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Notations and Introduction

Denote by M2k (S2k) thc space of modular (cusp) fonns of weight 2k on
SL2 (Z). We will write q for exp(27fiT), where T is the variable on the upper
half cOlnplex plane. Denote by Mt+l/2 (S;+1/2) the "+"-subspaces of the
spaces of modular (cusp) forms of half integral weight k + 1/2. These sub
spaces were introduced by Kohnen [5].

Throwhow the paper we fix an odd prime p.
Let k be an even positive integer.

Definition 1 l11e call a pai1' (p, 2k) supersingula1' iJ2k - 4,6,8,10 or 14 lnod
p-1

Note that each pair of the type (p, even integer) is supersi ngular if p = 3,5
01' 7. For each p there exist infinitely 111any values of k such that the pair
(p,2k) becolnes supersingular. For each k thcre exist a finite nonempty set
of apprapriate values" of p.

~enote by Cp = Qp the Tate's field. VVe fix anee and for a11 an_embedding
ip : Q Y. Cp . We will not make difference between elements of Q and their
iInages under i p • The syrnbol lim will always denote the limit in e p . We
write L(P) for an infinite sum considered under p-adie topology. Denate by
Lp ( s, X) the p-adic L-function, where X is a Dirichlet character ([4], p.29-30).
"Ve put (*(s) = Lp(s,w1

-"), where w is the Tcichniiller character.
Following [2] we denote by H(1', I'l) the generalized dass numbers. They

coincide with the usual dass numbers of binary positive definite quadratic
forms when r = 1. They are the Fourier coefficients of thc unique Eisenstein
senes

1-lk+1/ 2 = ((1 - 21') + L If(k, N)qN E Mf(+1/2'
N?l

One has
f/(1', N) = L(1 - r,x) LI},(d)X(d)ef-l(J'2r_l(V/d),

dlv

where (-1YlV = IJv2
, D is a cliscri111inant of a quadratic field, X is the

Dirichlet character associated with this quadratic fiel eI , a2r-1 (n) = Ldln (pr-l
aod I-l is the Möbius function.

Let -ß be the discrilninant of the ilnaginary quadratic field Q(J -ß).
Let 'l/Jl, I ~ 0 be the theta series associated with the binary quadratic form
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p21 ~X2 + y2 if ß =0 mod 4
Qt(x, y) = p2j~+1 2 + + 2

4 X xy y if ß - -1 mod 4.

Put 'l/Jl = Lx,t/EZ qQ/(x,u) = Ln>o b/(n )qn.
Let J = Ln>o a(n)qn be a -cusp Hecke eigenfonn of weight k on SL2 (Z).

Denote by Lz(s, f) its symmetrie square:

Lz(s, f) = TI (1 - 0';1'-")-1(1 - D:rßr1'-")-1 (1 - ß;r-")-l,
r: prime

where O'r and ßr are complex numbers such that D:r+ßr = r anel Qrßr = pk-l.
Consider Rankin 's convolutions

D(s,!,'l/Jt) = L a(n)bt(n)n- S

n>O

The number D*(k-l, f, 'l/Jl) = iT
Zk- ZLz(2k-2, f)-1 D(k-l, J, 'l/Jt) is algebraie.

1n the prescnt paper we prove

Theorem 1 Let (p, 2k-2) be a supersingula1' pai'r. Let X denote the quadratic
Dirichlei characler associaled with Q( vi-~). Then

D*(k - 1, f, 'l/Jo) + (1 - X(p)pl-k)L(P)pt(Zk-3) D*(k - 1, J, '1/;1)
l>O

(2)

_ (1 _ () l-k) (2k - 2)!
- X p p 2Zk-3(k _ ] )(1 - pZk-3)((3 - 2k)

Remarks
1. It is amusing to notice that the value in the write-hand side of (2) does

not dcpend on thc particular choice of thc cusp Hecke eigenform / of weight
k. The dependence on the choice of the eIiscrinlinant -~ is very slight anel
explicit. Actual1y, only the value X(p) is involved.

2. The denominators of the numbers D*(k - 1, /, '1/;1) were studied in
[8], Theorem 4. Thc Rankin's methoeI was used for this purpose. Even the
p-adic convergence of the series (2) eIoes not fol1ow [roln this result. This
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convergence is the peculiarity of our supersingula,r situation.

We are going to derive theorem 1 frOIn the following

Theorem 2 Let (p, 2k) be a supersingular pair'. Consider a 'modular form
'P E Mt+l/2' Suppose that 'P = Ln~o c(n)qn J c(n) E Q for all n. Choose N
such that c( N) -# o.

Then
Ern c( r N) = c(O) Lp (1 - k, x)
r-too p (*(1 - 2k) ,

where X is the quadralic character associated wilh Q(J( -l)k N).

We prove theorenl 2 in Chapter 1. In order to illustratc this theorem,
we need to consider modular fonns of half integral weight which Fourier
coefficients are" interesting" numbers. Chapter 2 is devoted to theta series.
In Chapter 3 we provide a construction which generates another type of half
integral weight modular forms. It allows to prove theorem 1. Since this
construction seems to us to be of independent interest we will briefly recall
it here.

Consider a modular form f of weight k. We suppose that f is a normalized
cusp Hecke eigenform. Let F be the Klingen - Eisenstein series associated
with f. Since F is a Siegel modular fon11 of genus 2, it has a Fourier-Jacobi
expansion ([3], Chapter ll): F = Lm>O 4;m (T, Z)exp(27rirnT'). Hefe <Pm are
Jacobi forms of indeces m and the same weight k. One has 4;0 = f. Consider
the Jacobi form 4;1' It follows from [3], Theorem 5.4 that cPl corresponds to a
half integral weight modular form 'P of weight k-1/2. The form 'P belongs to
the Kohnen's "+"-space. The Fourier coefficients of the Siegel modular form
F were calculated by Böcherer [1] anel Mizumoto [7], [8]. These numbers
involve special values of Rankin's convolutions of the modular form f with

theta series of weight 1. We will apply theorem 2 to the nl0dular form 'P' It
will yield theorenl 1.

Chapter 1

In this chapter wc prove theorem 2. First wc prepare a few lemmas.
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Lemma 1 Let (p, 2k) be a supersingula'l' pair'. Conside1' a cusp J1ecke eigen
form f = Ln>l a(n)qn 0/ weight 2k. Suppose that a(l) = 1. Let [( =
Q(a(n )n?d be -the field extension. Let ~ be a prinw ideal in J( dividing p.
Then ~ divides a(p).

Remarks

1. K is known to be an algebraic nU111ber field.
2. This leITImaexplains the name "supersingular" . It nleans that if (p, 2k)

is a supersingular pair, then there are no p-ordinary cusp Hecke eigenforms
of weight 2k, i.e. all the cusp Hecke eigenfornls are supersingular.

Proof of lenlma 1.
lt is known ([6], Theorem 4.4) that the space Sk possesses a basis over

C which consists of cusp forms with rational integer Fourier coefficients.
Let '{Jl, ... ,r.pt, wheret = dimSk and 'Pi = Ln?Obj(n)qn be such a basis. It
follows that there exist algebraic numbers O'i, ... ,Ot such that f = Li 0i'{Ji. It
follows from [10], Theorem 7 (see also Renlark p.216) that linln-+oo bi(pn) = 0
for cach i. It yields

(3)

If r 2: 0 then a(pr+l) = a(pr) - p2k-l a(pr-l), because f is a Hecke eigenform.

lt follows that a(pr) _ a(pt lTIod p2k-l. Taking in account (3) we obtain the

assertion of lemma 1.

Lenlma 2 Let (p, 2k) be a supersingular pair. Consider a cusp Hecke eigen
/01'711, <I> E 5t+l/2 Let <I> = Ln?1 c(n )qn be its Fourier expansion.

Then limr-+(xß(pr n ) = 0 f01' each n > O.

Proof.
lt is known [5] that one can pick a cusp normalized (a( 1) = 1) Hecke

eigenform f of weight 2k, f = Ln?l a(n)qn such that for N, n 2: 1

c(n2 N) = c(N) Lfl(d) C) dk-'a(n/d).
dln
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In particular we get for n = pr

COInbining this formulae with (3) we obtain the assertion of lemma 2.
Our next assertion immediately follows from (1). I-Iowever we formulate

it a..s a separate lemma.

Lenlma 3 Let X be the quadratic cJ~araeler associated with Q(/ (-1 )k N) .
Then

Proof of theorem 2. Consider the basis of the space Mt+l/2 which
consists of the finite set of cusp Hecke eigenforms 'Pi together with llk+1/ 2 •

One has
c(O)

'P = ((1 _ 2k) 'Hk+1/ 2 + 2t ßl 'Pi

with some algebraic coefficients ßi. The assertion of the theorem follows now
from lemma 2 and lemma 3.

Remark
It is a well-known estimate that thc absolute values of Fourier coefficients

of a cusp fOrIn of even weight increase slower than those of an Eisenstein
series of the same weight .. One can consider theorenl 2 as a p-adic analogue
of this fact. Roughly speaking, consider a modular form f = Ln>o c(n)qn.
Suppose that F = 9 +cP, where 9 = Ln>o d(n)qn and cP is a cusp foim. Then
limr~oo(c(pr N) - d(pr N)) = O. We have-proven such type of statements both
in the integral anel in the half integral weight cases. The supersingularity
condition is crucial for our argument.

Classically, such type of argument was applied to the Fourier coefficients
of theta series. The first illustration of theorem 2 deals with theta series
associated with unimodular positive definite quadratic forms.

Chapter 2

Let Q be an unimodular positive definite quaelratic form on a lattice A of
rank 4k anel B(x,y) the associated bilinear fonn with Q(x) = 1/2B(x,x).
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Let y E A be such that Q(y) = 1. Then by [3], Theoreln 7.1 the function

8 Q,y(T, z) = L qQ(x)(B(x,y) = L c(4n - r2 )qn(r

xEA 4n~r2

is a Jacobi form of weight 2k and index 1 on SL2 (Z). It is known that the
function

8Q,y(T, 0) = L qQ(x) = L rQ (n )qn
xEA n~O

belangs to M 2k .
Note that 1'Q(n) is the number of representations of an integer n by the

fornl Q. rQ(O) = 1. The number

c(4n - 1'2) = #{x E AjQ(x) = 11, B(x, y) = 1'}

depends only on 4n - 1'2 by [3], Theorem 2.2. 'fhe function

lfJ = L c(N)qN
N~O

belongs to Mik-l/2' c(O) = 1.
In some cases of low weight one can get precise fornlltlae for the numbers

c(N) and 1'Q(n) (cf. [9], §6 for the integral weight case and [3], p.84-85 for
the half integral weight case). One also has the following asymptotics ([9],
§6, Cor. 2):

rQ(n) = B
4k

0"2k-I(n) + O(nk).
2k

Application of theorem 2 and lemma 1 to the modular rarms lfJ and f
ilnplies the follawing

Proposition 1 Let 1\' be a positive integer.
a. Suppose that (p, 2k) is a super'singular pair. Then

4k
(l-p) lim rQ(prN) = -Ba2k-l(N).

r~oo k

b. Suppose that (p,2k - 2) is a supersingular pair. Then

(1 _ ) r (r N) = Lp (2 - 2k, X)
P r~~ c p ((3 _ 4k) ,

where X is th e quadra tic character associated with Q(J - N) ,
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One has to compare our argument with the Siegel famous formulae on
theta series. Let us reformulate the Siegel's result as an identity of Jacobi
forms. For this purpose we briefly recall some notations and definitions from
[3]. These notations and definitions will be also useful for us in the next
chapter.

Let k > 2 be an even number.
Let (Ai, Qi) (1::; i ::; h) denote thc incquivalent uniITIodular positive

definite quadratic forms of rank 2k and Wi the ntunber of automorphisms of
Qi. Put Ei = W;1 /(w 11 + ... + whl

). Following [3], Chapter I, we denote by
E k ,l the Jacobi - Eisenstein series of weight k and index 1. The VI operator
sends a Jacobi form of index m to a Jacobi form of index ml. This opera
tor preserves the weight. lts action on the Fourier expansion coefficients is
described by formulae ([3], Theorem 4.2):

Here<p = Ln.r c(n.r)qn(r is the Fourier expansion of a Jacobi form <p of index
m anel weight k.

Now the Siegel's formulae can be written clown as ([3], p.S?)

L Ei L 8 Q i ,y (T, z) = (Ek, 11 Vm)(T, z).
15:.i5:.h yEhi

Qj(y).m

(4)

We are interested in the cases when 7n = 0,1. Ir m = 0, (4) becOlnes an
identi ty of fiodular forms of even weight k. If 1'71. = 1, (4) hecornes an identity
of Jacobi forms of index 1 and weight k. Due to thc isolnorphi~rnestablished
in [3], Chapter 11, one can rewrite it as an identity of modular forms of half
integral weight k -1/2. In both cases thc 1110dular form which appears in the
right hand side is an Eisenstein series. The lllodular forms which appears in
the left hand side of (4), are linear combinations of theta series. We apply our
proposition 1 to these theta series. The proposition asserts that for certain p

their Fourier coefficients which numbers are divisible by an increasing power
of p, become p-adically elose to the appropriate coefficients of the Eisenstein
series. (See also the remark after the proof of theorem 2.) It accords with

(4) si nce L 15:. i 5:. h Ei = 1.
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Chapter 3

This chapter is devoted to the proof of theorem 1.
Let

P( Z) = L: A(T)exp(2rritr(TZ))
T2:;O

be a Siegel modular form of genus 2 and even weight k. Put T = (~/2 ~2),
where n, r, mEZ and n, ffi,4nm - r Z ~ O. Rewrite the Fourier expansion 5
as

F(T, z, T') =
n,m,4nm-r2 2:;0

A(n, T, 11~)exp(2rri(nT+rz + ffiT')).

Lemlna 4 The n'll1nbers A(n, T, 1) depend only on 4n - rZ •

Define the numbers c(N) by

c(N) = { A(n, T, 1) if there. exists a pair n, l' ~uch that N = 4n - r
2

o otherwzse

Then the function <.p( T) = LN2:;O c( N)qN belongs to M:- 1/ 2 •

Proof.
Consider the Fourier-Jacobi expansion of thc SicgeltTIodular form F:

F(r, z, T') = L 4>m(T, z) exp(27rin~T').
m2:;O

It follows from [3], Theoreln 6.1, that 4>m(T, z) is a Jacobi form of weight
k and index m. Consider cPl (T, z):

ePl(T,Z) = L A(n,1',1)exp(21ri(nT+rz)).
n,4n-r2 2:;0

A(n, r, 1) depends only on 4n - r2 by [3], Theoreln 2.2. The last assertion
of the lemma follows from [3], Theorem 5.4.

Let us specialize our consideration to the case when the Siegel modular
form is a Klingen - Eisenstein series. The following proposition is a special
ization of results obtained in [1], [7], [8].
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Proposition 2 Consider f E Sk. Let

F( Z) = E A(T) exp(27i"itr(TZ))
T~O

be the l(/ingen - Eisenstein senes associaled with f.

Put T = (~/2 ~2), where n,r,m E Z and n,m,4nm - r 2 :::>: 0,
g.c.d.(n, m, r) = 1.

Suppose that 4nm - r2 = p2v6.) whel'e -.6.. is a fundamental discriminant.
For a positive integer v pul

er = E qnx2 +rxy+my2 = L br (n )qn,
x,y n~O

e~) = E bT (nv 2 )qn.
n?:O

Consider the algehraic numbers

_ (k-l)(21T)2k-2 .. (p~)

D(T, fl) - 2(2k _ 2)!L
2
(2k _ 2, f) D(k - 1, /, er ).

Then

A(T) = L(2 - k, X) (D(T, n) + L p(V-~)(2k-3) (1 - x(p)pl-k)D(T, l)) .
O$l<n

liere X is the quadratic Dirichlei chaTaeter associated wUh Q( V-.6..)) and
L(2 - k, x) is the value ai negative integeT of the Dirichlet. L-funetion.

We will use proposition 2 in the special case when rn = 1. In this case

T = (~/2 ~/2) is the matrix of a quadratic form from the principal class.

In what follows we will not make difference between a binary quadratic form
and its matrix.

Lemlna 5 Suppose that 4n - r2 = ß p2v) 0:::; /-i :::; v.
There exists a binary quadratic form S with discriminanl _.6..p2v-2~ which

belongs to the pl'incipal class such thai.

D(T, IJ) = D(S, 0).

9
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Proof
Actually we are gaing to prove that ev:~) = es. It will yield (6). We claim

that if S exists then it belongs to the principal dass. Ir 8 T = Ln>O bT ( n )qn

then es = ev:~) = Ln>O br(np2~)qn. Since T represents 1, br(l) #- O. It
yields b-r(p21-') =f O. It m~ans that S represents 1 and our claim follows. The
rest of the proof (the existence of S) essentially contains in [1], p.33. vVe
ornit it.

Combining lemma 5 with Proposition 2 we get the explicit formulas for the
Fourier coefficients A(n, r,l) of the Klingen - Eisenstein series F. Lemma
4 allows to regard these numbers as the Fourier coefficients of a rnodular
form of half integral weight. Application of the theorern 2 to these Fourier
coefficients completes the proof of theorem 1.
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