## STABLE BUNOLES ON HIRZEBRUCH SURFACES

by

N.P. Buchdahl

Max-P1anck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

Sonderforschungsbereich 40
Theoretische Mathematik
Beringstraße 4
D-5300 Bonn 1

N.P. Buchdahl<br>Max-Planck-Institut fuir Mathematik<br>Gottfried-Claren-Straße 26

5300 Bonn 3, Federal Republic of Germany

## SUMMARY

An analogue of Beilinson's theorem on the structure of coherent sheaves on $\mathbf{P}_{\mathrm{N}}$ is given for the Hirzebruch surfaces $H_{n}=P(0 \oplus O(-n)) \rightarrow P_{1}$, from which a monad description of stable 2-bundles with $c_{1}=0, c_{2}=k$ on $H_{n}$ is derived. The moduli space of such bundles is explicitly computed in the case $k=2$, it being shown to be the projectivized $0 \oplus 0(n) \oplus B_{n}$ bundle over. $P_{2}$ minus a quadratic hypersurface, where $B_{n}$ is a certain 2-bundle on $\mathbf{P}_{2}$ with $C_{1}\left(B_{n}\right)=n+1$ and $c_{2}\left(B_{n}\right)=\frac{1}{2} n(n+1)$. For $\mathrm{n}=0, \mathrm{~B}_{0}=0 \oplus 0^{\prime}(1)$ and an additional $\mathrm{P}_{2}$ is removed.

KEY WORDS: stable bundle, Hirzebruch surface,
anti-self-dual Yang-Mills field.

## STABLE BUNDLES ON HIRZEBRUCH SURFACES

## INTRODUCTION

The purpose of this paper is to provide a monad description of stable bundles on the Hirzebruch surfaces $H_{n}=P(O \oplus O(-n)) \rightarrow P_{1}$, and to consider in particular the moduli space of stable 2 -bundles with $c_{1}=0, c_{2}=2$ on $H_{n}$.

The description follows the established method for classifying stable bundles on $P_{2}$ as presented in [OSS], relying on a generalisation of Beilinson's theorem [B] on the structure of coherent analytic sheaves on $p_{N}$.

The motivation for this work is provided by recent results of S.K. Donaldson; in [D2] he proves that an m-bundle $E$ on an algebraic surface $X$ admits an irreducible anti-self-dual $U(m)$ connection iff $E$ is stable (in the sense of Mumford and Takemoto), where the notions of stability and anti-self-duality are linked by a fixed embedding $x \longrightarrow P_{N}$. In [D3] he considers simply-connected smooth 4-manifolds $X$ with even intersection form $Q$, and he proves that if $b_{+}(X)=1$ or 2 , then $Q$ is the intersection form of $s^{2} \times s^{2}$ or $s^{2} \times s^{2} \# s^{2} \times s^{2}$ respectively. His methods, like those of his earlier paper [D1], involve a deep analysis of the moduli spaces $M_{k}$ of anti-self-dual SU(2) connections with $c_{2}=k$ on $X$, where $X$ is
equipped with a generic metric. In the case $b_{+}(X)=1$, the space considered is $M_{2}$.

Since $H_{2 m}$ (resp. $H_{2 m+1}$ ) is diffeomorphic to $H_{0}=P_{1} \times \mathbf{P}_{1}$ (resp. $H_{1}=\mathbf{P}_{2} \# \overline{\mathbf{P}}_{2}$ ), determining the moduli space of stable bundles on $H_{n}$ as $n$ varies corresponds to determining the moduli space of anti-self-dual connections on a fixed bundle over $s^{2} \times s^{2}$ or $\mathbb{C P}_{2} \# \overline{\mathbb{G P}}_{2}$ as the metric varies. For a generic metric on $X=s^{2} \times s^{2}$ or $\mathbb{C P}_{2} \# \overline{\mathbb{E P}}_{2}$, the gauge theoretic prediction for $M_{2}$ is that of a smooth 10 -manifold with a natural compactification $\bar{M}_{2}$ such that $\bar{M}_{2} \backslash M_{2}$ is contained in $M_{1} \times X U S^{2} X$, where $S^{2}$ denotes symmetric product. If the metric is non-generic, cone-like singularities can occur in $\bar{M}_{2}$ resulting from reductions from $S U(2)$ to $U(1) \times U(1)$. These predictions are indeed well fulfilled, as is indicated in Propositions 1 and 2 below. The work presented here was commenced when I was a member of the Mathematics Department of Tulane University, New Orleans, and completed during my stay at the Max-PlanckInstitut in Bonn. I am grateful to both institutions for their hospitality and support.

## 1. BEIIINSONS'S THEOREM REVISITED

To fix notation, let $\pi: H_{n} \rightarrow P_{1}$ be the projection, $0(-1,0)$ be the tautological bundle of the projectivization $H_{n}=P(O \oplus O(n)),(n \geq 0)$, and let $0(0,-1):=\pi * O_{P_{1}}(-1)$.

As usual, $O(p, q):=O(p, 0) \otimes O(0, q)$, so for example, the canonical bunale of $H_{n}$ is $0(-2, n-2)$. Let $\left(z_{A}, W_{B}\right) A, B=0,1$ be homogeneous coordinates on $H_{n}$ with $z_{A}$ being homogeneous coordinates on $P_{1}$ and $\left(w_{0}, w_{1}\right)$ homogeneous of degrees $(1,0)$ and $(1,-n)$ respectively,

Let $\pi_{i}: H_{n} \times H_{n} \longrightarrow H_{n}$ be projection onto $i$-th factor, and set $O(p, q)(x, s)^{\prime}:=\pi_{1}^{*} O(p, q) \otimes \pi_{2}^{*} O(r, s)$. If $y:=\left\{\left((z, w),\left(z^{\prime}, w^{\prime}\right)\right) \in H_{n} \times H_{n}^{\prime}: z_{0} z_{1}^{\prime}=z_{1} z_{0}^{\prime}\right\}$, then $\left.O(0,1)(0,-1)^{\prime}\right|_{Y} \approx 0_{Y}$, and let $s \in \Gamma\left(Y, 0_{Y}(0,1)(0,-1)^{\prime}\right)$ be the section corresponding to 1 under this isomorphism. The diagonal $\Delta$ in $H_{n} \times H_{n}$ is then the zero set of $t:=W_{0} W_{1}^{\prime}-w_{1} W_{0}^{\prime} s^{n} \in \Gamma\left(Y, 0_{Y}(1,0)(1,-n)^{\prime}\right)$.

Let $R$ be the extension
$0 \rightarrow 0(1,0)(1,-n)^{\prime} \rightarrow R \rightarrow 0(0,1)(0,1)^{\prime} \rightarrow 0$ corresponding to the image $\delta t \in H^{1}\left(H_{n} \times H_{n}, 0(1,-1)(1,-n-1)^{2}\right)$ of $t$ under the connecting homomorphism from
$0 \rightarrow 0(1,-1)(1,-n-1)^{\prime} \xrightarrow{z \cdot z^{\prime}} 0(1,0)(1,-n)^{\prime} \rightarrow 0_{Y}(1,0)(1,-n)^{\prime} \rightarrow 0$, where $z \cdot z^{\prime}:=z_{0} z_{1}^{\prime}-z_{1} z_{0}^{\prime}$. Since $z^{\prime} \cdot z^{\prime} \delta t=0$, there is a section $U \in \Gamma\left(H_{n} \times H_{n}, R\right)$ in the preimage of $z \cdot z^{\prime} \in P\left(H_{n} \times H_{n}, 0(0,1)(0,1)^{\prime}\right)$, and by construction, there is a unique such $U$ whose restriction to $Y$ is the image of -t in $\Gamma\left(Y,\left.R\right|_{Y}\right)$. It follows $U^{-1}(0)$ is precisely $\Delta$, giving the Koszul resolution

$$
\begin{equation*}
0 \rightarrow 0(-1,-1)(-1, n-1)^{\prime} \rightarrow R^{*} \xrightarrow{U} 0 \rightarrow 0_{\Delta} \rightarrow 0 \tag{1.1}
\end{equation*}
$$

If $E$ is a holomorphic bundle on $H_{n}$, tensor through (1.1) by $\pi_{2}^{*} E$, delete the last term on the right, and take direct images under $\pi_{1}$. This gives the following $H_{n}$-analogue of Beilinson's theorem [B] as presented in [OSS].

LEMMA: For any holomorphic bundle $E$ on $H_{n}$, there is a spectral sequence

$$
E_{1}^{p, q} \Longrightarrow E_{\infty}^{p+q}= \begin{cases}E & \text { if } p+q=0 \\ 0 & \text { otherwise }\end{cases}
$$

with $E_{1}^{p, q}=0$ if $|p+1|>1, E_{1}^{0, q}=H^{q}(E) \otimes 0$, $E_{1}^{-2, q}=H^{q}(E(-1, n-1)) \otimes O(-1,-1)$, and an exact sequence
$\ldots \rightarrow H^{q}(E(0,-1)) \otimes O(0,-1) \rightarrow E_{1}^{-1, q} \rightarrow H^{q}(E(-1, n)) \otimes O(-1,0) \rightarrow \ldots$
(A different spectral sequence can be obtained by interchanging the roles of $\pi_{1}$ and $\pi_{2}$ ).

## 2. STABLE 2-BUNDLES ON $\mathrm{H}_{\mathrm{n}}$

To illustrate applications of the lemma, the case of stable 2-bundles with $c_{1}=0$ and $c_{2}=k$ will be considered; let such a bundle $E$ be given.

By the Leray-Hirsch theorem, the cohomology ring of $H_{n}$ is $H^{*}\left(H_{n}, z\right)=z[x, y] / x^{2}-n x y, y^{2}$, where $x=c_{1}(0(1,0))$ and $y=c_{1}(0(0,1))$; the fundamental class is $x y \in H^{4}\left(H_{n}, z\right)$. $H_{n}$ is embedded in $P_{3}$ by
$H_{n} \ni(z, w) \longmapsto\left(z_{0} w_{0}, z_{1} w_{0}, z_{0}^{n+1} w_{1}, z_{1}^{n+1} w_{1}\right) \in P_{3}$, so
$\left.0_{\mathbf{P}_{3}}(1)\right|_{H_{n}}=0(1,1)$ and it follows that the condition of stability is $H^{0}(E(p, q))=0$ whenever $(n+1) p+q \leqq 0$. Using Serre Duality, it follows that
(2.1) $\quad H^{r}(E(p, q))=0$ for $r=0,2$ if $-n-4 \leq(n+1) p+q \leq 0$

The Riemann-Roch formula for $E$ is
$X(E(p, q))=(p+1)(n p+2 q+2)-k$, so if $K_{1}:=H^{1}(E(-2, n-1))$, $K_{2}:=H^{1}(E(-1,-1)), K_{3}:=H^{1}(E(-1,0))$ and $L:=H^{1}(E(-2, n))$, it follows from (2.1) that $\operatorname{dim}_{K_{i}}=k$ and $\operatorname{dim} L=k+2$. Applying the lemma to $E(-1,0)$ and using (2.1) then gives a monad $0 \rightarrow K_{1}(-1,-1) \rightarrow \mathrm{E}_{1}^{-1,1} \rightarrow \mathrm{~K}_{3} \rightarrow 0$ with cohomology $\mathrm{E}(-1,0)$, together with an exact sequence
$0 \rightarrow \mathrm{~K}_{2}(0,-1) \rightarrow \mathrm{E}_{1}^{-1,1} \rightarrow \mathrm{~L}(-1,0) \rightarrow 0$. Since $H^{1}\left(H_{n}, 0(1,-1)\right)=0$, this last sequence splits (but not uniquely unless $\mathrm{n}=0$ ), and after tensoring through by $0(1,0)$, the result is a monad
(2.2) $M: 0 \rightarrow K_{1}(0,-1) \rightarrow K_{2}(1,-1) \oplus L \longrightarrow K_{3}(1,0) \longrightarrow 0$
with cohomology $E(M)=E$.
Monads of the form (2.2) satisfy the hypotheses of Lemma 4.1.3 of [OSS], implying $E(M) \simeq E\left(M^{\prime}\right)$ iff $M \propto M^{\prime}$. They also satisfy the hypotheses of Lemma 4.1.7 of [OSS], and since $H^{2}(E n d E)=0$, a repitition of the analysis there leads to a concrete description of the moduli space of such bundles as a non-singular ( $4 \mathrm{k}-3$ )-dimensional quotient of a subspace of $\mathbb{C}^{\mathrm{N}}$ by a matrix group.
3. THE CASE $\mathrm{C}_{2}=2$

The Riemann-Roch formula implies that there are no stable 2-bundles on $H_{n}$ with $c_{1}=0, c_{2}=1$. When $c_{1}=0$ and $c_{2}=2$, the lemma yields a more useful description of $E$ than (2.2). In this case $H^{*}(E)=0$, and by using (2.1) together with the lemma applied directly to $E$, the following exact sequence is immediately obtained:

$$
0 \rightarrow K_{1}(-1,-1) \xrightarrow{\frac{a}{b}} \begin{gather*}
K_{2}(-1,0)  \tag{3,1}\\
K_{3}(0,-1)
\end{gather*} \rightarrow E \rightarrow 0
$$

(Here $K_{1}:=H^{1}(E(-1, n-1)), K_{2}:=H^{1}(E(-1, n))$ and $K_{3}:=H^{1}(E(0,-1))$, and all are 2-dimensional vector spaces).

The bundle $E$ is thus determined by a pair $a \in \operatorname{Hom}\left(K_{1} \otimes V, K_{2}\right), b=\left(b_{0}, b_{1}\right) \in \operatorname{Hom}\left(K_{1}, K_{3}\right) \oplus \operatorname{Hom}\left(K_{1} \otimes S^{n} V, K_{3}\right)$ where, for notational convenience, $\mathbb{C}^{2}$ has been replaced by a 2-dimensional symplectic vector space $V$ and $s^{n}$ denotes n-th symmetric tensor product. The pair $(a, b)$ is not completely arbitrary: in order that $E$ in (3.1) be non-singular, it is necessary and sufficient that

$$
\begin{equation*}
(a(z), b(z, w)): K_{1} \rightarrow K_{2} \oplus K_{3} \quad \text { is injective at each } \quad(z, w) \in H_{n} \tag{3.2}
\end{equation*}
$$

and moreover the stability criteria must be fulfilled. From the exact sequences $0 \rightarrow 0(0,-1) \xrightarrow{\mathrm{Z}} \mathrm{V} \rightarrow 0(0,1) \rightarrow 0$ and $0 \rightarrow 0(-1,0) \xrightarrow{\mathrm{W}} 0 \oplus 0(0,-\mathrm{n})) \rightarrow 0(1,-\mathrm{n}) \rightarrow 0$ it follows that for any bundle $E, H^{0}(E(p-1, q))=0=H^{0}(E(p, q-1))$ if $H^{0}(E(p, q))=0$, so stability in the current context is equivalent to $H^{0}(E(p,-(n+1) p))=0$ for all $p$. Using $(3 \cdot 1) \otimes O(p,-(n+1) p)$ and $(3 \cdot 1)^{*} \otimes O(p,-(n+1) p)$, it is quickly found that almost all of these conditions are automatically satisfied by a bundle $E$ defined by (3.1), and the stability of the bundle can be reduced to
(a) $a: K_{1} \rightarrow K_{2} \otimes V^{*}, a^{*}: K_{2}^{*} \rightarrow K_{1}^{*} \otimes V^{*}$ are injective;
(b) for $n=0: b: K_{1} \rightarrow K_{3} \otimes V^{*}, b^{*}: K_{3}^{*} \rightarrow K_{1}^{*} \otimes V^{*} \quad$ are injective; for $n>0:(a, b): K_{1} \otimes S^{n} V \rightarrow K_{2} \otimes S^{n-1} v \oplus K_{3} \otimes S^{n} v \oplus K_{3} \quad$ is injective.

Since $H^{P}\left(H_{n}, O(-1,0)\right)=0=H^{P}\left(H_{n}, 0(0,-1)\right)$ for all $p$, an isomorphism $E \approx E^{\prime}$ extends to a unique isomorphism of exact sequences $(3 \cdot 1) \propto(3 \cdot 1)^{\prime}$. It follows that $E \sim E^{\prime}$ iff

$$
\begin{equation*}
a^{\prime}=g_{2} a g_{1}^{-1},\left(b_{0}^{\prime}, b_{1}^{\prime}\right)=g_{3}\left(b_{0}, b_{1}+a h\right) g_{1}^{-1} \tag{3.4}
\end{equation*}
$$

for some $g_{i} \in G L\left(K_{i}\right)$ and $h \in \operatorname{Hom}\left(K_{2} \otimes s^{n-1} V, K_{3}\right)$. The moduli space of stable 2 -bundles with $c_{1}=0, c_{2}=2$ on " $H_{n}$ is thus identified with the set of pairs (a,b) satisfying (3.2), (3.3), modulo the group action (3.4), and it now remains to simplify this description.
4. THE CASE $n=0$

Fix non-degenerate symplectic forms on each of the vector spaces $K_{i}$; then from $a \in \operatorname{Hom}\left(K_{1} \otimes V, K_{2}\right)$, three "determinants" can be formed: $\operatorname{det}_{0} a \in S^{2} v^{*}$, $\operatorname{det}_{1} a \in S^{2} K_{1}^{*}$ and $\operatorname{det}_{2} a \in S^{2} K_{2}$. These determinants are not independent, for each of the spaces $\mathrm{S}^{2} \mathrm{~V}^{*} ; \mathrm{s}^{2} \mathrm{~K}_{1}^{*}, \mathrm{~s}^{2} \mathrm{~K}_{2}$ posseses a non-degenerate symmetric bilinear form . canonically induced by the symplecitc forms on the 2-dimensional vector spaces, and $\operatorname{det}_{0} a \cdot \operatorname{det}_{0} a=\operatorname{det}_{1} a \cdot \operatorname{det}_{1} a=\operatorname{det}_{2} a \cdot \operatorname{det}_{2} a \quad$.

The condition (3.3) (a) is equivalent to $\operatorname{det}_{0} a \neq 0$, so a gives rise to a point $\left[\operatorname{det}_{0} a\right] \in P\left(S^{2} v^{*}\right)$ which is independent of $a \longmapsto g_{2}$ a $g_{1}^{-1}$. In fact, the map $[a] \longmapsto\left[\operatorname{det}_{0} a\right]$ is bijective granted (3.2). For by choosing an appropriate basis
for $V$, it can be supposed that $a=\left(a_{0}, a_{1}\right)$ for some $a_{i} \in \operatorname{Hom}\left(K_{1}, K_{2}\right)$ with $\operatorname{det}_{0} a \neq 0$. After fixing an isomorphism $K_{1}=K_{2}$, it can then be supposed that $a_{0}=1$ and $a_{1}$ is in Jordan form. If $a_{1}$ does not have distinct eigenvalues, then it cannot be of the form $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$. Otherwise $a(z): K_{1} \rightarrow K_{2}$ is the zero map at $z=(-\lambda, 1)$. This can be ruled out because on $\pi^{-1}(z), \operatorname{det}(b(z, w))$ must have a zero, implying that (3.2) fails at some point on $\pi^{-1}(z)$. Thus, in this case, $a_{1}$ must have the form $\left(\begin{array}{ll}\lambda & 0 \\ 1 & \lambda\end{array}\right)$ and it is now straightforward to verify the bijectivity of $[a] \longmapsto\left[\operatorname{det}_{0} a\right]$.

The above is valid for all $n \geq 0$, but for $n=0$, (3.3) (b) implies $\operatorname{det}_{0} b \in S^{2} v^{*}$ is non-zero, giving the point [ $\left.\operatorname{det}_{0} b\right] \in P\left(S^{2} V^{*}\right)$ independent of (3.4). Since the moduli space has dimension 5, there remains one parameter to be found, and an obvious guess is the class $D(a, b):=\operatorname{det}_{1} a \cdot \operatorname{det}_{1} b$. Under the action $(3.4), D(a, b) \longmapsto\left(\operatorname{det} g_{2}\right)\left(\operatorname{det} g_{3}\right)\left(\operatorname{det} g_{1}\right)^{-2} D(a, b)$, so ( $a, b$ ) gives rise to the point ([det $\left.a],\left[\operatorname{det}_{0} b\right], D(a, b)\right)$ in the total space of the bundle $0(1,1)$ over $P\left(S^{2} V^{*}\right) \times P\left(S^{2} V^{*}\right)$, and this point is independent of (3.4).

The non-singularity condition (3.2) fails iff $\operatorname{det}_{1} a, \operatorname{det}_{1} b$ have a common root; i.e. a vector $k \in K_{1}$ such that $\left(\operatorname{det}_{1} a\right)(k \otimes k)=0=\left(\operatorname{det}_{1} b\right)(k \otimes k)$. This can occur iff $\left(\operatorname{det}_{1} a \cdot \operatorname{det}_{1} a\right)\left(\operatorname{det}_{1} b \cdot \operatorname{det}_{1} b\right)=\left(\operatorname{det}_{1} a \cdot \operatorname{det}_{1} b\right)^{2}$. From this point, it is straight-forward algebra in local coordinates to arrive at the following

PROPOSITION 1: The map $[a, b] \mapsto\left(\left[\operatorname{det}_{0} a\right],\left[\operatorname{det}_{0} b\right], D(a, b)\right)$ defines a bijection from the moduli space of stable 2-bundles with $c_{1}=0, c_{2}=2$ over $\mathbf{P}_{1} \times \mathbf{P}_{1}$ with the total space $L$ of the line bundle $0(1,1)$ over $\mathbf{P}_{2} \times \mathbf{P}_{2}$ minus the hypersurface $H=\left\{(x, y, z) \in L: x \cdot x y \cdot y=z^{2}\right\}$.

Concerning the boundary of the moduli space, observe that the map
$s^{2}\left(P_{1} \times P_{1}\right) \ni\left[(z, w),\left(z^{\prime}, w^{\prime}\right)\right] \mapsto\left(z \otimes z^{\prime}+z^{\prime} \otimes z, w \otimes w^{\prime}+w^{\prime} \otimes w, 2 z \cdot z^{\prime} w \cdot w\right) \in L$ is well-defined, and its image is contained in $H$ : It is easily verified that this defines a biholomorphism of $\mathrm{s}^{2}\left(\mathbf{P}_{1} \times \mathbf{P}_{1}\right)$ with H.

The space $L$ is not compact, resulting from the nongenericity of the product Fubini-Study metric on $\mathbf{P}_{1} \times \mathbf{P}_{1}$. It can be compactified by adding the semi-stable (non-zero) extensions $0 \rightarrow 0(-1,1) \rightarrow E \rightarrow 0(1,-1) \rightarrow 0$ or $0 \rightarrow 0(1,-1) \longrightarrow E \longrightarrow 0(-1,1) \longrightarrow 0 \quad\left(\operatorname{det}_{0} a=0\right.$ or $\operatorname{det}_{0} b=0$ respectively) to give the projectivized $30 \oplus 0(1)$ bundle over $\mathbf{p}_{2}$. Alternatively, the bundle $0(1,-1) \oplus 0(-1,1)$ can be added alone, topologically giving a cone over the circle bundle with $c_{1}=(1,1)$ on $\mathbf{P}_{2} \times \mathbf{P}_{2}$.

## 5. THE CASE $n>0$

The case $n>0$ can be made to closely resemble the case $n=0$ in the following way. First, pick a basis for $V$ and a fixed isomorphism $K_{1}=K_{2}$, so $a=\left(a_{0}, a_{1}\right)$ for some $a_{i} \in \operatorname{EndK}_{1}$. Since $\operatorname{det}_{0} a \neq 0$, one of $\operatorname{det} a_{0}, \operatorname{det} a_{1}, \operatorname{det}\left(a_{0}+a_{1}\right)$ must be non-zero, corresponding to three open sets $U_{0}, U_{1}, U_{2}$ covering $P\left(S^{2} V^{*}\right)$. After replacing $a$ by ga for suitable $g \in G L\left(K_{1}\right)$, it can be supposed that $a_{0}=1, a_{1}=1$, or $a_{0}+a_{1}=1$ as $\left[\operatorname{det}_{0} a\right] \in U_{i}$. In particular, $a_{0}$ and $a_{1}$ then commute, and it follows that the homomorphism $\tilde{b}_{1}:=\left(b_{1}\right)_{A_{1}} \ldots A_{n} a^{A_{1}, \ldots A_{n}} \in \operatorname{Hom}\left(K_{1}, K_{3}\right)$ is independent of $b_{1} \longmapsto b_{1}+h a$ for $h \in \operatorname{Hom}\left(K_{1} \otimes s^{n-1} V_{1} K_{3}\right)$. Here $a^{0}:=a_{1}$, $a^{1}:=-a_{0}$ and the summation convention is understood. Since $\operatorname{det}_{0} a \neq 0$, the map
$\operatorname{Hom}\left(K_{1} \otimes s^{n} V, K_{3}\right) / \operatorname{Hom}\left(K_{1} \otimes s^{n-1} V_{2} K_{3}\right) \rightarrow \operatorname{Hom}\left(K_{1}, K_{3}\right)$ defined in this way is an isomorphism.

The situation is now essentially the same as that for the case $n=0$. If, for example, $a_{0}=1$, then it can be assumed that $\left(b_{1}\right)_{A_{1} \ldots A_{n}}=0$ unless $A_{1}, \ldots, A_{n}=1$ for all $A_{i}$, with $\left(b_{1}\right)_{1 \ldots 1}=(-1)^{n} \widetilde{b}_{1}$. Thus $b(z, w): K_{1} \rightarrow K_{3}$ is $w_{0} b_{0}+\left(-z_{1}\right)^{n} w_{1} \tilde{b}_{1}=b(\tilde{w})$, where $\tilde{b}:=\left(b_{0}, \tilde{b}_{1}\right)$ and $\tilde{w}:=\left(w_{0},\left(-z_{1}\right)^{n} w_{1}\right)$. The only problem that can occur is when $z_{1}=0$, but then $a(z)=1$ and $(3.2)$ is automatically satisfied. The stability condition (3.3) (b) is violated iff there is a vector $k \in K_{1}$ such that $\widetilde{b}_{1} k=0=b_{0} a_{1}^{m} k \quad$ for
$m=0,1, \ldots, n$, but this implies $\operatorname{det}_{1} a, \operatorname{det}_{1} \tilde{\mathrm{~L}} \in \mathrm{~s}^{2} \mathrm{~K}_{1}^{*}$ have a common root and (3.2) fails. Thus (3.3)(b) is a consequence of (3.2) if $n>0$.

The same analysis as for the case $n=0$ now carries through with $b$ replaced by $\tilde{b}$ throughout, always bearing in mind the open set $U_{i}$ to which $\operatorname{det}_{0} a$ is regarded as belonging. Over each $\mathrm{U}_{i}$, the map $[a, \tilde{b}] \longmapsto\left(\left[\operatorname{det}_{0} a\right],\left[\operatorname{det}_{0} \tilde{b}, D(a, \tilde{b})\right]\right)$ is an isomorphism, the only additional consideration being that $\operatorname{det}_{0} \tilde{5}$ can be zero, a case which is quickly checked. The non-singularity condition $\left(\operatorname{det}_{0} a \cdot \operatorname{det}_{0} a\right)\left(\operatorname{det}_{0} \tilde{B} \cdot \operatorname{det}_{0} \tilde{b}\right) \neq D(a, \tilde{b})^{2}$ prevents $D(a, \tilde{b})$ from vanishing in this case.

To complete the overall picture, it remains to determine how the descriptions over each $U_{i}$ are related. The quantity det $b_{0}$ remains unchanged, whereas det $\tilde{b}_{1}$ behaves as a point in the fibre of $0(n)$. over $\left[\operatorname{det}_{0} a\right] \in P\left(S^{2} V^{*}\right) . D(a, \tilde{b})$ and the remaining component $\delta$ of $\operatorname{det}_{0} \tilde{b}$ do not change as nicely, and an explicit calculation in local coordinates reveals that the pair ( $\delta, D$ ) changes point in the fibre of a certain 2-bundle $B_{n}$ on $P\left(S^{2} V^{*}\right)$. With some effort, it can be shown that $B_{n}$ is described by the exact sequence

$$
\begin{equation*}
0 \rightarrow(n-1) 0 \xrightarrow{A}(n+1) 0(1) \rightarrow B_{n} \rightarrow 0 \tag{5.1}
\end{equation*}
$$

where $A=\left(A_{i}^{j}\right), i=1, \ldots, n-1$ and $j=1, \ldots, n+1$ is the matrix with $A_{i}^{i}=z_{0}, A_{i}^{i+1}=z_{1}, A_{i}^{i+2}=z_{2} \quad 1 \leq i \leq n-1$ and
$A_{i}^{j}=0$ otherwise. (Here $\left(z_{0}, z_{1}, z_{2}\right)$ are standard homogeneous coordinates on $\mathbf{P}_{2}$ and if $a_{0}=1, z_{0}=\operatorname{det} a_{0}=1$, $z_{1}=\operatorname{tr} a_{1}, z_{2}=\operatorname{det} a_{1}$ ). Thus $B_{1}=0(1) \oplus 0(1)$ and $B_{2}$ is the holomorphic tangent bundle.

The pair ( $a, b$ ) thus generates the point
$\left(\left[\operatorname{det}_{0} a\right],\left[\operatorname{det} b_{0}, \operatorname{det} \tilde{b}_{1},(\delta, D)\right]\right)$ in $P\left(O \oplus O(n) \oplus B_{n}\right)$ over $P\left(S^{2} V^{*}\right)$. The quantity $\Delta:=\left(\operatorname{det}_{0} a \cdot \operatorname{det}_{0} a\right)\left(\operatorname{det}_{0} \tilde{b} \cdot \operatorname{det}_{0} \tilde{b}\right)-D(a, \tilde{b})^{2}$ defines a section of $O(2, n+2)$ over this space, where $O(-1,0)$ is the tautological bundle of the projectivization. After some checking, the net conclusion is the following

PROPOSITION 2: FOX $n>0$, the assignment $[a, b] \longmapsto\left(\left[\operatorname{det}_{0} a\right],\left[\operatorname{det} b_{0}, \operatorname{det} \tilde{b}_{1},(\delta, D)\right]\right)$ defines a bijection from the moduli space of stable 2 -bundles with $c_{1}=0, c_{2}=2$ on $H_{n}$ to the projectivized bundle $P\left(O \oplus O(n) \oplus B_{n}\right)$ over $P_{2}$ minus the hypersurface $\Delta=0$, where $B_{n}$ is given by (5.1) and $\Delta=\left(\operatorname{det}_{0} a \cdot \operatorname{det}_{0} a\right)\left(\operatorname{det}_{0} \tilde{b} \cdot \operatorname{det}_{0} \tilde{b}\right)-D(a, \widetilde{b})^{2} \in \Gamma(0(2, n+2))$.
$\square$

The boundary $\Delta=0$ is biholomorphic to $\mathrm{S}^{2} \mathrm{H}_{\mathrm{n}}$ : over the set $\left\{\left[(z, w),\left(z^{\prime}, w^{\prime}\right)\right] \in S^{2} H_{n}: z_{j} z_{j}^{\prime} \neq 0\right\} \quad$ for example, the map $\mathrm{S}^{2} \mathrm{H}_{\mathrm{n}} \rightarrow\{\Delta=0\}$ is given by
$\left[(z, w),\left(z^{\prime}, w^{\prime}\right)\right] \mapsto\left(\left[z \otimes z^{\prime}+z^{\prime} \otimes z\right],\left[2 w_{1} w_{1}^{\prime}, 2 w_{0} w_{0}^{\prime}\left(z_{j} z_{j}^{\prime}\right)^{-n}\right.\right.$, $\left.\left.\left(w_{0} w_{1}^{\prime} z_{j}^{-n}+w_{1} w_{0}^{\prime} z_{j}^{\prime-n}\right), 2\left(w_{0} w_{1}^{\prime} z_{j}^{-n}-w_{1} w_{0}^{\prime} z_{j}^{\prime-n}\right) z \cdot z^{\prime}\left(z_{j} z_{j}^{\prime}\right)^{-1}\right]\right)$.

The spaces $P\left(O \oplus O(n) \oplus B_{n}\right)$ are all diffeomorphic as n is even or odd, as a quick check on Chern classes shows that $0 \oplus O(n) \oplus B_{n}$ is topologically isomorphic to $0(1) \oplus O(n-1) \oplus B_{n-2}(1)$. It is not clear if the uncompleted moduli spaces are also diffeomorphic.

For $n=1$, the bundles which are pull-backs from $\mathbf{P}_{2}$ are those with $\operatorname{det} b_{0} \neq 0$.

## REFERENCES:

[B] Beilinson, A.: Coherent sheaves on $\mathbf{P}^{\mathrm{N}}$ and problems of linear algebra, Funk. Anal.12, 214-216, (1978).
[D1] Donaldson, S.K.: An application of gauge theory to four-dimensional topology, J.Diff. Geom.18, 279-315, (1983).
[D2] Donaldson, S.K.: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50, 1-26, (1985).
[D3] Donaldson, S.K.: Connections, cohomology and the intersection forms of 4-manifolds, preprint (1985).
[OSS] Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on complex projective spaces, Prog. Math.3, Birkhäuser, Boston, Basel, Stuttgart (1980).

