
to Example 5 in case A-2-III,V, g = 1, and replacing the sequence bi by the
sequence ai = bi/7.

Notice that since 22l+1 − 22l

+ 1 = h2n + 1 with h = 22l − 1 < 22l

, one can
apply the approach of Section 2 to these numbers. They can be tested with
Test 1 applied to Example 1 in case C-II,III. The numbers g222n− g2n +1 with
g 6= 1 cannot be written in the form required in Sections 2 or 3, and thus the
corresponding toric test cannot be applied to them.
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