STABLE BUNDLES ON HIRZEBRUCH SURFACES

by

N.P., Buchdahl

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3 Sonderforschungsbereich 40 Theoretische Mathematik Beringstraße 4 D-5300 Bonn 1

SFB/MPI 85-51

STABLE BUNDLES ON HIRZEBRUCH SURFACES

N.P. Buchdahl Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 5300 Bonn 3, Federal Republic of Germany

SUMMARY

An analogue of Beilinson's theorem on the structure of coherent sheaves on \mathbf{P}_N is given for the Hirzebruch surfaces $\mathbf{H}_n = \mathbf{P}(0 \oplus 0(-n)) \longrightarrow \mathbf{P}_1$, from which a monad description of stable 2-bundles with $\mathbf{c}_1 = 0$, $\mathbf{c}_2 = \mathbf{k}$ on \mathbf{H}_n is derived. The moduli space of such bundles is explicitly computed in the case $\mathbf{k} = 2$, it being shown to be the projectivized $0 \oplus 0(n) \oplus \mathbf{B}_n$ bundle over \mathbf{P}_2 minus a quadratic hypersurface, where \mathbf{B}_n is a certain 2-bundle on \mathbf{P}_2 with $\mathbf{c}_1(\mathbf{B}_n) = n+1$ and $\mathbf{c}_2(\mathbf{B}_n) = \frac{1}{2}n(n+1)$. For n=0, $\mathbf{B}_0 = 0 \oplus 0(1)$ and an additional \mathbf{P}_2 is removed.

<u>KEY WORDS</u>: stable bundle, Hirzebruch surface, anti-self-dual Yang-Mills field.

STABLE BUNDLES ON HIRZEBRUCH SURFACES

INTRODUCTION

The purpose of this paper is to provide a monad description of stable bundles on the Hirzebruch surfaces $H_n = P(0 \oplus 0(-n)) \longrightarrow P_1$, and to consider in particular the moduli space of stable 2-bundles with $c_1 = 0$, $c_2 = 2$ on H_n .

The description follows the established method for classifying stable bundles on P_2 as presented in [OSS], relying on a generalisation of Beilinson's theorem [B] on the structure of coherent analytic sheaves on P_N .

The motivation for this work is provided by recent results of S.K. Donaldson: in [D2] he proves that an m-bundle E on an algebraic surface X admits an irreducible anti-self-dual U(m) connection iff E is stable (in the sense of Mumford and Takemoto), where the notions of stability and anti-self-duality are linked by a fixed embedding X $\longrightarrow P_N$. In [D3] he considers simply-connected smooth 4-manifolds X with even intersection form Q, and he proves that if $b_+(X) = 1$ or 2, then Q is the intersection form of $S^2 \times S^2$ or $S^2 \times S^2 \# S^2 \times S^2$ respectively. His methods, like those of his earlier paper [D1], involve a deep analysis of the moduli spaces M_k of anti-self-dual SU(2) connections with $c_2 = k$ on X, where X is equipped with a generic metric. In the case $b_+(X) = 1$, the space considered is M_2 .

Since H_{2m} (resp. H_{2m+1}) is diffeomorphic to $H_0 = P_1 \times P_1$ (resp. $H_1 = P_2 \# \overline{P}_2$), determining the moduli space of stable bundles on H_n as n varies corresponds to determining the moduli space of anti-self-dual connections on a fixed bundle over $S^2 \times S^2$ or $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$ as the metric varies. For a generic metric on $X = S^2 \times S^2$ or $\mathbb{CP}_2 \# \overline{\mathbb{CP}}_2$, the gauge theoretic prediction for M_2 is that of a smooth 10-manifold with a natural compactification \overline{M}_2 such that $\overline{M}_2 \setminus M_2$ is contained in $M_1 \times X \cup S^2 X$, where S^2 denotes symmetric product. If the metric is non-generic, cone-like singularities can occur in \overline{M}_2 resulting from reductions from SU(2) to $U(1) \times U(1)$. These predictions are indeed well fulfilled, as is indicated in Propositions 1 and 2 below.

The work presented here was commenced when I was a member of the Mathematics Department of Tulane University, New Orleans, and completed during my stay at the Max-Planck-Institut in Bonn. I am grateful to both institutions for their hospitality and support.

1. BEILINSONS'S THEOREM REVISITED

To fix notation, let $\pi : H_n \longrightarrow P_1$ be the projection, 0(-1,0) be the tautological bundle of the projectivization $H_n = P(0 \oplus 0(n))$, $(n \ge 0)$, and let $0(0,-1) := \pi * 0_{P_1}(-1)$.

- 2 -

As usual, $\theta(p,q) := \theta(p,0) \otimes \theta(0,q)$, so for example, the canonical bundle of H_n is $\theta(-2,n-2)$. Let $(z_A,w_B) A, B = 0,1$ be homogeneous coordinates on H_n with z_A being homogeneous coordinates on P_1 and (w_0,w_1) homogeneous of degrees (1,0) and (1,-n) respectively.

Let π_i : $H_n \times H_n \longrightarrow H_n$ be projection onto i-th factor, and set $0(p,q)(r,s)' := \pi_1^* 0(p,q) \otimes \pi_2^* 0(r,s)$. If $Y := \left\{ ((z,w), (z',w')) \in H_n \times H_n' : z_0 z_1' = z_1 z_0' \right\}$, then $0(0,1)(0,-1)'|_Y \approx 0_Y$, and let $s \in \Gamma(Y, 0_Y(0,1)(0,-1)')$ be the section corresponding to 1 under this isomorphism. The diagonal Δ in $H_n \times H_n$ is then the zero set of $t := w_0 w_1' - w_1 w_0' s^n \in \Gamma(Y, 0_Y(1,0)(1,-n)')$.

Let R be the extension $0 \longrightarrow \theta(1,0)(1,-n)' \longrightarrow R \longrightarrow \theta(0,1)(0,1)' \longrightarrow 0 \quad \text{corresponding}$ to the image $\delta t \in H^1(H_n \times H_n, \theta(1,-1)(1,-n-1)') \quad \text{of } t \quad \text{under the}$ connecting homomorphism from $0 \longrightarrow \theta(1,-1)(1,-n-1)' \xrightarrow{Z \cdot Z'} > \theta(1,0)(1,-n)' \longrightarrow \theta_Y(1,0)(1,-n)' \longrightarrow 0,$ where $z \cdot z' := z_0 z'_1 - z_1 z'_0$. Since $z \cdot z' \delta t = 0$, there is a section $U \in \Gamma(H_n \times H_n, R)$ in the preimage of $z \cdot z' \in \Gamma(H_n \times H_n, \theta(0,1)(0,1)')$, and by construction, there is a unique such U whose restriction to Y is the image of -tin $\Gamma(Y, R|_Y)$. It follows $U^{-1}(0)$ is precisely Δ , giving the Koszul resolution

$$(1.1) \qquad 0 \longrightarrow \partial(-1,-1)(-1,n-1)' \longrightarrow \mathbb{R}^* \xrightarrow{U} \partial \longrightarrow \partial_{\Lambda} \longrightarrow 0 \quad .$$

- 3 -

If E is a holomorphic bundle on H_n , tensor through (1.1) by π_2^*E , delete the last term on the right, and take direct images under π_1 . This gives the following H_n -analogue of Beilinson's theorem [B] as presented in [OSS].

LEMMA: For any holomorphic bundle E on H_n , there is a spectral sequence

 $E_1^{p,q} \implies E_{\infty}^{p+q} = \begin{cases} E & \text{if } p+q = 0\\ 0 & \text{otherwise} \end{cases}$

with $E_1^{p,q} = 0$ if |p+1| > 1, $E_1^{0,q} = H^q(E) \otimes 0$, $E_1^{-2,q} = H^q(E(-1,n-1)) \otimes 0(-1,-1)$, and an exact sequence $\dots \to H^q(E(0,-1)) \otimes 0(0,-1) \to E_1^{-1,q} \to H^q(E(-1,n)) \otimes 0(-1,0) \to \dots$

,

(A different spectral sequence can be obtained by interchanging the roles of π_1 and π_2).

2. STABLE 2-BUNDLES ON H_n

To illustrate applications of the lemma, the case of stable 2-bundles with $c_1 = 0$ and $c_2 = k$ will be considered; let such a bundle E be given.

By the Leray-Hirsch theorem, the cohomology ring of H_n is $H^*(H_n, Z) = Z[x,y] / x^2 - nxy, y^2$, where $x = c_1(0(1,0))$ and $y = c_1(0(0,1))$; the fundamental class is $xy \in H^4(H_n, Z)$. H_n is embedded in P_3 by $H_n \ni (z,w) \longmapsto (z_0w_0, z_1w_0, z_0^{n+1}w_1, z_1^{n+1}w_1) \in P_3$, so $0_{P_3}(1)|_{H_n} = 0(1,1)$ and it follows that the condition of stability is $H^0(E(p,q)) = 0$ whenever $(n+1)p+q \le 0$. Using Serre Duality, it follows that

(2.1)
$$H^{L}(E(p,q)) = 0$$
 for $r = 0,2$ if $-n-4 \le (n+1)p + q \le 0$.

The Riemann-Roch formula for E is $\chi(E(p,q)) = (p+1)(np+2q+2) - k$, so if $K_1 := H^1(E(-2,n-1))$, $K_2 := H^1(E(-1,-1))$, $K_3 := H^1(E(-1,0))$ and $L := H^1(E(-2,n))$, it follows from (2.1) that dim $K_1 = k$ and dim L = k+2. Applying the lemma to E(-1,0) and using (2.1) then gives a monad $0 \longrightarrow K_1(-1,-1) \longrightarrow E_1^{-1,1} \longrightarrow K_3 \longrightarrow 0$ with cohomology E(-1,0), together with an exact sequence $0 \longrightarrow K_2(0,-1) \longrightarrow E_1^{-1,1} \longrightarrow L(-1,0) \longrightarrow 0$. Since $H^1(H_n, 0(1,-1)) = 0$, this last sequence splits (but not uniquely unless n = 0), and after tensoring through by 0(1,0), the result is a monad

$$(2.2) \qquad M: 0 \longrightarrow K_1(0,-1) \longrightarrow K_2(1,-1) \oplus L \longrightarrow K_3(1,0) \longrightarrow 0$$

with cohomology E(M) = E.

Monads of the form (2.2) satisfy the hypotheses of Lemma 4.1.3 of [OSS], implying $E(M) \simeq E(M')$ iff $M \simeq M'$. They also satisfy the hypotheses of Lemma 4.1.7 of [OSS], and since $H^2(EndE) = 0$, a repitition of the analysis there leads to a concrete description of the moduli space of such bundles as a non-singular (4k-3)-dimensional quotient of a subspace of \mathbb{C}^N by a matrix group.

3. THE CASE $c_2 = 2$

The Riemann-Roch formula implies that there are no stable 2-bundles on H_n with $c_1 = 0$, $c_2 = 1$. When $c_1 = 0$ and $c_2 = 2$, the lemma yields a more useful description of E than (2.2). In this case $H^*(E) = 0$, and by using (2.1) together with the lemma applied directly to E, the following exact sequence is immediately obtained:

(3.1)
$$0 \longrightarrow K_1(-1,-1) \xrightarrow{a}{b} \otimes \bigoplus K_3(0,-1) \longrightarrow E \longrightarrow 0$$
.

(Here $K_1 := H^1(E(-1, n-1))$, $K_2 := H^1(E(-1, n))$ and $K_3 := H^1(E(0, -1))$, and all are 2-dimensional vector spaces).

The bundle E is thus determined by a pair $a \in Hom(K_1 \otimes V, K_2)$, $b = (b_0, b_1) \in Hom(K_1, K_3) \oplus Hom(K_1 \otimes S^n \vee, K_3)$ where, for notational convenience, \mathbb{C}^2 has been replaced by a 2-dimensional symplectic vector space \vee and S^n denotes n-th symmetric tensor product. The pair (a,b) is not completely arbitrary: in order that E in (3.1) be non-singular, it is necessary and sufficient that

(3.2)
$$(a(z),b(z,w)): K_1 \longrightarrow K_2 \oplus K_3$$
 is injective at each $(z,w) \in H_n$,

and moreover the stability criteria must be fulfilled. From the exact sequences $0 \longrightarrow 0(0,-1) \xrightarrow{Z} V \longrightarrow 0(0,1) \longrightarrow 0$ and $0 \longrightarrow 0(-1,0) \xrightarrow{W} 0 \oplus 0(0,-n)) \longrightarrow 0(1,-n) \longrightarrow 0$ it follows that for any bundle E , $H^0(E(p-1,q)) = 0 = H^0(E(p,q-1))$ if $H^0(E(p,q)) = 0$, so stability in the current context is equivalent to $H^0(E(p,-(n+1)p)) = 0$ for all p . Using $(3\cdot1) \otimes 0(p,-(n+1)p)$ and $(3\cdot1)^* \otimes 0(p,-(n+1)p)$, it is quickly found that almost all of these conditions are automatically satisfied by a <u>bundle</u> E defined by (3.1), and the stability of the bundle can be reduced to

(3.3)

(a)
$$a: K_1 \rightarrow K_2 \otimes V^*$$
, $a^*: K_2^* \rightarrow K_1^* \otimes V^*$ are injective;
(b) for $n = 0$: $b: K_1 \rightarrow K_3 \otimes V^*$, $b^*: K_3^* \rightarrow K_1^* \otimes V^*$ are injective;
for $n > 0$: $(a,b): K_1 \otimes S^n V \rightarrow K_2 \otimes S^{n-1} V \oplus K_3 \otimes S^n V \oplus K_3$ is injective.

Since $H^{p}(H_{n}, 0(-1, 0)) = 0 = H^{p}(H_{n}, 0(0, -1))$ for all p, an isomorphism $E \simeq E'$ extends to a unique isomorphism of exact sequences $(3 \cdot 1) \simeq (3 \cdot 1)'$. It follows that $E \simeq E'$ iff

(3.4)
$$a' = g_2 a g_1^{-1}$$
, $(b'_0, b'_1) = g_3 (b_0, b_1 + ah) g_1^{-1}$

for some $g_i \in GL(K_i)$ and $h \in Hom(K_2 \otimes S^{n-1}V,K_3)$. The moduli space of stable 2-bundles with $c_1 = 0$, $c_2 = 2$ on H_n is thus identified with the set of pairs (a,b) satisfying (3.2), (3.3), modulo the group action (3.4), and it now remains to simplify this description.

4. THE CASE n = 0

Fix non-degenerate symplectic forms on each of the vector spaces K_i ; then from $a \in Hom(K_1 \otimes V, K_2)$, three "determinants" can be formed: $det_0 a \in S^2 V^*$, $det_1 a \in S^2 K_1^*$ and $det_2 a \in S^2 K_2$. These determinants are not independent, for each of the spaces $S^2 V^*$, $S^2 K_1^*$, $S^2 K_2$ posseses a non-degenerate symmetric bilinear form \cdot canonically induced by the symplecitc forms on the 2-dimensional vector spaces, and $det_0 a \cdot det_0 a = det_1 a \cdot det_1 a = det_2 a \cdot det_2 a$.

The condition (3.3) (a) is equivalent to $\det_0 a \neq 0$, so a gives rise to a point $[\det_0 a] \in P(S^2V^*)$ which is independent of $a \longmapsto g_2 a g_1^{-1}$. In fact, the map $[a] \longmapsto [\det_0 a]$ is bijective granted (3.2). For by choosing an appropriate basis for V, it can be supposed that a = (a_0, a_1) for some $a_1 \in Hom(K_1, K_2)$ with $det_0 a \neq 0$. After fixing an isomorphism $K_1 = K_2$, it can then be supposed that $a_0 = 1$ and a_1 is in Jordan form. If a_1 does not have distinct eigenvalues, then it cannot be of the form $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$. Otherwise $a(z) : K_1 \rightarrow K_2$ is the zero map at $z = (-\lambda, 1)$. This can be ruled out because on $\pi^{-1}(z)$, det(b(z,w)) must have a zero, implying that (3.2) fails at some point on $\pi^{-1}(z)$. Thus, in this case, a_1 must have the form $\begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}$ and it is now straightforward to verify the bijectivity of $[a] \longmapsto [det_0 a]$.

The above is valid for all $n \ge 0$, but for n = 0, (3.3)(b) implies $\det_0 b \in S^2 V^*$ is non-zero, giving the point $[\det_0 b] \in P(S^2 V^*)$ independent of (3.4). Since the moduli space has dimension 5, there remains one parameter to be found, and an obvious guess is the class $D(a,b) := \det_1 a \cdot \det_1 b$. Under the action (3.4), $D(a,b) \longmapsto (\det g_2)(\det g_3)(\det g_1)^{-2} D(a,b)$, so (a,b) gives rise to the point $([\det_0 a], [\det_0 b], D(a,b))$ in the total space of the bundle O(1,1) over $P(S^2 V^*) \times P(S^2 V^*)$, and this point is independent of (3.4).

The non-singularity condition (3.2) fails iff $\det_1 a$, $\det_1 b$ have a common root; i.e. a vector $k \in K_1$ such that $(\det_1 a) (k \otimes k) = 0 = (\det_1 b) (k \otimes k)$. This can occur iff $(\det_1 a \cdot \det_1 a) (\det_1 b \cdot \det_1 b) = (\det_1 a \cdot \det_1 b)^2$. From this point, it is straight-forward algebra in local coordinates to arrive at the following <u>PROPOSITION 1</u>: The map $[a,b] \mapsto ([det_0a], [det_0b], D(a,b))$ defines a bijection from the moduli space of stable 2-bundles with $c_1 = 0$, $c_2 = 2$ over $P_1 \times P_1$ with the total space L of the line bundle 0(1,1) over $P_2 \times P_2$ minus the hypersurface $H = \{(x,y,z) \in L : x \cdot xy \cdot y = z^2\}$.

Concerning the boundary of the moduli space, observe that the map $S^{2}(P_{1} \times P_{1}) \ni [(z,w), (z',w')] \longmapsto (z \otimes z' + z' \otimes z, w \otimes w' + w' \otimes w, 2z \cdot z' w \cdot w) \in L$ is well-defined, and its image is contained in H. It is easily verified that this defines a biholomorphism of $S^{2}(P_{1} \times P_{1})$ with H.

The space L is not compact, resulting from the nongenericity of the product Fubini-Study metric on $\mathbf{P}_1 \times \mathbf{P}_1$. It can be compactified by adding the semi-stable (non-zero) extensions $0 \longrightarrow \partial(-1,1) \longrightarrow E \longrightarrow \partial(1,-1) \longrightarrow 0$ or $0 \longrightarrow \partial(1,-1) \longrightarrow E \longrightarrow \partial(-1,1) \longrightarrow 0$ (det₀a = 0 or det₀b = 0 respectively) to give the projectivized $30 \oplus \partial(1)$ bundle over \mathbf{P}_2 . Alternatively, the bundle $\partial(1,-1) \oplus \partial(-1,1)$ can be added alone, topologically giving a cone over the circle bundle with $\mathbf{c}_1 = (1,1)$ on $\mathbf{P}_2 \times \mathbf{P}_2$.

5. THE CASE n > 0

The case n > 0 can be made to closely resemble the case n = 0 in the following way. First, pick a basis for V and a fixed isomorphism $K_1 = K_2$, so $a = (a_0, a_1)$ for some $a_1 \in EndK_1$. Since $det_0 a \neq 0$, one of $deta_0$, $deta_1$, $det(a_0+a_1)$ must be non-zero, corresponding to three open sets U_0 , U_1 , U_2 covering $P(S^2V^*)$. After replacing a by ga for suitable $g \in GL(K_1)$, it can be supposed that $a_0 = 1$, $a_1 = 1$, or $a_0 + a_1 = 1$ as $[det_0a] \in U_1$. In particular, a_0 and a_1 then commute, and it follows that the homomorphism $\widetilde{b}_1 := (b_1)_{A_1 \cdots A_n} \stackrel{A_1 \cdots A_n}{=} \in Hom(K_1, K_3)$ is independent of $b_1 \longmapsto b_1 + ha$ for $h \in Hom(K_1 \otimes S^{n-1}V, K_3)$. Here $a^0 := a_1$, $a^1 := -a_0$ and the summation convention is understood. Since $det_0a \neq 0$, the map Hom(K_1 \otimes S^n V, K_3) / Hom(K_1 \otimes S^{n-1}V, K_3) \longrightarrow Hom(K_1, K_3) defined in this way is an isomorphism.

The situation is now essentially the same as that for the case n = 0. If, for example, $a_0 = 1$, then it can be assumed that $(b_1)_{A_1} \dots A_n = 0$ unless $A_1, \dots, A_n = 1$ for all A_i , with $(b_1)_{1...1} = (-1)^n \tilde{b}_1$. Thus $b(z,w) : K_1 \longrightarrow K_3$ is $w_0 b_0 + (-z_1)^n w_1 \tilde{b}_1 =: b(\tilde{w})$, where $\tilde{b} := (b_0, \tilde{b}_1)$ and $\tilde{w} := (w_0, (-z_1)^n w_1)$. The only problem that can occur is when $z_1 = 0$, but then a(z) = 1 and (3.2) is automatically satisfied. The stability condition (3.3)(b) is yiolated iff there is a vector $k \in K_1$ such that $\tilde{b}_1 k = 0 = b_0 a_1^m k$ for

m = 0, 1, ..., n, but this implies $det_1 a$, $det_1 \tilde{b} \in S^2 K_1^*$ have a common root and (3.2) fails. Thus (3.3) (b) is a consequence of (3.2) if n > 0.

The same analysis as for the case n = 0 now carries through with b replaced by \tilde{b} throughout, always bearing in mind the open set U_i to which $\det_0 a$ is regarded as belonging. Over each U_i , the map $[a, \tilde{b}] \longmapsto > ([\det_0 a], [\det_0 \tilde{b}, D(a, \tilde{b})])$ is an isomorphism, the only additional consideration being that $\det_0 \tilde{b}$ can be zero, a case which is quickly checked. The non-singularity condition $(\det_0 a \cdot \det_0 a) (\det_0 \tilde{b} \cdot \det_0 \tilde{b}) \neq D(a, \tilde{b})^2$ prevents $D(a, \tilde{b})$ from vanishing in this case.

To complete the overall picture, it remains to determine how the descriptions over each U_i are related. The quantity det b_0 remains unchanged, whereas det \tilde{b}_1 behaves as a point in the fibre of $\partial(n)$ over $[det_0 a] \in P(S^2V^*)$. $D(a, \tilde{b})$ and the remaining component δ of $det_0 \tilde{b}$ do not change as nicely, and an explicit calculation in local coordinates reveals that the pair (δ, D) changes point in the fibre of a certain 2-bundle B_n on $P(S^2V^*)$. With some effort, it can be shown that B_n is described by the exact sequence

$$(5.1) 0 \longrightarrow (n-1) 0 \xrightarrow{A} (n+1) 0 (1) \longrightarrow B_n \longrightarrow 0$$

where $A = (A_{i}^{j})$, i = 1, ..., n-1 and j = 1, ..., n+1 is the matrix with $A_{i}^{i} = z_{0}$, $A_{i}^{i+1} = z_{1}$, $A_{i}^{i+2} = z_{2}$, $1 \le i \le n-1$ and

 $A_1^j = 0$ otherwise. (Here (z_0, z_1, z_2) are standard homogeneous coordinates on P_2 and if $a_0 = 1$, $z_0 = det a_0 = 1$, $z_1 = tra_1$, $z_2 = det a_1$). Thus $B_1 = 0(1) \oplus 0(1)$ and B_2 is the holomorphic tangent bundle.

The pair (a,b) thus generates the point $([\det_0 a], [\det_0, \det_1, (\delta, D)])$ in $P(0 \oplus 0(n) \oplus B_n)$ over $P(S^2V^*)$. The quantity $\Delta := (\det_0 a \cdot \det_0 a) (\det_0 \tilde{b} \cdot \det_0 \tilde{b}) - D(a, \tilde{b})^2$ defines a section of 0(2, n+2) over this space, where 0(-1, 0)is the tautological bundle of the projectivization. After some checking, the net conclusion is the following

<u>PROPOSITION 2</u>: For n > 0, the assignment $[a,b] \longmapsto ([det_0a], [det b_0, det \tilde{b}_1, (\delta, D)])$ defines a bijection from the moduli space of stable 2-bundles with $c_1 = 0$, $c_2 = 2$ on H_n to the projectivized bundle $P(0 \oplus 0(n) \oplus B_n)$ over P_2 minus the hypersurface $\Delta = 0$, where B_n is given by (5.1) and $\Delta = (det_0a \cdot det_0a) (det_0\tilde{b} \cdot det_0\tilde{b}) - D(a,\tilde{b})^2 \in \Gamma(0(2,n+2))$.

۵

The boundary $\Delta = 0$ is biholomorphic to $S^2 H_n$: over the set $\left\{ \left[(z,w), (z',w') \right] \in S^2 H_n : z_j z_j' \neq 0 \right\}$ for example, the map $S^2 H_n \longrightarrow \{\Delta = 0\}$ is given by $\left[(z,w), (z',w') \right] \longmapsto \left(\left[z \otimes z' + z' \otimes z \right], \left[2w_1 w_1', 2w_0 w_0' (z_j z_j')^{-n} , (w_0 w_1' z_j^{-n} + w_1 w_0' z_j^{-n}), 2(w_0 w_1' z_j^{-n} - w_1 w_0' z_j^{-n}), z \cdot z' (z_j z_j')^{-1} \right] \right).$ The spaces $P(0 \oplus 0(n) \oplus B_n)$ are all diffeomorphic as n is even or odd, as a quick check on Chern classes shows that $0 \oplus 0(n) \oplus B_n$ is topologically isomorphic to $0(1) \oplus 0(n-1) \oplus B_{n-2}(1)$. It is not clear if the uncompleted moduli spaces are also diffeomorphic.

For n = 1, the bundles which are pull-backs from P_2 are those with det $b_0 \neq 0$.

REFERENCES:

- [B] Beilinson, A.: Coherent sheaves on P^N and problems of linear algebra, Funk. Anal.12, 214-216, (1978).
- [D1] Donaldson, S.K.: An application of gauge theory to four-dimensional topology, J.Diff. Geom.18, 279-315, (1983).
- [D2] Donaldson, S.K.: Anti-self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50, 1-26, (1985).
- [D3] Donaldson, S.K.: Connections, cohomology and the intersection forms of 4-manifolds, Preprint (1985).
- [OSS] Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on complex projective spaces, Prog. Math.3, Birkhäuser, Boston, Basel, Stuttgart (1980).