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Introduction

Let f be a normalized newform of weight 2 on PO(N) (NelN) and let
Af/Q be the abelian subvariety of the jacobian of the modular curve
XO(N)/Q corresponding to f. Let p be a rational prime with piN and denote
by Cp a completion of an algebraic closure of the field of p-adic numbers.

Let K be an imaginary quadratic field and let K_ /K be the anti-
cyclotomic Zp-extension of K.

Suppose that every rational prime £ dividing N is split or ramified
in K, and every rational prime £ with 12 dividing N is split in K. The
main purpose of this paper then 1is to construct a distribution/tf on
Gal(K,/K) with values in the subspace of the cp-vector space Gp@zAf(Kw)
which ié generated by the Heegner points for K. This distribution is of
moderate growth w.r.t. an appropriate norm (§3.). Choosing an anti-
cyclotomic p-adic logarithm ¥ over K we then obtain a p-adic function
hf’t(xss) for every finite character % on Gal(Ko/K) in ‘the usual way as
a Mellin-Mazur integral (§4.). In the final section of the paper (§5.)
we give a simple relation (kindly suggested to me by P. Schneider) be-
tween M and the measure constructed by Mazur in [9], §22. which plays’
an important role in recent work ofﬂPerrin-Riou([12]) on.a p-adic analogue

of the theory of Gross- -Zagier ([3]) We also make some further remarks

on pa and hf;c, respectively.

As P. Schneider pointed out to me, Heegner points -like cyclotomic
units- behave almost like universal norms, and then by a rather formal
argument this property can be translated into a distribution relation
(Heegner points as universal norms are also treated in (9], §19. and in

(11]). In this context -as is true for many distributions oceurring in




practice-~ P is a special case of P. Schneider’s fundamental notion of a
distribution of Galois type arising from norm-finite elements ([16]).
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discussions; in particular, after I talked to him about a first version
of this article, he showed me a preprint of his paper (9], from which I
profitted very much. -I also would like to thank P. Schneider for several

useful suggestions and improvements on this paper.

§1. Modules in imaginary quadratic fields

Let K be an imaginary quadratic field. For n20 we denote by Oh the
order of K of conductor pn, where p is a fixed rational prime. We write
G=0b.7We let D be the discriminant of K.

There is a homomorphism from the monoid of proper Ug-lattices onto
the monoid of proper O-lattices given by
(1) & — «d,

The group (Q/an}*/(Z/an)* is isomorphic to its kernel under the map

X > dn

» X'

where

(2) ¢

Denote by In the group of proper Oh—lattices modulo equivalence and

_ .n
n,x _ P O+Zx.

put
) .
a = ((9/p%0) /(2/5"2)%) [ (6% /0%).
Then (1) induces an exact sequence of finite abelian groups

— 0

0
(note that 0;={t1} for n>1 and that O*/O; is non-trivial only for D=-3

O0-A —I->I
n n

and D=-4, in which cases its order is 3 and 2, respectively). In parti-

cular

-1
11,1 = J1,] Co*:0X] pn(1-(%)%).



Note that (1) also induces a bijection between proper 0 -ideals
prime to p and proper U-idegls prime to p {(the inverse map is given by
uf—)qncn). |

Let

Un:An_’An-T - (nx1)
be the canonical projection. The order of kervn is p for n22 and is

[6”:0:]‘1(p—(§)) for n=1.

Lemma. Let ¢ be 8 proper U-ideal prime to p. Let xeAn. Then for all

x'er'1
n

41X the lattice (dn@h+1)qn+1'x' has index p in (¢nch)qn’x.

Proof. Write qn=qn0n. We shall prove that

(3) pqnc‘n,xcqnﬂd’

n+1,x”
The Lemma will follow from this. Indeed, the inclusion

¢n+1cn+1’x' cG. G

n'n,x
must be strict, since (¢,p)=1 and so the coefficient ring of GG, x IS Gh
and that of qn+1qn+1’x, is Gn+1'

Let us now prove (3) which is equivalent to

2
(1’) Y (qn'pnqn'x)c qn+1'pn+1qn+1'x'o

The lattices q_  and pnqn 5 are 0 -ideals with (qn.pnqn x)=1’ since (d,p)=1

Therefore
n _ n
Gn P qn'x = GQ,°P qn'x-

Therefore (4) is equivalent to

2 n+1
P (e npq, )€ Guy1nP Gpuq x

or -to

2 +1
p*(gnp e, Jednp™ g

.

n+l1,x”
The latter inclusion, however, is obvious since pdn,x‘:qn+1,x" by

definition of x°.



§2. Heegner points

For basic facts on Heegner points we refer to 2] (our notation will
be consistent with that of [2]). Let NeW and Buépose that every rational
prime £ dividing N is split or ramified in the imaginary quadratic field
| K, and every rational prime £ with £2IN is split in K. Let % be a proper
O-ideal with 0/«.02F/NZ (such an ideal n exists if and only if the above
conditions on N and £ are satisfied). We put'nn=xn6n, where Gn is the
order of K of conductor pn and p is a fixed rational prime with pVN.

We let YO(N) be the open modular curve of level N, which classifies
triples (E,E",y) consisting of two elliptic curves E and E° and a cyclic
isogeny EXE’ of degree N. |

If « is a proper Un—ideal and [é)eln its class we denote by

(8,0, (=)
the corresponding Heegner point (Gﬁmceﬂlqn;1) on YO(N). It is rational
over the ring class field Hn=K(j(Oh)) obtained from K by adjoining the
j-invariant of Oh. The extension Hn/K is anti-cyclotomic with Galois group
.canonically isomorphic to In by class field theory (recall that an abelian
-extension L/K is called anti-cyclotomic if L/Q is Galois and if the non-
trivial element of Gal(K/Q) acts on Gal{(L/K) by complex conjugation).

The Galois group of Hn over K acts on Heegner points according to
the formulﬁ
(6, 00T Y = (g, Tan 1)

(» a proper 6 -ideal, (#,p)=1, (&) the Artin symbol of [&] in Gal(Hn/K);
ef. (2], 4.2.). . -

Let JO(N)/Q be the jacobian of the complete modular curve XO(N)/Q.
The divisor |

(Gh;hn,[aj) - (ie)
is rational over Hn' and we shall write
y (O, Tad)

for its image in JO(N)(Hn).



Let

H = U H

n»0 n

and put

vV = cezJo(N)(Hm) = nk;}o m@zJO(N)(Hn).

By the Mordell-Weil Theorem the group JO(N)(Hn) is finitely generated for
every n20. The complex vector space V has an hermitian inner product
given by
{ze,z’e’> = zz° (e,e'>J.

Here e,e'eJO(N)(Hm) and < , >J is the normalized height pairing on
Jo(N) (Hy) .

Let T be the commutative subalgebra of EndQ(JO(N)) generated over Z
by the Hecke operators T, with LIN and the Atkin-lehner involutions w,
with Z[N. Then T acts on V in a natural way. Since this action is self-
adjoint w.r.t. <, >, we have a spectral decomposition

vV = g VF’

where F:T—>{ runs through the finite set of characters of T and VF
denotes the corresponding eigenspace.

Let

f(z) = 2 a eZVinz (ze€, Imz>0)
nx1 n

be a normalized newform (a1=1) of weight 2 on rb(N) and let Af/Q be the
abelian subvariety of J,(N)/Q corresponding to f ([171, chap.?). Then
GQZAf(Hm) = 2 Vv

d'

f

where « runs through the distinct complex embeddings of Q({an} )/Q and

n31
£€ = Z a“ezwinz
nl

. Moreover, we have identified the.néwform £ with

the corresponding character T—Q, T— 2\ (T) (Tf’=)?(T)f¢).

In ordér to obtain a spectral decomposition w.r.t. T also for

770
and V and V

Gp@ (N)(H_) we now choose & Q-isomorphism Ggﬂp. Then ngp@zJo(N)(Hw)'

7 become Gp-vector spaces.,



If « is a proper O;-module we write
yo (6, [a])
for the image of the Heegner point y(ﬁn.ﬁh.[ﬁﬂ) in V.

§3. p-adic distributions associated to Heegner points

We keep all notations of §1. and §2. In particular, we let I be
the group of classes of proper Ok-lattices. For n»1 there is a surjective
homomorphism
| v I oI 4 [a]FﬁCHdn-1j
which extends the projection Uh:An—QAn_1. We let
Ie = %ﬁ? (In'“h)°

By class field theory In resp. l, is canonically isomorphic to

o

Gal(Hn/K) resp. Gal(H,/XK), and the diagramp
Tn

In —_— In—1

IR R

Gal(H_/K) ——=25 Gal(H__,/K) -

is commutative, where res is the restriction map.
Recall that a p-adic distribution v on I, with values in an abelian
group Y is given by a family {“n}n>1 of maps
v i I —Y
n° “n
which satisfy the compatibility relations
(5) v () = X v .(B)

for all n21.

Now let us suppose that

i) f(z) = & ane‘?“lnz is a normalized newform of weight 2
nx1
on PO(N);

ii) every rational prime £ with A&IN is split or ramified in the
imaginary quadratic field K, and leN implies that £ is spli-

(6) _< in K;
iii) 4 is a proper O-ideal with 6/ =Z/NZ (such an = exists by ii)




we keep w fixed throughout the following and therefore
mostly omit it from the notation);
iv) p is a rational prime with p\N and 9=yp is & root of

2 . . «1
-a_xtp=0 which satisfies | > = where |.] 1is the
X"-8 X+p 9Ip lplpp . P

- normelized p-adic absolute value on ¢p.
From now on we will always assume that the conditions in (6) are satis-
fied.

For n2>1 we define a map

°f,n: In---wf
by
_ .-n -n-1
of.n(A) =¥ yf(Oh.lh,A) -9 yf(en-‘l’“n-‘l'vnA)’
We put
(7) of - {Of.£}n21'

Theorem 1. Under the assumptions in (6) the family v, defined by (7) is

a p-adic distribution on I_.

 Proof. We must verify (5). Write v, instead of v, . We have

f,n
_ =n-1
- ZB:A °n+1 (B) - 9 T ZB—A Yf(e'n+1.‘tn+1.3)
+1 n+t1° "~
(8) n
-n-2 _
-5 T z:B=A yf(o'rlﬂ'n’"n+1B)'
ntl

For p}N let Tp be the Hecke operator of degree p viewed as a corres-

pondence on XO(N). Then Tp acts on Heegner points according to

T (R,%, = 2. (R_,, % ., (o]
p( b)) o T2/ 01 i Gw'l)

(formula 6.1. in [2]): here R is an arbitrary Brder in K, % and = are
proper R-modules, R/®=Z/NZ, the sum is taken over the p+1 sublattices
‘ i = 4 ko, = , 2]
m” of index p inwr, Rm End{(w ) and - &Rﬁw an)
Let A€l . Write A={«), where « is a proper 0 -ideal with (er,p)=1.

Then
-1, ,
et = {lan0y 109, 4 D | X kerm )

with Sn, x defined by (2), and the lattice (q“°h+1)¢n+1,x' has index p in



& by the Lemma in §1. (take ¢=a®, so cn8n=mJ. Therefore for n21 the p
lattices (an0h+1)qn+1’x' (x%e kerrn+1) together with pa¥ giv§ all the .
p+1 different sublattices of &« of index p. Since Tp commutes with the

projection onto V_. we conclude

f

apyf(eh'un'A) = prf(e%’“n’A) _
and so nt1
(9) - ZB—A Yf(en+1”'\n+1’B) = apyf(dn,'ln'A) - yf(e‘n-1.Hn-1,TnA).
n+1-

Substituting (9) into the first term on the right of (8) and obser-

ving that lkerlh|=p for n22 we obtain

-n-1 -n-1
L E%=A peq(B) = 9 Ay (O 0n 0 A) - 97Ty (8 qarg gy A)
n+1 fn2

-9 pr(ehvﬂnoA)

-n-2 ) -n=-1
¢ (?ap-p)yf(ﬁn.nn.ﬁ) - yf(65-1.un_1.7nh)

g-nyf(sﬁ'kn'ﬁ) - 9-n-‘]yf(en-‘l’1"11-1""'11‘&)
-5 (4),

where in the third line we have used 92-ap9+p=0. This completes the proof.

We remark that formally Ve is an analogue for the "modular symbols
distribution™ introduced in [6é] and [7] to construct the cyclotomic
p-adic L-function of f.

Now recall that the group I is isomorphic to FKZb, vhere F is a
finite group. Let K, be the fixed field of F. Then K /K is the anti-
cyclotomic Zﬁ-extension of K. Let Fn be the image of F under the canoni-
cal projection Itralg, and let

Ip = lin (I /F 7))
where Fn is the reduction Of‘ﬂh. We have canonical isomorphisms
(10) Gal(K /K) 2 I_/F = I_.

Let W, be the f-subeigenspace of the Gp-vector space GPGZJO(N)(KQ).

The group Gal(H,/K) acts on GPSZJO(N)(Hm) in a natural way, and the

Galois average



<
T v (A) (A€l )

cefF
n

of (A) is in W.i from the action of the Galois group on Heegner

of,n

points (§2.) we see that it only depends on the coset of A modF . We

define a distribution

ﬂf ={ﬂfﬂ$nz1
on I, by

(11.) Peont I/E=Vee pe (R) = Z v (8)°  (Ael, A=A modF, ).

ceF
n

bl

That this, in fact, is a distribution follows from the equation
(=
\Fpl & L 9 14q(B)

n _
6an+1 Ti-n+1B-A

= anH' _Z ( > vf,nﬂ‘(B)U) .

ﬂh+1B=A can+1

Thus we have obtained

Corollary. Let Km/K be the anti-cyclotomic Zb-extension of K and let Wf

be the f-subeigenspace of GpezJO(NJ(Km)’ Assume that the conditions in

{6) are satisfied. Then via the identifications given in (10) the family

f}={}k,ﬁ}nz1 defined by (11) is a distribution on Gal(K_/K) taking values

lg,wf.
§4. Mellin-Mazur transform of pe

We will now define an ultrametric norm 1l.{l on the Gp-vector space
Gp@zAf(Km) ghd hence on the subspace W, for which ff is of moderate

+c
rn for

growth, i.e. there is re[0,1) and ce¢R such that \Lﬂf n(E)H <p
all A&In and all n (ef. [6].[8]); in fact, rf will be bounded if ap is

a p-adic unit.

Lemma. Let A be an abelian variety over a number fisld k. Then for any

Zp-extension k_/k the group A(k,) modulo torsion is a free Z-module.
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The above result is essentially due to B. Perrin-Riou and was proved
for A an elliptic curve in [10], II,1.3.,Thm.4; it was pointed out to me
by P. Schneider that the proof carries over to the general situation if
one replaces Lemma 6 in [10] by the following argument (we use the same
notation as in [10]): since 8=Gal(k,/k) is a pro-cyclic pro-p-group, we
| have an isomorphism between H1(O,ﬂ(km)) = H1(®,ﬂ(km)(p)) and the ©-coin-
variants of.ﬁ(ﬁm/k). Now Sl{k,)(p) is a Zp-module of cofinite type, hence
the D -coinvariants of Jl(k,)(p) are finite if and only if the O-invariants
of N(k,)(p) are finite; the latter, however, is SU(k)(p), which obviously
is finite.

Now let uecpﬁzAf(Km) and let A1.A2.... be the Cp-coordinates of w

w.r.t. any Z-basis of Ar(Km) modulo torsion. We put

(12) Wil = ﬁ:ﬁi'An'p}'

Using the non-archimedean property of i.lp one readily sees that this

definition is independent of the chosen basis. Thus we have

Proposition 1. Let |l.]] be defined by (12). Then (cpezﬂf(xm),llJl) is a

normed Cp-vector space, and the norm is ultrametric.

Theorem 2. The distribution Fr is of moderate growth w.r.t. 1.1} .

Moreover, if 85 is a p-adic unit, then fe is bounded.

Proof. Let X = & ¢£f® with the sum over all embeddings < of Q({aﬁ}n>1)/m
in ¢ and let r=dimmx. If FeX and F(z) = % cﬂL__(F)e‘?’ri‘i‘-z we may view c
421
as an element of the €-dual X’ of X. Let Cjy weeesCy be a basis of X’.
) 1. r

Then the matrix

M= (c*(f"ﬁ )> 15¢,Pgr

is invertible.
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If Aeln we put

(-4
x(cnt“nnA) = Z Y(e’no"'\noA) .
can

Thus x(Uh,wn,A)&JO(N)(Kw). Let x, (Oh,nn,A) resp. xf(eh'"n’A) be the

f
images of x(6 ,w ,A) in Ap(Ky) resp. W.. Then

(13)  x, (0 ,m,8) = 2 x _ (68 ,m,4).

f lspsr o IS

Since ?Lxﬁf(dﬁ'nn'ﬂ) is rational over Kn’ it is of norm 41. Applying

T. on both sides of (13) we obtain

&

(T x, (6_,m ,A)) _ - ‘ t
o Af n’ D’ d_—i1.-oo,1r - (x - (6n"“n'A))P-1,...,r M '

£ P )
where Mt'is the transpose of M. Since the column on the left has entries
bounded w.r.t. V.|l , and since M is invertible and has integral algebraic
entries, we see that x d(Oﬁ,un.A) has bounded norm, and the bound is in-
dependent of A. :
Since furthermore, by assumption, iglp>|pjp=p"1;and ]9|p=1 if
| =1,'we conclude that ff is of moderate growth and is even bounded

|a
Ppp
for la ) _=1.

pP

The conjectures of Birch and Swinnerton-Dyer for abelian varieties
predict that the<groups.gf(Hm) and Af(Km) (and so the vector spaces Ve
and Wf) are not finitely generated. In fﬁct, let L{(f8y,s) be the complex
L-series attached to the tensor product of the Z-adic representations
of Gal(Q/Q) corresponding to f and indy, where y: GalﬁHn/K)—am* is any
ring class character ([2]). Then by [2] and [4] L(f®y,s) satisfies a
functional equation under s+—2-s, and under the assumption that every
prime dividing N is split or ramified in K, and every Dprime
whose square divides N is split in K, its root number is -1, and so in
particular L(f®y,1)=0. Let L(Af/Hn.s) be the Hasse-Weil L-function of

Af/Hn. Then
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L(A/H ,s) = [ L(f%8y,s)
<Y
with v running over all characters of Gal(Hn/K) and © running over the

distinct complex embeddings over @ of Q({aﬁ} ), and with £¢ defined

nx1
as in §2. Therefore ords:1L(Af/Hn.s) goes to infinity with n— o and
hence -by the conjectures of Birch and Swinnerton Dyer- so should do
ranszf(Hn). Similar remarks apply if we replace H by H oK.

Note that if the results of Rohrlich ([13,14]) and Greenberg (L131)
could be generalized to give L’ (f8v,1)#0 for almost all primitive y and
n, then it would be a consequence of the work of Gross and Zagier ([3}])
that Vf and Wf are, in fact, infinite-dimensicnal.

Let (ﬁf,ll-” ) be the completion of (wf.II.H ). We can integrate
any continuous function g: Im/F—;Gp w.r.t. Fr in the usual manner: if En
is a sequence of locally constant functions converging uniformly to g,

we put

§ gap =13 >3 (B)p. (F),
e BT Ln Bl /e g(R)py 4

where the right-hand side is an element of Wf.

Now let © be an anti-cyclotomic p-adic logarithm over K, i.e. a
non-trivial homomorphism from Gal(ﬁ/K) to the additive group of Qp, whose
K/Q conjugate is equal to its inverse (cf. [9], §15.). Any two anti-
cyclotomic p-adic logarithms over K are proportional by an element of
Q;. The fixed field of kert is K .

Denote by ﬁf[[s]] the Ep[[s]]-module of power series in s with
coefficients in ﬁf.

Definition. Let x: Gal(Km/K);ic; be a character of finite order, and let

T be an anti-cyclotomic p-adic logarithm over K. Assume that the <condi-

tions in (6) hold. Then we define the Mellin-Magzur transform of P asso-

ciated to v and X as the power series

1 n n
he o (x,8) = 2 == ( § x<ap,.) s
£, nzo 2! I /F Fe

in W.([s]].
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Proposition 2. Let n3»1 and let x: In/Fn—+G; be a_character such that the

inflation ¥: In—+C; of x is primitive (i.e. not induced by a character

of I with m<n). Then

- -n A
he (06,0) =g Agl X (A)yo(0_.n_,4).
n

The proof is standard and will be left to the reader.

Proposition 3. Let LYY be the trivial character, let p>3 and assume that

(§)=-1. Then
i -2
h, (X,,0) = == (1-¢"°) 2 y.(d,%,4).
£t %o Fol = % a1, Of

This is proved by arguments similar to those used in the proof of

Theorem 1. In general, the value h,  (xy,0) is given as the sum of

d -1 -2 -2,D _rn¥ . nX
W (" "+p3 " (a-1)+9 (;)) AeZIO yp (G, R) («=[0%:031)

and a certain correction term (vanishing for (%)=-1) which arises from
the fact that the order of kerw, is ¢f1(p-(§)) and so depends on the

value of (%).

§5. Complements
5.1. Relation of Fe to Magzur’s distribution

The following observations were kindly suggested to me by P.
Schneider.

Assume that A, is of dimension 1, let ¢ be a p-adic cyclotomic

T
logarithm over K and let <, >, be the p-adic height pairing on A (K,)

associated to o« ([9], §20.). Let po ={p. Y . be the distribution on
Fe,n¥nz
I./F defined by
v - |
FeaB) = Fp (A7)
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and define the convolution product

(P Fda®) = B <pg JB)F L (B>

Then rf*FT is a Gp-valued distribution. Since v, is of Galois type in the

f
sense of [16], i.e.

-1
of.n(['o-(_]) = Qf,n(tﬁn] )G[& ]

(ef. §2. for notation), we can easily check (using the invariance of

< , >, under the action of Gal(X_/K) ) that

(Fe*Fedn B = B <pg (6,10 (B>e

The distribution rf*ﬁf therefore is of the same kind as the distribution
constructed by Mazur in [97, §22. Hazur's distribution plays an impcrtant
role in the work of Perrin-Riou ({127]) on a p-adic version of the theory

of Gross-Zagier.
5.2. Zeros of hf,t(xfs)

For simplicity suppose p>2. If we fix an isomorphism x: Gal(K./K)
:§1+pr, then t=clogpoK with ceQ; and therefore
hf;t(x.s) = I'éF X expp(cs-logpo:) qrf
(logp and expp denote the p-adic logarithm and exponential, respectively)
Clearly, the integral converges for ls[p<r:=pgic[;1.(8=1-5%7). If we fix
a topological generator y of I_/F, then

hf’t(x,s) = Hf’t(x;expp(cslogp(K(x))-1) (fslp<r)

with a power series Hf’t(x;T)ve[[&]]. Now if lap|p=1, then pg is a
measure and hence the coefficients of Hf’t(x,T) are bounded. One may then
ask whether Hf’t(x,s) -if not identically zero- has only finitely many
zeros for |slp<r. This is in fact true. The argument which was pointed
out to me by P. Schneider, runs as follows.

Let L be a finite extension of Qp containing 9 and all the Fourier
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coefficients a_ of f. Let U be the completion w.r.t. Ii.)l of the
f-eigenspace in L@zJO(N)(Km). According to [15], bor. 2.4. and Thm. 4.15.
the space U is pseudo-reflexive and hence, in particular, the natural
mép of U to its topological bidual is injective (loc.cit. p.60). There-

fore if we set H(T) = H (x,T) and write

-f,x
H(T) = 2 unT
nxng
with uno#O, then there is & bounded linear map £: U—L with X(uno)#o.

It follows that the power series
Ho(T) = 2 .ﬂ(un)Tne L[CT3]]

is not idéntically zero and has bounded coefficients, and that

H, (8) = (162) (H) (s) (lslpcr),

where 182 is the natural extension of £ to W =CPGLU (for the precise

f
meaning of the symbol "8" cf. [15]). Since by the Weierstrass Preparation
Theorem HQ(s) has only finitely many zeros for Islp(r, the result follows
for H(T).

According to the above we can write

By L 00,T) = By 6o, T) BLO) (%, 1),

where P GX.T) is a polynomial with coefficients in C_ whose zeros coin-

cide with those of h, Qx,s) for lslp(r and H(o)(x,T)ve[[T]], H(O)(x,s)
#0 for all s with Is]p(r. Does the polynomial Pg t(r,T) have any arith-
»

metical meaning?
5.3. A distribution induced by p,

We would like to describe how,:u.f induces a distribution in a some-
what different way. Suppose again that Af=E is an elliptic
curve defined over § and assume that E is given by a Néron minimal
equation

2 2
y +a1xy+a3y = x3+a2x +84x+a6 (a,eZ).
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Let » be a prime of K lying above p and let £ be a prime of X, lying
above p:. Denote by im the completion of K, at# . Reduction mod ¥ induces
an isomorphism

E(K.)/Ey(K,) ¥ E(k,.)
where EO(Em) is the kernel of the reduction wmap, E is the reduced curve
mod % and k, is the residue field. Since K, /K is totally ramified at p
we have k, =0/p . Put
(14) r=1E(k,)! .

View x and y as rational functions on E having poles of orders 2 and

3, respectively, at the origin O of E and put t=—§. Let

dx

W = e
2y+a1x+a3

be a differential of the first kind on E and write

w(t) = > hntn

n20
with hneZ[a1.....a6j and h0=1. Let
2 t
L(t) = (w(t)dt = Zoh g

be the elliptic logarithm of the formal group of E, and let

Ep = {PeEO(Km)llt(P)|p<1}.
Then E, is a subgroup of Eo(ﬁm), and the map

P—L(t(P))
is & homomorphism of E# to the additive group of'Emf(cf. e.g. [5],
chap.III,§3.).

The distribution Mp mow gives rise to a K;-valued distribution F}

={#f,n}na1 defined by

Pen = (id8L°t)o(1d8r)fff’n,
where r denotes multiplication by r (ef. (14)) and id is the identity map
of Zp. Elementary estimates for the rate of growth of L only show that
~ . . ~ ntc .
/} is of growth 1 in the sense of [8], 1.e.|/wf’nlp5p where ¢ is a
constan%, and so it is not clear if analytic functions could be inte-

grated.
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Nevertheless, if % is a primitive character on In/Fn (n21) we

might ask for the meaning of the sum

2 (MY, ().
AeI /F X(A)pp (8
n n

Is there any analogy with Leopoldt’s analytic formula giving the value of

the Kubota-Leopoldt p-adic L-function of a primitiﬁe non-principal

Dirichlet character at s=1 in terms of the p-adic logarithm?
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