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Abstract. On a symplectic manifold X, the quantum product defines a com-
plex, one parameter family of flat connections called the A-model or Dubrovin
connections. Let ~ denote the parameter. Associated to them, is the quantum
D-module D/I over the Heisenberg algebra of first order differential operators
on a complex torus. An element of I, gives a relation in the quantum coho-
mology of M , by taking the limit as ~ → 0. Givental [7], discovered that there
should be a structure of a D-module on the S1-equivariant Floer cohomology

of the universal covering gLX of the loop space LX of X and conjectured that
the two modules should be equal. A Duistermaat-Heckman type integral over

semi-infinite cycles in gLX, plays formally the role of Fourier transform between

S1-equivariant cohomology of gLX and differential operators. We attempt to
compute this integral by localization. We conjecture that localization holds,
as long as we do the following two things: first, fixed components are found by
considering maps from curves with at least one marked point, since a marked
point should be thought of as a trivial circle, shifted by the deck transforma-
tion corresponding to the degree of the curve. Secondly, the a priori infinite

dimensional, normal bundle to fixed components, is replaced by an index bun-

dle of the derivative of the deck transformation on gLX. The conjecture is
proven, for toric manifolds with

R
d

c1 > 0, for all nonzero classes d of rational
curves in X, where the linear σ- model compactification is used. In that case,
the function generating the quantum D-module, is identified as the generating
function of S1-equivariant Eüler classes of index bundles, of the deck transfor-

mations on gLX, corresponding to classes of rational curves in X. A relation
with the Morse theory of the symplectic action functional, is also revealed.
For the general case, we use the space of stable maps and the computation of
the derivative of the deck transformation, is based on the description of vector
bundles on Riemann surfaces with a marked point, in terms of the semi-infinite
Grassmannian. An explicit conjecture is made, about how to handle this case.

1. Introduction

In this paper we will study the quantum cohomology and more generally the
quantum D-module structure, of symplectic manifolds by relating it to a certain
Duistermaat-Heckmann type integral, over a semi-infinite cycle in the loop space
of the manifold. A relation to Morse theory of the unperturbed symplectic action
functional on the loop space, is also revealed.

This program was initiated by Givental in [7] and provided the inspiration for
the methodology applied later in [8] in the context of Kontsevich’s space of stable
maps.
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In order to describe the main theorem and conjecture, let us briefly recall a few
things about quantum cohomology. We follow mainly Givental [8] in this introduc-
tory exposition.

Let (X,ω) be a symplectic manifold and choose a compatible almost complex
structure J . Let also C denote a genus g Riemann surface. A pseudo-holomorphic
curve, is a map f : C → X whose derivative is complex linear. Unless otherwise
specified, from now on by a pseudo-holomorphic curve we will always mean one
that has genus 0. Let d ∈ H2(X,Z) be a homology class. Kontsevich [10], invented
the correct space parameterizing pseudo-holomorphic curves in X with k marked
(smooth) points. It is called the space of stable maps and it will be denoted it by
Mk(X, d). To obtain a compactification Mk(X, d), we must also allow reducible
curves with at worst double point singularities. In that case, by a map, we mean
of course a collection of pseudo-holomorphic maps, each defined on one of the
irreducible components of the domain, agreeing on the double points.

Let us consider M3(X, d). Its elements are equivalence classes of 4-tuples,
(f, x1.x2, x3) where f is the map and the xi ’s are the marked points. The 4-
tuple must satisfy the stability condition that it has at most a discrete group of
automorphisms. Two 4-tuples are equivalent, if there is an biholomorphism that
takes one to the other.

The space M3(X, d) is at worst an orbifold (Kontsevich [10]), if X is convex
(i.e., H1(C, f∗TX) = 0 for all stable f). Main examples of convex spaces are
homogeneous spaces. Moreover M 3(X, d) comes equipped with three evaluation
maps evi : M3(X, d) 7→ X for i = 1, 2, 3 given by evi(f, x1.x2, x3) = f(xi). Let a, b
be classes in H2∗(X,C). Let ( , ) denote the intersection pairing. Let also p1, . . . pr

be classes in the Kähler cone K of X , which form a basis of H2(X,Z). The Kähler
cone is the cone in H2(X,R) which consists of all classes whose integral over any
(pseudo-) holomorphic curve is non-negative. Finally let di =

∫
d pi and qi = eti

be complex variables (which can be thought of as coordinates on a complex torus).
The quantum product a ∗ b is defined by the property that

(a ∗ b, c) =
∑

d

qd

∫

M3(X,d)

ev1
∗(a) ∧ ev2

∗(b) ∧ ev3
∗(c),

where qd =
∏r

i=1 qi
di and the sum is over all homology classes d of pseudo-

holomorphic curves. The number (a ∗ b, c)d =
∫

M3(X,d)
ev1

∗(a) ∧ ev2∗(b) ∧ ev3∗(c),

is called a Gromov-Witten invariant (of the symplectic structure). It should be
thought of geometrically, as counting the number of curves in homology class
d, meeting classes dual to a, b and c, when the number of such curves is fi-
nite. Otherwise it is 0. The (small) quantum cohomology ring of X , is the ring
SQH∗(X) = H2∗(X,Z)

⊗
C[[q1, . . . , qr]] equipped with the quantum product.

The quantum product is commutative and associative. This last property is
highly nontrivial and makes for many interesting consequences by itself. It turns out
that the associativity can be reformulated as the flatness of the following complex
one parameter family of connections

∇~ = ~d−
r∑

i=1

dqi
qi

∧ pi∗

acting on elements of SQH∗(X), where ~ denotes the complex parameter. This is
called the Dubrovin or A-model connection and as we’ll see shortly, it is a more
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fundamental object than the quantum product. Givental in his remarkable paper
[8] found a formula for flat sections of ∇~. It’s clear that for flat sections of ∇~,
quantum multiplication by pi is translated to differentiation and therefore we may
expect that relations in the quantum ring may be translated to differential equa-
tions. This was formulated explicitly by Givental in the following fashion: We may
associate to ∇~ a certain D-module D/I over the algebra of Heisenberg differen-
tial operators. This has the property that if the operator D(~qi

∂
∂qi
, qi, ~) is in the

ideal I , then the relation D(pi∗, qi, 0) = 0 holds in the quantum cohomology ring
SQH∗(X). Therefore the D-module appears to be the real quantum object while
the quantum ring arises as its “semi-classical approximation” when ~ → 0 !

To describe the D-module D/I we need to introduce a new ingredient. This is
the line bundle L1 over M2(X, d) which is the universal tangent line at the first
marked point, i.e., the line bundle whose fiber over [C, (x1, x2), f ] is the tangent
line to C at the first marked point. Denote by L1

∗ the dual to L1, i.e. the universal
cotangent line at the first marked point.

Let ψ1 denote the first Chern class of L1
∗. Givental’s result [8] is the following:

Let G be the H2∗(X,C) valued function defined as:

(1) G(t1, . . . , tn, ~) = e(t1p1+···+trpr)/~(1 +
∑

d

qdev1∗(
1

~ − ψ1
)),

where d ranges over all non-zero homology classes of pseudo-holomorphic curves
and ev1 : M2(X, d) → X is evaluation at the first marked point. Then the ideal I
is generated by all polynomial differential operators that annihilate the components
of G.

The object of this paper is to compute the quantum D-module and specifically
the function G, by integrating over semi-infinite cycles in the loop space. As will
be explained shortly, each component of G, is given by such an integral, which is
a sort of Fourier transform, from the S1-equivariant cohomology of the universal
covering of the loop space, to the algebra of differential operators in the variables
t1, . . . , tr. By fundamental semi-infinite cycle in the loop space, we mean the set of
all loops which are boundaries of holomorphic discs in X . Constraining the center
of the disc to be in a representative of a cycle in X , produces a semi-infinite cycle
for any homology cycle in X .

The connection between pseudo-holomorphic curves and the loop space is well
known and is of course due to the fact that the gradient flow of the action functional
is by pseudo-holomorphic cylinders. This implies, that the semi-infinite cycles are
Morse theoretic cycles for the action functional. The relation between the quan-
tum D-module and the loop space via the flow of the action functional, was first
explained by Givental in [7].

Such semi-infinite cycles are of course infinite dimensional, even in the case where
we bound the energy of the maps from discs and this is the main problem in working
with them. On the other hand, one tool we do have, is the obvious S1 symmetry
that may allow localization to fixed components.

We attempt then, to compute the ”Fourier transform” integrals by S1 localiza-
tion. The two main elements of our approach are: first, the computation of the
fixed locus, involves maps from curves to X, with at least one marked point. The
idea being, that a marked point is a trivial circle, shifted by the deck transformation
corresponding to the degree of the curve. Secondly, the infinite dimensional normal
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bundle to a fixed component, has to be replaced by a finite dimensional (possibly
virtual) index bundle, of the derivative of the deck transformations.

We show that this approach gives the right answer for the case of toric manifolds.

In particular, we will explicitly construct L̃X and compute the deck transforma-
tions, which turn out to be Fredholm maps. A relation with the Morse theory of
the symplectic action functional is also revealed. Moreover, we will construct a

sequence of finite dimensional spaces, approximating L̃X and prove a version of
the previous result in that case.

We also study the case of a general symplectic manifold X using the spaces of
stable maps. We make an explicit conjecture about the computation in that case.

To explain in more detail, let us consider the space LX of free contractible loops
in X . We can define the action functional H by

H(γ) =

∫

Dγ

ω,

where γ is a contractible loop and Dγ a disc contracting it. It is multi-valued if
there are homologically non-trivial spheres. To resolve the ambiguity we lift it to

the covering space L̃X of LX , with covering group the group of spherical classes in
X . Assume for simplicity that X is simply connected, then H2(X,Z) is generated
by spherical classes. Now as was mentioned before, H has the remarkable property
that its flow lines are pseudo-holomorphic cylinders. Moreover H is a Hamiltonian

function with respect to the obvious circle action on L̃X and the symplectic form
induced from the symplectic form onX . The critical manifolds correspond to trivial
loops and are copies of X , one for every degree d ∈ H2(X,Z), i.e., for every floor of
the cover. Denote by X0 the copy on which H has value 0 and by Xd its translation
by d.

A formal application of the S1 equivariant localization theorem suggests that

the (Floer) S1 equivariant cohomology of L̃X should be simply FH∗
S1(L̃X) =

H∗(X,C[[q̃, q̃−1]])(~) where C[[q̃, q̃−1]] is the group ring of the covering group.

Givental’s observation is that FH∗
S1(L̃X) bears the structure of a D-module

over the Heisenberg algebra of differential operators. This is shown by extending
the classes {p1, . . . , pr} to equivariant classes {P1, . . . , Pr} (see (29)). Then if we

think of the Pk acting by multiplication and the q̃k
d by pullback it is easy to show

(32) that

[Pj , q̃k] = δj,k~q̃k

Givental conjectures that this D-module is the quantum D-module.
Let now ∆ denote the fundamental semi-infinite cycle, i.e. the set of elements in

L̃X which are restrictions to the boundary, of (pseudo-)holomorphic maps of the
standard two-disc, to X . Let also ∆̌ denote formally, the Poincare dual to ∆ and
tP denote

∑r
i=1 tiPi

Then consider formally, the integral:

(2)

∫

gLX

e
tP
~ ∆̌ =

∫

∆

e
tP
~ .

This integral is a sort of Fourier transform taking relations in the S1-equivariant

cohomology of L̃X to differential operators in the ti.
This should then be the component of G, corresponding to the fundamental class

of X .
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Our main task, is to try and make sense of this integral. We try to use localization

in S1-equivariant cohomology in L̃X or in ∆ and as already mentioned, one of the
main ideas is to use a ”renormalized” normal bundle to the fixed components. This
renormalized bundle, turns out to be the index bundle of the derivative of the deck
transformations in directions defined by (pseudo-) holomorphic maps of curves, to
X . The maps of curves, with at least one marked point, are involved since they
correspond to the fixed components of the circle action, based on the idea, that a
marked point is a trivial circle.

The main results we prove are, first: if X is a positive toric manifold and Dq̃d

denotes the derivative of q̃d, then there is the exact sequence of bundles, over X0:

(3) 0 → NMd(X)X0 → N0
+ → N0

+ → 0,

where N0
+ denotes the (infinite dimensional) positive normal bundle to X0 in

L̃X, with respect to H . The second map is pr+oDq̃
d where pr+ is the orthogonal

projection onto N0
+. Finally Md(X) ⊂ L̃X , is the linear σ-model compactification

of holomorphic maps of degree d to X and NMd(X)X0 is the normal bundle of X0

in Md(X).
Secondly we have that:

(4) G = e(t1p1+···+trpr)/~
∑

d∈Ǩ

qd 1

eS1(Ind(pr+oDq̃d|X0
))
,

where Ind(pr+oDq̃
d|X0

) denotes the index bundle defined on X0, by the Fredholm
bundle map pr+oDq̃

d, where qk = etk , dk =
∫

d
ωk and qd = q1

d1 . . . q1
d1 .

This is theorem (4) in section (5).

The infinite dimensional space L̃X is explicitly constructed in that section and
q̃d is computed. Moreover, a version of this theorem where finite dimensional

approximations to L̃X are used instead, is also proven.
In the general case we show first that over M2(X, d), there is a sequence:

(5) 0 → L1 ⊕ T v
ev1
M2(X, d) → ev1

∗N0
+ → ev1

∗N0
+ → 0,

which is exact up to homotopy. Here T v
ev1
M2(X, d) denotes the (potentially vir-

tual) vertical tangent bundle, with respect to the map ev1 : M2(X, d) → X and
L1 denotes the line bundle over M2(X, d) which is the universal tangent line at
the first marked point. Moreover, the second map, over a point in M2(X, d) cor-
responding to a (pseudo-)holomorphic map u : C → X , is the Fredholm operator
defined as follows: consider the first marked point x1 and a small disc on C with
local coordinate z, around that point, such that z(x1) = ∞. Identify the space of
holomorphic sections of u∗TX over C minus the disc, with a closed subspace W
of H = L2(S1,Cn). Let H+ denote the subspace of L2(S1,Cn) corresponding to
functions with non negative modes. Then W = w(H+) for some Fredholm opera-
tor w : H+ → H. Let pr+ : H → zH+ be the orthogonal projection. Finally, our
Fredholm map is the composition: pr+ow|zH+ : zH+ → zH+. It is independent of
all choices, up to homotopy.

Note that if we did not restrict w to zH+, we would get sections of the full
tangent bundle to M2(X, d) and not of the vertical tangent bundle.

Now, according to our result in the toric case, w should be interpreted as Dq̃d,
in the direction defined by u and we will use this notation.
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We then formulate the conjecture, that the exact sequence can be extended over
all of M2(X, d).

In case the conjecture is true, we would have that:

(6)
1

eS1(L1)
=
eS1(T v

ev1
M2(X, d))

eS1(Ind(pr+oDq̃d))
.

where eS1 denotes the equivariant Eüler characteristic with respect to an S1 action.
The action here is of course trivial on the base of our bundles but non-trivial on
the fiber. In the case of the index bundle it comes from rotating the S1 that we
have marked on our curve C. On L1 we have eS1(L1) = ~ − ψ1.

This can be used in order to obtain a different and rather more illuminating
conjectural expression for the function G, that as we know generates the quantum
D-module. We have, conjecturally, that:

(7) G = e(t1p1+···+trpr)/~
∑

d∈Ǩ

qdev1∗
eS1(T v

ev1
M2(X, d))

eS1(Ind(pr+oDq̃d))
.

This formula for G, can be interpreted as similar to the one from the toric case,
where the integration has been pulled back fromX toM 2(X, d) and eS1(T v

ev1
M2(X, d))

is the Thom class, that allows us to pull back.
We will show in section (4), that the exact sequence over M2(X, d) follows im-

mediately, from one over M3(X, d). This sequence is:

(8) 0 → T v
ev1
M3(X, d) → ev1

∗N0
+ → ev1

∗N0
+ → 0,

We will show that over M3(X, d) this sequence is exact up to homotopy.
Here T v

ev1
M3(X, d) denotes the virtual vertical tangent bundle toM3(X, d) with

respect to the map ev1 : M3(X, d) → X .
We conjecture that this sequence can be extended over all of M 3(X, d).
The argument that allows us to go from (8) to (5) extends without change, in

case (8) is extended over M 3(X, d), therefore extension of (8) implies extension of
(5) over M2(X, d).

The conjecture about extension of (8), will be the subject of a forthcoming paper,
so we will not discuss it further here.

These are all explained in section (4).
The structure of the paper is as follows: In the next section we gather the

elements of the theory of quantum cohomology that are needed and which are
contained mainly in [8]. In the third section we explain the original idea of Givental
[7] relating the quantum D - module and S1 equivariant Floer homology of the
loop space, via a sort of ”Fourier” transform of semi-infinite cycles. Then our
conjectures are presented on how to compute the ”Fourier” transform of cycles
arising in Givental’s work. In the fifth section the toric case is treated.
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advisor David Morrison for his guidance and insight.

It is a pleasure to thank Robert Bryant, Alexander Givental, Richard Hain,
John Harer, Paul Horja, Maxim Kontsevich, and Mark Stern for several helpful
conversations. I would also like to thank the IHES and the Max Planck Institut
für Mathematik in Bonn for the hospitality and excellent research conditions, when
part of this work was being completed.



QUANTUM COHOMOLOGY AND MORSE THEORY ON THE LOOP SPACE 7

2. The Quantum D-Module

We gather here the basic facts about the quantum D-module that will be needed
later on. Let X be a Kähler manifold and let T0, T1, . . . , Tr, . . . , Tm be a basis of
H2∗(X,Z) where T0 is the identity and T1, . . . , Tr are classes in the Kähler cone K
that generate H2(X,Z). Recall that K is the cone of classes whose integral over
holomorphic curves is non-negative. Set pi = Ti for i = 1, . . . r. The small quantum
ring is defined to be the vector space

SQH∗(X) = H2∗(X,Z)
⊗

C[[q1, . . . , qr]]

equipped with the quantum product ∗ already defined in the introduction. That
is, if ( , ) denotes the intersection pairing and a, b, c ∈ H2∗(X,Z) we have

(9) (a ∗ b, c) =
∑

d

qd

∫

M3(X,d)

ev1
∗(a) ∧ ev2

∗(b) ∧ ev3
∗(c),

where qd =
∏r

i=1 qi
di , qi = eti , di =

∫
dpi and the sum is over all homology

classes d ∈ H2(X,Z) of holomorphic curves. M3(X, d) is the Kontsevich space
of stable maps with three marked points, whose image has genus 0 and degree
d in H2(X,Z). SQH∗(X) is graded if we assign cohomology classes their usual
degree and declare deg(q1

d1 . . . qr
dr) = 2

∫
d c1(TX). The reason for this grad-

ing is that
∫

M3(X,d)
ev1

∗(a) ∧ ev2∗(b) ∧ ev3∗(c) is 0 unless the sum of the degrees

of a, b, c is equal to the dimension of M 3(X, d) which, as computed in [10], is:
dimCM3(X, d) = dimCX+

∫
d
c1(TX). Recall that the quantum product is commu-

tative and associative (see [8]).
Introduce now a one parameter family of connections with regular singular

points, depending on the complex parameter ~ and defined by

(10) ∇~ = ~d−
r∑

i=1

dqi
qi

∧ pi ∗ .

∇~ are called Dubrovin or A model connections, and act on power series in the qi

with coefficients in H2∗(X,Z), in other words on elements of SQH∗(X). As already
mentioned, one reason for considering these connections is that flat sections, if they
exist, will provide a passage from quantum product to differentiation and from
relations in the quantum ring to differential equations. Moreover, motivation for
introducing the connections comes from mirror symmetry. In fact in the Calabi-
Yau case they are the counterpart of the Gauss-Manin connection corresponding
to the mirror family. On the other hand, the reason for having a whole pencil of
connections is best understood from the point of view of the loop space and will be
explained in the next section.

Now in Givental [8] it is proven that:

Proposition 1. The connection ∇~ is flat for any value of ~.

The fact that ∇~ is flat means that we can find flat sections. That is, sections s
such that ∇~s = 0.

One of the remarkable results of [8] is the explicit computation of the flat sections.
To describe them we introduce first the line bundle L1

∗ over M2(X, d) which is the
universal cotangent line at the first marked point, i.e., the line bundle whose fiber
over [C, (x1, x2), f ] is the cotangent line to C at the first marked point. Let ψ1



8 YIANNIS VLASSOPOULOS

denote the first Chern class of L1
∗. Choose now basis T 0, . . . , Tm of H2∗(X,Z)

such that (T i, Tj) = δi,j . We still have that T0 = 1 ∈ H0(X,Z) and that pi = Ti

for i = 1, . . . r where pi ∈ K are chosen to be a basis of H2(X,Z). Givental’s result
[8](corollary 6.3) is:

Theorem 1. The sections

sβ = eplnq/~Tβ +
∑

α

Tα
∑

d∈Ǩ,d6=0

qd < eplnq/~
Tβ

~ − ψ1
, Tα >d

for β = 0, . . .m are flat and they provide a basis of the space of flat sections.

Here qd is notation for q1
d1 . . . qr

dr , plnq is notation for p1lnq1 + · · ·+prlnqr and

< eplnq/~
Tβ

~ − ψ1
, Tα >d=

∫

M2(X,d)

ev1
∗(eplnq/~Tβ)

~ − ψ1
∧ ev2

∗(Tα),

where M2(X, d) is the space of genus 0 and degree d stable maps with two marked
points. Finally Ǩ is the cone in H2(X,Z) consisting of classes of holomorphic, genus
0 curves. It is dual to the Kähler cone K. Note also that the matrix:

(11) sα,β = (sβ , Tα) = (eplnq/~Tβ, Tα) +
∑

d∈Ǩ,d6=0

qd < eplnq/~
Tβ

~ − ψ1
, Tα >d,

is the fundamental solution matrix of the flat section equation.
Let us now explain the relation of the A-connection to the small quantum ring.

Let G be the following function with values in H2∗(X,C) :

(12) G = eplnq/~(1 +
∑

d∈Ǩ,d6=0

qdev1∗(
1

~ − ψ1
)),

where ev1 : M2(X, d) → X is evaluation at the first marked point. Then G has the
property (and is determined by it): (G, Tβ) = (sβ , 1). Indeed,

(G, Tβ) = (eplnq/~, Tβ) +
∑

d∈Ǩ,d6=0

qd

∫

X

eplnq/~ev1∗(
1

~ − ψ1
) ∧ Tβ =

= (eplnq/~Tβ , 1) +
∑

d∈Ǩ,d6=0

qd

∫

M2(X,d)

1

~ − ψ1
∧ ev1

∗(eplnq/~Tβ) = (sβ , 1)

Therefore we have that

(13) G =
∑

β

(sβ , 1)T β.

Recall that T0 = 1 and therefore the components of J form the first row of the
solution matrix (sα,β).

The following proposition is due to Givental [8] (corollary 6.4):

Proposition 2. Let D(~qi
∂

∂qi
, qi, ~) be a polynomial differential operator that anni-

hilates the components of G. Then the relation D(pi∗, qi, 0) = 0 holds in SQH∗(X).

Let D denote the Heisenberg algebra of differential operators on holomorphic
function on a torus with coordinates qi = eti . It is by definition generated by the
operators ~qi

∂
∂qi

= ~ ∂
∂ti

and multiplication by qi = eti . Let I be the ideal of all

polynomial differential operators D(~qi
∂

∂qi
, qi, ~) that annihilate the components of

G.
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Definition 1. The D - module D/I is called the quantum cohomology D - module
of X.

The proposition above shows that the real quantum object is the D - module or
equivalently the A model connection, while the quantum ring should be considered
as the semi-classical limit where ~ → 0 . Our objective is to compute the D -
module in terms of the loop space of X . We shall turn to this next.

3. Equivariant Floer theory

Lets start first by considering the S1-equivariant Floer homology of the unper-
turbed action functional H in the case of a general symplectic manifold which is
not necessarily toric.

Let (X,ω) be a compact symplectic manifold. Let J be a compatible or calibrated
almost structure on X . By this we mean that ω(v, Jv) ≥ 0 for all nonzero v ∈ TX
and ω(Jv, Jw) = ω(v, w). The symplectic form ω along with J define an invariant
metric g on TX by g(v, w) = ω(v, Jw). Let LX be the space of smooth maps
γ : S1 → X such that γ(S1) is contractible. We call LX the loop space of X . The
loop space inherits a symplectic structure Ω and an almost complex structure which
we shall denote also by J . To describe them lets first consider the tangent bundle
TLX . The tangent space of LX at a loop γ is TγLX = Γ(γ∗TX), where Γ denotes
the space of sections. In other words an element of TγLX is a vector field along
the loop γ. Consider now the Kähler cone K ⊂ H2(X,R) of X . We have defined K
to be the cone of classes in H2(X,R) whose integral over any pseudo-holomorphic
curve is greater than or equal to zero. Assume that K is spanned by the classes of
symplectic two forms p1, . . . , pr. Let v and w be elements of TγLX then we define:

(14) Pk|γ(v, w) =

∫

S1

pk(v(t), w(t))dt.

It is not hard to show that the Pk are also symplectic. Moreover J induces an
almost complex structure by (Jv)(t) = J(v(t)). Finally TγLX becomes pre-Hilbert
with the inner product

(15) gγ(v, w) = Ωγ(v, Jw),

where

Ωγ(v, w) =

∫

S1

ω(v(t), w(t))dt.

Introduce now action functionals

(16) Hk(γ) =

∫

Dγ

Pk,

for k = 1 . . . r and

(17) H(γ) =

∫

Dγ

ω,

where Dγ is a disk contracting the loop γ. These are in general not well defined
since different disks contracting the same loop will not have the same symplectic
areas. The ambiguity in Hk is clearly given by the periods

∫

S

pk,
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where S is a sphere obtained by gluing two different disks contracting γ, along their
common boundary. The functions Hk become well defined only on the covering
of LX with group of deck transformations the group of spherical periods of the

symplectic forms p1, . . . , pr. We shall denote this space by L̃X . We can describe

L̃X explicitly as equivalence classes of pairs (γ, g) where γ : S1 →M is a loop and
g : D → X is such that g|∂D = γ. Define (γ, g1) ∼ (γ, g1) if and only if g1#(−g2)
represents a class A ∈ H2(X,Z) such that

∫
A
Pk = 0 for all k = 1 . . . r. Observe

that by definition L̃X carries an action, denoted by · of the group Γ of spherical
classes in H2(X,Z) such that (A · (γ, g))#(γ,−g) = −A for all A ∈ Γ. Notice that
we could have chosen a positive instead of a negative sign in the definition of the
action of Γ. The reason for our choice will become apparent later (see footnote (3),
page 14). Note also that since ω is a linear combination of p1, . . . , pr it follows that
H is the same linear combination of H1, . . . Hr and therefore also becomes a well

defined function on L̃X . Now it is not hard to compute that

(18) dHk|γ(v) = −

∫

S1

pk(γ̇, v(t))dt,

where γ̇ denotes the vector field tangent to γ.

Notice further that LX and therefore L̃X , support an obvious S1 action (eiθ, γ(eiφ)) 7→
γ(ei(θ+φ)). If we let Y denote the vector generating the Lie algebra of S1 and Y

the induced vector field on L̃M then we have

(19) Y(γ) = γ̇.

Equations (14),(18) and (19) reveal the fact that

(20) iYPk = −dHk,

for k = 1 . . . l and

(21) iYΩ = −dH.

In that case Hk is called a Hamiltonian function for Pk and H a Hamiltonian for
Ω. Y can be thought of as a symplectic gradient of H .

Consider now the flow of H . Let u(s, t) : R×S1 → X be a flow line. Specifically
this means that

(22)
∂u

∂s
= ∇Hus(t),

where us(t) is simply u(s, t). On the other hand since Ω and J are compatible and

the metric on L̃X is given by (10) we have that

(23) ∇H = −JY.

Equations (22) and (23) imply then

(24)
∂u

∂s
= −JY(us(t)) = −J

∂u

∂t
.

Therefore

(25)
∂u

∂s
+ J

∂u

∂t
= 0.

In other words u(s, t) is a pseudo-holomorphic map.
This is the key reason why quantum cohomology is related to the loop space.
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Floer theory is Morse theory for the action functional H on L̃X . Notice that the
critical manifolds are copies of X , one of them corresponding to trivial loops and
the rest translations by the action of the group of deck transformations, i.e., the
group of spherical classes in H2(X,Z). This is easy to see using for example (21)
which identifies the critical manifolds as the fixed manifolds of the circle action.

Now the fact that L̃X is infinite dimensional pauses several hard problems one
needs to overcome in order to get a well defined theory. For example, for any
critical manifold both the negative and positive normal bundles of H are infinite
dimensional. Therefore the usual notion of index doesn’t make sense. Moreover
the standard Morse theoretic method of analyzing the topology of a space simply
doesn’t work. This is because we cannot describe the change in topology when
going through a critical manifold, by a gluing of the negative normal sphere bundle
since this is trivial! 1 It was Floer’s idea to overcome this problem by constructing a
Witten type Morse theory where the index is defined by counting orbits connecting
critical manifolds. The key point to doing this in this case, is to use orbits of
bounded energy. In other words if u(s, t) : R × S1 → X is a flow line, i.e. satisfies
(25), then define the energy of u by :

(26) E(u) =
1

2

∫ 1

0

∫ ∞

−∞

|
∂u

∂s
|2 + |

∂u

∂t
|2.

We say that u has bounded energy if E(u) is finite. In fact it is easy to compute
that when u is (pseudo-)holomorphic as is the case for flow lines, then

E(u) =

∫ 1

0

∫ ∞

−∞

u∗ω.

Still to get a well behaved theory we have to perturb the flow equation by an extra
term using a periodic Hamiltonian. The critical manifolds then become points and
the theory can be used to prove the well known Arnold conjecture for periodic
Hamiltonians.

Floer [5] was able to rigorously construct a homology theory, now called Floer
homology,2 using these perturbed holomorphic cylinders connecting periodic or-
bits. He then showed that Floer homology is isomorphic, with respect to additive
structure, to the singular homology of M with coefficients in an appropriate ring of
Laurent series. It should be mentioned at this point that in [16], [12] and [14] it is
proved (in each work with different methods) that in fact the isomorphism between
Floer and singular homology, respects the ring structures if H2∗(X,Z) is equipped
with the Quantum product, and Floer cohomology with the so called, pair of pants
product.

The unperturbed Morse-Bott-Floer theory has been worked out to a certain
extent by Ruan and Tian in [16].

Following their paper, the space of connecting orbits between two critical levels
that differ by a class d ∈ H2(X,Z) should be taken to consist of maps

u : R × S1 → X

1The negative normal bundle is trivial since any infinite dimensional bundle is trivial. Moreover
the infinite dimensional sphere is homotopicaly trivial.

2Floer constructed the theory and proved the Arnold conjecture for so called monotone mani-
folds (this means that the first Chern class of the manifold is a positive multiple of the symplectic
form). For general symplectic manifolds the theory was constructed in [11].
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that
1. are J- holomorphic
2.

E(u) =

∫

R×S1

u∗ω <∞

3.
lim

s→−∞
u(s, t) = point

and

lim
s→∞

u(s, t) = point,

in other words the infinite cylinder closes up at the ends to give a sphere with
two point removed.

4.The homology class of the image of u is d.
If we denote the set of such maps u by Md then we expect this space to have

the same dimension as the space of holomorphic spheres of degree d, the expected
dimension of which, is

dim X +

∫

d

c1(TX).

Indeed the calculation of Morrison [13](p. 277) shows that if φ : P1 → X is
holomorphic and X is a complex manifold then

(27) χ(φ∗TX) = h0(P1, φ∗TX) − h1(P1, φ∗TX) = dim X +

∫

d

c1(TX).

In any case we wish to consider Floer S1 equivariant cohomology of L̃X so
following Givental [7], we bypass all that and try to use localization technics instead.
The localization theorem relates the equivariant cohomology of a space with a torus
acting on it, to that of the fixed components of the action. One way [1] of proving
this theorem rests on an analysis of the H∗(point) = H∗(P∞) = C[~] - module
structure of the equivariant cohomology ring. We refer to this paper or [2] for the
more general statement which refers to a torus action. For our purposes we only
need the S1 case. The result [1] then is that:

Theorem 2. Let M be an S1 (finite dimensional) compact manifold. Let F denote
the (possibly disconnected) fixed manifold of the action and let i : F → X be the
inclusion map. Then

i∗ : HS1

∗(M) → HS1
∗(F )

induces an isomorphism after localization to the field of rational functions C(~).

Notice that since F is fixed it follows that HS1
∗(F ) = H∗(F ) ⊗ C[~]. So the

meaning of this theorem is that, if the fixed manifolds are {Fα} then there is an
isomorphism

Φ : HS1

∗(M) →
⊕

α

H∗(Fα,C(~))

and so
Φ(a) =

∑

α

λαCα

where Cα ∈ H∗(Fα) and λα is a rational function in ~

We would like now to apply this to the space L̃X. Since it is infinite dimensional
this is only a formal application, not a rigorous one.
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With this qualification, since the fixed manifolds are copies of X , we expect,

after Givental [7], the S1 equivariant Floer cohomology of L̃X to be as an additive
object,

(28) FH∗
S1(L̃X) = H∗(X,C[[q̃, q̃−1]](~)),

where C[[q̃, q̃−1]] is notation for the group ring Λ of the group Γ of spherical classes
in H2(X,Z). In other words, instead of using a direct sum notation, we have used
the group ring to enumerate the fixed components of the action.

To be more specific, elements of the ring are formal series

λ =
∑

d∈Γ

λdq̃
d

where λd ∈ C, q̃d = e2πid and we declare deg q̃d = 2
∫
d
c1(TX).

Assume X is Kähler and simply connected. X being simply connected implies
that Γ = H2(X,Z). We have choosen a basis {p1, . . . , pr} of the Kähler cone, now
let {A1, . . . , Ar} be the dual basis of Γ = H2(M,Z) in the sense that

∫
Aj
pk = δj,k.

Then if d =
∑r

i=1 diAi we let q̃k = e2πiAk and q̃d = e2πid =
∏r

k=1 q̃k
dk . In this

fashion the group ring Λ can be identified with the ring of formal Laurent series
Λ = C[[q̃1, q̃

−1
1 , . . . q̃r, q̃

−1
r ]].

Now recall we have defined associated kähler classes Pk on LX . Denote by the

same name the pullbacks on L̃X. Let d~ = d+~iY be the Cartan differential, where
Y is defined by (19). Introduce now the equivariant differential forms

(29) Pk = Pk + ~Hk,

and

(30) P = Ω + ~H.

Then equations (20) and (21) imply that

d~Pk = d~P = 0

for k = 1 . . . r.
By definition of the Aj we have:

∫

Aj

ωk = δj,k.

Recall we have defined

Hk(γ, g) =

∫

D

g∗ωk.

Recall also that Γ acts on L̃X as the group of covering transformations (so in fact

L̃X/Γ = LX). Now if we identify q̃d with the covering transformation correspond-
ing to d ∈ Γ we have that

(31) q̃∗jHk(γ, g) = Hk(q̃j · (γ, g)) = Hk((γ, g)) −

∫

Aj

ωk = Hk((γ, g)) − δj,k,

where q̃∗j denotes the pullback.
Moreover, if we denote by Pk wedge product by the equivariantly closed form

Pk and also denote simply by q̃k the action of q̃k by pullback then we claim that

(32) [Pj , q̃k] = δj,k~q̃k.
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The proof is a simple calculation. First notice that:

q̃k(Pj) = Ωj + ~q̃∗kHj = Ωj + ~Hj − ~δj,k~ = Pj − δj,k~.

Next let α be an equivariant form then

[Pj , q̃k]α = Pj q̃kα− q̃k(Pj)∧q̃kα = Pj q̃kα− (Pj − δj,k~)∧q̃kα = δj,k~q̃kα.

Moreover, the operators Pj and q̃k for j, k = 1 . . . r satisfy the relations

(33) [Pj , Pk] = [q̃j , q̃k] = 0.

Now let t1, . . . , tr be coordinates on Cr. Then we have

(34) [~
∂

∂tj
, etk ] = δj,ke

tk ,

where etk is thought of as an operator acting by multiplication on functions of
et1 , . . . etr and ~ ∂

∂tj
for j = 1 . . . r also act on such functions. The algebra D of op-

erators generated by et1 , . . . etr and ~ ∂
∂t1
, . . . , ~ ∂

∂tr
is called the Heisenberg algebra

of differential operators. Relations (32) and (33) say that the S1 equivariant Floer

cohomology FHS1
∗(L̃X) carries the structure of a module 3 over the Heisenberg

algebra D !
In our discussion of the A model connection, in the previous section, we also

encountered a D-module. That one consisted of operators which kill the first row
of the solution matrix of the flat section equation for the A connection. Givental’s
conjecture is that the two D - modules are in fact the same!

Of course there is no chance of proving this unless a rigorous S1 equivariant
Floer theory of the unperturbed action functional is constructed. In case X is a

toric variety though, we will construct a model for the space L̃X in section (5). If
X is also positive, then we shall be able to prove that the D - module of our model
is indeed the same as the quantum D - module.

Notice than in the previous section, we used coordinates qj which are related to
the tj by qj = etj . It is also clear, that series in the qj with values in H2∗(X,C)
can be thought of as sections of a trivial bundle with fiber H2∗(X,C), over the
(algebraic) torus obtained by the lattice H2(X,Z) (via complexification and expo-
nentiation). In particular this torus can be thought of as the (affine) toric variety
associated to a fan consisting of a single cone, namely the Kähler cone of X . The
qj are then identified with the toric coordinates.

Now having a D-module how can we associate a flat connection ?
Recall that from (28) we have:

(35) FH∗
S1(L̃X) = H∗(M,C[q̃1, q̃

−1
1 . . . , q̃rq̃

−1
r ](~)).

Therefore H2∗(X,Z) is embedded in FH∗
S1(L̃X). Consider again the basis

T0, . . . , Tm of H2∗(X,Z). We then have

(36) Pk ∧ (T0, . . . , Tm) = Ãk(T0, . . . , Tm),

where Ãk is a matrix with coefficients functions of q̃k and ~. The coefficient func-
tions are expected to be holomorphic so they will not contain any of the q̃k

−1.

3The reason for the choice of sign in the action of Γ on gLM is precisely so that we end up with
etj instead of e−tj .
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Define now a pencil of connections ∇̃~ acting on series in the q̃k with values in
H2∗(X,C) by:

(37) ∇̃~ = ~d−
r∑

k=1

dq̃k
q̃k

Pk∧.

The connection ∇̃~ is expected to be equal to the A model connection ∇~ con-
sidered in our discussion of quantum cohomology based on stable maps. This
means for example that ∇̃~ should be flat, i.e., that flat sections should exist. If
σ =

∑m
j=0 fjTj is a section then

∇̃~σ = 0

is equivalent to the system

(38) ~q̃k
∂

∂q̃k
(f0, . . . , fm)t = Ãk(f0, . . . , fm)t for k = 1 . . . r.

Flatness of course means that (38) is integrable. To shed some more light we note
that (38) can equally be written as

(39) Pk∧(T0, . . . , Tm)(f0, . . . , fm)
t
= (T0, . . . , Tm)~q̃k

∂

∂q̃k
(f0, . . . , fm)

t
.

In other words the (m + 1)-tuple (f0, . . . , fm)t defines a D - module homomor-

phism between FH∗
S1(L̃X) and the sheaf O of holomorphic functions on the torus.

Therefore we can reformulate our discussion in an invariant fashion by saying that

an element in HomD(FH∗
S1(L̃X),O) defines a locally constant sheaf V over the

torus. This sheaf defines in turn by the standard procedure a flat connection on
the sheaf U = V ⊗ O. As an aside we note that this may remind the reader of
the construction of the Gauss-Manin connection associated to a family of varieties.
The locally constant sheaf is there, the one associated to the integral cohomology
of the fiber. This is no accident since mirror symmetry identifies, in the case X is
Calabi-Yau, the A-model connection with the Gauss-Manin connection of a certain
family of Calabi-Yau manifolds.

Instead of concentrating on the connection lets look now at the D-module itself
and try to find a presentation or at least some relations. We have seen up to now

that FH∗
S1(L̃X) is generated by H2∗(X,Z) over the ring Λ. Geometrically an

equivariant Floer cycle associated to an element T ∈ H2∗(X,Z) can be constructed
as the boundary loops of all holomorphic discs whose center lies in a cycle repre-
senting the Poincaré dual of T . Now notice that the standard way to go between
the Heisenberg algebra and its presentation in terms of the Pk and q̃k is via the
Fourier transform. This way relations that involve the later can be transformed to

differential equations that involve the former. Indeed if Γ is in FH∗
S1(L̃X) and we

denote t1P1 + · · · + trPr by tP then consider the pairing

(40) (etP/~,Γ) =

∫

gLX

etP/~Γ.

We claim that

(41) (etP /~, R(P, q̃, ~)Γ) = R(~
∂

∂t
, et, ~)(etP/~,Γ).

In other words that the map

F : FH∗
S1(L̃X) → O
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given by

F(Γ) = (etP/~,Γ)

is an element of HomD(FH∗
S1(L̃X),O).

Indeed we can do a bit better than that. If CT ∈ FH∗
S1(L̃X) is such that it

has the same localization T ∈ H2∗(X,Z) on every critical manifold, then

(42) (etP/~CT , R(P, q̃, ~)Γ) = R(~
∂

∂t
, et, ~)(etP/~CT ,Γ),

and therefore the map

FT : FH∗
S1(L̃X) → O

given by

(43) FT (Γ) = (etP/~CT ,Γ),

is an element of HomD(FH∗
S1(L̃X),O).

The reason is that

(etP /~CT , q̃kΓ) = (q̃k
−1etP/~CT ,Γ) = etk(etP/~CT ,Γ)

and

(etP/~CT , PkΓ) = (Pke
tP/~CT ,Γ) = (~

∂

∂tk
etP/~C,Γ) = ~

∂

∂tk
(etP /~CT ,Γ).

Thus we can find the differential operators and compute solution by computing
(etP/~,Γ) if we can write down Γ and compute the integral.

Now let ∆ denote the fundamental Floer cycle corresponding to the fundamental
cycle of X , i.e., the set of all boundary loops of holomorphic discs in X . Let ∆̌
denote formally the Poincaré dual to ∆ and take Γ = ∆̌ in the above. We note
that if the cohomology of X is generated by classes in H2(X,Z), then polyno-
mials R(P, q̃, ~) such that R(P, q̃, ~)∆ = 0 generate all relations. So if I0 is the

ideal generated by such polynomials then FH∗
S1(L̃X) = C[P, q̃, ~]/I0. The rea-

son for this is that if f(p1, . . . , pr) is a polynomial in the generators {p1, . . . , pr}
of H2(X,Z) then the corresponding Floer cycle is ∆f = f(P1, . . . , Pr)∆ since out
of all loops (boundaries of holomorphic discs) that have their center in X , this
pics the ones that are in the cycle Poincaré dual to f(p1, . . . , pr). It is clear now
that any polynomial R1(P, q̃, ~) such that R1(P, q̃, ~)∆f = 0 induces a relation
R1(P, q̃, ~)f(P1, . . . , Pr)∆ = 0. Therefore relations stemming form ∆ generate all
relations.

Up to this point our discussion of S1 equivariant Floer theory of the unperturbed
action functional has followed Givental’s paper [7]. We would like now to propose a
conjecture about how to regularize the integral in (43). In the last section we shall
prove a version of it for toric manifolds.

4. A conjecture on the regularization of the Fourier transform of

the Floer fundamental cycle

Recall first that we have chosen a basis {T0, . . . , Tm} of H2∗(X,Z). We ar-
range that T0 = 1. Choose also a dual basis {T 0, . . . , Tm} of H2∗(X,Z) such that
(Ti, T

j) = δi,j , where the pairing is the Poincaré pairing. Now to compute the
integral in (43) for T = Tβ and since the integrand is an equivariantly closed form,
we could attempt to formally use a localization theorem in equivariant cohomology.
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The theorem we need is a stronger version of theorem (2) mentioned before and it
is due independently to Berline-Vergne [3] and Atiyah-Bott [1].

Theorem 3. Let T be a torus acting on a (finite dimensional) compact manifold
X and let α be an equivariantly closed form in the Cartan model. Then∫

M

α =
∑

F

∫

F

α|F

eT(NF )

Where the sum is over all the fixed components F of the action and eT(NF ) indicates
the T equivariant Eüler class of the normal bundle, NF to the fixed component F .
By α|F we denote the pullback of α to F by the inclusion of F into M .

Since L̃X is infinite dimensional an application of this theorem in our case can
only be done in a formal fashion. This formal application gives:

(44) FTβ
(∆̌) =

∫

gLM

etP/~CTβ
∆̌ =

∑

d∈H2(X,Z)

∫

Xd

Tβe
Pr

k=1
tk(pk/~+

R
d

pk) ∆̌|Xd

eS1(Nd)
,

where we have used the following notation. First recall that the action functional

H is a function on L̃X whose critical manifolds are the fixed components of the S1

action and therefore are just copies of X . Denote the copy of X such that H|X = 0

by X0. The action of q̃d maps X0 to another copy of X which we denote by Xd. Nd

denotes the normal bundle to Xd. This is of course an infinite dimensional bundle.

Notice now that Nd carries a representation of S1 (as a sub-bundle of T L̃X |Xd
)

and splits to the direct sum of vector bundles according to the weights of this
representation. The Eüler class eS1(Nd) is therefore some infinite product which
in general, will be divergent. Moreover recall that Pk = Pk + ~Hk and Pk |Xd

= pk

and finally Hk |Xd
=

∫
d pk.

We see then, that our first attempt to apply localization fails due to the infinite

dimensionality of the normal bundle to Xd in L̃X. To try to get around this we will
start by thinking in a dual fashion: Let A denote the set of pseudo-holomorphic
maps u : D → X where D denotes the unit disc with complex coordinate z = reiθ.
Recall that ∆̌ denotes formally, the Poincaré dual to ∆, which is the set of all

loops which are boundaries of holomorphic discs. Let p+ : A → L̃X be defined by
p+(u) = u|r=1(e

iθ). Then p+(A) = ∆. We will now attempt to compute FTβ
(∆̌) as

an integral over ∆ and to do this we have to identify the fixed components of the
circle action and normal bundles to them. It’s clear that for a loop in ∆ to be fixed
by the circle action, it has to actually be a point. This means that fixed components
come from pseudo-holomorphic maps u : P1 → X which are not initially in ∆ but
should be added in as limit points. These trivial loops are of course interpreted as
points in Xd and in the simplest case, we will in fact get all of Xd.

We see from our discussion up to here, that the answer really depends on our
compactification of the space of pseudo-holomorphic maps from genus 0 curves.
Moreover, it becomes clear, that contributions only arise for degrees d, which may
be represented by pseudo-holomorphic maps from genus 0 curves i.e. for d ∈ Ǩ.

Finally for now, let us mention that the simple situation described before, of
maps only from P1 where a whole copy of X will appear for any degree d ∈ Ǩ
does actually arise in the case of toric manifolds and the so-called gauged, linear
σ-model compactification of genus 0 holomorphic maps. This will be explained in
the next section.
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To continue our attempt to use localization we denote by Fd the submanifold of
Xd which arises as trivial loops coming from degree d maps. We also denote by
N∆Fd the normal bundle to Fd in ∆

We then have:

(45) FTβ
(∆̌) =

∫

∆

etP/~CTβ
=

∑

d∈H2(X,Z)

∫

Fd

Tβe
Pr

k=1
tk(pk/~+

R
d

pk) 1

eS1(N∆Fd)
,

Now though, we see that we still have a similar problem as before, since N∆Fd

is infinite dimensional. However, here the number of incoming directions to Fd

is finite, since they correspond to degree d, genus 0 curves. On the other hand,
outgoing directions are given by the restriction of Nd

+ to Fd where Nd denotes the

normal bundle to Xd in L̃X and Nd = Nd
+ ⊕

Nd
− is the decomposition of Nd to

positive and negative normal bundles. Now since the circle action on L̃X is lifted
from that on LX and the action functional is lifted from a multivalued function
on LX , all the Nd

+ can be identified. Of course they are infinite dimensional and
the same at every level d and as a first attempt to guess the correct approach we
propose to simply ignore them. This crude argument, will be replaced by the use of
a Fredholm map later on.

We are nevertheless, still left with a rather complicated state of affairs. The
way forward, depends on the compactification of the space of degree d maps. In
case we use the space of stable maps in order to model the space of connecting
flowlines, we may think that we need to have two marked points, namely we should
use M2(X, d). The two marked points could be interpreted as the initial and final
points of the flow and Fd = ev2(M2(X, d)). It is a subtle point, that this in fact,
is not the way that we will proceed. Instead of attempting to define a Fredholm
map using the flow of the action functional in the loop space, we will use the deck
transformation maps q̃d. This will be clear in what follows in this section and in
the next when we look at toric manifolds. Nevertheless, there is still a relation with
Morse theory of the action functional. This just reflects the fact that as already
pointed out, the deck transformation will map the positive normal bundle at X0 to
the positive normal bundle at Xd.

Now, the gauged, linear σ-model compactification Md(X), that will be used in
the next section, is quite different than stable maps, in two respects. First, degree is
not preserved at the limit while it is of course preserved for stable maps. Secondly,
the domain of the maps is always a P1 (no reducible curves). The degree though,
can also become 0 and in fact we get several copies of X in the space of maps, one
for each degree d1 such that

∫
d1
ω ≤

∫
d ω. In that case, Fd = Xd and taking our

previous discussion into account, we will use NMd
Xd for N∆̌Fd. Note also, that

since the domain is always a P1 there is circle action on the space of maps, by
rotation of the source.

Therefore in that case we expect:
(46)

FTβ
(∆̌) =

∫

∆

etP/~CTβ
=

∑

d∈H2(X,Z)

∫

Xd

Tβe
Pr

k=1
tk(pk/~+

R
d

pk) 1

eS1(NMd(X)Xd)
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Let us mention here, that it will also be convenient to consider all the functions
at once, by considering the H2∗(X,C) valued function:

(47) F =
∑

d∈Ǩ

e
Pr

k=1
tk(pk/~+

R
d

pk) 1

eS1(N∆Xd)

Then

F =

m∑

β=1

FTβ
(∆̌)T β.

and in our case:

(48) F =
∑

d∈Ǩ

e
Pr

k=1
tk(pk/~+

R
d

pk) 1

eS1(NMd(X)Xd)
.

We will see in the next section that this is in fact the correct answer in the case
of positive toric manifolds. In other words F = G.

Now in order to approach the problem in the general case, the first think to
observe, is that since Fd = ev1(M2(X, d)), it seems more convenient to try and pull
the calculation back to M2(X, d).

Recall that we are also interested in understanding the relation to the loop space
and the Morse theory of the action functional.

To do that, we will take our cue from a well known description of vector bundles
on Riemann surfaces with a marked point, via Fredholm maps on a Hilbert space.
This is explained in [15] (section 8.11), which we largely follow. Consider a genus
g Riemann surface C with a marked point x. Let E denote a rank n holomorphic
vector bundle on C. Consider a local holomorphic coordinate z around x such
that z(x) = ∞. Identify the standard circle S1 with the circle |z| = 1 on C.
Let H := L2(S1,Cn) then H = H+ ⊕ H− where H+ and H− denote the spaces
of elements in the Hilbert space H with non-negative modes and negative modes
respectively. Let us also fix a trivialization of E over |z| ≥ 1. We may now consider,
relative to this trivialization, the closed subspace W of H, consisting of functions,
which are the boundary values of holomorphic sections of E over the complement of
|z| ≥ 1. Then (proposition 8.11.10 [15]) the orthogonal projection of W onto zH+

is Fredholm and H0(C, E) and H1(C, E) are respectively its kernel and cokernel.
Notice that equivalently we may say that W = w(H+) where w : H+ → H is
an operator such that if p̃r+ : H → H+ denotes the orthogonal projection, then
p̃r+ow is Fredholm. Let us denote by pr+ : H → zH+ the orthogonal projection
to zH+. Then we have for pr+ow : H+ → zH+ that H0(C, E) = Ker(pr+ow) and
H1(C, E) = coker(pr+ow). Notice now, that we have chosen a trivialization of E,
over a disc around the marked point, and therefore an element of L−GL(n,C) can
act on W without changing the bundle. Its action permutes all the trivializations of
E over the disc around the point x. However, it can be proven that W determines a
unique, up to homotopy, topological Cn bundle over C (with the fiber at x identified
with Cn). This is proposition (8.11.6) in [15].

Now in our case, lets consider a (pseudo-)holomorphic map u : C → X and
a marked point x1 on C and take E = u∗TX . It is natural to take x = x1

and to consider the corresponding map pr+ow : H+ → zH+ as a map from
T |ev1(x1)X

⊕
N0

+|ev1(x1) to N0
+|ev1(x1).
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We claim then, that the previous discussion can be rephrased as the fact that,
over the open part, M3(X, d) the following sequence:

(49) 0 → T v
ev1
M3(X, d) → ev1

∗N0
+ → ev1

∗N0
+ → 0,

is exact up to homotopy. Here, T v
ev1
M3(X, d) denotes the virtual vertical tangent

bundle to M3(X, d) with respect to the map ev1 : M3(X, d) → X . The second
map, over the point in M2(X, d) corresponding to the map u, is just the Fredholm
operator, pr+ow|zH+ : zH+ → zH+.

The reason that M3(X, d) appears here, is that a smooth genus 0 Riemann sur-
face C, has a three dimensional group of automorphisms. This induces a nontrivial
continuous group of automorphisms of a pseudo-holomorphic map defined on C,
by which we need to mod out in the construction of the moduli space of stable
maps. Marking three points on C though, leaves us with no continuous group of
automorphisms and the virtual tangent space to M3(X, d) at such a map is given
by H0(C, E) −H1(C, E) = Ker(pr+ow) − Coker(pr+ow).

We now claim that exactness of (49) implies that over the open part, M2(X, d)
the sequence :

(50) 0 → L1 ⊕ T v
ev1
M2(X, d) → ev1

∗N0
+ → ev1

∗N0
+ → 0,

is exact up to homotopy. Here T v
ev1
M2(X, d) denotes the virtual vertical tangent

bundle with respect to the map ev1 : M2(X, d) → X and L1 denotes the line bundle
over M2(X, d) which is the universal tangent line at the first marked point.

To show how (50) arises, let ft3 : M3(X, d) → M2(X, d) denote the forgetful
map that forgets the third marked point. Along with the evaluation at the third
marked point ev3 : M3(X, d) → X , it is the universal family over M2(X, d).

The map ft3 has a section s1 : M2(X, d) →M3(X, d) which is choosing the first
marked point. Then the exactness of (49) implies the exactness over s1(M2(X, d))
of :

(51) 0 → T v
ev1oft3s1(M2(X, d)) → ev1

∗N0
+ → ev1

∗N0
+ → 0.

But s1
∗(T v

ev1oft3s1(M2(X, d))) = L1 ⊕ T v
ev1
M2(X, d) and exactness of (50)

follows.
Notice that nothing in our argument depends on the fact that we are working

over M2(X, d). Therefore, if we manage to extend (49) over M 3(X, d), then we
immediately have an extension of (50) over M2(X, d).

Notice also, that the family of Fredholm maps defines an index bundle over
M2(X, d) and we may think of every map as giving a shifting, in the splitting of
the normal bundle to positive and negative.

We propose now the following:

Conjecture 1. The sequences (49) and (50) can be extended over all of M 3(X, d)
and M2(X, d) respectively and remain exact.

From the above we see that, conjecturally:

(52)
1

eS1(L1)
=
eS1(T v

ev1
M2(X, d))

eS1(Ind(pr+ow))
.

where eS1 denotes the equivariant Eüler characteristic with respect to an S1 action.
The action here is of course trivial on the base of our bundles but non-trivial on
the fiber. In the case of the index bundle it comes from rotating the S1 that we
have marked on our curve C. On L1 we have eS1(L1) = ~ − ψ1.
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This can be used in order to obtain a different and rather more illuminating,
conjectural expression for the function G, that as we know generates the quantum
D-module. We have conjecturally that:

(53) G = etp/~(1 +
∑

d∈Ǩ

qdev1∗
eS1(T v

ev1
M2(X, d))

eS1(Ind(pr+ow))
).

Now we may interpret Ind(pr+ow) = L1 ⊕ T v
ev1
M2(X, d) as the pull back

to M2(X, d) of the ”renormalized” normal bundle N∆Fd and T v
ev1
M2(X, d) as

the Thom class that allows us to pull back the integral to M 2(X, d). From the
Morse theoretic point of view, our formula is also very suggestive since we may
think of L1 as corresponding to the direction tangent to the flow line itself, while
T v

ev1
M2(X, d) corresponds to directions tangent to the manifold parameterizing

flow lines connecting X0 and Xd. It may seem strange that Nd doesn’t appear
explicitly here but this is due to the fact, that we have implicitly identified all the
copies of X , by using the spaces of stable maps to model spaces of flow lines.

We will not go more into the general case here as this is the subject of a forth-
coming paper.

Instead we will now go back to the case of toric manifolds. In that case as
mentioned earlier, we have an alternate compactification called the (gauged) linear
σ-model. For this model the fixed locus Fd is in fact Xd it is thus convenient to use
expression (48) and work overXd instead of over the space of maps. Recall also that
according to our conventions, from the previous paragraph, the deck transformation
q̃−d maps X0 to Xd. Due to the linearity of the model we will see that we may
identify the deck transformation and its derivative (linearization). There is a subtle
point here that will be clarified further in the next section: We may compute the
deck transformation itself that indeed maps X0 to Xd and thus also its derivative,
which maps N0 → Nd. To remain in contact though with the approach we have
described here, we will identify all the Xd with X0, using the deck transformations
and consider the derivative of the deck transformation as a map from N0 → N0.

As support to our conjecture then, we will show in the next section, that there
is an exact sequence over X0 given by:

(54) 0 → NMd
X0 → N0

+ → N0
+ → 0,

where the second map is the composition of the derivative of the deck transforma-
tion q̃d composed with orthogonal projection.

We may now make an interesting observation: from this point of view we see that,
the the Fredholm map w, that we used in the general situation, should be interpreted
as the linearization i.e. the derivative, of the deck transformation, in the positive
normal directions to X0. In the toric case, our model is essentially linear, so instead
of just the derivative we are able to compute the deck transformation itself.

We will then show in the next section, that if we use the exact sequence above
to compute Dq̃d, then we have that:

(55) F =
∑

d∈Ǩ

e
Pr

k=1
tk(pk/~+

R
d

pk) 1

eS1(Ind(pr+oDq̃d))
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or equivalently

(56) F = e(t1p1+···+trpr)/~
∑

d∈Ǩ

qd 1

eS1(Ind(pr+oDq̃d))
,

where Ind(pr+oDq̃
d) denotes the index bundle defined on X0 by the Fredholm

bundle map pr+oDq̃
d. where qk = etk , dk =

∫
d ωk and qd = q1

d1 . . . qr
dr . Finally

we will show that F = G
We will follow two different strategies in the toric case. The first, will be to con-

sider the actual space L̃X which is infinite dimensional and to work with Fredholm
maps.

The second, will be to reformulate everything in terms of a sequence of finite

dimensional approximations of L̃X , by spaces parameterizing loops of arbitrarily
large but finitely many modes (in their Fourier expansion). We can then consider
a certain sequence of ratios of Eüler classes that stabilizes for large modes and we
use this “stable ratio” in place of the equivariant Eüler class of the index bundle
. We can then calculate F explicitly. Finally, we invoke the calculation of G by
Givental [8] to show that F = G.

We will see though that the infinite dimensional version of the story is in fact
more straightforward and transparent.

One more observation that needs to be made, is that we may use the negative
normal bundle instead of the positive one. This is equivalent to changing the sign of
the complex structure on X and from the point of view of Morse theory on the loop
space it corresponds to changing the sign of the action functional. Therefore we
just replace the up going manifold starting from X0 with the down going one. Yet

another way of thinking about it, is that instead of using the map p+ : A → L̃X
defined by p+(u) = u|r=1(e

iθ), we consider p− where p−(u) = u|r=1(e
−iθ) and

compute the integral over p−(A). This has the effect of changing ~ with −~. In
the toric case this will appear as an exact sequence:

(57) 0 → NM
−d(X)X0 → N0

− → N0
− → 0,

where again the second map is the derivative of the deck transformation composed
with orthogonal projection. This makes sense, since if a homology class d is rep-
resented by a holomorphic map, then −d is represented by an antiholomorphic
one.

As a final observation we note that FTβ
for all β = 0, . . . ,m are elements of

HomD(FH∗
S1(L̃M),O) and therefore define flat section of the A-connection. De-

note by ∆α the Floer-Witten cycle corresponding to Tα. Then ∆0 = ∆. For a fixed
Tβ, the functions FTβ

(∆̌α) simply give FTβ
in a basis. They should be

FTβ
(∆̌α) = sα,β ,

where (sα,β) is the fundamental solution matrix (6) of the A model flat section
equation. In this fashion we may identify FTβ

with sβ namely, the flat section
found in theorem (1).

5. The Toric Case

Our goal in this section is to formulate and prove rigorously a version of conjec-
ture (1) formulated in the previous section, in the form of sequences (54) and (57).
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First we need to describe the set up. Our main references for toric varieties are
Fulton [6] for the algebraic geometric point of view and Audin [2] for the symplectic
side. Let X be a compact, smooth, Kähler toric variety. We choose to think of it
as a symplectic quotient. To that end, in order to define X we start with an exact
sequence of lattices as in:

(58) 0 → Zl → Zn → Zd → 0,

where the first map is called m and the second π. Tensoring the sequence with C

and exponentiating gives a sequence of algebraic tori :

(59) 1 → C∗l → C∗n → C∗d → 1.

Now tensoring (58) with iR and exponentiating gives a sequence of real tori

(60) 1 → Tl → Tn → Td → 1.

These sequences define an embedding of C∗l into C∗n and of Tl into Tn. Composing
this with the diagonal action of C∗n on itself defines the action

(61) (x1, . . . , xn) 7→ (
l∏

j=1

λj
mj,1x1, . . . ,

l∏

j=1

λj
mj,nxn).

Associated to this, there is the moment map

µ : Cn → Rl

given by

(62) µ = µl = m̌ ◦ µn =
1

2
(

n∑

k=1

m1,k|xk |
2, . . . ,

n∑

k=1

ml,k|xk|
2).

If λ ∈ Rl is a regular value of µ then X is constructed by symplectic reduction as

(63) X = Xλ = µ−1(λ)/Tl.

X comes equipped with the reduced symplectic form ωλ. For simplicity we shall
just denote it by ω.
X is a Kähler (and at worst) orbifold. The Kähler form is the reduction of the

standard Kähler form on Cn. Notice further that there is a cone in Rl defined by
the conditions that it contains λ and that the differential of µ drops rank along its
walls. Reducing at any point in the cone gives a space topologically equivalent but
with a different Kähler form. In fact we may identify this cone with the Kähler
cone K of X .

Now recall that if (x1, . . . , xn) are coordinates on Cn then they can be thought
of as sections of corresponding line bundles Lk over X for k = 1, . . . , n. The
divisor (xk) is denoted by Dk. We call these divisors the toric divisors. Let vk =
π(wk) for k = 1, . . . n where {w1, . . . , wn} is the standard basis of Zn, then rational
equivalences among the Dk are given by the relations

(64)
n∑

k=1

< eν
∗, vk > Dk = 0 for ν = 1, . . . , (n− l),

where {e1∗, . . . , en−l
∗} is the dual of the standard basis of Zn−l. Let αk = c1(Lk).

The αk are Poincaré dual to the Dk and (64) gives the additive relations among
them.
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It is known (see e.g. Fulton [6])that H2(X,R) is spanned by the αk and that
H∗(X,R) is generated by classes in H2(X,R).

Now we would like to model somehow the space L̃X defined in section (3) as
a covering of the space of free contractible loops in X . We will construct two

different kinds of spaces. One is infinite dimensional, it will be denoted L̃∞X and

it is really the space L̃X, using smooth loops in X . The other will be a sequence

of finite dimensional spaces L̃NX that approximate L̃∞X as N → ∞. To this end,
lets consider first, loops in Cn with a finite but large number of modes 2N . To be
specific we shall consider loops which are in general of the form:

(65) γ : S1 → Cn with γ(eiθ) = (γ0(e
iθ), . . . , γn(eiθ)),

where, if we let z = eiθ, then

(66) γk : S1 → C,

has Fourier expansion :

(67) γk(z) =
N∑

ν=−N

aν
kzν .

Our model L̃NX for L̃X will be defined as follows : The space L̃NCn of loops of
finite modes in Cn is parametrized by the Fourier coefficients aν

k and therefore is

just C(n+1)(2N+1). Consider the C∗l (or T l) action on L̃NCn induced by the action
(61) on Cn defining X . By this we mean that the action on all the coefficients of
γk is the same as the action on xk. The moment map attached to this action is:

(68) µN =
1

2
(

N∑

ν=−N

n∑

k=1

m1,k|aν
k|

2
, . . . ,

N∑

ν=−N

n∑

k=1

ml,k|aν
k|

2
).

Define L̃NX as

(69) L̃NX = µN
−1(λ)/T l,

where we have identified the Kähler cones of X and L̃X . We can do this since the
subsets of Rl where µ and µN drop rank are clearly the same. This is just because µ
drops rank at some value if and only if some homogeneous coordinates are forced to
be zero. At the same value µN drops rank since the corresponding sums of squares
are forced to be zero which in turn forces each of the squares to be zero.

We have described a sequence of finite dimensional spaces but it is equally easy
to construct the actual universal covering of the space parameterizing smooth loops
in X . We will develop the two versions of the theory in parallel and we will see
that there are advantages to working with the infinite dimensional space.

The main point up to now is that we would replace loops with finite number of
modes by loops that may have infinitely many modes i.e. we would replace N with
∞. The moment map then changes in the same way and will be denoted by µ∞.

Then define L̃∞X = µ−1
∞ (λ)/T l. The space L̃∞X is an infinite dimensional toric

manifold.
Now in general the Kähler cone K will not necessarily be simplicial, but it can

of course be subdivided, to simplicial cones. Pick such a subdivision and consider
the simplicial cone containing the value λ.
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Let {p1, . . . pl} be the basis of that cone such that

(70) ω =

l∑

j=1

λjpj .

The fact that the cone is simplicial means that {p1, . . . pl} is a basis of H2(X,Z).
Moreover we have that

(71) αk =

l∑

j=1

mj,kpj .

If d is an element of H2(X,Z) then we let

(72) dj =

∫

d

pj .

In that case we may identify d with the vector (d1, . . . , dl).

Next we need to consider the action functional HN associated to L̃NX . Recall
that the action functional assigns to a pair (loop, contracting disc) the symplectic
area of the contracting disc. Recall also that we have fixed the standard Kähler
form on Cn which is

(73) ω0 =

n∑

k=1

dsk ∧ dtk =
i

2

n∑

k=1

dxk ∧ dxk ,

where xk = sk + itk. Define first
(74)

HN (γ) =
1

2π

∫

γ(S1)

n∑

k=1

skdtk =
1

2π

n∑

k=1

∫

S1

γ∗(skdtk) =
1

2π

n∑

k=1

∫

D

u∗(
i

2
dxk ∧ dxk),

where γ is given by (65). In other words HN is the (normalized) action functional

for loops in Cn or rather L̃NCn to be exact.
An elementary calculation shows that

(75) HN (γ) =
1

2

N∑

ν=−N

ν(|aν
1|

2
+ · · · + |aν

n|2).

To see this, it’s enough to notice that if a loop γ : S1 → C is given by γ(eiθ) = eikθ

then u : D → C such that u(reiθ) = rkeıkθ contracts that loop. Moreover if x = reiθ

is a coordinate on C then
∫

D

u∗(dx ∧ dx) =

∫

D

(du ∧ du) =

∫ 2π

0

∫ 1

0

−2ik2r2k−1dr ∧ dθ = −2πik

Now HN is thus far defined on Cn2N , but since it is invariant under the T l action,

it actually drops to a function on L̃NX. We will still call that function by the same
name HN , and it is our action functional.

Consider next the S1 action on L̃NX . It is induced by rotation on the source
circle, namely by the action eiθ 7→ ei(θ+φ) . This action induces an action on the
Fourier coefficients of a loop γ by

(76) aν
k 7→ eikφaν

k.
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It’s clear that HN is the Hamiltonian function corresponding to this action on

L̃NCn and consequently on L̃NX. This is in accordance with the general theory.
As we saw in equation (21), the action functional is indeed the Hamiltonian of the
circle action.

As a consequence the fixed components of the circle action on L̃NX coincide with
the critical manifolds of HN . We expect those to be copies of X and to correspond
to homology classes d ∈ H2(X,Z). Recall that we may identify the class d with its
period vector (d1, . . . , dl) as in (72). Now the fixed components of the circle action

can be identified as follows: The action of T l on µ−1(λ) ∈ L̃NCn = Cn2N that

defines L̃NX is induced by the action in (61). When we take λ1 = zd1 , . . . , λl = zdl ,
this becomes an S1 action. Components in µ−1(λ) where the S1 action from (76)
coincides with the one appearing as a one parameter subgroup of the T l action

as above, will lead to fixed components in L̃NX = µ−1(λ)/T l. Thus making the
substitution

λ1 = zd1 , . . . , λl = zdl

in (61) shows immediately that loops of the form

(77) γ(z) = (a1P
l
j=1

mj,1dj
z

Pl
j=1

mj,1dj , . . . , anP
l
j=1

mj,ndj
z

Pl
j=1

mj,ndj ),

form a fixed component of the circle action on L̃NX. The T l action on Cn(2N+1)

restricted to loops in Cn of the form (77), restricts to the action (61) defining X .
Therefore the reduction of the space of loops of the form (77) will indeed be exactly
a copy of X . We shall name this component Xd. Notice that there is a more
illuminating way to write (77). According to (71) and (72) we have

(78)
l∑

j=1

mj,kdj =

∫

d

αk,

where αk, as we said earlier, is Poincaré dual to the toric divisor Dk. Therefore we
see that Xd consists of loops of the form :

(79) γ(z) = (a1R
d

α1
z

R
d

α1 , . . . , anR
d

αn
z

R
d

αn).

This immediately tells us that in order to be able to study Xd we must take N ≥
max{

∫
d α1, . . . ,

∫
d αn} which we will assume from now on whenever discussing Xd.

To recapitulate the set up, up to now we have defined the spaces L̃NX which as

N → ∞ approximate L̃X and action functionals

(80) HN : L̃NX → R.

We have also described the critical manifolds Xd of HN , which are copies of X and

of course coincide with the fixed components of the circle action on L̃NX.
Moreover notice that since HN is the Hamiltonian of an S1 action it follows

from general theory that it is a perfect Morse-Bott function. This is explained for
example in Audin [2]. In our case it also obvious from (75) which shows that indices
of HN are even numbers. The so called lacunary principle (see e.g. Bott [4]) then
guarantees that HN is perfect. It’s also clear that HN is non-degenerate in the
normal directions.

Let us see here, how this goes over in the case of the space L̃∞X. It is clear,
that all we have to do is replace N with infinity to define H∞ and everything else
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remains the same, with one important exception of course. H∞ doesn’t have a
finite index. Both, positive and negative normal bundles to a fixed component Xd

are infinite dimensional.
We note now the first advantage of looking at L̃∞X and that is, that we may

easily identify the deck transformation q̃−d : L̃∞X → L̃∞X . It is just the action

induced on L̃∞X by the mapping

(81) γ(z) = (γ1(z), . . . , γn(z)) → (z
R

d
α1γ1(z), . . . , z

R
d

αnγn(z))

where, γk : S1 → C, has Fourier expansion : γk(z) =
∑∞

ν=−∞ aν
kzν . Clearly γ(z)

and q̃−dγ(z) correspond to the same loop in X but they are different as elements

in L̃∞X. Moreover considered as a map on homogenous coordinates, it is the very
familiar from functional analysis, shifting map on a Hilbert space. In other words:
ak

ν to ak
ν+

R
d

α1
, for k = 1 . . . n. Or to be even more explicit, let L̃k,ν denote the bun-

dle, over L̃∞X (or L̃NX), associated to aν
k and let T :=

⊕
ν L̃1,ν ⊕ · · ·⊕

⊕
ν L̃n,ν ,

then q̃−d defines a Fredholm bundle map from T to itself. Not to overburden the

notation, we will denote by q̃−d, both the map on T and on L̃∞X.
Let us note, that we have an Eüler sequence:

(82) 0 → Cl → T → T L̃∞X → 0,

where Cl above denotes the trivial rank l complex bundle over L̃∞X.

Note also, that this maps cannot be defined on L̃NX even if we take N ≥
max(

∫
d α1, . . . ,

∫
d αn).

To go further, let us define Ed to be a sub-bundle of T given by:

(83) Ed =
⊕

ν 6=
R

d
α1

L̃1,ν ⊕ · · · ⊕
⊕

ν 6=
R

d
αn

L̃n,ν ,

then the normal bundle Nd to Xd in L̃∞X is:

(84) Nd = Ed|Xd
.

This follows from the description of Xd as

(85) Xd = (a1R
d

α1
, . . . , anR

d
α1

)/T l,

where it is implied that all the other coordinates are zero. Therefore Xd is given
as the complete intersection of the toric divisors, whose sum is Ed.

Now, q̃−d induces a map from sections of E0 to sections of Ed. Moreover, q̃d

induces a corresponding map shifting down, in a similar fashion.
Notice though, that considered as a Fredholm bundle map, either on T or be-

tween E0 and Ed, our shifting map has neither kernel nor cokernel.
Let us define now Ed

+ =
⊕

ν>
R

d
α1
L̃1,ν ⊕ · · · ⊕

⊕
ν>

R
d

αn
L̃n,ν . Let also Ed

− =
⊕

ν<
R

d
α1
L̃1,ν ⊕ · · · ⊕

⊕
ν<

R
d

αn
L̃n,ν . Then Ed = Ed

+ ⊕Ed
−.

While q̃d does not induce a map on E0 (because it doesn’t preserve it) we may
nevertheless consider the map induced on E0

+, by first restricting q̃d from T to
E0

+ and then projecting back to E0
+.



28 YIANNIS VLASSOPOULOS

This Fredholm bundle map from E0
+ to itself, over L̃∞X , is surjective but

clearly has a non-trivial kernel. It is the bundle

Td =

R
d

α1⊕

ν=1

L̃1,ν ⊕ · · · ⊕

R
d

αn⊕

ν=1

L̃n,ν .

Therefore we have an exact sequence of bundles over L̃∞X:

(86) 0 → Td → E0
+ → E0

+ → 0

At this point we can hardly fail to introduce the gauged, linear σ-model for
holomorphic maps from P1 to X . We shall denote it by Md(X). To define it,

simply consider loops γ(z) = (γ1(z), . . . , γn(z)) where now, γk(z) =
∑R

d
αk

ν=0 aν
kzν .

The coefficients in such an expansion are in C
R

d
c1(TX)+dimX+l and there is as

usual a Tl action with an associated moment map µd : C
R

d
c1(TX)+dimX+l → Rl

given by µd = 1
2 (

∑R
d

α1

ν=0

∑n
k=1 m1,k|aν

k|
2
, . . . ,

∑R
d

αn

ν=0

∑n
k=1ml,k|aν

k|
2
). We then

define Md(X) = µd
−1(λ)/Tl. It parameterizes holomorphic maps of degree κ � d

from P1 → X , where we use the notation κ � d to signify that
∫

κ
αi ≤

∫
d
αi for

i = 1, . . . , n. In contrast with the space of stable maps, degree can drop at the
limit of a family of maps. In particular Md(X) contains all Xκ for κ � d and thus
we find ourselves in the situation leading to equations (46) and (48). Let us then
compute eS1(NMd(X)Xd). It is clear that4:

(87) eS1(NMd(X)Xd) =

R
d

α1∏

ν=1

(α1 − ν~) · · ·

R
d

αn∏

ν=1

(αn − ν~)

and that:

(88) eS1(NMd(X)X0) =

R
d

α1∏

ν=1

(α1 + ν~) · · ·

R
d

αn∏

ν=1

(αn + ν~)

And from equation (48) it follows that:

(89) F =
∑

d∈Ǩ

e
Pr

k=1
tk(pk/~+

R
d

pk) 1

eS1(NMd(X)X0)
=

e(t1p1+···+tlpl)/~
∑

d∈Ǩ

qd 1
∏R

d
α1

ν=1 (α1 + ν~) . . .
∏R

d
αn

ν=1 (αn + ν~)
,

where qd stands for q1
d1 . . . ql

dl = et1d1+···+tldl as usual.
Finally, according to Givental’s computation of the function

G = eplnq/~(1 +
∑

d∈Ǩ,d6=0

qdev1∗(
1

~ − ψ1
))

in [9] (Theorem (0.1), page (3) and its corollary: Example (a) page (4)) we have
that, if

∫
d c1(TX) > 0 for all d ∈ Ǩ and d 6= 0, then the function F as computed

above is indeed equal to the function G and therefore it generates the quantum
D-module.

4For more explanation on this, see the proof of proposition (4) below, where a similar calcula-
tion is done.
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We should make a comment here about how it is possible that the same answer,
for the quantum D-module, arises from the rather naive linear σ-model and the
much more complicated space of stable maps. The two spaces have the same open
part and differ with respect to the compactification. According to Givental’s cal-
culation ([8], page 28), the contributions to the calculation of G for X = Pn are
of two kinds. The first is exactly of the type corresponding to the linear σ-model
compactification. The second kind happens to vanish ([8], lemma 9.7). In a way
then, the problem is linearized, since instead of having a summation over trees, we
end up with a summation over chains ([8], page 28). This is why, in the toric case
the linear σ-model gives the correct answer.

We should also explain here, that we have taken NMd(X)X0 above, instead of
NMd(X)Xd since we have identified Xd and X0 by the deck transformation. In any
case, using NMd(X)Xd also gives a function that generates the quantum D-module,
since we have just changed ~ to −~.

We would like now to relate this discussion, to the one we had in the previous
section, using Fredholm maps, about the general situation.

In that case using spaces of stable maps and the evaluation map, we implicitly
identified all the Xd. Here we do this by using the deck transformation q̃d: we have
that q̃d(Xd) = X0.

Let N+
d = Ed

+|Xd
and N−

d = Ed
−|Xd

. Then Nd = N+
d ⊕ N−

d . We will prove
the following:

Proposition 3. N+
d and N−

d are respectively, the positive and negative normal

bundles to Xd in L̃∞X, with respect to the action functional H∞. An analogous

statement is true for L̃NX.

We postpone the proof for a bit later.
First we note that by restriction of (86) to X0, we get an exact sequence:

(90) 0 → Td|X0
→ N+

0 → N+
0 → 0,

where the second map is pr+oq̃
d.

To be explicit q̃d on N0
+ = E0|X0

+
=

⊕
ν>0 L1,ν⊕· · ·⊕

⊕
ν>0 Ln,ν →

⊕
ν L1,ν⊕

· · · ⊕
⊕

ν Ln,ν sends the section corresponding to γ(z) = (γ1(z), . . . , γn(z)) where

γk(z) =
∑

ν>0 aν
kzν to the section corresponding to (z−

R
d

α1γ1(z), . . . , z
−

R
d

αnγn(z)).
Then pr+ is the projection.
Moreover it is clear that Td|X0

= NMd(X)X0. This statement makes sense, as

Md(X) is a toric submanifold of L̃∞X , given by the vanishing of (infinitely many)
homogeneous coordinates. To conclude, we just have to notice thatX0 is a complete
intersection in Md(X), of the divisors whose sum is Td. Therefore we have the exact
sequence:

(91) 0 → NMd(X)X0 → N+
0 → N+

0 → 0

Notice finally, that in fact q̃d restricted to N+
0 , is exactly the derivative Dq̃d of

q̃d, due to linearity of this map.
As promised, we have thus shown that:

Theorem 4.

(92) G = e(t1p1+···+tlpl)/~
∑

d∈Ǩ

qd 1

eS1(Ind(pr+oDq̃d|X0
))
,
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where Ind(pr+oDq̃
d|X0

) denotes the index bundle defined on X0 by the Fredholm
bundle map pr+oDq̃

d.

We see now, that the map w from the previous section should be interpreted as
the derivative of the deck transformation, in the direction defined by the map u.
Moreover, for a map u : P1 → X , q̃d(N+

0 |u(0)) is the space W , in the semi-infinite
Grassmannian, from the previous section. Finally, in accordance to what we did
then, we project back to N+

0 |u(0).
One way of thinking about it, is that we identify X0 and Xd via the deck trans-

formation but they have different normal bundles in L̃∞X .
A fundamental observation that comes out of the previous discussion, is that

the Fredholm bundle map between positive normal bundles, that we constructed
using the deck transformation, doesn’t map between fibers over points which are
upper and lower endpoints of the flow of the action functional in loop space. We
saw that the fiber over (a1

0, . . . , a
n
0 ) in X0 is mapped to the fiber over the point in

Xd corresponding to the loop (a1
0z

R
d

α1 , . . . , an
0 z

R
d

αn). In other words there is an
identification of all the Xd and in particular all the Fd as submanifolds of X0, via
the deck transformations. This matches perfectly with our approach in the previous
section where the Fredholm map was a self map on a Hilbert space attached to only
one marked point on the curve. To be even more explicit, it is not right to think
of the Fredholm map mapping a Hilbert space attached to one marked point, to
one attached on another marked point. That would correspond in the toric model

to considering a map γ(z) = (γ1(z), . . . , γn(z)) where γk(z) =
∑R

d
αk

ν=0 aν
kzν and

associating to it a Fredholm map from a Hilbert space at (a1
0, . . . , a

n
0 ) in X0 to one

at (a1R
d

α1
, . . . , anR

d
αn

).

Let us also note that we are assuming
∫

d
αk > 0 for all k and d in the Kähler

cone in order to only have kernel in our exact sequence . Otherwise we have also
cokernel and this just means that we have obstructions in the deformation theory.
From our point of view, it is not really a complication since we just work with
the index bundle which is well defined in K-theory. This is an example, of how as
described also in the general situation, in the previous section, we may have virtual
bundles appearing.

There is a corresponding sequence involving negative normal bundles and the
map pr−oq̃

−d that gives a formula where ~ changes to −~. This is:

(93) 0 → NM
−d(X)X0 → N0

− → N0
− → 0.

It is now time to give the proof of the proposition (3). We give the proof for

L̃NX and the proof for L̃∞X follows from taking N = ∞

Recall that L̃NX = µN
−1(λ)/T l, where λ ∈ Rl has components λ = (λ1, . . . , λl).

Therefore according to (68) we have

(94)
1

2

N∑

ν=−N

n∑

k=1

m1,k|aν
k|

2
= λ1, . . . ,

1

2

N∑

ν=−N

n∑

k=1

ml,k|aν
k|

2
= λl.

Now the action functional HN can be restricted to µN
−1(λ) by using the relations

(94). Once we do this, then we have the function on L̃NX since HN is invariant
under the Tl action. In order to look in the normal directions of Xd and using the
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description of Xd found in (79), we work as follows:

(95) 2HN(γ) =

N∑

ν=−N

ν(|aν
1|

2
+ · · · + |aν

n|2) =

=
∑

ν 6=
R

d
α1

ν|aν
1|

2
+ · · ·+

∑

ν 6=
R

d
αn

ν|aν
n|2 + (

∫

d

α1)|a
1R

d
α1
|
2
+ · · ·+ (

∫

d

αn)|anR
d

αn
|2.

Now substituting (78) in (95) we find :
(96)

2HN =
∑

ν 6=
R

d
α1

ν|aν
1|

2
+· · ·+

∑

ν 6=
R

d
αn

ν|aν
n|2+

l∑

j=1

mj,1dj |a
1R

d
α1
|
2
+· · ·+

l∑

j=1

mj,ndj |a
nR

d
αn

|2.

Rearranging this sum gives :
(97)

2HN =
∑

ν 6=
R

d
α1

ν|aν
1|

2
+· · ·+

∑

ν 6=
R

d
αn

ν|aν
n|2+d1

n∑

k=1

m1,k|a
kR

d
αk

|
2
+· · ·+dl

n∑

k=1

ml,k|a
kR

d
αk

|
2
.

Now we may use (94) to obtain

2HN = 2
l∑

j=1

djλj +
∑

ν 6=
R

d
α1

ν|aν
1|

2
+ · · · +

∑

ν 6=
R

d
αn

ν|aν
n|2−

−
n∑

k=1

∑

ν 6=
R

d
αk

d1m1,k|aν
k|

2
− · · · −

n∑

k=1

∑

ν 6=
R

d
αk

dlml,k|aν
k|

2
.

Rearranging the sum once more we find :

HN =

l∑

j=1

djλj+
1

2

∑

ν 6=
R

d
α1

(ν−
l∑

j=1

djmj,1)|aν
1|

2
+· · ·+

1

2

∑

ν 6=
R

d
αn

(ν−
l∑

j=1

djmj,n)|aν
n|2

and finally

(98) HN =

∫

d

ω +
1

2

∑

ν 6=
R

d
α1

(ν −

∫

d

α1)|aν
1|

2
+ · · · +

1

2

∑

ν 6=
R

d
αn

(ν −

∫

d

αn)|aν
n|2.

Notice that the fact that
∑l

j=1 djλj =
∫

d ω, follows from (70) and (72). Moreover
since HN is quadratic, computing the Hessian is immediate and the proof of the
proposition is completed.

To be able to consider these Fredholm maps we need to work with infinite dimen-
sional Hilbert spaces. The reason becomes clear if we try to consider the shifting
map on a finite dimensional vector space. For example, while the forward shifting
has only cokernel on a Hilbert space, on a finite dimensional vector space it also
has kernel which in way is ”artificial”, at least from the geometric point of view.

We will see that we may get around this difficulty and work with finite dimen-
sional spaces, especially in the case of toric manifolds by using the extra information
that we have, namely the knowledge not just of the derivative of the deck transfor-
mation but the deck transformation itself. To be more precise, instead of using the
derivative of the deck transformation and the induced map on normal bundles, we
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will use the deck transformation at the level of the bundles E+
d,N i.e. the bundle

of homogeneous coordinates on L̃NX.
We will prove the following finite dimensional version of the theorem::

Proposition 4. Let X be a toric manifold. For every class d ∈ H2(X,Z), there is
an integer N(d) such that the ratio of equivariant Eüler classes,

(99)
eS1(E+

d,N |X0
)

eS1(E+
0,N |X0

)
=
eS1(E+

d,N |X0
)

eS1(N+
0,N )

remains constant for all N ≥ N(d).

In other words this ratio of Eüler classes stabilizes. This allows us to define the
stable ratio.

Definition 2. Define the stable ratio
eS1 (E+

d|X0
)

eS1 (E+
0|X0

) =
eS1 (E+

d|X0
)

eS1 (N+
0)

to be the common

ratio
eS1 (E+

d,N |X0
)

eS1 (E+
0,N |X0

) =
eS1 (E+

d,N |X0
)

eS1 (N+
0,N )

for all N ≥ N(d)

Theorem 5. Let X be a smooth toric variety of Picard number l, and assume that
for every d ∈ Ǩ − {0} we have

∫
d
c1(TX) > 0. Then the stable ratio is equal to

eS1(NMd
X0) and therefore if we let

(100) F = e(t1p1+···+tlpl)/~
∑

d∈Ǩ

qd eS1(E+
d|X0

)

eS1(E+
0|X0

)
,

then

(101) F = G,

where

G = e(t1p1+···+tlpl)/~(1 +
∑

d∈Ǩ,d6=0

qdev1∗(
1

~ − ψ1
))

is the function defined in (12) (since qi = eti).

We start by the proof of proposition (4): The normal bundle of the subset of Cn2N

whose quotient by the T l action is Xd, is trivial of course and has fiber coordinates
given by all the variables in Cn2N except for (aR

d
α1
, . . . , aR

d
α1

). The normal bundle

of Xd is the quotient of the normal bundle to the subset (aR
d

α1
, . . . , aR

d
α1

). Recall

that L̃k,ν is the bundle over L̃NX associated to aν
k and define

Of course L̃k,ν1
is isomorphic to L̃k,ν2

for all ν1 and ν2 if we don’t take into
account the S1 action but they are different as S1 equivariant bundles according to
(76). Now let

(102) Ld
k,ν = L̃k,ν |Xd

,

then we have that

(103) Ld
k,ν isomorphic to Lk for all ν,

where again the isomorphism is taken in the usual sense, not the S1 equivariant.
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It is now straight forward to compute the S1 equivariant Eüler class of each of
the line bundles. We have that, if

(104) E+
d,N =

N⊕

ν>
R

d
α1

L̃1,ν ⊕ · · · ⊕
N⊕

ν>
R

d
αn

L̃n,ν ,

then

(105) N+
d,N = E+

d,N |Xd
=

N⊕

ν>
R

d
α1

Ld
1,ν ⊕ · · · ⊕

N⊕

ν>
R

d
αn

Ld
n,ν .

Note now, that our calculation from equation (98) gives the following informa-
tion: since HN is hamiltonian for the S1 action, we may read off the weights of the
action. We see then that the weights are shifted exactly so that the homogeneous
coordinates of Xd have weight 0.

Finally since the S1 action is given by (76) and using (98) we find that

(106) eS1(Ld
k,ν) = c1(Lk,ν) + (ν −

∫

d

αk)~ = αk + (ν −

∫

d

αk)~,

and therefore

(107) eS1(N+
d,N) =

N−
R

d
α1∏

ν>0

(α1 + ν~) . . .

N−
R

d
αn∏

ν>0

(αn + ν~).

As a special case it follows that

(108) eS1(N+
0,N) =

N∏

ν>0

(α1 + ν~) . . .

N∏

ν>0

(αn + ν~).

We then compute the ratio

(109)
eS1(E+

d,N |X0
)

eS1(E+
0,N |X0

)
=
eS1(E+

d,N |X0
)

eS1(N+
0,N )

=

∏N
ν=

R
d

α1+1(α1 + ν~) . . .
∏N

ν=
R

d
αn+1(αn + ν~)

∏N
ν=1(α1 + ν~) . . .

∏N
ν=1(αn + ν~)

=

1
∏R

d
α1

ν=1 (α1 + ν~) . . .
∏R

d
αn

ν=1 (αn + ν~)
.

It follows that indeed the ratio
eS1 (E+

d,N |X0
)

eS1 (E+
0,N |X0

) is independent of N as long as

N is greater than N(d) = max{
∫

d α1, . . . ,
∫

d αn}. This concludes the proof of
Proposition (4).

The proof of Theorem (4) follows now easily from the proof of Proposition (4).
First note that the stable ratio is

(110)
eS1(E+

d|X0
)

eS1(E+
0|X0

)
=

1
∏R

d
α1

ν=1 (α1 + ν~) . . .
∏R

d
αn

ν=1 (αn + ν~)
.

We may now compute the function F of (100). We find that

(111) F = e(t1p1+···+tlpl)/~
∑

d∈Ǩ

qd eS1(E+
d|X0

)

eS1(E+
0|X0

)
=
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= e(t1p1+···+tlpl)/~
∑

d∈Ǩ

qd 1
∏R

d
α1

ν=1 (α1 + ν~) . . .
∏R

d
αn

ν=1 (αn + ν~)
,

where qd stands for q1
d1 . . . ql

dl = et1d1+···+tldl as usual.
Finally, according to Givental’s computation of the function

G = eplnq/~(1 +
∑

d∈Ǩ,d6=0

qdev1∗(
1

~ − c
))

in [9] (Theorem (0.1), page (3) and its corollary: Example (a) page (4)) we have
that, if

∫
d
c1(TX) > 0 for all d ∈ Ǩ and d 6= 0, then the function F as computed

above is indeed equal to the function G and therefore it generates the quantum
D - module. This concludes the proof of theorem (4). It may finally be useful to
consider a simple example in order to clarify things a bit more.

Example 1. Let us consider the simplest example which is the complex projective
space Pn. Let ω be the class dual to a hyperplane. The Kähler cone is a half line
and is generated by ω. The toric divisor classes αi are also all equal to the class
dual to a hyperplane. For d in H2(P

n,Z) let d1 =
∫

ω
d =

∫
d
αi. Let q1 = et1 . Then

the function F of (100) becomes

F = et1ω/~

∞∑

d1=0

q1
d1

1
∏d1

ν=1 (ω + ν~)
n+1

.

We may now expand F in the basis {1, ω, ω2, . . . , ωn} :

F =
n∑

i=0

fi(e
t1 , ~)ωi.

Let < a, b >=
∫

Pn a ∧ b where a and b are cohomology classes in Pn. Clearly we

have fi =< F, ωn−i > Moreover notice that < a, b >= Res0ab
dω

ωn+1 . Therefore

fi = Res0

∞∑

d1=0

q1
d1

ωn−iet1ω/~

∏d1

ν=1 (ω + ν~)
n+1

dω

ωn+1
.

The easiest one to compute is f0 :

f0(e
t1 , ~) = Res0

∞∑

d1=0

q1
d1

ωnet1ω/~

∏d1

ν=1 (ω + ν~)
n+1

dω

ωn+1
.

Therefore

f0(e
t1 , ~) =

∞∑

d1=0

et1d1

~d1(n+1)(d1!)n+1
.

The function f0 is annihilated by the differential operator R(~ ∂
∂t1
, et1 , ~) = (~ ∂

∂t1
)n+1−

et1 . The quantum D - module of Pn is the Heisenberg algebra modulo the ideal
generated by R. Finally the corresponding relation in the quantum ring of Pn is
R(p, q, 0) = 0 i.e., pn+1 = q. Indeed, the quantum cohomology of Pn is C[p, q]/(pn+1 =
q) where pn+1 is computed by the quantum multiplication and p is the class of the
hyperplane. For a computation of the quantum cohomology in terms of the space of
stable maps see for example [8]. Notice also that the rest of the fi are also annihi-
lated by R. In fact we get a complete basis of solutions of the equation R = 0.
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