A p-adic property of Fourier coefficients of modular forms of half integral weight

P. Guerzhoy

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

A p-adic property of Fourier coefficients of modular forms of half integral weight
by
P. Guerzhoy

Notations and Introduction

Denote by $M_{2 k}\left(S_{2 k}\right)$ the space of modular (cusp) forms of weight $2 k$ on $S L_{2}(\mathbf{Z})$. We will write q for $\exp (2 \pi i \tau)$, where τ is the variable on the upperhalf complex plane. Denote by $M_{k+1 / 2}^{+}\left(S_{k+1 / 2}^{+}\right)$the " + "-subspaces of the spaces of modular (cusp) forms of half integral weight $k+1 / 2$. These subspaces were introduced by Kohnen [5].

Throwhow the paper we fix an odd prime p.
Let k be an even positive integer.
Definition 1 We call a pair ($p, 2 k$) supersingular if $2 k \equiv 4,6,8,10$ or $14 \bmod$ $p-1$

Note that each pair of the type (p, even integer) is supersingular if $p=3,5$ or 7 . For each p there exist infinitely many values of k such that the pair ($p, 2 k$) becomes supersingular. For each k there exist a finite nonempty set of appropriate values of p.

Denote by $\mathrm{C}_{p}=\hat{\overline{\mathbf{Q}}}_{p}$ the Tate's field. We fix once and for all an embedding $i_{p}: \overline{\mathbf{Q}} \hookrightarrow \mathbf{C}_{p}$. We will not make difference between elements of $\overline{\mathbf{Q}}$ and their images under i_{p}. The symbol lim will always denote the limit in \mathbf{C}_{p}. We write $\sum^{(p)}$ for an infinite sum considered under p-adic topology. Denote by $L_{p}(s, \chi)$ the p-adic L-function, where χ is a Dirichlet character ([4], p.29-30). We put $\zeta^{*}(s)=L_{p}\left(s, \omega^{1-s}\right)$, where ω is the Teichnüller character.

Following [2] we denote by $H(r, N)$ the generalized class numbers. They coincide with the usual class numbers of binary positive definite quadratic forms when $r=1$. They are the Fourier coefficients of the unique Eisenstein series

$$
\mathcal{H}_{k+1 / 2}=\zeta(1-2 r)+\sum_{N \geq 1} H(k, N) q^{N} \in M_{K+1 / 2}^{+}
$$

One has

$$
\begin{equation*}
H(r, N)=L(1-r, \chi) \sum_{d \mid v} \mu(d) \chi(d) d^{r-1} \sigma_{2 r-1}(v / d) \tag{1}
\end{equation*}
$$

where $(-1)^{r} N=D v^{2}, \quad D$ is a discriminant of a quadratic field, χ is the Dirichlet character associated with this quadratic field, $\sigma_{2 r-1}(n)=\sum_{d \mid n} d^{2 r-1}$ and μ is the Möbius function.

Let $-\Delta$ be the discriminant of the imaginary quadratic field $\mathbf{Q}(\sqrt{-\Delta})$. Let $\psi_{l}, l \geq 0$ be the theta series associated with the binary quadratic form
Q_{l}, where

$$
Q_{l}(x, y)= \begin{cases}p^{2 l} \frac{\Delta}{4} x^{2}+y^{2} & \text { if } \Delta \equiv 0 \bmod 4 \\ p^{2} \frac{\Delta+1}{4} x^{2}+x y+y^{2} & \text { if } \Delta \equiv-1 \bmod 4\end{cases}
$$

Put $\psi_{l}=\sum_{x, y \in \mathbf{Z}} q^{Q_{l}(x, y)}=\sum_{n \geq 0} b_{l}(n) q^{n}$.
Let $f=\sum_{n>0} a(n) q^{n}$ be a cusp Hecke eigenform of weight k on $S L_{2}(\mathbf{Z})$. Denote by $L_{2}(s, f)$ its symmetric square:

$$
L_{2}(s, f)=\prod_{r: p r i m e}\left(1-\alpha_{r}^{2} r^{-s}\right)^{-1}\left(1-\alpha_{r} \beta_{r} r^{-s}\right)^{-1}\left(1-\beta_{r}^{2} r^{-s}\right)^{-1},
$$

where α_{r} and β_{r} are complex numbers such that $\alpha_{r}+\beta_{r}=r$ and $\alpha_{r} \beta_{r}=p^{k-1}$.
Consider Rankin's convolutions

$$
D\left(s, f, \psi_{l}\right)=\sum_{n>0} a(n) b_{l}(n) n^{-s}
$$

The number $D^{*}\left(k-1, f, \psi_{l}\right)=\pi^{2 k-2} L_{2}(2 k-2, f)^{-1} D\left(k-1, f, \psi_{l}\right)$ is algebraic.
In the present paper we prove
Theorem 1 Let $(p, 2 k-2)$ be a supersingular pair. Let χ denote the quadratic Dirichlet character associated with $\mathbf{Q}(\sqrt{-\Delta})$. Then

$$
\begin{align*}
D^{*}\left(k-1, f, \psi_{0}\right) & +\left(1-\chi(p) p^{1-k}\right) \sum_{l>0}^{(p)} p^{((2 k-3)} D^{*}\left(k-1, f, \psi_{l}\right) \tag{2}\\
& =\left(1-\chi(p) p^{1-k}\right) \frac{(2 k-2)!}{2^{2 k-3}(k-1)\left(1-p^{2 k-3}\right) \zeta(3-2 k)}
\end{align*}
$$

Remarks

1. It is amusing to notice that the value in the write-hand side of (2) does not depend on the particular choice of the cusp Hecke eigenform f of weight k. The dependence on the choice of the discriminant $-\Delta$ is very slight and explicit. Actually, only the value $\chi(p)$ is involved.
2. The denominators of the numbers $D^{*}\left(k-1, f, \psi_{l}\right)$ were studied in [8], Theorem 4. The Rankin's method was used for this purpose. Even the p-adic convergence of the series (2) does not follow from this result. This
convergence is the peculiarity of our supersingular situation.

We are going to derive theorem 1 from the following
Theorem 2 Let ($p, 2 k$) be a supersingular pair. Consider a modular form $\varphi \in M_{k+1 / 2}^{+}$. Suppose that $\varphi=\sum_{n \geq 0} c(n) q^{n}, \quad c(n) \in \overline{\mathbf{Q}}$ for all n. Choose N such that $c(N) \neq 0$.

Then

$$
\lim _{r \rightarrow \infty} c\left(p^{r} N\right)=c(0) \frac{L_{p}(1-k, \chi)}{\zeta^{*}(1-2 k)},
$$

where χ is the quadratic character associated with $\mathrm{Q}\left(\sqrt{(-1)^{k} N}\right)$.
We prove theorem 2 in Chapter 1. In order to illustrate this theorem, we need to consider modular forms of half integral weight which Fourier coefficients are "interesting" numbers. Chapter 2 is devoted to theta series. In Chapter 3 we provide a construction which generates another type of half integral weight modular forms. It allows to prove theorem 1. Since this construction seems to us to be of independent interest we will briefly recall it here.

Consider a modular form f of weight k. We suppose that f is a normalized cusp Hecke eigenform. Let F be the Klingen - Eisenstein series associated with f. Since F is a Siegel modular form of genus 2, it has a Fourier-Jacobi expansion ([3], Chapter II): $F=\sum_{m \geq 0} \phi_{m}(\tau, z) \exp \left(2 \pi i m \tau^{\prime}\right)$. Here ϕ_{m} are Jacobi forms of indeces m and the same weight k. One has $\phi_{0}=f$. Consider the Jacobi form ϕ_{1}. It follows from [3], Theorem 5.4 that ϕ_{1} corresponds to a half integral weight modular form φ of weight $k-1 / 2$. The form φ belongs to the Kohnen's " + "-space. The Fourier coefficients of the Siegel modular form F were calculated by Böcherer [1] and Mizumoto [7], [8]. These numbers involve special values of Rankin's convolutions of the modular form f with theta series of weight 1 . We will apply theorem 2 to the modular form φ. It will yield theorem 1.

Chapter 1

In this chapter we prove theorem 2. First we prepare a few lemmas.

Lemma 1 Let $(p, 2 k)$ be a supersingular pair. Consider a cusp Hecke eigenform $f=\sum_{n \geq 1} a(n) q^{n}$ of weight $2 k$. Suppose that $a(1)=1$. Let $K=$ $\mathrm{Q}\left(a(n)_{n \geq 1}\right)$ be the field extension. Let \mathfrak{P} be a prime ideal in K dividing p. Then \mathfrak{P} divides $a(p)$.

Remarks

1. K is known to be an algebraic number field.
2. This lemma explains the name "supersingular". It means that if ($p, 2 k$) is a supersingular pair, then there are no p-ordinary cusp Hecke eigenforms of weight $2 k$, i.e. all the cusp Hecke eigenforms are supersingular.

Proof of lemma 1.

It is known ([6], Theorem 4.4) that the space S_{k} possesses a basis over C which consists of cusp forms with rational integer Fourier coefficients. Let $\varphi_{1}, \ldots, \varphi_{t}$, where $t=\operatorname{dim} S_{k}$ and $\varphi_{i}=\sum_{n \geq 0} b_{i}(n) q^{n}$ be such a basis. It follows that there exist algebraic numbers $\alpha_{i}, \ldots, \alpha_{t}$ such thatit $f=\sum_{i} \alpha_{i} \varphi_{i}$. It follows from [10], Theorem 7 (see also Remark p.216) that $\lim _{n \rightarrow \infty} b_{i}\left(p^{n}\right)=0$ for each i. It yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a\left(p^{n}\right)=\lim _{n \rightarrow \infty} \sum_{1 \leq i \leq t} \alpha_{i} b_{i}\left(p^{n}\right)=0 \tag{3}
\end{equation*}
$$

If $r \geq 0$ then $a\left(p^{r+1}\right)=a\left(p^{r}\right)-p^{2 k-1} a\left(p^{r-1}\right)$, because f is a Hecke eigenform. lt follows that $a\left(p^{r}\right) \equiv a(p)^{r} \bmod p^{2 k-1}$. Taking in account (3) we obtain the assertion of lemma 1.

Lemma 2 Let $(p, 2 k)$ be a supersingular pair. Consider a cusp Hecke eigenform $\Phi \in S_{k+1 / 2}^{+}$Let $\Phi=\sum_{n \geq 1} c(n) q^{n}$ be its Fourier expansion.

Then $\lim _{r \rightarrow \infty} c\left(p^{r} n\right)=0$ for each $n>0$.

Proof.

It is known [5] that one can pick a cusp normalized $(a(1)=1)$ Hecke eigenform f of weight $2 k, f=\sum_{n \geq 1} a(n) q^{n}$ such that for $N, n \geq 1$

$$
c\left(n^{2} N\right)=c(N) \sum_{d \mid n} \mu(d)\left(\frac{N}{d}\right) d^{k-1} a(n / d)
$$

In particular we get for $n=p^{r}$

$$
c\left(p^{2 r} N\right)=c(N)\left(a\left(p^{2 r}\right)-\left(\frac{N}{p}\right) p^{k-1} a\left(p^{2 r-1}\right)\right)
$$

Combining this formulae with (3) we obtain the assertion of lemma 2.
Our next assertion immediately follows from (1). However we formulate it as a separate lemma.
$\underset{\text { Lema }}{ } 3$ Let χ be the quadratic character associated with $\mathbf{Q}\left(\sqrt{(-1)^{k} N}\right)$.
Then

$$
\lim _{r \rightarrow \infty} H\left(k, p^{r} N\right)=\frac{L_{p}(1-k, \chi)}{1-p^{2 k-1}}
$$

Proof of theorem 2. Consider the basis of the space $M_{k+1 / 2}^{+}$which consists of the finite set of cusp Hecke eigenforms φ_{i} together with $\mathcal{H}_{k+1 / 2}$. One has

$$
\varphi=\frac{c(0)}{\zeta(1-2 k)} \mathcal{H}_{k+1 / 2}+\sum_{i} \beta_{1} \varphi_{i}
$$

with some algebraic coefficients β_{i}. The assertion of the theorem follows now from lemma 2 and lemma 3.

Remark

It is a well-known estimate that the absolute values of Fourier coefficients of a cusp form of even weight increase slower than those of an Eisenstein series of the same weight. One can consider theorem 2 as a p-adic analogue of this fact. Roughly speaking, consider a modular form $f=\sum_{n \geq 0} c(n) q^{n}$. Suppose that $F=\mathcal{G}+\Phi$, where $\mathcal{G}=\sum_{n \geq 0} d(n) q^{n}$ and Φ is a cusp form. Then $\lim _{r \rightarrow \infty}\left(c\left(p^{r} N\right)-d\left(p^{r} N\right)\right)=0$. We have proven such type of statements both in the integral and in the half integral weight cases. The supersingularity condition is crucial for our argument.

Classically, such type of argument was applied to the Fourier coefficients of theta series. The first illustration of theorem 2 deals with theta series associated with unimodular positive definite quadratic forms.

Chapter 2

Let Q be an unimodular positive definite quadratic form on a lattice Λ of rank $4 k$ and $B(x, y)$ the associated bilinear form with $Q(x)=1 / 2 B(x, x)$.

Let $y \in \Lambda$ be such that $Q(y)=1$. Then by [3], Theorem 7.1 the function

$$
\Theta_{Q, y}(\tau, z)=\sum_{x \in \Lambda} q^{Q(x)} \zeta^{B(x, y)}=\sum_{4 n \geq r^{2}} c\left(4 n-r^{2}\right) q^{n} \zeta^{r}
$$

is a Jacobi form of weight $2 k$ and index 1 on $S L_{2}(\mathbf{Z})$. It is known that the function

$$
\Theta_{Q, y}(\tau, 0)=\sum_{x \in \Lambda} q^{Q(x)}=\sum_{n \geq 0} r_{Q}(n) q^{n}
$$

belongs to $M_{2 k}$.
Note that $r_{Q}(n)$ is the number of representations of an integer n by the form $Q . r_{Q}(0)=1$. The number

$$
c\left(4 n-r^{2}\right)=\#\{x \in \Lambda \mid Q(x)=n, B(x, y)=r\}
$$

depends only on $4 n-r^{2}$ by [3], Theorem 2.2. The function

$$
\varphi=\sum_{N \geq 0} c(N) q^{N}
$$

belongs to $M_{2 k-1 / 2}^{+} . c(0)=1$.
In some cases of low weight one can get precise formulae for the numbers $c(N)$ and $r_{Q}(n)$ (cf. [9], $\S 6$ for the integral weight case and [3], p.84-85 for the half integral weight case). One also has the following asymptotics ([9], $\S 6$, Cor. 2):

$$
r_{Q}(n)=\frac{4 k}{B_{2 k}} \sigma_{2 k-1}(n)+O\left(n^{k}\right) .
$$

Application of theorem 2 and lemma 1 to the modular forms φ and f implies the following

Proposition 1 Let N be a positive integer.
a. Suppose that $(p, 2 k)$ is a supersingular pair. Then

$$
(1-p) \lim _{r \rightarrow \infty} r_{Q}\left(p^{r} N\right)=\frac{4 k}{B_{k}} \sigma_{2 k-1}(N)
$$

b. Suppose that $(p, 2 k-2)$ is a supersingular pair. Then

$$
(1-p) \lim _{r \rightarrow \infty} c\left(p^{r} N\right)=\frac{L_{p}(2-2 k, \chi)}{\zeta(3-4 k)}
$$

where χ is the quadratic character associated with $\mathbf{Q}(\sqrt{-N})$.

One has to compare our argument with the Siegel famous formulae on theta series. Let us reformulate the Siegel's result as an identity of Jacobi forms. For this purpose we briefly recall some notations and definitions from [3]. These notations and definitions will be also useful for us in the next chapter.

Let $k>2$ be an even number.
Let $\left(\Lambda_{i}, Q_{i}\right) \quad(1 \leq i \leq h)$ denote the inequivalent unimodular positive definite quadratic forms of rank $2 k$ and w_{i} the number of automorphisms of Q_{i}. Put $\varepsilon_{i}=w_{i}^{-1} /\left(w_{1}^{-1}+\ldots+w_{h}^{-1}\right)$. Following [3], Chapter I, we denote by $E_{k, 1}$ the Jacobi - Eisenstein series of weight k and index 1. The V_{l} operator sends a Jacobi form of index m to a Jacobi form of index $m l$. This operator preserves the weight. Its action on the Fourier expansion coefficients is described by formulae ([3], Theorem 4.2):

$$
\phi \mid V_{l}=\sum_{n, r}\left(\sum_{a \mid(n, r, l)} a^{k-1} c\left(n l / a^{2}, r / a\right)\right) q^{n} \zeta^{r} .
$$

Here $\phi=\sum_{n . r} c(n . r) q^{n} \zeta^{r}$ is the Fourier expansion of a Jacobi form ϕ of index m and weight k.

Now the Siegel's formulae can be written down as ([3], p.87)

$$
\begin{equation*}
\sum_{1 \leq i \leq h} \varepsilon_{i} \sum_{\substack{y \in \mathcal{N}_{i} \\ Q_{i}(y)=m}} \Theta_{Q_{i}, y}(\tau, z)=\left(E_{k, 1} \mid V_{m}\right)(\tau, z) . \tag{4}
\end{equation*}
$$

We are interested in the cases when $m=0,1$. If $m=0$, (4) becomes an identity of modular forms of even weight k. If $m=1$, (4) becomes an identity of Jacobi forms of index 1 and weight k. Due to the isomorphism established in [3], Chapter II, one can rewrite it as an identity of modular forms of half integral weight $k-1 / 2$. In both cases the modular form which appears in the right hand side is an Eisenstein series. The modular forms which appears in the left hand side of (4), are linear combinations of theta series. We apply our proposition 1 to these theta series. The proposition asserts that for certain p their Fourier coefficients which numbers are divisible by an increasing power of p, become p-adically close to the appropriate coefficients of the Eisenstein series. (See also the remark after the proof of theorem 2.) It accords with (4) since $\sum_{1 \leq i \leq h} \varepsilon_{i}=1$.

Chapter 3

This chapter is devoted to the proof of theorem 1 .
Let

$$
\begin{equation*}
F(Z)=\sum_{T \geq 0} A(T) \exp (2 \pi i \operatorname{tr}(T Z)) \tag{5}
\end{equation*}
$$

be a Siegel modular form of genus 2 and even weight k. Put $T=\left(\begin{array}{ll}n & r / 2 \\ r / 2 & m\end{array}\right)$, where $n, r, m \in \mathbf{Z}$ and $n, m, 4 n m-r^{2} \geq 0$. Rewrite the Fourier expansion 5 as

$$
F\left(\tau, z, \tau^{\prime}\right)=\sum_{n, m, 4 n m-r^{2} \geq 0} A(n, r, m) \exp \left(2 \pi i\left(n \tau+r z+m \tau^{\prime}\right)\right)
$$

Lemma 4 The numbers $A(n, r, 1)$ depend only on $4 n-r^{2}$.
Define the numbers $c(N)$ by

$$
c(N)= \begin{cases}A(n, r, 1) & \text { if there exists a pair } n, r \text { such that } N=4 n-r^{2} \\ 0 & \text { otherwise }\end{cases}
$$

Then the function $\varphi(\tau)=\sum_{N \geq 0} c(N) q^{N}$ belongs to $M_{k-1 / 2}^{+}$.

Proof.

Consider the Fourier-Jacobi expansion of the Siegel modular form F :

$$
F\left(\tau, z, \tau^{\prime}\right)=\sum_{m \geq 0} \phi_{m}(\tau, z) \exp \left(2 \pi i m \tau^{\prime}\right)
$$

It follows from [3], Theorem 6.1, that $\phi_{m}(\tau, z)$ is a Jacobi form of weight k and index m. Consider $\phi_{1}(\tau, z)$:

$$
\phi_{1}(\tau, z)=\sum_{n, 4 n-r^{2} \geq 0} A(n, r, 1) \exp (2 \pi i(n \tau+r z))
$$

$A(n, r, 1)$ depends only on $4 n-r^{2}$ by [3], Theorem 2.2. The last assertion of the lemma follows from [3], Theorem 5.4.

Let us specialize our consideration to the case when the Siegel modular form is a Klingen - Eisenstein series. The following proposition is a specialization of results obtained in [1], [7], [8].

Proposition 2 Consider $f \in S_{k}$. Let

$$
F(Z)=\sum_{T \geq 0} A(T) \exp (2 \pi i \operatorname{tr}(T Z))
$$

be the Klingen - Eisenstein series associated with f.
Put $T=\left(\begin{array}{ll}n & r / 2 \\ r / 2 & m\end{array}\right)$, where $n, r, m \in \mathbf{Z}$ and $n, m, 4 n m-r^{2} \geq 0$, g.c.d. $(n, m, r)=1$.

Suppose that $4 n m-r^{2}=p^{2 \nu} \Delta$, where $-\Delta$ is a fundamental discriminant.
For a positive integer v put

$$
\begin{gathered}
\Theta_{T}=\sum_{x, y} q^{n x^{2}+r x y+m y^{2}}=\sum_{n \geq 0} b_{T}(n) q^{n} \\
\Theta_{T}^{(v)}=\sum_{n \geq 0} b_{T}\left(n v^{2}\right) q^{n}
\end{gathered}
$$

Consider the algebraic numbers

$$
D(T, \mu)=\frac{(k-1)(2 \pi)^{2 k-2}}{2(2 k-2)!L_{2}(2 k-2, f)} D\left(k-1, f, \Theta_{T}^{\left(p^{\mu}\right)}\right) .
$$

Then

$$
A(T)=L(2-k, \chi)\left(D(T, n)+\sum_{0 \leq l<n} p^{(\nu-\mu)(2 k-3)}\left(1-\chi(p) p^{1-k}\right) D(T, l)\right) .
$$

Here χ is the quadratic Dirichlet character associated with $\mathbf{Q}(\sqrt{-\Delta})$, and $L(2-k, \chi)$ is the value at negative integer of the Dirichlel L-function.

We will use proposition 2 in the special case when $m=1$. In this case $T=\left(\begin{array}{ll}n & r / 2 \\ r / 2 & 1\end{array}\right)$ is the matrix of a quadratic form from the principal class. In what follows we will not make difference between a binary quadratic form and its matrix.

Lemma 5 Suppose that $4 n-r^{2}=\Delta p^{2 \nu}, \quad 0 \leq \mu \leq \nu$.
There exists a binary quadratic form S with discriminant $-\Delta p^{2 \nu-2 \mu}$ which belongs to the principal class such that

$$
\begin{equation*}
D(T, \mu)=D(S, 0) \tag{6}
\end{equation*}
$$

Proof

Actually we are going to prove that $\Theta_{T}^{\left(p^{\mu}\right)}=\Theta_{S}$. It will yield (6). We claim that if S exists then it belongs to the principal class. If $\Theta_{T}=\sum_{n \geq 0} b_{T}(n) q^{n}$ then $\Theta_{S}=\Theta_{T}^{\left(p^{\mu}\right)}=\sum_{n \geq 0} b_{T}\left(n p^{2 \mu}\right) q^{n}$. Since T represents $1, b_{T}(1) \neq 0$. It yields $b_{T}\left(p^{2 \mu}\right) \neq 0$. It means that S represents 1 and our claim follows. The rest of the proof (the existence of S) essentially contains in [1], p.33. We omit it.

Combining lemma 5 with Proposition 2 we get the explicit formulas for the Fourier coefficients $A(n, r, 1)$ of the Klingen - Eisenstein series F. Lemma 4 allows to regard these numbers as the Fourier coefficients of a modular form of half integral weight. Application of the theorem 2 to these Fourier coefficients completes the proof of theorem 1.

Acknowledgement

It is pleasant for the author to express his gratitude to the Max-PlankInstitut für Mathematik at Bonn for its hospitality and support. The author is very grateful to Professor D. Zagier for a number of useful discussions. The author expresses his gratitude to Professor A. Panchishkin (Institut Fourier, Grenoble) who turned the author's attenition to the explicit fomulas of Böcherer and Mizumoto.

References

[1] Böcherer, S. Uber gewisse Siegelsche Modulformen zweiten Grades, Math. Ann. 261 (1982), 23-41.
[2] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271-285.
[3] Eichler, M., Zagier, D., The theory of Jacobi forms, Progress in Math. 55, Birkhauser, Boston, 1985.
[4] Iwasawa, K., Lectures on p-adic L functions, Ann. Math. Studies 74, Princeton Univ. Press, 1972.
[5] Kohnen, W., Modular forms of half-integral weight on $\Gamma_{0}(4)$, Math. Ann. 248 (1980), 249-266. .
[6] Lang, S., Introduction to modular forms, Grundleheren der Math. Wissenschaften 222, Springer, 1976.
[7] Fourier coefficients of generalized Eisenstein series of degree two. 1, Invent. Math. 65 (1981), 115-135.
[8] Mizumoto, S.-i., On integrality of certain algebraic numbers associated with modular forms, Math. Ann. 265 (1983), 119-135.
[9] Serre, J.-P., Cours d'arithmtique, Presses Universitaires de France, Paris 1970.
[10] Serre, J.-P., Formes modulaires et fonctions zeta p-adiques, in Modular functions in one variable, III, Lect. Notes in Math. 350, 191-268, Springer 1972.

