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DOUBLE AFFINE HECKE ALGEBRAS
AND MACDONALD’S CONJECTURES

IVAN CHEREDNIKT

0. Introduction. In this paper we prove the main results about the structure
of double affine Hecke algebras announced in [C1, C2]. The technique is based on
the realization of these algebras in terms of Demazure - Lusztig operators [BGG,
D, L2, LS, Ch3] and rather standard facts from the theory of affine Weyl groups.
In particular, it completes the proof (partially published in [C2]) of the Macdon-
ald scalar product conjecture (see [M1],(12,6’)) , including the famous Macdonald
constant term conjecture (the g,t-case).

We mainly follow Opdam paper [O] where the Macdonald-Mehta conjectures
in the degenerate (differential) case were deduced from certain properties of the
Heckman-Opdam operators [HO] and the existence of the shift operators. Heck-
man’s interpretation of these operators via the so-called Dunkl operators (see [He]
and also [Ch5]) was important to our approach.

We note that the HO operators are closely related to the so-called quantum
many-body problem (Calogero, Sutherland, Moser, Olshanetsky, Perelomov), the
conformal field theory (Knizhnik- Zamolodchikov equations), the harmonic analysis
on symmetric spaces (Harish-Chandra, Helgason etc.), and (last but not the least)
the classic theory of the hypergeometric functions.

Establishing the connection between the difference counterparts of Heckman-
Opdam operators introduced in [Ch4] and the Macdonald theory [M1,M2] including
the construction of the difference shift operators is the main result of this paper.
Once this is done it is not very difficult to calculate the scalar squares of the Mac-
donald polynomials and prove the constant term conjecture from his fundamental
paper [M3].

To simplify the exposition, we consider the reduced root systems only and impose
the relation ¢ = t* for k € Z, (to avoid infinite products in the definition of
Macdonald’s pairing). The purpose of this work is to present a concrete application
of the new technique. Arbitrary ¢,t can be handled in a similar way and will
be considered in the subsequent paper(s). The passage to non-reduced systems is
straightforward. It is worth mentioning that the final problem in this line is to
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calculate the scalar products of the eigenfunctions of arbitrary difference Heckman-
Opdam operators for any eigenvalues.

This paper was written this summer during my stay at Max Plank Institute fiir
Mathematik, University College of Swansea, and ETH at Ziirich. I'd like to thank
F.Hirtzebruch, D.Evans, and G.Felder for kind invitations, and my colleagues at
these institutes for hospitality. I am also grateful to M.Kashiwara and I>.Hanlon for
valuable advice.

Let R = {a} C R™ be a root system of type A, B, ..., F,G with respect to a eu-
clidean form (z,z') on R™ 3 z, 2. We fix the set Iy of positive roots (R_ = —R,),
the corresponding simple roots g, ..., ,,, and their dual counterparts a,,...,a,,,a; =
aY, where av = 2a/(a,a). The fundamental weights J), ..., 3, and the dual fun-
damental weights by, ..., b, are determined from the relations (3;,a;) = 5f = (e, by)
for the Kronecker delta. We will also introduce the lattices

Q=L %0 C P = 0,26, A=oL,%u C B =6kL,Zb,

and Q4,4+, Ay, By for Zy = {m € Z,+m > 0} instead of Z. (In the standard
notations, B = PV, Py = P** f; = w; etc.) Later on,

Vo = (a?a)! Vi = Vo;y VR = {‘UC!.‘QER}!
po = (1/2) Y @ = > B for aehRy. (0.1)
Vo=V vi=uv
We set k, = |{a € Ry, vo = v}, % = (aV,p.), where | | means the number of

. 4 . -
elements, and introduce e, = {8 ,v € vr}. We will consider

d de d de v
ea e, pF {p} v () 1 F (1), ven, (02)

as vectors and use the dot product ({z,} - {w.} = 20 ¢, )

Let us put formally z; = exp(B;), 5 = exp(8) = [[i, = for B =30 ki,

and introduce the algebra C{z] of polynomials in terms of zt! with the coefficients
belonging to the field C, = C(t) of rational functions in terms of an indefinite
complex parameter t. The coefficient of z¥ = 1 (the constant term) will be denoted
by (). We will also involve a:;,”z = exp(B/2) = [T, mf‘/z, belonging to a proper
extension of C,[z].

Given k = {k,},k, € 22, let ko =k, ,

L = H {(tk,—l:C‘II/Z —tl"‘°z;1’2)~--
aER,y

ot ke gl/2  pRemlp =12y gk pL/2 _ pRe p—=1/2)) (0.3)
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THEOREM 0.1.

(-1 () =
ka—1
H H {(tk'la+i+1 _ t—k-ln —i—l)/(tk-la—i _ t-—k-to,+i)}. (0.4)
a€Ry =0

O

Note that py belongs to Ciz[z]. We use t to make the notations more symmetric.
Formula (0.4) for coinciding {k,} is equivalent to Conjecture (3.4) (see also (3.2))
from [M3] (Macdonald’s q equals t~2, his ¢ is our ¢~2).

In the case of A,,, the proof of the (more general) Andrews conjecture can be
found in [BZ] (see also [St]) . The BC) was considered in [A]. Paper [K] (containing
the most elaborate theory based on the Aomoto-Selberg integrals) is devoted to the
proof of the Macdonald- Morris conjecture for BC,,. It was also proved for G5 (see
[H]) and Fy ([GG]). See [M2,K,O] for futher information about related results and
special cases.

A generalization (based on the cohomology of certain Lie algebras) was found
in [Hal]. The proof of the so-called strong Macdonald conjecture was done in [Ha2]
in the case of A,. A certain approach to this conjecture was suggested by Feigin.

We will obtain Theorem 0.1 as a particular case of the so-called Macdonald
scalar product conjecture.

1. Affine root systems. In the above notations, the vectors & = [ k] €
R™ x R C R*! for a € R,k € Z form the affine root system R® D R ( 2 € R™ are

identified with [2,0]). We add « = [—8, 1] to the simple roots for the mazimal root
6 € R. The corresponding set IR% of positive roots coincides with Ity U {[a, k], a €
R, k> 0}.

We will use the Dynkin diagram I' and its affine completion I'* with {«;,0 <
J £ n} as the vertices (m;; = 2,3,4,6'if o; and «; are joined by 0,1.2,3 laces
respectively). The set of the indices of the images of ¢ by all the automorphisms
of I'* will be denoted by O (O = {0} for Eg,F,,G3). Let O*=r€ O,r #0.

Without going into detail, we mention that (8¥,a) <1 for § # a € R,. More
precisely, 8§ = 3. 8;, where mjy > 2. The multiplicity (b.,a) of the roots a,
in arbitrary o € R4 is also not more than 1 for r € O* (i.e. b, are minuscule
co-weights). For instance, (b.,8) = 1 (see {B,V.C4]).

Given & = [, k] € %, be B, let

8a(2) = Z—(z,@¥)a, V'(2) = [2.(—(2.b)] for z=[z,{] e R™" (1.1)
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The affine Weyl group W is the span < 35z >. It is generated by the simple
reflections 8; = 84,,0 < j < n, and can be represented as the semi-direct product
Wi A" of its subgroups W =< s,, @ € R} > and A’ = {d',a € A}, where

a' = 3a8[q1) = $[—q,1% for a=a". (1.2)

The eztended Weyl group W generated by W and B’ (instead of A’) is iso-
morphic to WX B':

(wb')([2.¢]) = [w(2),{ —(2,b)] for we W,beB. (1.3)

DEFINITION 1.1.
i) Givenby € By, let

Wh, = wow[}' eEW, mp, = bf‘_(wb+)‘l € Wb, Wi = W, Ty = Tp,, (1.4)

where wy (respectively, w( ) is the longest element in W (respectively, in Wi,
generated by s; preserving b, ) relative to the set of generators {s;} fori > 0.

ii) If b is arbitrary then there exist unique elements w € W, by € By such that
b=w(by) and (a,b3) #0 if (—a) € Ry 3 w(a). We set

w, = wb+w'1, My, = W, . (1.5)

We will discuss general properties of {ws, Ty} later. Now we only note that the
elements 7., 7 € O, leave I'® invariant and form a group denoted by II, which is
isomorphic to B/A by the natural projection {b, = 7,.}. As to {w, }, they preserve
the set {—6,a;,i > 0}. The relations 7,.(ap) = o, = (w,)~!(—0) distinguish the
indices r € O*. These elements are important because:

Wb = IIXW*, where w87 = s; if T ()= ay. (1.6)

Basically, this property is due to [B]. In this very form, (1.6) was established in
[V] (1.2), as well as an equivalent version of (1.9) below and some other facts of
this kind. Then similar results appeared in different places (say in [KW] and [C4]).
I’d like to thank Kumar for the reference to [V] (which still seems one of the most
complete papers on this stuff).

To go further we need the notion of length and its geometric interpretation.
Given v € vg, r € O*, w € W?, and a reduced decomposition @ = s;,...8;, $;,



Double Hecke algebrus B

with respect to {3;,0 < j <n}, wecalll = () the length of & = m.w € W? and
introduce the sets :

)\(?f)) = {&1 = erl_, &2 = sjl(aj,), &3 = sjlsjz(aja),...,d‘ = 'lb-ls_,',(aj‘)},

M (@) = {@™, v(@™) = v(a;,) =v} for v(ak]) Fr., 1<m<l (L)

One has: | = Y~ L., where I, = [,,(@) = |\, ()| denotes the corresponding number
of elements.

To see that these sets do not depend on the choice of the reduced decomposition
we will use the following (affine) action of W on z € R™:

(wb')(z) = w(b+2), we Wbe B,
3a{2) = z—((z,@) + k)a", &= [a,k] € R, (1.8)
and the affine Weyl chamber:

C* = [)La;: La={z€R", (2,0)+k>0}. (1.9)
.

PROPOSITION 1.2.
M(0) = {@e R, & YC ¢ La, v(a) =v}
= {ae % l,(wsz) < l,(w)}. (1.9)

As to the latter condition, direct calculation shows that
l( ti)sa“}...sa{,,} ) > l( ’lDSa{l}...sd{p_H} ), if
a{q} def amte, l>myp >me > L >my, > mpy 2 1 (1.10)

Vice versa, an arbitrary sequence of positive roots &{1}, &{2},... satisfying the
consequent conditions (1.10) for p = 0,1, ... can be obtained by the above construc-
tion (i.e. belongs to A, (%) and corresponds to a certain reduced decomposition of
). We will not use this fact and only mention that it results from the following
rather standard proposition.

PROPOSITION 1.3. (see e.g. [C4], Proposition 1.4).
Each of the following conditions for z,y € WY is equivalent to the relation

L(zy) =L(z)+ L.(y):
a) A(zy) = Xy Uy~ (A (2), b) vy u(z)) C RS
¢) Au(y) C A(zy), d) v~ (Au(@)) C Au(zy). (1.11)
O

Now everything is prepared to motivate the construction of {m}.
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THEOREM 1.4.
i) In the above notations,

A)={a.ae Ry, (ba)>k20}U{d.a € R_,(ba) >k >0}, (1.12)
Aty = {&,—(b,a) > k > 0}, where & =[a,k]€ R$.beB. (L.13)

if) If b € bW (ie. w(0) =b) thenw = muw for w € W such that I(w) =
l{my) + l(w) . Given b € B, this property (valid for any @ taking 0 to b)
determines my uniquely.

Proof. Formula (1.12) is verified directly (see Proposition 1.6, b) from [C4]). By
the way, it gives the useful formulas (cf. {L1], 1.4) :

L) = Z |(b, )|, where || =abs. value.a € Ry v, =V € vpg.

l,(by) = 2(b.p,), when b€ B,. (1.14)
One can follow the same proposition ( assertion a) ) to check that
Mwy,) = {a € Ry, (by,a) > 0} for by € By. (1.15)

It proves (1.13) for B, due to Proposition 1.3, a) and the relation A(w~!) =
—w{A()) (resulting from Proposition 1.2).

Let b = w(by) for positive by and w € W. We can multiply w on the right
by elements preserving by (i.e. belonging to W, ). If the length of w is the least
possible, then A(w) does not contain roots & € R, orthogonal to by (Proposition
1.2) and w is defined uniquely. This condition is from Definition 1.1, ii).

Setting b = 7w for w € W, where m € W has the least possible length (7).
we are going to calculate A(w) and A(w~!).

The set A(7) containes only roots & = [a, k] with &k > 0. Otherwise we could find
in this set a root from %, and apply the second formula from (1.9) to reduce 7 by the
corresponding reflection from W. Hence, w=(A(7)) C R$ and the decomposition
b = 7w satisfies condition (1.11). Moreover, w~}(A(7)) contains all the elements
from A(b) with k > 0 (since w € W — use (1.11) again). It is enough to calculate
A(w) because A(d) is already known. We will arrive at the same formula (1.15) (but
now for w and b € B). Applying (1.11) after the passage to —b, we obtain precisely
(1.13) for A(m—1). '

Let us calculate A(w;) and A(m;'). Thanks to formula (1.15) for by and the
properties of w (see above) we have the embedding A(w) C A(ws, ). Hence the
decomposition ws, = wyw satisfies conditions (1.11) and

A(ws) = w(Awey) \ M1w)) = w(Awn, ) N Iy
= w({a € I, (a.'b+) > 0}) n R'l' = {O." € Rh(a,fb) >0, }
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Here one can use Proposition 1.3 with the relation A(w) = {« € Ry, w(a) € R_}

resulting directly from (1.9). We see that (abstact) w defined above and w; from

(1.5) coincide (they have the same A-sets). It gives the coincidence of m and m,,

formula (1.13), and statement ii). As for the latter, if (0} = b, then @ = myw',w' €

W. However we know that l[(myw') = I(m) + I(w') for any w' € W. 0
We set :

cXbbrc for bjce B if b—ce€ A, (1.16)

and use <, > respectively if b # c. Given b € B, let by = w}'(b) € By for wy from
Definition 1.1. The sets

aV(b) % {g € B.w(c) < by for any we W),
ay (b) 4 {c € B,w(c) < by for any we W} (1.17)

are W-invariant (which is evident) and convex. The latter means that if c.c* =
c+ra¥ € oV(b)(€ oy (b)) for @ € R.7 € Zy, then

{e, c+aY,..,c+(r=1)a", ¢’} Ccav(d)(cCay(b). (1.18)

Really, w(c+ 7'a¥) for 0 < 7’ < r is always between w(c), w(c*) for any w with
respect to the ordering ‘<’ and therefore belongs to (1.17) because w(c), w(c*) do.

For the sake of completeness, we will check another well known property of
aV(b). It contains the orbit W(b). If w(b) < b4 and l(ws,) > l(w) for @ € R4,
then w(a) € Ry and wsa(by) = w(by — (by,@)a¥) < b;. Hence we can argue by
induction.

PROPOSITION 1.5.

i) Given 1 € W° & € A(w), let b= w{0), 0, = 1Wsgz,bs = 1Ws{0). Then b, € aV(b).
Ifb e By and b, # b, then b, € oy (D).

ii) In the above hypotheses, (1) > £(bl.) if by # b, and

() < 6(D) if by #£b, where &) = €(b') < i(m,). (1.19)

iii) Let W. = s5(p}.--8a{1}@ ,wWhere we take any sequence (1.10) for W~ (instead of
W) such that £(sz(1)w) < €(®). Then €(d,) < £(0) and 0.(0) #b. Ifb = b,
then {b.} = oy (b).

Proof. One has: A(w™!') C {&@ = [a,k] € R}, —(b,a) > k > 0} (use (1.9)).
Hence,

by = 82(b) = b= ((b, ) + k)a”
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is between b and s,(b) with respect to the odering ‘<X'. If b € B, (i.e. b=5,) and
be # b, then @ € R_,k > 0, and b < b. < 54(b). It completes i). Assertions ii) and
iii) follow directly from the definitions of m, and £( ). O

2. Double affine Hecke algebras.

The construction depends on § € C* and {q, € C*, v € vg} which will be
regarded as formal parameters; Cs, means the field of rational functions in {4, ¢, }.
In the hypotheses of the previous sections, we denote the least common order of the
elements of IT by m (m =2 for Dy, otherwise m = |II}) and set

A = 06", 9a=4qua) 3 = qa;. Where & € R*0<j<n. (2.1)
We remind that z; = exp(B;), zp = ezp(B) = [[, 2 for B = T, kiffi,

C;[x] = Cs[zps] means the algebra of polynomials in terms of z¥! with the coeffi-
cients depending on § rationally. We will also use

X,é = HX!‘.‘Jmk if B = Lﬁ,k], ﬂ = Zkiﬂi e, mkeZ, (2.2)

i=1 =1

where {X;} are independent variables which act in Cs[z] naturally:
de .
X;(p()) = zzp(z), where 5 F z58™*, p(z) € Cylal. (2.3)

The elements @ € W* act in Cg4[z], Cs[X] = Cs[X ] by the formulas:

W(zg) = Ty DX = Xy (2.4)
In particular (we will use this in the sequel):
T (28) = Tz15)0™ ) for o Y ), re 0. (2.5)

DEFINITION 2.1. (see [C1,C2])
The double affine Hecke algebra $) is generated over the field Cs 4 by the elements
T;, 0 < j £ n}, pairwise commutative {Xg, # € I}, and the group I1, satisfying
the following relations:
(0) Ti—-q)(Ti+q;7') = 0,0 < j < m
(i) T;T;T;... = T;TT;..., my; factors on each side;
(i) 7. Timt = T, if n(ei) = ay;
(iii) T: XpT; = XﬁXg',]‘ if (B,a:)=1,1<i<n;
(iv) T ' XpT5 " = Xoai) = XpXg A if (B,6Y) =1
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(v) T;:Xg = XpT; if (B,a;) =0, where oy = 6;
(vi) 'JT,-Xﬁ?T,._l = Xﬂ.r(ﬁ) = Xw;—l(ﬁ)dm(br-,ﬁ)’ r e O,

0
Given 1@ € W, r € O, the product
. t {
P < . H T;,, where w= H i, L =1(0), (2.6)
k=1 k=1

does not depend on the choice of the reduced decomposition (because {T'} satisfy
the same “braid” relations as {s} do). Moreover,

T;Ts = Tsg whenever {(#10) = (D) + I(®) for ©,% € WP, (2.7}

which follows from (2.6) and relations (ii). In particular, we arrive at the pairwise
commutative operators (use (2.7) and (1.14)):

Y, = [[v¥ if b= kbieB, where ¥; ¥ T,,. (2.8)

i=1 =1

PROPOSITION 2.2.

TTYWYTT = YWYl if (boai) =1,
T.Y, = Y, T; if (b,ct,') =0, 1<1<n. (2.9)

Proof{cf. [L1], 2.7). We will deduce these relations from (i)-(ii). It sufices to
check that

TOYI =YY L TY; = YT for 1<i#j<n. (2.10)

Applying (1.15) to b = s;(b;) = b; — a;, we see that I(¥') = Y aer, [(bisi(a))] =
(b)) — 2, since s;(c) € Ry for a € Ry \ {¢;}. Hence formula (2.7) works for
the triple decomposition b. = s;bs;. If j # 4, then a; € AD;) (see (1.12)) and
l(bls;) = I(b}) + 1. Now we only have to use the commutativity of b; and s;. O

Vice versa, imposing (i), one can deduce formally (ii) from (2.9) (and the com-
mutativity of Y). When m # 1 there is rather straightforward proof using {,}.
Here we will obtain it as an application of the following construction.

The Demazure-Lusztig operators (see [KL, KK, Cl], and [C5] for more detail )
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act in Cg 4[z]. It is worth mentioning that

To =quso + (qo—gr)(AX;E —1)" (s — 1),
where so{X;) = X,-XB_(’G"BV)A{‘B‘ @), (2.12)

THEOREM 2.3.

i) The map {(T;) = T;, {(Xp) = Xp (see (2.3)), {(m,) = m, (see (2.5)) induces
a C; o-linear homomorphism from $) to the algebra of linear endomorphisms of
C; 4|z], well-defined for arbitrary values {6 € C* 5 ¢}.

i) This representation is faithful if the value of § is not a root of unity and q are
arbitrary (from C*). In this case, any given element H € $ has the unique
“normal form”:

H= Y YshouTuw how€ CsqlX]. (2.13)
bEB,weW

Proof. Relations (ii),(vi) (involving ) results directly from (1.6). As to the
relations with X ( (iii),(iv),(v)), they follow from the formulas s;Xs;, = X, (s;)8;
(in the non-affine case they are due to Lusztig). One may check (o) and (i) only for
j > 0 (moreover, there is a reduction to the case of rank 2), when these relations
are from [L2] ( see also [LS] about roots of type A).

Let as assume that 9 is not a root of unity. Arbitrary element H= E(H), He 5,
can be uniquely represented as follows:

H = Z Y gy w0, (2.14)
beB . weW

where g, ., are rational functions in {X,..., X, }.

LEMMA 2.4.
Givenb e B and @ = myw,w € W,

To=E6Ta)+ 3 Goow biw, where b, € aV(b),2(b,) < €(¥) (2.15)

b. weEW

£ 5y _ qaXa— 05" 1) —14

or f(T{l‘,) = H ——Tb (wb Tw)_. (216)
aexrhy T

that is invertible. Moreover, if b € B, then b. € o} (b) (in this case Ty =
Y, T;'T.) .

Proof. Following [C4], let

Gag = Ga = qa+(qa—gz VX3 = 1)1 —sa), ae R (2.17)
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Given a reduced decomposition & = 7,85 +--s;, | = l(@),r € O, one has (see

(1.7)):
f‘d’ — wGé, .. .G&I’ for Egl = aj“c'y2 = 83, (er2),&3 = 3j13jg(aj3).---- (218)

We may assume that w = s;_---8;,, e = l(w). If we take only the terms without s
from the binomials G5», where & = &P, p > e, then the corresponding product
coincides exactly with (2.16). Apply (1.13) to check it. Any other terms contribute
to the elements gy, ., b,w with b, # b . (see Proposition 1.5). O

We come back to the theorem. First of all, the existence of (2.13) follows from
Definition 2.1 and Proposition 2.2.

If there is a nontrivial expression in the form (2.13) vanishing identically and
involving {Y} one can make all b positive (multiplying on the left by a proper Y').
Then take ¢ and rewrite Ty = Y. b € B, due to the lemma. Using the f-length,
we arrive at a nontrivial sum of type (2.14) without Y and representing zero . A
contradiction with {L1],[C3].

As a by-product, we proved that f is a faithful representation. O

3. Difference Heckman-Opdam operators. Let Hx, Hy be the affine
Hecke algebras generated over C by abstract {T;,1 < ¢ < n} and pairwise commu-
tative {X;}, {Y:} satisfying relations (o.i,iii,v) from Definition 2.1 (for 1 <4,j < n)
and (2.10). We assume that § is not a root of unity and regard them as subalgebras
of 55 ( which is possible thanks to Theorem 2.3, ii}). From now on $) is identified
with its image with respect to {. We write T.Y instead of T. Y.

The algebra of W-invariant elements in the C[z] is denoted by C[z]". Here (and
in similar cases) z will be replaced by X and other letters without more comment.
We will often use that C[X]" is the center of Hx. The same of course holds for
C[Y]" and Hy. This property is due to Bernstein (see e.g. [L1], [C3]).

Theorem 2.3 gives that an arbitrary element H € Hy can be uniquely repre-
gented in the form :

H = Z hew YeTuw = Z b gy ww. (3.1)

weWbeB weEW bEB

where hp o, € C, gpw are rational functions in {X1,..., X, }. Let us check that they
are regular at the points

0 def (Xl = Xn - 0). D.qdéf (X.l = .,.. = X" = w)

Really, {(XZ—1)-'} (from (2.11) and (2.18)) are well-defined at these points either
for positive or for negative & € I°.
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Let us define the difference Harish-Chandra homomorphism:

X( Y. Vaww) = Y (I &°*")9.u(0)w € Csglul, (3.2)

weW beB wbh vEvp

where {y} is one more set of variables introduced for independent ¥y, ..., y, in the
same way as {z,} were. We mention that one can switch ¢ and ¥ in (3.2) because
the point ¢ is B'-invariant.

PROPOSITION 3.1.

(O > W ¥Tw) = > (J[d™how w. (3.3)

weW,beB weWbeB v

Proof. Firstly, one can consider {Y,} only. Let us deduce from formula (2.16),
that the y-value of the leading term £(Tb:) gives exactly y,. It is clear, that
x(w;l’f"w,) =TI, g As to the product before b, let us look at (1.13).

Given « € Ry, if — (b,a@) > 0 then the number of roots & = [, k] in the
product equals —(b, ). Otherwise (if (b, ) > 0), the number of roots & = [—a, k]
in the product is (b,c). In the first case, X5(¢) = 0. The second leads to co.
The corresponding ratio in the considered product is either g, ! or g, respectively.
Together with the wy-part calculated above (the roots from A(ws) are all non-affine
and positive), we arrive at the required statement.

Here b was arbitrary. We can say more for positive . Any other terms con-
tribute to the coefficients gy, o with b, € oy (b) and come from the s-parts of the
subproducts (cf. (1.10)) :

b'Ga{l}---G&{p}, where &{l} =& ..., l>2m >..>mp2 L

Moreover, m; > e for the first G, which gives the factor (X,y — 1) for &{1} =
[@.k),a € Ry. Its value at ¢ is 0 and will remain unchangable after transforming
and taking x . Thus x(Y3) = y, and

9o, w(0) =0 for be By, weW b, €ayb) (3.4)

Let us consider now b € B_. Theorem 1.4 gives, that m, = b/, &(b') = I(b') > £(b))
for any b # b, € o (D).

LEMMA 3.2.
Givenbe B_,

Yo =E(Ya)+ D go.w blw, b# b€V (D),

b, weW
JaXa _Q'_l /
€Y,) = H ——==b gy (0) =0 for any b,,w. (3.5)

Xa-—1
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Proof. Since (Gaig) ™! = G_ayq-1 (see (2.17), [C4]), Y! can be obtained from
Ty by the following substitution : ¢, = ¢7*,8 = 67, X; = X! for all {v,1<
i < n}. Thus we may use Lemma 2.4. The last relation from (3.5) holds because
A(=b") contains only (e, k] with positive a and we have to replace X, by X ! for
" all a afterwards. O
' Turning to arbitrary b € B, let b = b + b_, where by € By. Then (see (2.8)),
Y, =Y, Y,_. Since we have conditions (3.5) for both Y, 4 it completes the proof.(]

Given f e Cly], let

Lr=f(Y1,.nYo)= > Vgpww Ly 2 (Lf)rea= > Vgw (36)
weW,beB wEW,bEB

We notice that the restrictions of £L; and Ly on Cs[z]" coincide.

THEOREM 3.3.
The operators {L;, f € Cly]"} are pairwise conunutative, W-invariant (i.e
wLyw™ = Ly for all w € W) and preserve Cs 4[z]".

Proof. First, the operators {£;} are pairwise commutative and preserve Cs ,[z]
(because {T;,0 < j < n} and {m.} do ). Then T;L; = LT, for all 7 > 1 and
f, since f(Y) are central in Hy (due to Bernstein). It results in the relations
T:(Ls(p(z))) = ¢:Ls(p(z)) for any p(z) € Csq[z]". We see that {L;} and {Ly}
leave Cj 4[z]" invariant. Hence the commutativity of {£} gives the commutativity
of {L} upon the restriction to C; 4[z]", which leads to the required commutativity.
Cf. also [Chd4], Theorem 3.6 (the rational case). 0

Proposition 3.1 supplies us with the y-values of {£;} (which will be necessary
to prove the Macdonald conjecture). Moreover we can calculate the main terms of
these operators.

PROPOSITION 3.4.
i) Givenb € By, let ny = 3 cww, Yu(v), where W, is the stabilizer of b in W.
Then

Mo Lo, = €N+ g b, where b. € oy (b).

b.
q&Xw @ _qgl i
sv) = Y [T SRR (=) (3.7)
wEW /W, GEA(D) w(&)

ii) If r € O* then Ny, = &(Ny,): Moreover, Ngv — £(Ngv) Is a scalar function.

Proof. In the operator Ny = L,,,, the term with —b' can come only from Y_,.
It results directly from (2.15) and (3.5). The latter contains the formula for this
term. The W-invariance of Ny = (A} )rea completes this reasoning. O
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Assertion ii) generalizes Theorem A.3. from [C4] (about a construction of Mac-
donald’s operators for A,, via affine Hecke algebras). The operators Nj_, Ngv are
exactly the operators corresponding to (minuscule) {b,} and (quasi-minuscule) ¥
from [M2]. Actually, this observation alone is enough to establish the connection
of our construction and the Macdonald theory. In the next section, we will discuss
this issue in more detail involving the Macdonald pairing,.

Let us fix € = {€,,v € vg} (cf. (0.2)). We introduce the shift operator by the
formula G, = X1Y., where

Xo= T] (quX¥? = a7 X71%), Yo = [] @2'Y2? - 0¥ %) (38)

eq Se €q <€

Here a € I}y, e, are from (0.2), e, < € means that the components of € — e, are
from Z,, and X!/2 Y!/2 are understood in the same way as z!/? were (Sec.0).
Elements &, Y. belong to C,[X], C,[Y] respectively (i.e. are polynomials in terms
of Xp,Y, for § € I, b € B, with the coefficients in C,).

PROPOSLTION 3.5.
Ife; e/ €a; <€ 1 <1< n, then

(Ti+ g7 NXe = (X2 = T XMW@ XM = 7 XM T XA(T - q4),
L=y — (avl/2  =ly=1/2y x—1/2 _ —ly1/2y—1 o
(T't +qi )yf - (qIYa.- qi Yai )(QtYa; q; Ya.- ) yG(T! Q1)_~
(Ti - g X! = (X7 = g7 XM )@ X 3% = g7 XD RUT + g7,

for 2 ] (a3' XY - quX 112, (3.9)

o K€

Otherwise (if e; £ ¢,), T;X. = XT;. T;Ye = V.T;. The operators G., F. def

X:Ye, and G, def XY (Ye)rea preserve Cs (2], Moreover, G, is W-invariant.
Proof. We set X, = D;D; for e; <¢ where D; = (q,-)(,_{,{2 —q{'l ;1/2). Here
D, D are considered as operators acting in C,s‘t[:x:iﬂ/:'), ...,:t:?fl/z]. Then Tchl,{zT,- =
;1/2 and
(T: +q7")D: =
(@ X2 = g7 X3P W@ X3P — ¢ XS )T DT - ) (3.10)
The relation s;D; = D;s; results in T;D; = D;T; and in (3.9) for A,. One can put

D; = 1 in this reasoning to include the case e; £ €,. As for Y., use the statement
which has been already checked and the substitution {Y;¥Y = X!} identifying Hx
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with the algebra #y for the dual root system. The automorphism {¢; = —g;"*} in
Hx takes X, to =X}, which proves the remaining relation.

Given p € C; 4[z]", formula (3.9) shows that the polynomial p’ = Y.(p) satisfies
the relations Ti(p') = —g¢;'p' if e; € € and Ti(p') = qip’ otherwise. Hence
X7 (p') is W-invariant, It is also a polynomial, which can be deduced from the
corresponding statements from [B] (in the case ¢ = 1) by standard deformation
reasoning. We see that the operators G, and Ge preserve Cs 4{z]". Therefore G
is invariant. As for F,, it is a product of G, by a central element from Hx and
leaves Cs 4[] invariant as well (one can use (3.9) directly to see this). 0

We follow (1.16):

Y=pB.BXy for ByelP if y-peQ4,
a(f) 4/ {yePw(y)=p for anywe W}, fel_,
ou(f) =4 {vye Pw(y)>»p for anywe W}, gel_. (3.11)

These sets are W-invariant and convex. The first contains W(3).

PROPOSITION 3.6.
Operators {T;,0 < j < n}, {Yi.1 <t < n}, {Ls,f € Cly]} preserve £(O) =
Dyea(p)Cs,qTy and the Ty(B3) (defined for ay(F) in the same way) for arbitrary
B € P_ (cf. [H], Prop.3.5).

Proof. It suffices to check the statement for (one of) {T;}. Given v € o(f3),
its image T;(zg) is a linear combination of {z,} such that {y. v —a....,v —ra} C
a(f) for s;(v) =~ — ra, where « is either a;,2 >0, or —6. 0

4. Macdonald’s polynomials. We set my = 3 oy g Ty for 5 € I_.
These monomial symmetric functions form a base of C[z}". Let us introduce the
involution ¢z & = 671, ¢ = (¢”)™! on Cs,, and the Macdonald conjugation

_ de P . . -
Tg =) Z_g, leaving ¢, ¢ invariant. From now on we impose the conditions
q =t = 5k /2 for k= {k,.v € vr}, ki, € Zy, (4.1)

though much holds good without this restriction. One has: g5z = t*¢, where k4 def

ky, for @ = [a,], g; =t5 for k;j = k,,. We set
(fog) = (uf §*) for f,g € C4lz] and py from (0.3). (4.2)

One can check that this skew Macdonald pairing (with ¢) is non-degenerate over
Cs (cf. [M1,M2]). Indeed, it is definite if § = 1 and the coefficients of f # 0 are
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real;

prffr = (=D)**FF* for F=f H (z}/?2 — 272k« (FFYY > 0. (4.3)
a€lt,
Hence, given a finite-dimensional V' C C|z], one makes (f, f); # Oforany 0 # f € V
if 4 € C is rather close to 1.
Thus {f, f)« # 0 € C;s for any f, and we may introduce the Macdonald polyno-
mials pg(z) = pl(;) (z), B € P_, by means of the conditions '

Pg— Mg € ByryypCsmy, (pg,my)x =0 for 7> B,v€ P_. {4.4)

They can be determined by the Gram -Schmidt process and form a base in C4[z)"V .

We mention that fit, = ux (i is a product of an even number of terms satisfying

relations () = —()), and P = pp for any 3 € I because p satisfy (4.4) as well.

It makes our results compatible with the Macdonald original definitions. We need
¢ because of the following theorem.

Let us introduce two anti-involutions on the operators from Sec.3 (acting in

Cslz]):
Ht = Zw_lg(X)L(—b)', H* = p'HYpy for H = Zb’g(X)w, (4.5)

and rational functions g(z), w € W,b € B (b is defined in (1.1)). The second
involution serves the skew Macdonald pairing: (Hf,g)x = (f,H*g)x .

Here we regarded p; as an operator substituting X for z (as it was done for g).
We will do it permanently for this and some other functions without any comment.

THEOREM 4.1.
(Ls)* = Lf for feCly], o =1y-s (4.6)
Proof. First of all, let us rewrite Yy in terms of 4" and
Ga=¢s+(ga— gz )X =17 (1 —sa). @€ R (4.7)

We follow (2.17). Given b’ = 7. € B! (positive b are enough to conside) and a
reduced decomposition @ = sj ++- 8;,, L = I(w), one has:

Yy =b'Gai- - Gy, where o' = ;0% =55 (aj,).a® = s;,8;,(a;). ... (4.8)
We have to check that 1, Y,™ = Y, i, which can be rewritten as j, G} -+~ (V') 7! =

G:l -+« (b')tup. A straightforward calculation for A, gives that ,u,;;G';} = G:t.,u’k

for uj, = s, (k). Hence we can continue replacing ;LLG{:}

by G'Iz (4, where pf =
35,85, (k). and so on. Finally (after G’g,)) we arrive at ,u,g) = W~ (). To make the
proof complete, we need the relation ;Lg)(b’ )=t = (b')" g, which directly follows
from (0.3) (('w=1)(ux) = mr(pr) = 11). 0
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COROLLARY 4.2.

c;b;lLf(f)k = Ly for feCW, where ¢p =n7 px,

me [ A el - o)) @Y2 — a2 t2) € Cllal. (49)
acRy

Proof. We omit some details because this statement will not be applied to the
Macdonald conjectures. The relations T; L5 = L,T; for 1 <1 < n and the formulas

T, = =g + (o + (@ XY = 0 X7 /(X2 - X7V, (40)

T

result in L;P = 'Pm.[,fn,:l for P&/ |w |-t EwEW w. Use the W-invariance of ¢
and the relations £;P = L;P = PLy to check that

iLsdi P = ¢p(LyP)pyt = Pualypyt =
’Pﬁ}f = (LyP)* = LIP. (4.11)

O

We note that ¢, when used instead of ;i does not alter the Macdonald polyno-
mials (see [M2]). Moreover, the following statements hold true.

T’ROPOSITION 4.3.
The orthogonality condition in (4.4) is equivalent to the requirement:

(Yipaz-y) =0 for 7 € 0p(B—po) for v§ =it (4.12)

where ¢, e I'L,'C'Q(:r:%,/2 - a:Zl’m), «a € Ry, € = {e,,v € vg} is from (3.9),
Pe =€ p= ZUEqu-
Proof. One has:

(YipaT—y) = (¥iPaP-(z—y)) for

P def |w|~? Z (=) @y, I (w) = ¢- {l(w)}.
weW

Hence, we may check the above conditions for {m_-, instead of z_,+, where v >
B.y € P_ (since P2(z_,) is divisible by £,). Thus (4.12) can be replaced by
(pxppm—) = 0, which is equivalent to the relation (prpgm_4) = 0 because of the
following lemma.
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LEMMA 4.4.
Let W(B) = {w(B),w € W}. Then (nf) = dp(f) for f e C[z]V,

ko #0
de & W(k-p)|7t [ (tFtethe —gRlak)j(ghle —pmhla)  (4.13)
aERy
Proof.
de = WP wi)ng' =
weW
|W|-°1 Z tk°{[y(w0)-21v(w)}.
wEW
The formula for the latter is known (see {M2], Sec.12). m

MAIN THEOREM 4.5.
We take € = {¢,,} such thate, =1 if k, >0 for v e vg. Given f(y;,...y,) €
Cly]" and fe P,

k ede, = (Y
I (p}j))_f(t" loy=(aiB) | ghlan —(a] "’)p},’“), (4.14)
k
Ge(py)) =
(=1)e ks H (thla~ka=(a¥.B) _ y=klcthat(a’.0) )p}gp?, (4.15)
eq <e

wherea € Iy, p, =0 if Y& I_.

Proof. Proposition 3.6 gives that £; preserve L(3). Hence Ly preserve
@Bo>+>pCsm, for arbitrary f,§. The standard arguments (due to Macdonald)
show that Theorem 4.1 ensures the proportionality of L f(pg') ) and p(") The corre-

sponding coefficient is determined by Proposition 3.1. As for G, it takes pf;) to a
polynomial from @py»g4,, Csm which (we are going to check it now) is orthog-
onal to @oy~yp+p Csmy relative to {, )ite. Again it means the proportionality
(cf. the proof of Theorem 3.15 from [H]) and we can calculate the coefficient using
Proposition 3.1.

The relations V! = Y. (see Theorem 4.1), X = £X,, and X, = n&, lead to
the formulas

Ft = (Ve X ot = T X Vel = i F{wi) (4.16)
(V4GP )Ty} = (YeFe(Py))z—y) = (¥ipy { AL Ve(z4)} ™) (4.17)
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where ()™ = (7)*. If ¥ € 0p(B) then X'V (z4) € Zp(B — p.) (Proposition 3.6)
and the r.h.s. of (4.17} equals zero (Proposition 4.3). However the Lh.s. is straight
from (4.12) for Ge(p‘(; ).0+ pe. and k + € instead of pg‘).ﬁ‘ and k.

0O

5. The Macdonald conjecture. We preserve the notations from Sec.4 and
put £(%), L%} and so on to emphasize the dependence of k.

THEOREM 5.1.
Given arbitrary 3,y € I_, one has: (pg"), pf,""))k =0 if B#~ and

#, oy = (“)FF W (k- p=B)| [W(k - p)| "

ko#0
H (tk-la-l-ka _ t—k-‘lﬂ—ka)/(tk-la _ t—k-la)
GER+
ko—1 thla—(a¥ B)+i _ p=klat(a” B)—i
II (5.1)
R 1 tk‘la'—(av7ﬁ)_i - t"‘k'la'i"(‘]v:ﬁ)'l"i ' ’
aCRy 1=

Proof. The orthogonality of pgk), p.(,,k) for 3 # v results from (4.6) and (4.14):

k), (k k k
L), pe = (p) L (), =
f(tk'lal_(ar:ﬁ)’".)(pgk)’ Pf,k))k — f(tk'l“'_(“r”’),...)(pfgk), pf,k)>k- (5.2)

The corresponding eigenvalues distinguish 3 # - for a proper W-invariant polyno-
mial f. It gives the desired statement. It was established by .Macdonald by means
of the simplest self-adjoint difference operators satisfying (we introduced them in
assertion of Proposition 3.4).

Actually one operator is enough to split {pg}, and therefore to check the orthog-
onality. However we need the comlplete set {Ls} is important to establish (5.1) (we
need rather complicated operator Y.V, - see (5.8)) and to some other applications.
By the way, it gives a uniform proof of the ortogonality for all root systems.

The remaining (main) part is based on the following chain of the shift operators

that will be applied to pg)_k. p = Mp—k.p One after one:

Gle={11}) lk—{2,2}) (k={3,8}) ~(k—{s.5}~e ]

where k = s{1,1} + re for € = {e,} such that [[ e, = 0. We use the visual
but not quite correct notation {1,1} for the vector with unit components. Let
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k(¢),e(i), 0 < i <7+ s—1, be the corresponding indices of G = G(i) beginning
from G(0) = GV,

Firstly, we have to consider the product of the G for the indices 0,1,...,7r —1. If
0 <7<, then k(i) = i¢, €(i) = €. Our aim is to express M;;| in terms of

: . 4
Mi = (sl iy Plackip, e for B'E p—k-p (5.4
Formula (4.15) results in the relation

My = (gigt) NG (P};fi.-p,)s GG (p;(';'?-ip())(i+1)é.'
for g = H'(tisa—ieda-&-(av,ﬁ'-f-ip.) _ t—ie¢.+ie-la—(av ,[3'+ip,)) -
ea K€

H (tiea”'(avyﬁ,) —_ t_ieu—(av:ﬁ')).

e, <€

—~—
)
o

A —

On the other hand, G = (x59)=1y{*) and

d ; i ‘ i
N'- éf(ye(“)(pg,i-p(), yg'e)(ng_z.,-p‘))ie =
<CiG£ie)p;(?:f+)»ipa GiiE)Pg'iipe)(Hl)f for ¢; =
H (tieamé‘/2 _ t—ieaxgl/z)(t—(iﬂ)eami/z - t(i+1)ea$;1/2)—1. (5.6)

eq <€

Applying Lemma 4.4 twice, we arrive at the relation
Ni = (=1)""(dic/dig1ye) (9ig: ) Mgy (5.7)
Then one may use Theorem 4.1 and (4.14) to calculate N;:

N" = (5)6(16) ye(if) (p};,flip(), p};r?_{.o()if = gi‘(}iMi, where
59 = ] (-orst - eyt
eq <€

g = [ — i an), (58)

e, <€

Here we replaced Y* by Y. This changes N; by a term (/,L,'EX‘;“E) (f = (=1)"wy(f)))
for the longest element wy € W and a proper f € C,[z], that is zero because of
the W-invariance of { ). Then we made use of the fact that the product yliaylic)

corresponds to an element from C,[y]".
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Finally,
Mip1 = (=1)""(dgigrye/die) 8i(gt) ™ M. (5.9)

In the case i > r the formula will be just the same with k(i) = (1 — r){1,1} +
re, €(i) = {1,1}, di(;) instead of ie, e, d;. ‘
To complete the proof let us put together the relations for ¢ =0,...,7 + s — 1:

r+s—1
Mo = (=1)*%d J] 3:(g})™'My = rhs. of (5.1). (5.10)
1=()
Here we regrouped the terms with respect to a and used the equality dy = 1. O
COROLLARY 5.2.
ka0
(=1)(ug) = [ ((%5ehe —g=bdombe) (gt _ g=kia))
aER,
ka—1
H H {(tk-ta-kka - __ t—k-la-—k“+i)/(tk~la - _ t—k'fn'*'!)}. (5'11)
aERy i=1

This formula coincides with (0.4) and could be somewhat simplified by means
of formula (3.2) from [M3].

COROLLARY 5.3.
Let 53 = hYpl), pl=F—k-p (see (5.4), where

k. >i2(k.—kq)
hgc) - H (tz-i-(avﬁ') e G ))’ for k. = max{k,}. (5.12)
1, a€ERy

Then the coefficients of ﬁgc) expressed in terms of {m.} are Laurent polynomials
in t* over Z (belong to Z[t%,¢t~2)).

The proof is based on the representation of p},k) by means of the chain from
(5.3). The operators G act over Z[t,t~!] (which follows from the the same property
of {T}). Hence we can apply (4.15) again (and use the functions g from (5.5)). The
resulting statement is connected with (6.3) (and the corresponding Conjecture) from
[M1]. O

We mention that (5.1) is equivalent to Conjecture 1 from the end of [Ml] in
the case of coinciding {k,} and Conjecture (12.6’) from [M2] when [] k. # 0.
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The latter was checked in [AI} (for A4,), [AW] (the case of BC}), and proved by
Macdonald for A,, (unpublished).

By the way, formulas (5.1), (5.11) were checked by computer in the case of the
root systems Bs 3 for quite a few &k, (in the range of 30 MB). It seems that the
{ps} have (many) other rather remarkable algebraic properties. Some of them are
connected with those from papers [S,M1], where the so-called Jack polynomials and
their g, t-counterparts were considered (in the case of 4,,).

There are quite a few works about orthogonal polynomials. We mentioned
here only (a small part of the) papers directly connected with the Macdonald ¢-
conjecture. We would like to add that a certain generalization of the g-Jacobi-
Askey-Wilson- Macdonald polynomials of type BC, can be found in [Ko]. The
coincidence of the polynomials of type A for ¢ = t2, ¢ = t'/? with g¢-spherical
functions of the symmetric spaces GL(n)/SO(n), GL(2n)/Sp(2n) was established
in [N].
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