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ON THE DISCRIMINANT OF THE ARTIN~ COMPONENT

Ulrich Karras

Introduction.

By a normal surface singularity (V,p) we understand the germ of a
normal complex surface V at the singular point p. Let ®: M — V be
the minimal resolution. Laufer,[11] has shown that there exists a
i-convex flat map @ :WL— R over a complex manifold R of dimension
= = dimg n‘(n; 91() which represents the semi-universal deformation
of the germ of M at the exceptional set E ,see alsol 737, 1t (V,p)
is rational,i.e. R'K,(, = 0, then w» simultaneously blows down to
a deformation of (V,p). This procedure yields a holomorphic map
gern §: (R,0) — (S,0) where (S,0) denotes the base space of the
semi-universal deformation ¢: (V,p)—> (5,0) of given rational singu-
larity. Results of Artin,[1 J, say that the blowing down map & is
finite and that the germ of the image S‘ - Q(R) is an irreducible
component of the deformation space (S,0) which is also called the
Artin-component. The aim of this paper is to study the base change
given by @ ,the disoriminant A,:=A NS of the Artin-component, and
the singularities of the fibers corresponding to gemeric points of
Agye

Basic examples are provided by the rational double points (RDP's)
which arise as singularities of quotients of cz by actions of
finite subgroups of SL,(€). Let " be the weighted dual graph
associated to the minimal resolution of such singularity. Then it
is well lmown that [® corresponds uniquely to the Dynkin diagrams
which olassify those simple Liocalgebras having root systems with
only roots of equal length. It is the work of Brieskorn,[2 7], which
makes this connection more precise. In particular it turns out that
the map-germ § :(R,0)—> (S,0) may be represented by a Galois
covering whose group of automorphisms is the Weyl group of the
corresponding Liealgebra. Further the discriminant A ¢ S of the
Semi-universal deformation § is an irreducible hypersurface such
that the fiber over a generic point of A has an ordinary doubdble
point as its only singularity.

Our main result, Theorem 2, generalizes these results to arbitrary
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rational singularities. It has been conjectured by Wahl,[1I], at
least for the deformation theory taking place on the category of
artin (respectively complete) local C-algebras. One point was to
prove smoothability of certain (divisorial) cycles, Theorem 1,

which heavily depends on our main result in[ 87J. The other parts
of Theorem 2 have been already stated in [ 1J]but Wahl's approach
only works well for the formal derormaﬁion theory. Thus it seems

to be worthwhile. to present a complete proof in the analytic
context.

Notations and conventions: We write hl (X;% ):= dim H;(X ;%) and use
the standard symbols (,8, 0¥ in order to denote the sheaf of
germs of holomorphic functions,the tangent sheaf and the sheaf of
differential k—forms. There will be no systematic distinction
between germs and spaces representing them whenever there is no
gserious likelihood of confusion.

Acknowledgements, Part of this paper was done during my stay at
the Max-Planck Institut fiir Mathematik in Bonn. I appreciate very

much the pleasant and stimulating atmosphere I encountered there.

§1. Smoothing of cycles,

1.1 Let {x:M->V be a resolution of a normal surface singularity
(V,p) with exceptional set E. A cycle D on M is a divisor on M
which is given by an integral linear combination of the exceptional
components Ei,.;,Er .By simplifying notations, the corresponding
compact (non-reduced) curve (supp(D), wn) will be also denoted by D.

1.2 Let V¢ :Tl—>Q be a flat map which represents a deformation

of the germ (M,E) over the germ of a complex space Q at a
distinguished point 0. We may always assume that ¥ is a 1-convex map
and that each fiber 1“@ is a strictly pseudoconvex manifold with

a well defined exceptional set Eq ,L147], By E we denote the union

of the exceptional sets Eq, q € Q, provided with the reduced
complex structure, '
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1.3 One says that a positive cycle D on M lifts to the germ (Q,0)
if there exists a complex subspace 8 of T¥ suoch that, after
possibly shrinking of Q, the restriction A:=¥|id : 80— Q is a de-
formation of D = 400 which is also called a lifting of D over (Q,0).
Equivalently, a lifting of D is given by a relative Cartier
divisor § on 7| vhose intersection with M =mo gives D , This
concept yields a contravariant funoctor xD(-) from the category
of germs of complex spaces to the category of sets which is de-
fined by

in((Q,O)):= set of equivalence classes ofdeformations of

(M,E) over (Q,0) together with a lifting of D
Let Def((M,E),~) denote the deformation functor of (M,E), and let
¢, denote the O-dimensional germ (0,¢<t>/(t2)); Then it turns out
that,via the well-known identification of Det((M,E),ci) with
Hi(l! <] ) , we have a natural 1somorphism
%p(€,) = Ker( v*: #'(6,) — B( ¥, (D))

where !*is induced by the homomorphism r:@u-—» GD(D) of sheaves
which can be locally described as follows., If § is a vector field
near a point x € M and £(z) is a local defining equation for D
near x, then £(86) = @(z) , compare([17],[103,L 7 J.

Furthermore it can be shown without any difficulties that there
exists a semi-universal formal lifting, i.e. £,(-) has a hull in
the sense of Schlessinger on the category of O-dimensional complex
spaces, Unfortunately it is not lniown whether there exists a lifting
which is semi-universal with respect to germs of complex spaces of
arbitrary dimemsion. To avoid this unpleasant difficulty at least
in the case &f reduced parameter spaces, Laufer ,[10 ], has intro-
duced a weaker notion of a lifting.

1.4 Suppose that Q is reduced. Then a positive cycle D weakly
lifts to the germ (Q,0) if for each q&Q, q near O, there is a
(necessarily unique) cycle D » 0 on Tﬂ,q such that D and D_ are
homologous in WL . Note that the family of cyeles {D '},qu, also
called a weak lifting of D, does not define in general a Cartier
divisor on L. But this is true if Q is smooth. So a positive
cycle lifts to a smooth space if and only if it weakly lifts. By
semi-continuity X(eﬂ'q) = X(D) for a 1ifting of D. Hence, using



a resolution of given parameter space Q, it can be readily seen
that X(D_ ) = X(D) anad Dq-Dq = D-D for a weak lifting {Dq} of
D over (Q,0) ,too . Now the point is that to each deformation
Y:W > Q of (M,E) over a reduced space Q there exists a maximal
reduced subspace (QD,O) ¢(Q,0) to which a given positive cycle D
weakly 1ifts ,[ 10;Propesition 2.71 .

1.5 Let w:TW >R represent the semi-universal deformation of the
minimal resolution germ (M,E). Recall that R is smooth of dimension
m = hi(QM). Then, via the Kodaira-Spencer isomorphism
T, % B (M;8,), we may identify

TRy £ Lple) ,
compare the arguments in L 7 ;Satz 11.6]. Standard arguments in de-
formation theory show that the obstruction space ob( &D) for the
functor ¥(-) is given by

ob(¥p) s H(D;TL),

where T; is the sheaf of germs of infinitesimal deformations of D.
Furthermore ,if supp(D) is connected and

hi(’GI’i) = 0, then (1) Ry is smooth

(i1) fibers of A:dd o R are gemerically
smooth

(i11) codim Ry = n'( ¥,(D)) ,
see [17],[10],L 7 ;Satz 11.8]. Clearly, hi(té) = 0 if D is reduced.

1.6 From now on assume h°((9D) = 1,e.g. take D to be the fundamenta
cycle. Note that the vanishing of H'(T]) implies that h°(U,) = 1
it supp(D) is connected,[: 7]. Then straightforward computations
Show that

1/ 1 1
' (Tp) =h (OD‘Dreén)) ,
where D, = ZEi B supp(D) . Thus it is easy to find examples

of D (even in case of rational singularities of multiplicity > 4)
which ni('c;) does not vanish for. Now a major problem is to find
useful weaker conditions that guarantee that D is smoothable over
RD. The first step should be to find non-obstructed first-order

liftings of D, Our basic tool is provided by the following easy
result.



1.7 Proposition, Suppoae D admits a decomposition D -Zki {0
1 41i%g, such that h (’1;1) =0 for 1 £1 £s, Then Ry contains
an irreducible component of codimen91on

¢ = al(y, (n ) .

1£i4sg
Using 1.5, the proof is clear since R;> L RDi by hypothesis.
1<£j 43
1.8 Without loss of generality assume Dred = E, Then

By2 M Rg =i
1£isr 1

where the R *s are smooth subspaces of R of codimension = 1(0 (E ))
which transv%rsally intersect in a smooth subspace > of dimen- i

sion equal to h1(€§u(logE)) , see 1.5 and C107J]. But note that, if

M is a good resolution, 2. is the moduli space for the functor of
equitopological deformations of M introduced by Lauter,C 91, see

also [ 7;Proposition 11.14.37]. Hence ¢ induces a locally trivial
deformation of each positive oycle Y over 2 . Thus D cannot be
smoothable ower 3 .

1,9 Definition. Assume that Dred = E, Then a decomposition
D:=2[_ki-Di y1€i%s, is called a good decomposition of D if

2 codim R”1< codimZ = hi(@u)-hi(@M(logE))

1£i<s

1.10 Remarks., a) If D admits a good decomposition, them the co-
dimension of each irreducible component of RD is <« codimZ
because 2. is smooth.

b) With respect to the smoothing problem it is vari important to
find conditions that guarantee the existence of a good decompo-
sition. In [8 ;§3 ]Jwe gave an affirmative answer to this problem
in case of the fundamental cycle of a rational or minimally
elliptioc singularity. The proof is very technical and it seems

to be extremely difficult to find good decompositions in more
general cases.
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Theorem 1 Suppose (V,p) is a rational singularity. Let c):TM - R
be a flat i1-convex map which represents the semi-universal defor-
mation of the minimal resolution germ (M,E) of (V,p). If D is a
positive cycle on M with ¥ (D) = 1, then we have :

(1) 1z Rj is an irreducible component of R,, themn, for gemeric
te Ry , the oycle D, is smooth and is the (full) exceptional
set of mt’ t£0.

(11) aim Ry = bw'(@,) + 1 + DD

(iii) B.D is smooth if D is almost r1educed , i.e. D is reduced at
the non -2 curves .

Remark. It is most likely to expect that the RD's are irreducible
but we cannot yet prove it .

1.11 Corollary. Adsumptions as in Theorem 1. Then D is the only
positive cycle which weakly lifts to Rj and satisfies X(D) = 1 .

Proof. fake Y to be an arbitrary positive oycle with X(Y) = 1 whic
weakly lifts to RI', . Then Y weakly 1ifts to a oyocle Yt on mt whez
t is a gemeric point on R§ as in (1). 3ince X(Yt) = 1 and D, is
the full exceptional set of mt’ we obhserve that Yt = Dt . Henoce

Y and D are homologous in M. But this is only true if D = Y because
the intersection form on M is negative definite.

1.12 Prool of Theorem i. The last statement follows immediately
from 1.5 and 1.6 , see also[10]. So it remains to prove (i) and (ii
First let us assume that D admits a good decomposition. Then we car
continue as follows,

Clearly we may assume that D is supported on the full exception:
set E ., Recall that X(D) equals 1 if and only if D appears as part
of a computation sequence for the fundamental oycle Z on M., Hence
ho(GD) = 1 and there are only finitely many positive cycles Y on M
which satisfy Y £ D and X(Y) = 1. We do induction on this number ¥
to verity the first statement.

If N £ 6, then D is automatically reduced and we are done,see 1.
Otherwise it follows from our additional hypothesis,the openess
property of the semi-universal deformation of (M,E) and Theorem 3.¢



in T 12]that, possibly after a finite base change, there exists
a non-equitopological, i-convex deformation ¥:7l —> B of M =1Jl,
with a smooth i1-dimensional parameter space over each irreducible
component Rf of R, such that the support of D, is the (full)
exceptional set of Rt, t&B . Thus
N, ¢ N for t £ 0,

where Nt denotes the number of positive cycles F on B'Lt which
satisfy X(F) = 1 and P ¢ Dt . For otherwise it can be readily
seen that each oycle Y £ D with X(Y) = 1 lifts to B. Hence ¥
would be an equitopological deformation ; a contradiction . There-~
fore, by induction, statement (i) is true for D,, t # O, and hence
also for D because of the openess property of the semi-universal
deformation of (M,E).

Now let Dt be a weak 1ifting of D over an irreducible compo-
nent R) of Ry . Let-w, denote the deformation of Wl, over (RB,t),
t near 0, induced by ¢«) . The openess property says that the corres-
ponding Kodaira-Spencer map Py’ T R —)Hi(G ) is surjective. Thus,
if t is a generic point, D, lifts to a smoothtsubgerm (RD ,t) ot
(R,t) of dimension

a4 = aim Ker(ryeg :7.R 5 B (O t)_>H ((.9,, (p,))
=0l(@,) - nl(emt) + dim Ker ¥
'ses 1.3. But dim Ker ¥} = hi(emt) +1 + DD ,compare 1.5 .

t
Since DD, = D-D and (nDt,_t) = (R},t), we obtain the equality
we were looking for .

So the proof is complete as soon as we can check the existence
of a good decomposition of D. Again, we do induction on N . As
before, we are done if N £ 6 , Now given D with N > 6. Then there
is an irreducible component of D, say Ek' such that }',(D-Ek) =1

and B - (D-l?.k) =1 . We olaim that D = D-E_+ E_1is a good decom-
position. By induction and previous arguments,

codim B.D_Ek + codim BEk = =1 -(D-Ek)(D-Ek) -l - EkEk = - D*D .
Now suppose that -~D:D = codimn% =3 (ei-i) ,1€isr, where 8y =
-B B1 o« Then it would follow that -2°Z = codimX since D'D = 2.2
as it can be readily seen. But this is impossible because Z admits
a good deco-position,ts 1



Remark. Since Z admits a good decompositon, it follows from our
discussion in 1.8 that

mlt(V,p) = -2:2 < 2 (e,-1)
1¢j&r

It would be interesting to have a direct proof of this inequality.

§2. The Main '‘Result.

2.1 Let p:WL—>Q be a 1~-convex map which represents a deformation
of the minimal resolution gzerm (M,E) of a rational singularity
(V,p). Consider the unique relative Stein-factorization

™ > X

¥

i.e. ¥ 1is a normal Stein space and < is a proper,surjective
holomorphic map such that z-.wm =0y and 7 is biholomorphic on
MWL -¢ . Since (V,p) is rational, it is known,[14 J,that ¥ is flat
and T|W : WL, —> X, is the Stein factorization of WL, ,t&Q .
Hence (Xo,x) ,X 3= T(B), is isomorphic to (V,p) and J:2€ =>Q
defines a deformation of (V,p). We say ¥ arises by simultaneously
blowing down of ¥ . Conversely, given a deformation 5:.} > Q of
the rational singularity (V,p) such that & is isomorphic over @
to the relative Stein factorization of a deformation Y : WL —Q of
M . Then we call the diagram 76t -5"% a simultaneous resolution
of §. T¥<s

2.2 One can genefalize the construction above as follows, Let

A C E be an exceptional subset (not necessarily connected). Then
¥ induces a i1-convex deformation £:3L > Q of a strictly pseudo-
convex neighborhood N of A, Blowing down of A yields a 1-convex
normal space M* which has singularities corresponding to the
connected components of A, Let E* be the exceptional set of M*,
Then it is a rather easy exercise to show that the relative Stein

factorization with respect to f extends (after possibly shrinking

of ML) to a commutative diagram 5wt
\f\lQ e ol

where " is a proper holomorphic map and 'f* is a 1-convex defor-
~ »*
mation of M* inducing the deformation f of the sir~ularities of M
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We say ™ arises by partially blowing down of \¢ relative A .

2.3 Let +:1"—> S denote the semi-universal deformation of (v,p).
Replace ¥ by the semi-universal deformation w:WL—>R of (M,E).
Then ¢y blows down simultaneously to a deformationcd: ) — R of
(V,p). Hence there exists a map-germ $:(R,0) > (S,0) uniquely
determined up to first order which yields the cartesian diagram
W10 >V
ITA RS
i

By a result of Artin,[17], one knows that § is a finite map and
that the image sa - §(R)

is an irreducible component of S, the so called Artin-component.
Via the identification. TR Z>H (M; @) , the kernel of the

tangent map '1'0§ tPoR » TS can be identified with the local
cohomology group B%(M; BM) . It turns out that

1

hp(8,) = # { -2 curves on M} .

Hence P is a local embedding if M does not contain any -2 curve.
For more details compare[15 7.

2,4 Proposition. Let A cS be the discriminant of the semi-uni-
versal deformation v of a rational singularity (V,p), and let
A, = A n Sa be the discriminant of the Artin-component. Then

A‘a\JAD 9D6-A-+s

where A :=§(RD) and A is the set of positive cycles D on the
minimal resolution M with X(b) = 1,

Proof. Let R := U Ry ,De A . Suppose there is a t & R-R* ,

t near 0, such that the exceptional set Et of mt is non empty.
Let C be an irreducible component of Et' Then C must appear in
some irreducible component E' of EcWl. Let Q :=cu (B"'). It
tfollows from[10;Theorem 2.1] that g' defines a weak lifting of
a cycle Yc.JL+ over Q. But this gives a contradiction. lence the
fibers of ca are Stein manifolds over R-R* ,and we are done.

2.5 The matrix "(Ei' EJ) ,1£1,j2r, defines an inner product < , >
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on H := Ha(M;R) . Consider the finite sets
_A_; ={D e_A_+l DD = —2} and A:J\.*.UA__» with A__ ={~D) DeA
It is easy to see that each element ot,ﬁ;l is supported on an

exceptional subset of E which blows down to a RDP .Associating

to each element of _A_ its fundamental class, we may consider A.
as a subset of H . Each element D ot.JA3:=J~;\,J&l defines

a reflection , say Sp» at the hyperplane Eh orthogonal to D
which is given by '

(2.5.1) sD(x) =x -<{x,D)-D , xeH .

Notations. (i) By W we denote the subgroup of GL(H) which is
generated by the reflections Sp JDE A" . It is easy to check
that s, sends JL+-1D} into itself and D to -D .

(i1) Let A denote the union of all -2 curves on M, and let A,
..,An be the connected components of A, We call A1 a RDP-confi-
guration and A the maximal RDP-configuration on M,

2.6 Lemma. (i) If (V,p) is a RDP, then A =_A' and A is a root
system of H withJL+ as the set of positive roots. The group W
is the Weylgroup of this root system, and the associated Dynkin-

diagram is given by the weighted graph [* associated to the
minimal resolution M .

(i1) Suppose (V,p) is rational. By W,,1£i4n, denote the Weyl-
groups corresponding to the RDP-configurations Ai on M, Let H,,
1£i<n, be the subspaces of H generated by the irreducible compo-

nents of A, ., By restriction one obtains a faithful represen-

tation
W - GL( 1,:?,___nni) .

Furthermore the induced action is equivariantly isomorphic to the
action of 122;nwi on 1:?énni .

(111) 8(Y,):8(¥y) = Y,°Y, for sa VW and Y,,Y, .

Proof. The tirst part is an easy exercise, see also(17;Lemma 6 .6.
The statements in (ii) follow immediately from (i) and (2.5.1).
Therefore, to prove (iii), it suffices to check the identity for

reflections 8p where D is carried on a -2 curve. But this can be
easily done,



‘Theorem 2 Let m:M—> V be the minimal resolution of a rational
surface singularity (V,p).

(1) There is an analytic W-action on (R,0) such that
s(nn) = RB(D) for saW and De A .

(11)  $:(R,0) -> (S,,0) is a Galois covering and its group of
automorphism is W. Further, Sa is smooth,

(ii1) A, =U A where D¢ A runs through a fundamental set
of the W-action on A .

(iv) Ap is an irreducible component if R; is irreducible .

(v) dimAj = dim S, + D*D +1 for each irreducible component
Aﬁ of AD .
(vi) Over a generic point of Al') , the fiber of the semi-univer-

sal deformation v:1U" > S has a cone singularity of degree
d = -D*D as its only singularity.

§3. Proof of Theorem 2.

The last two statements of the theorem are easy corollaries of
Theorem 1. The crucial point is to define an action of W on R and
to show that it is the 'iright" action. Note that we cannot argue
as in[16 Jsince it is not known if there exists a semi-universal
deformation of strictly pseudoconvex spaces with isolated singu-

larities. We retain the notations we introduced in the previous
sections.

3.1 Let MA denote a strictly pseudoconvex neighborhood of the
maximal RDP-configuration A on M. Then MA is a disjoint union of
strictly pseudoconvex neighborhoods, say Mi' of the RDP-configu-
rations Ai,iéién . The semi-universal deformation w:¥Wl - R
induces deformations of (MA,A), respectively (Mi'Ai)' which we
denote by @,: W, ,~> R ,respectively caizmi-ia .



3.2 Proposition. Letw:TlL->R be a sufficiently small represen-
tative of the semi-universal deformation of (M,E). Then there is
a product decomposition R = Roxaix oo an which satisfies
following properties:

(1) Ryx{0k=/N R,  where the A, 'S run through the set of irre-

13 ducible components of A:l s1%i&n

(ii) The restriction of @ to R,xRyx..xR 13 a representative of
a semi-universal deformation of (MA,A), say v: 71 > RB>x..xR ,

Further there is an isomorphism h: 77l A" Roxn such that

the diagram n, h; Roxn

Ny & 1dx9
R= Rox..an commutes .
(iii) The restriction ot M to Ri,iéién, is a representative of a
semi-universal deformation of (Mi,Ai), say 171:3'11—9 R

Further there is a commutative diagram
h

i
Wy —> BoxooxBy xJU xR, x..xR

Wy ldxmxia
R= Rox . oan

where hi is an isomorphism.

Proof. The obstruction map S"A, see 1.3, for lifting all -2 curves
sits in an exact sequence

(3.2.1)  0->E(g,(logh) » E(®,) A5 EG(A) - ©

For each RDP-configuration Ai’ we may consider the exact sequence
analogous to (3.2.1) :

(3.2.2) O*H‘wui(losw)-ﬂl(@ui) -»ni(wAiuin_w

Note that H‘t(ﬂui(logAi)) = 0,since rational double points are
taut. Now rec Laufer's construction of the semi-universal de-
formation w ,[1{]. Take a Stein cover U {U } 12562 0 M
such that U /\'ﬂ n'U = @ for rfsft .



Let {9(1)},.., {6‘(1:)} be a set of cocycles in Z (7L : QM) which

represent a basis of H‘l(®M). Take R to be a small polydisc in €%,
Then 73l will be obtained by patching together the sets Ug x R,
1484 ., The transition functions are of type

(x,t) > (h (x t),t)

where h Sx t) is defined by integration along +t; 9(1) .ot tm.gg‘:)
for time 1. Now the point is to choose above set of coeycles in

a suitable way. First we arrange it that the cover U satisfies
following requirements:

(a) To each singular point y of E there exists a unique
neighborhood UselL with ye U_ .

(v) ui { *1’"’”»&1}’4):=0, 1s a cover of M,,14i4n, and

wza{lls' s>[n is a cover of a strictly pseudoconvex
neighborhood M* of E™ where E™ contains precisely the
irreducible components E, of E with E,. E, £ =2,

Let do<d1<.. <dn be an increasing sequence of integers such
that '

di-dii_h(Gu) 12i¢n .
Then we may choose cocycles {9(3 )} di 1<j‘di, which represent

basis of H (G, ) and vanish U AU it U AU &M, .1
a basis o (®M1 shoon U nU, qnsst t

follows from the exact sequences in (3.2.1) and (3.2.2) that

the corresponding cohomology classes in EI(QM) are linearly
independent and do not sit in the kernel of the obstruction map
f,. Finally let{ (1)} ,..,{quo)} be cocycles which define a basis

of H'l(@u(logA)) Since Hi(q{(logA))- 0, we can arrange it that
these cocycles. vanish on anU it (U nUg ) AME g . Itis

now clear how to complete the proof of Proposition 3.2 .

3.3 Definition, Let g:(R,0)>(R,0) be an analytic automorphism,
Then g“azﬂxnﬂ. > R is the relative Stein-factorization of the
pull back g*w:m:tnn >R of(@ via g . We call g a SR-auto-
morphism (SR is the abbreviation of simultaneous resolution)
1£&3:40 - R and g"'& :WKRR >R are representatives of isomorphic
deformations of (V,p) over (R,0). By % we denote the group of
SR-automorphisms,




3.4 Suppose g is a SR-automorphism of R. Then we have a cartesian
diagram

‘IOxRR - 'v'a
A

o
In[1 ;Theorem 1], Artin has shown that the functor Res 1is -
representable, see alsol[ 7;Satz 9.167 for an analytic version

which is weaker but sufficient for our purposes. From this it

g“c?)' J,
R

follows that the diagram g p,  commutes.
s
$7s79
So § tactorizes via the quotient R/g- . Note, since Res is re-

presentable, a SR-automorphism is already uniquely determined
by its first-order map.

3.5 Elementary transformations, Let C be a -2 curve on M. Then
Cc }ifts to a smooth hypersurface Rccﬂ., see Theorem 1,and the
lifting 1:C€ >R, ‘defines a trivial deformation of C. As in 3.2,
¢ induces a deformation ¢¥:X — R of a strictly pseudoconvex
neighborhood X of C, Same arguments as in the proof of .
Proposition 3.2 show that there is a smmoth 1-dimensional sub-
germ (B,0) of (R,0) such that R = BxR, and that following holds:
The restriction of pto B.:= Bx{0}, say $c: ¥c > B represents
the semi-universal deformation of (X,C). Further, we have an

isomorphism xc x Rc b 4 X over R = Bx Rc .

Poxid™Ny g
Bch
Clearly, f induces a trivialization of A:¥ -> R, .Since C does
not 1ift to B, the normal bundle of C in 3’.'0 may be identified
with Up(-1) @ Up(~1) . Let &,:313~>3%, be the monoidal tranms-
formation of xc with center at C. The inverse image of C is
a rational ruled surface Zo x P lP1 . The proper transform is
its diagonal. By[57] ,see also [6 ] , Z can be blown down
to |P1 % C in two different ways. One gives nothing but
Yo: X;->B. Let \(:: X;-) B be the deformation obtained from the
other blowing down which again represents a semi-universal de-~
formation of (X,C). Thus, because of versality and construction,
there is an automorphism Z:(B,0) = (B,0) of order two inducing
'f: from'¢, . It 1s a straightforward excercise to check that T
is actually a SR-automorphism.



- 15 -

Now consider the monoidal transformation &: %l — WL of M with
center at L. Using the trivialization f, it is obvious that the
inverse image of € ,call it ¢' , has a neighborhood U which is
isomorphic to ‘ncx Rc « Further, the corresponding isomorphism
is compatible with the mappings we.z|U and

($ox1d) (3 xid): T xRy - BxR, . Thus we may identify C* with

:o"Rc ,and it makes sense to say that we blow down &' in two
different directions. By construction, this procedure yields
a SR-automorphism ‘Bc:(R,O) > (R,0) of order two which is

necessarily given by ’rc =ftxid and is called the elementary
sransformation of (R,0) defined by C.

3.6 Corollary. We retain the notations of 3.5. Let Aij be an
irreducible component of Aei, and let "’13 be the induced
elementary transformation of (R,0). Then the restriction 'rijlai
defines an elementary transformation of (Ri’o) with respect

to the semi-universal deformation wi=m1-> R, .
We omit the easy proof.

3.7 Proposition., Let w¥* be the group of SR-automorphisms of
(R,0) generated by the elementary transformations defined by all
-2 curves on M, Then W* is isomorphic to W, and the induced
action of W on (R,0) is faithful and compatible with that one

on A, i.e. 8(Rp) = B.(p) for s€W and De A

where we used the convention RD ==R_D for De.,/L+ .

Proof. Let g be a SR-automorphism of (R,0). By 3.4 and Proposition 2.4,
g induces an automorphism of T :=UR.D ,De&A_ . Suppose (T',0)
is an irreducible component of (T,0). Then Corollary 1.11 says
that there exists a unique cycle Ye.A._._ such that T'cﬂy. Hence

g(BD) = By for a unique YeA .

It follows from the definition of the elementary transformation

t“ that the deformations W:ML-> R and 'zi";a: :meR-» R are

isomorphic over the complement R»-RA . Applying the arguments
i

given in[3 ;Remark 7.8], the corresponding isomnrphism induces



a reflection

(3.7.1) H—>H given by x »x -(x,AU).AU .

We observe that (3.7.1) defines a representation

(3.7.2)  A:WSGL(H) with  w(Ry)= Ry, B =A(w)(D), for wew™.
Thus,because of Lema 2.6, it still remains to show that
(3.7.3) Ais a faithful representation .

The point is to compare it with the representation ¢: W GL (H1(®M)
which is given by the linearization of the action of w*on (R 0).
By 3.4 and the fact that the functor Res is "representable”,

1t follows that o ;5 5 faithful representation .

The obstruction map rij to lifting the -2 curve AIJ yields a

direct sum decomposition Hl(GM) H1(®M(1°5Aij)) @ Hi (®M)
Recall that o€ i(c ) = Hi(@u(logA J)) . So g(’tij) is a reﬂection
on Hi(@M) whichjis -1 on the line HA1§®M) and +1 on H (@M(logAiJ)

On the other hand, the direct product decomposition R = Rox..xan
induces a direct sum decomposition

(3.7.4)  E(@) = B @y(losr)) DK, B) D .. D 5 (@),

see Proposition 3.2 and L 4 ;Proposition 1.10]. Further Proposition
and Corollary 3.6 imply that 3(1“) is +1 on each of above direct
sum components which is not equal to (q‘) and that

3(7:13)“11 (@M) is a reflection which 1s -1 on H1 (QM)C (@M)

Hl(®M ) and +1 on Hi(ﬂd(logAij)) The latter may be 1dentiﬁed
with Hi(Gu(logAlJ))f\H (®M) Hence the direct sum components

ot H (q‘) in (3.7.4) are g(w*) 1nvariant subspaces. Let ¢, ,
04i4n, denote the restriction of ¢ to H (@M(logA)), i=0,

respectively to H (@M) . Then we have o= ?0@ 2y D .. e?n

Let W *,1éién, be the subgroup of W generated by the elementary
transformations T J,ié:jéni. Then gi(w*) a1 for k ¥ i, and

g™, —)GL (H1 (®,)) ,1%i4n, is the linearization of the action
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of v;* on (Ri,O). Hence there is a natural ismorphism

(3.7.5) vt TV W)
1£ién

Thus, to prove (3.7.3), it suffices to show that A:W; ¥ GL(H)

is a faithful representation. Since w acts on (R O), this

is true if we kmew that the induced representation AicW -)GL(H )
is faithful.

Now recall the commutative diagram ,see{17;(6.21.1)7]:

~e

5@ ) —> BRy ) > 2oy
al

\1/'5 ‘ lg
BE(, () QR ) > B (ayi0)

where 8':‘ is the obstruction map to lifting all irreducible com—
ponents %f Ai. . Let [31 denote the isomorphism e (@M )—sz(Mi,C),
and let “1 denote the complexification of 21 . Thenl straight-
forward computations show that ,31 1nduces an equivalence
between the representations 31 and A i « Since §, is faithful,

we are done ,

3.8 Proposition. The blowing down map $:R > S factorizes via
the quotient R/W and the induced map $.,: R/¥ —>S is a local
embedding at 0 . Further R/W is smooth and4g 2 W,

Proof., Let N be the normal strictly pseudoconvex space which
one obtains from M by blowing down the maximal RDP-configuration
A. Since n! (®N)<o° ,it follows that there exists a
formal deformation F:¥ - T of N which is semi-universal for
the functor Def((N,Y),-) on the category of artin C-algebras.
Here Y is the exceptional set of N. General obstruction theory
shows that T is smooth. In a natural way, the deformations

@:WM >R and V2V — S define formal deformations, say @: >R
and } U’ — § s which are hulls for the corresponding defor-
mation functors on the category of artin €-algebras. Let Q.R—)S
be the induced formal blowing down morphism . Then $£actor1zes

via ‘.I" ,i.e. there exists a commutative diagram A > 3

N — T
§$Wr 3

|
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-—P e = - -
such that m §:ﬂX§R+R is isomorphic to the formal defor-
mation of N which one obtains by partially blowing down of W
relative A, see 2.2, and such that there is a cartesian diagram
-7,
5V U3
T

? Sa ' ’ 806[163.

Now Lipman's result in[43]implies that € is an isomorphism.

Further it can be easily checked that":j_‘j acts on R such that

e Ty = @ . Henee A factorizes via the quotient RAY . Since

the action of W is faithful, it follows from[16;Thm.1.3]and Prop.3.
that T and R/W may be identified. Putting altogether it follows tha
R/W is smooth and that Qw necessarily defines an isomorphism
between (R/W,0) and (S,,0) -

To finish the proof of Theorem 2,it still remains to check
statement (iii). But this is an immediate consequence of
Corollary 1.11.
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