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Deuicateu tu I.M. Gelfauu ou the uC<.:aSiou of hiH 80 birthuay

DOUBLE AFFINE HECKE ALGEBRAS
AND MACDONALD'S CONJECTURES

IVAN CHE~DNIKt

o. Introduction. In tbis paper we prove the nlain results about the structure
of double affine Hecke al~ebras announced in [Cl, C2). The technique is based on
the realization of these al~ebras in ternlS of Denlazure - Luszti~ operators [BGG~

D. L2, LS, Ch3] and rather standard facts fronl the theory of affine Weyl groups.
In particular, it conlpletes the proof (partially published in [C2]) of the Macdon­
ald scalar product conjecture (see [MI].(12,6')) , includin~ the fanlous Macdonald
constant terol conjecture (the q, t-case).

We nlainly follow Opdarn paper [01 where the Macdonald-Mehta conjectures
in the degenerate (differential) case were deduced fronl certain properties of the
Hecknlan-Opdarn operators [HO] and the existence of the shift operators. Heck­
nlan's interpretation of these operators via the so-called Dunkl operators (see [He]
and also [Ch5]) was inlportant to our approach.

We note that the HO operators are closely related to the so-called quantunl
nlany-body problenl (Calo~ero, Sutherland, Mosel', Olshanetsky, Perelomov), the
confornlal field theory (Knizhnik- Zarnolodchikov equations), the harnlonic analysis
on synunetric spaces (Harish-Chandra, HelgMon etc.). and (IMt hut not the least)
the classic theory of tbe hyper~eonletricfunctions.

Establishing the connection between the di fference counterparts of Hecknlan­
Opdanl operators introduced in [Ch41 and the Macdonald theory [Ml.M2] including
the construction of the difference shift operators is the lllain result of this paper.
Once this is done it is not very difficult to calculate the scalar squares of the Mac­
donald polynonlials and prove the constant ternl conjecture fronl his flmdanlental
paper [M3].

To sinlplify the exposition, we consider the reduced root systen1s only and inlpose
the relation q = t k for k E Z+ (to avoid infinite products in the definition of
Macdonald's pairing). The purpose of this work is to present a concrete application
of the new technique. Arbi trary q~ t can be handled in a sinlilar way and will
be considered in the subsequent paper(s). The passage to non-reduced systeols is
strai~htforward. It is worth n1entioning that t.he final problen1 in this line is to
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calculate the scalar products of the eip;enfunctions of arbitrary difference Hecknlan~

Opdanl operators for any eip;envalues.
This paper was written trus Stuumer durinp; nlY stay at Max Plank Institute für

Mathenlatik~ University Collep;e of Swansea~ and ETH at Zürich. Pd like to thank
F.Hirtzebruch, D.Evans, and G.Felder for kind invitations, and DlY colleagues at
these institutes for hospitality. I anl also p;rateful to M.Kashiwara and P.Hanlon for
valuable advice.

Let R == {a} C Rn be a root systenl of type A~ B ~ ... ,F. G with respect to a eu·
clidean fornl (z ~ z') on Rn :;, z. z'. We fix the set 14 of positive roots (R_ == - 14).
the corresponding sinlple roots a1, ... , an ~ and their dual counterparts a1, .... an' ai ==
ay, where av == 2a/ (ce ~ ce). The ftUldanlent al weights ß1 ~ ... ~ ßn and the dual fllll­
danlental weights b1 , ... , bn are deternuned froDI the relations (ßi, aj) == 61 = (ai, bj)
for the Kronecker delta. We will also introduce the lattices

and Q±~ P±, A±.B± for Z± = {ra E Z, ±711 2:: O} instead of Z. (In the standard
notations, B == p V , P+ == P++, ßi == Wi etc.) Later on~

Va (a, a)~ Vi == Va;, VR == {IJcn a ER},

Pv == (1/2) L a = L ßi, for ce E ~.

We set K. v = I{ce E 14. Vo = v}l.l~ = (aV,p,JL where I I DIeans the nunlber of
elenlents~ and introduce e~1 = {6~1. 1/ E I/R}' We will consider

deI def deI {} deI { ~
ea = evo ' P == {Pv}. K. == K.v , la == la}, l/ E lJR. (0.2)

as vectors and use the dot product ({X~} . {Yv} = L~E~H XVY,J)'
Let us put fornlally Xi == exp(ßi), Xß = exp(ß) = rr~~1 x7 i for ß == L:~::1 kißi.

and introduce the algebra Ct[x] of polynonlials in tenns of X;=1 with the coefficients
belonp;ing to the field C t == C(t) of rational fllnctions in ternlS of an indefinite
cODlplex paranIetel' t. The coefficient of xO == 1 (the constant tenn) will be denoted
by ( ). We will also involve xy2 = exp(ß/2) == 1l~~1 x7i

/
2. belonging to a proper

extension of Cdx].
Given k = {kv }, kv E Z~! let ko = kvO;!

J.Lk:::: TI {(t ket -1 X~/2 - t 1- ko x~ 1/2) ...

aER.r

... (t1-kox~2 _ tka-1x~1/2) (t-ketx1j2 _ tknx;;;l/Z)}. (0.3)
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THEOREM 0.1.

ka-lII II {(tk"a+i+l - t-k"o-i-l)/(tk"a-i - t-k.,,,,+i)}. (0.4)
aERt i=O

o
Note that J.Lk belongs to C t 2 [x]. We use t to nlake the notations nlore syn1ffietric.

FornuI1a (0.4) for coinciding {kv } is equivalent to Conjecture (3.4) (see also (3.2))
frolll [M3] (Macdonald's q equals t-2, his t is our q-2).

In the case of An, the proof of the (nlore general) Andrews conjecture can be
found in [BZ] (see also [St)) . The BCl WM considered in [A]. Paper [K] (containing
the Dl0st elaborate theory based on the Aonloto-Selberg integrals) is devoted to the
proof of the Macdonald- Morris conjecture for BCn . It was also proved for G2 (see
[H)) and F4 ([GG]). See [M2,K,O] for futher infornlation about related results and
special case~.

A generalization (based on the cohonl010gy of certain Lie algebras) was found
in [HaI]. The proof of the so-called strong Macdonald conjecture was done in [Ha2]
in the case of An. A certain approach to this conjecture was suggested by Feigin.

We will obtain Theorenl 0.1 as a particular case of the so-called Macdonald
scalar product conjecture.

1. Affine foot systems. In the above notations, the vectors Ci = [0:. k] E
Rn X R c Rn+l for 0: E R. k E Z fornl the affine 1'(JOt syste1n Ra :J R ( z E Rn are

identified with [z, 0]). We acid 0:0 d;J [-B, 1] to the sinlple roots for the rnaxi1nal1'oot

B E R. The corresponding set R+ of positive roots coincides with I4 u {[a. k], 0: E

R, k > O}.
We will use the Dynkin diagranl r and its affine conlpletion r a with {C"tj. 0 ::;

j ::; n} as the vertices (l1l.ij = 2.3,4,6· if ai and aj are joined by 0.1.2,3 laces
respectively). The set of the indices of the iOlages of ao by all the alltolllorphisnls
of r a will be denoted by 0 (0 = {O} for E8.F4~G2)' Let 0" = r E O~r:f O.

Without going into detail. we nlention that (BV, a) ::; 1 for B 1= a E R.t. More
precisely, B = Li ßi, where 1niO > 2. The olultiplicity (br~ 0:) of the roots a,.
in arbitrary 0 E R+ is also not nlore than 1 for r E 0" (i.e. br are nunuscllie
co-weights). Für instance, (br , B) = 1 (see [B,V.C4)).

Given Ci = [0, k] E Ra, bEB, let

sö(z) = z- (z.aV)ä. b'(i) = [z.(- (z.b)] for i = [z,(] E R n +1
. (1.1)
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The affine Weyl group W a is the span< Sö >. It is ~enerated by the sinlple
refleetions Sj = SQ)' 0 ~ j ~ n~ and can be represented as the senli-direct produet
W~AI of its sub~roupsW =< s(o a E I4 > and AI = {al, a E A}, where

a
l = SaS[Q)] = S[-a,lJSa for a = aY. (1.2)

The extended Weyl g1~OUp Wb ~enerated by W and BI (instead of AI) is iso­
morphie to W ~ BI:

(wbl)([z. (l) = [w(z), ( - (z~ b)] for w E W, bEB.

DEFINITION 1.1.
i) Givell b+ E B+, let

(1.3)

wllere Wo (respectively, wt) is tlle lOllf{est elenlellt III W (respectively, in W b+

generated by Si preservinf{ b+) relative to tlJe set oE f{ellerators {Si} far i > O.
ii) lf b is arbitrary tllen there exist ullique elelllellts w E W. b+ E B+ sudl tllat

b = w(b+) and (a.b+) i= 0 j[ (-a) E I4 3 w(a). We set

(1.5 )

o
We will discuss general properties of {Wb.7Tb} later. Now we only note that the

elenIents 1Tr • r E O~ leave r a invariant and fornl a group denoted by TI. which is
isomorphie to B / A by the natural projection {b,. ~ 1fr }. As to {w,.}, they preserve
the set {-B~ai~i > O}. The relations 1T,.(ao) = a,. = (wr)-l(-B) distin~uish the
indices r E 0·. These elenlents are inlportant beeause:

Basically~ this property is due to [B). In this very farnl, (1.6) was established in
[V] (1.2), as weIl as an equivalent version of (1.9) below and sanle other faets of
this kind. Then sinlilar results appeared in different places (say in [KW] and [C4)).
I'd like to thank KunlaJ.· for the reference to [V) (whieh still seenlS one of the Dlost
conlplete papers on this stuff).

To go further we need the notion of length and its geonletric interpretation.
Given ].I E l/R. r E 0·, w E W a

• and a redueed deconlposition 'l.Ü = 8jl",sh Sjl
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with respect to {Sj, 0 :::; j :::; n}, we call 1 = 1(tu) the length of w= 1rrtÜ E Wb and
introduce the sets

.A(w) = {Öl = ajl' &.2 = sit(ah), &.3 = sll sh(aja), ... ,öl = tü-1Sj,(aj,)L

.Av(tu) = {öm
, v(öm

) = V(Öjm) = v} for v([a,kJ) d;j Vco 1 ~ 111 ~ l. (1.7)

One has: 1= ~", Lv, where lv = l,~(w) = IA",(w)1 denotes the correspondinp; nunlber
of elenlents.

To see that these sets do not depend on the choice of the reduced decoDlposition
we will use the following (affine) action of Wb on zERn :

(wb')(z) = w(b + z), w E W. bEB,

Sä(Z) = Z - ((z, n) + k)nV
, ä = [0:. k] E RU.

and the affine Weyl chaInber:
n

nLOj, La={ZERn
, (z,a)+k>O}.

j:=o

PROPOSITION 1.2 .

.Av(w) - {Ci: E Ra, tU-l(Ca) <t L ö • v(a) = v}

- {ä E Ra, l",(tUSä) < l",(tu)}.

(1.9)

(1.9)

o
As to the latter conditioD, direct calculation shows that

l( WSä{l}'''Sö{p}) > l( tUSö{l}",Sö{p+l}). if

- { } def - m 1 1 (1 10)a q = a q, 2:: 1n1 > 171.2 > ... > 'n1p > 1Hp+1 2:: . .

Vice versa, an arbitrary sequence of positive roots ä{ 1}. ä{2}, ... satisfyinp; the
consequent conditions (1.10) for p = 0, L ... can be obtained by the above construc·
tion (i.e. belongs to .Av (tu) and con'esponds to a certain reduced deconlposition of
tu). We will not use this fact and only DIention that it results fronl the following
rather standard proposition.

PROPOSITION 1.3. (see e.f.f. [C4I. Propositioll 1.4).

Each oE tlle following cOllditiollS for x, y E Wb is equiV"dlellt to t]le relation

lv(xy) = lv{x) + l,~(y):

a) .A",(xy) = AI~(Y) U y-l(Av(X)), b) y-l(A'J(X)) C R+

c) A",(y) C Av(XY), d) y-l(A",(X)) C Av{XY). (1.11)

o
Now everythinp; is prepared to olotivate the construction of {7fb}'
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THEOREM 1.4.
i) In the above notations,

A(b') = {a~ a E R+~ (b~ a) > k ~ O} U {o, a E R_~ (b~ a) ~ k > O}. (1.12)

A(1rb1
) = {ö,-(b,a) > k ~ OL where a = [a~k] E R~~b E B. (1.13)

ii) H w E b'W (i.e. w(O) = b) tllen tU = 1fbtu for tu E W such tllat l( 'tu) =
l(1fb) + l (tu). Given bEB, tllis property (valid for any tU taking 0 to b)
determmes 7fb uniquely.

Proof. Formula (1.12) is verified directly (see Proposition 1.6. b) fronl [C4)). By
the way, it gives the useful fornnuas (cf. {Ll]~ 1.4) :

lv(b') = LI(b~a)L where II=ab8. vallle.aER+.vo=vEvR,
0'

lv(b~) = 2(b.pv). when bEB+.

Oue can follow the sarne proposition ( assertion a) ) to check that

A(Wb+) = {a E 14~ (b+, a) > O} for b+ E B+.

(1.14)

(1.15)

It proves (1.13) for B+ ~ due to Proposition 1.3~ a) and the relation A(lU-1) =
-tU (A (tu)) (resulting fronl Proposition 1.2) .

Let b = w(b+) for positive b+ and tu E W. We can nlllitiply w on the right
by elenIents preserving b+ (Le. belonging to Wb+). If the length of tU is the least
possible, then A( tu) does not contain roots a E R+ orthogonal to b+ (Proposition
1.2) and tU is defined uniquely. This condition is fronl Definition 1.1. ii).

Setting b = 1fW for W E W~ where 1f E W has the least possible length l(1f).
we are going to calculate A(W) and A(7f-1 ).

The set A(7f) containes only roots ö = [a~ k] with k > O. Otherwise we could find
in this set a root fron114 and apply the second fornnlla fronl (1.9) to reduce 1f by the
corresponding refiection from W. Hence, tu- 1(A(1f)) C R+ and the deconlposition
b = 1fW satisfies condition (1.11). Moreover, tu -1 (A (1f)) contains a11 the elen1ents
fronl A(b) with k > 0 (since tu E W - use (1.11) again). It is enollgh to calculate
A(W) because A(b) is ah'eady known. We will arrive at the sarne fornlula (1.15) (but
now for W and bEB). Applyin~ (1.11) after the passage to -b~ we obtain precisely
(1.13) for A(7f-l). .

Let us calculate A(Wb) and A(1fb1
). Thanks to fOlTIlUla (1.15) for b+ and the

properties of tU (see above) we have the en1bedding A('tU) C ;\ (Wb+ ). Hence the
decon1posi tion Wb+ = Wb tu satisfies conditions (1.11) and

A(Wb) = W(A(Wb+) \ A(W)) = W(A(Wb+)) n14
= tu ( {a E R~ (a ~ b+) > O}) n R+ = {o:' E ~ ~ (a' ~ b) > 0, }.
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Here one can use Proposition 1.3 with the relation A(W) = {a E ~, w(a) E R_}
resu1tin~ directly fronl (1.9). We see that (abstact) w defined above and Wb fronl
(1.5) coincide (they have the sanle A-sets). It wves the coincidence of 'Ir and 'Irb,

forulula (1.13), and stateulent ii). As for the 1atter. if tU (O) = b, then tU = 'IrbW' • w' E

W. However we know that l( 7fbtU') = l( 'Irb) + l( tu') for any tu' E W. 0
We set

c ~ b. b t c for b, c E B if b - c E A+, (1.16)

and use -<, >- respectively if bi:- c. Given bEB, let b+ = w.;l(b) E B+ for tu+ fronl
Definition 1.1. The sets

aV(b) d;J {g E B, tu(c) ::5 b+ for any tu E W},

ati (b) d:! {c E B, tu( c) -< b+ for any tu E W} (1.17)

are W -invariant (which is evident) and convex. The latter llleans that if c, c· =
c + rav E aV(b)(E ad'(b)) for a E R. r E Z+, then

{c, c+av, ... ,c+(r-l)aV
, c·}caV(b)(Ca~(b)). (1.18)

ll.eally, tu ( C+ r ' a V) for 0 < r ' < r is always between tu (c). tu (c·) for any tu wi th
respect to the orderin~ '-<' and therefore belangs to (1.1 7) bccause tu (c), 'W ( c·) do.

For the sake of conlpleteness, we will check another weH known property of
aV(b). It cantains the orbit W(b). If w(b) ~ b+ and l(ws o ) > l(w) for a E R+,
then tu(a) ERrand tuso(b+) = w(b+ - (b+, a)aV

) ~ b+. Hence we can argue by

induction.

PROPOSITION 1.5.
i) Givell tu E Wb, ä E A(ZU), let b = tl,(O}, tu. = tUSen b. = tu. (O). Tllen b. E a V (b).

H b E B+ and b. #. b, tllen b. E ati(b).
jj) In tlle above ]lypot]leses, l(tu) > i(b~) jf b+ "# b, and

jii) Let w. = Sö{p} ... Sö{l}tu ,w]lere we take any sequellce (1.10) for lU- 1 (illstead of

tu) such tbat l( sö{ 1} tu) < i( tu). Tllen e( tU.) < e( tu) allel 1U", (O) "# b. lf b = b+
tllell {b.} =ati (b) .

Proof. One has: A(tU-1
) C {Ci = [a, k] E Rf., -(b, a) ~ k ~ O} (use (1.9)).

Hence,

b. = sf-"'t(b} = b - ((h. a) + k)a V
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is between b and 8 a (b) with respect to the odering ':j'. If b E B+ (i.e. b = b+) and
b. i= b, then a E R_, k > 0, and b -< b. -< sa(b). It cOlllpletes i). Assertions ii) and
iii) follow directly fronl the definitions of 7fb and e( ). 0

2. Double affine Hecke algebras.
The construction depends on () E C· and {qv E C· ~ lJ E l)R} which will be

regarded as fornlal paranleters; CJ~q nIeans the field of rational functions in {6, q,~},

In the hypotheses of the previous sections, we denote the least conllllon order of the
elenlents of IT by 111. (111. = 2 for D2k, otherwise 111 = IITD and set

We renlind that Xi = exp(ßi) , x{3 = exp(ß) = n:~l x7i for ß = l::~l kißi.
CJ[x] = C6[X{3] nIeans the algebra of polynonuals in ternlS of xt 1 with the coeffi­
dents depending on § rationally. We will also use

n n

Xf3 = rr X:i c5
mk if ß= [ß, k], ß = L kißi E P, 1nk E Z, (2.2)

i'== 1 i== 1

where {Xi} are independent variables which act in CJ[x] naturally:

(2.4)

In particular (we will use this in the sequel):

(2.5 )

DEFINITION 2.1. (see (Cl,C2J)
The double affine Hecke algebra jj is gellerated over tlle field C6~q by tlle elelllents
Tj , 0 :::; j :$ n}, pairwise COllllllutative {XIJ , ß E PL aIld tlIe group TI, satisfying
tbe followlllg relatiolls:

(0) (Tj - qj)(Tj + q;l) = 0, 0 :::; j :$ n;
(i) TiTjTi ... = TjTiTj ... , 111ij Eactors Oll eacll side;
(ii) 7fr Ti 7f;l = Tj iE 7fr (od == Oj;

(üi) TiXßTi - XßX;;/ iE (ß, ad = L 1 ~ i :::; n;
(iv) TO-

1XßTO-
1 = X"o(ß) = XßXi 1

~ iE (ß, BV
) = 1;
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o
Given tÜ E W a

~ T E O~ the product

I I

T"Ir r ÜJ d!:f 1fr TI Ti k • where tÜ = TI 8 i k ~ 1=1(tU ),
k=1 1.;-1

(2.6)

does not depeod 00 the choice of the reduced decoolpositioo (because {T} satisfy
the sallle ::braid" relations as {s} do). Moreover,

TvTw = Tvw whenever l(inu) = l(v) + l(-I.ü) for V. tU E Wb, (2.7)

which follows fronl (2.6) and relations (ii). In particular, we arrive at the pairwise
COllllllUtative operators (use (2.7) and (1.14)):

n u

Yb = TI y i
ki if b =L kibi E B, where Yi d:;j Tb~. (2.8)

i=l i=l

PROPOSITION 2.2.

Ti-1YbTi-l = YbYa~l jf (b,O'd = 1.

T'Yb = YbTi if (b.O'd = O~ 1 ::; i ~ n. (2.9)

Prooj{cf. (LI], 2.7). We will deduce these relations fronl (i)-(ii). It sufices to
check that

(2.10)

Applying (1.15) to b= 8.{b.} = bi - ai, we see that l(l/) = L erE14 I(bi , 8.(0'))\ =
l(bD - 2, since s.(a) E I4 for a E R+ \ {nd. Hence foroltl1a (2.7) works for
the tripie decoolposi tioo bi = S.h8i. If j i- i, then Clj rJ. A(bi) (see (1.12)) and
l(biSj) = l(bD + 1. Now we only have to use the Coolluutativity of b. and Sj. 0

Vice versa. inlposing (i), one can deduce fornlally (ii) fronl (2.9) (and the COOl­
lllutativity of Y). When 111. f:. 1 there is rather straightforward proof using {7fr } .

Here we will obtain it as an application of the fol1owing construction.
The Demazure-Luszt1:g ope1'ators (see [KL~ KK. C1L and [C5J for lllore detail)

(2.11)
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act in ClS,q[X]. It is worth nlentioning that

1'0 = qoso + (qO - q(1)(AX;1 - 1)-1(so - 1).

where so(Xi ) = XiX;{ßi ,OV) !:l. (ßi lJ
V

). (2.12)

THEOREM 2.3.
i) The map ((Tj) = Tj~ ((Xß ) = X{3 (see (2.3)), ((1fr ) = 1fr (see (2.5)) illduces

a Cd,q-linear 110nlonlorpllisllI ErollI 5) to tlle all{ebra oE linear elldollIorpllisllIS oE
C&,q[x], well-denned for arbitrary values {6 E C· 3 q}.

ü) This representation is faitllful jf tlle value of t5 is not a root of ullity culd q are
arbitrary (frol11 C·). 111 tlljs case, any gjven elelnellt H E 5) llas tlle unique
"nonnal fornl":

H - L Ybhb,wTw. hb~w E Co.q(X].
bEB,wEW

(2.13)

Proof. Relations (ii),(vi) (involving 1f) results directly fronl (1.6). As to the
relations with X ( (iii),(iv),(v)), they fol1ow fronl the fornul1as SjXßj = XSj(ßj)Sj

(in the non-affine case they are due to Lusztig). One Dlay check (0) and (i) only for
j > 0 (Dloreover, there is a reduction to the case of rank 2). when these relations
are from (L2] ( see also (LS] about roots of type A).

Let as assunle that t5 is not a root of unity. Arbitrary elenlent fI =((H), H E 5).

can be uniquely represented as folIows:

iI = L b'gb,w'W.
bEB,wEW

where gb,w are rational functions in {X1, .... X n }.

LEMMA 2.4.
Givell bEB and 1U =1fbW,W E W,

(2.14)

Tw={(Tw)+ L 9b..
l
w b: w , wllere b.EaV(b),i(b:)<i(b') (2.15)

b.. lwEW

(2.16)

tllat is invertible. Moreover.. iE b E B+ tllen b. E (J6 (b) _(in tllis case Tw
YbT~lTw) .

Pr'oof. Following [C4L let

Gä;q = Gö. = qö. + (qö. - qö1)(Xö1 - 1)-1(1 - Sir). cl E Ra. (2.17)



Given a reduced decoDlposition 1U = 1fr Sj, •.. Sit' 1 = l(w), r E O~ one has (see
(1. 7)):

We nlay assume that w = Sj8 ... Sjt' e = l(w). If we take only the ternlS without Sö

fronl the binonlials GöP, where er = ä p • p > e, then the corresponding; product
coincides exactly with (2.16). Apply (1.13) to check it. Any other ternlS contribute

to the elements gb,qW b~ tu with b~ 1= b. (see P roposition 1.5). 0
We come back to the theorenl. First of all, the existence of (2.13) follows fronl

Definition 2.1 and Proposition 2.2.
If there is a nontrivial expression in the fornl (2.13) vanishing identically and

involving {Y}~ one can make all b positive (nulitiplying; on the left by a proper Y).
Then take' and rewrite Tb l = Yb. b E B+, due to the lenlola. Using the l-leng;th.
we arrive at a nontrivial sunl of type (2.14) without Y and represeoting; zero. A

contradiction with [L1],[C3]. A

As a by-product~ we proved that ( is a faithful representation. 0

3. Difference Heckman..Opdanl operators. Let 1-lx, 1-ly be the affine
Hecke algeb7'as generated over C .by abstract {Ti, 1 ::; i ::; n} and pairwise COOUllU­

tative {Xi L {Yi} satisfying relations (o.i,iiLv) fron1 Definition 2.1 (for 1 ::; i, j ::; n)
and (2.10). We assunle that 6 is not a root of unity and regard thenl as subalgebras
of .fj ( which is possible thanks to Theorenl 2.3, ii)). Fronl now on .fj is identified
with its inlage with respect to (. We write T. Y instead of f, Y.

The algebra of W-invariant elenlents in the C[x] is denoted by C[x]w. Here (and
in sinlilar cases) x will be replaced by X and other letters without nlore COn1Dlent.
We will often use that C[X]W is the center of 1-lx. The sanle of course holds for
C[y]W and 1i,y. This property is due to Bernstein (see e.p;. [LI], [C3]).

Theorenl 2.3 gives that an arbitrary elenlent H E 1-ly can be uniquely repre­
sented in the fornl :

H = I: hb~w YbTw =
wEW,bEB

I: b'gb~wW.
wEW,bEB

(3.1 )

where hb!w E C, gb!w are rational functions in {Xl, ... , X n }. Let us check that they
are re~ular at the points

dei dei .<> = (Xl = ... = Xn = 0). [>Q = (Xl = ... = Xu = (0).

Really, {(xt -1)-1} (fronl (2.11) and (2.18)) are well-defined at these points ei ther
for positive 01' for negative ä E Ra.
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Let us define the difference Harish-ChandT'a homoTnorphism:

X( L b'9b,wW) = L( II q;;2(fI,p'-))9b!w(0 )Yb E Ca,q[Y). (3.2)
wEW,bEB w,b LlEVH

where {Yb} is one more set of variables introduced for independent Yl, .... Yn in the
same way as {Xb} were. We nlention tbat one can switch 9 and b' in (3.2) because
tbe point 0 is B'-invariant.

PROPOSITION 3.1.

X( L hb,w YbTw ) =
wEW!bEB

L (ll q1:(w) hb,w Yb·
wEW,bEB LI

(3.3)

Proof. Firstly, one can considel' {Yb} only. Let us deduce fronl fornlula (2.16),
tbat the X-value of the leading ternl ~(tbl) gives exactly Yb. It is deal'. that
X(wb"lTw.) = Ov q~(Wb). As to the product before b'o let UB look at (1.13).

Given a E ~~ if - (b. a) > 0 then the nunlber of roots ö: :::: [a, k) in the
prodllct equals -(b, a). Otherwise (if (b, a) > 0), the nuolber of roots ä = [-a, k]
in the product is (b. a). In the first case. Xö ( 0) = O. The second leads to 00.

The cOlTesponding ratio in the considered prodllct is either q~l 01' q'~a respectively.
Together with the Wb-part calculated above (the roots fronl ""(Wb) are all non-affine
and positive), we arrive at the required stateluent.

Here b was arbitrary. We can say lllore for positive b. Any other ternlS con­
tlibute to the coefficients 9b. ,w with b. E a;r (b) and COOle fronl the s-parts of the
subproducts (cf. (1.10)) :

b'Gö{l} ···Gö{p}, where ä{l} = äml~ .... l ~ rnl > ... > 1l1.p ~ 1.

Moreover;17l1 > e for the first G~ which gives the factor (Xi~~k] _1)-1 for ä{1} =
[a. k], a E R+. Its value at 0 is 0 and will renlain unchangable after traosfornling
and taking X . Thus X(Yb) = Yb and

9b.,w(O) =0 for bEB+.'WEWb*Ea;j(b). (3.4)

Let us consider now b E B_. Theorenl 1.4 gives~ that 7fb = b'o i(b') = l(b') > i(b~)

for any b t= b. E a~ (b).

LEMMA 3.2.
Given bE B_,

(3.5)
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Proof. Since (Gä;q)-l = G_ö.;q-l (see (2.17L (C4]) , Y'=-bl can be obtained fron}
Tb' by the followinp; substitution: qv -+ q;l, t5 -+ 6-1. Xi -+ XiI for all {1/, 1 ::;
i ::; n}. Thus we ßlay use Lenlnla 2.4. The last relation fronl (3.5) holds because
A( -bI) contains only (a, k] with positive Q and we have to replace Xo. by X~l for
all a afterwards. 0

Turninp; to arbitrary bEB, let b = b+ + b_, where b± E B±. Then (see (2.8)),
Yb = Yb+Yb_. Since we have conditions (3.5) for both Yb± it cOßlpletes the proof.O

Given f E C[y]' let

.cj=f(Yb ....'~I)= L blgb~wW. Lj d:! (.cj)red= L blgb~w' (3.6)
wEW,bEB wEW,bEB

We notice that the restrictions of.cj and Lj on Ca:!J[x]W coincide.

THEOREM 3.3.
TIle operators {L j , f E C [y] W} are pairwise C0111111U tative. W -i11 varian t (i. e

wLjw- 1 = Lj for alI w E W) and preserve Ca~q[X]W.

Proof. First, the operators {.cf} are pairwise conullutative and preserve C 6,q[x]
(because {Tj,O ::; j ~ n} and {1T"r} do). Then Ti.cf = 12fTi for all i ~ 1 and
/, since f{Y) are central in 'Hy (due to Bernstein). It results in the relations
Ti(Lf(P(x))) = qiLj(p(X)) for any p(x) E C6~q[X]w. We see that {Lf} and {Lf }
leave CJ~q[x]W invariant. Hence the COllilllutativity of {.c} gives the conllllutativity
of {L} upon the restrietion to Ca,q[x]W, which leads to the required conlnlutativity.
Cf. also [Ch4], Theoreol 3.6 (the rational case). 0

Proposition 3.1 supplies us with the x-values of {.cf} (which will be necessary
to prove the Macdonald conjecture). Moreover we can calculate the nlain tel'nlS of
these operators.

PROPOSITION 3.4.
i) Given b E B+., let nb = LwEWjWb Yw(b),. W}lere Wb is tIle stabilizer oE b i11 W.

Then

Nb def L Ub = ((Nb) + L 9b. b~. wllere b,. E O~ (b),
b.

~(Nb) - L rr qä~W(~) =~Ö\w(-b))' (3.7)
wEWjWb ÖEA(b) w(a)

ii) 1fr E O· tbell Nbr = ((Nbr ): Moreover, Nev - ((Nev) is a scalar function.

Proof In the operator Nb = [,nb' the ternl with -b' can COllle only fronl Y- b .

It results directly frolll (2.15) and (3.5). The lat tel' contains the fornlula far this
ternl. The W -invariance of Nb = (Nb)rcd conlpletes this reasolling. 0
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Assertion ii) p;eneralizes Theorenl A.3. fronl [C4] (about a construction of Mac­
donald's operators for An via affine Hecke algebras). The operators Nbr , N(Jv are
exactly the operators corresponding to (nunllscule) {b r } and (quasi-nlinuscule) Bv

frolll [M2]. Actually~ this observation alone is enough to establish the connection
of our construction and the Macdonald theory. In the next section~ we will discuss
this issue in more detail involvinp; the Macdonald pairing.

Let us fix € = {E... \V E VR} (cf. (0.2)). We introduce the shijt operator by the
forolula Ot; = Xt;-1 yt;~ where

Xt; = TI (qQX~/2 - q;;1X~I/2). Yt; = TI (q;;ly;t2 - qo y;,I/2). (3.8)
e", S:t; , e", :$;t;

Here a E I4~ eo are fronl (0.2), eQ ~ € nleans that the cOlllponents of E - eQ are
fronl Z+, and X 1/ 2 ~ yl/2 are tmderstood in the sanle way as x 1/ 2 were (Sec.O).
Elenlents Xt;, Yt; belong to Cq(X]' Cq[Y] respectively (Le. are polynonlials in terulS
of Xß~ Yb for ß E p~ bEB, with the coefficients in C q ).

PROPOSITION 3.5.
If €i deI €Oi ~ €, 1 ~ i ~ n,. tllen

(1:' + q:-l)X = (q-X- 1/2 _ q:-l X l / 2 )(q'X 1/ 2 _ q:-l X-1/ 2 )-1 X (T· _ q.)
t t t; I 0, I 0; I 0; I Oj t; t t·

(
"7". + -1)y _ ( _yl/2 _ -ly-l/2)( .y-l/2 _ -lyl/2)-ly (T.. _ .)
.LI qi t; - qt Uj qi Uj ql U; qi U; t; I ql ~

(Ti - qdX: = (qiX~{2 - qi1X;;//2)(qi X ;;//2 - q;l X~{2)-1X~'(Ti + q;l),

for X; deI TI (q;;1 X~/2 - qo X;;I/2). (3.9)

en$t;

Otherwise (i! €i 1: €,), TiXt; = XETi. TiYt; = Yt;Ti. The operators QE~ :FE deI

X:Yt;. and Gt; d;j Xt;-1 (Yt; )red preserve CI5,q[X]W. Moreover,. Gt; is W -invariant.

Proof We set Xc! = DiVi for ei ~ €, where Di = (qiX~:2 - q;1 X;;}/2). Here

D, V are considered as operators acting in Co.dx~1/2 ~ ... ~ x;;1/2]. Then Ti X ~:2Ti =
X - 1/ 2 d

Oi an

(Ti + qi1 )Di =

( .X-1/ 2 ,- -lX1/ 2 )( .X1/ 2 _ -IX-1/ 2 )-lD'(T' _ .)qt Oj qi Oj qt Oj qi U; t I ql (3.10)

The relation SiVi = ViSi results in TiDi = DiTi and in (3.9) for Xt;. One can put
Di = 1 in this reasoning to include the case ei 1: €,. As for Yt;, use the statenlent
which has been already checked and the substitution {Y? = XiI} identifying 'Hx
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with the al~ebra 1l~ for the dual root systenl. The autolll0rphisDl {qi ~ _q;1} in
llx takes XE to ±X:, which proves the reDlaining relation.

Given P E CO,q[x]W, forDlula (3.9) shows that the polynonlial p' = YE(P) satisfies
the relations Ti(p') = _q;1p' if ei 1:. € and Ti(p') = qiP' otherwise. Hence
Xe-l(p') is W-invariant. It is also a polynonlial, which can be deduced fronl the
corresponding statenlents fronl [B] (in the case q = 1) by standard defornlation

reasoning. We see that the operators OE and GE preserve Co~q{x]w. Therefore GE
is invariant. As for :FE' it is a product of OE by a central elenlent fronl llx and
leaves CO,q[x]W invariant as wen (one can use (3.9) directly to see this). 0

We follow (1.16):

i !: ß, ß ::5 i for ß, "Y E P if , - ß E Q+ .

d(ß) d!!f {, E P, tu(,) t: ß for auy tu E WL ß E P_,

(1o(ß) d;! {, E r, tu("Y) >- ß for any tu E WL ß E P_. (3.11)

These sets are W -invariant and convex. The first contains W (ß).

PROPOSITION 3.6.
Operators {Tj. 0 ~ j ~ n}. {J!i, 1 ~ i ~ n}, {LI, f E C[y]} preserve E(ß) d;j
E91'Eu(ß) CO,qX"'Y alld tlle ~o (ß) (defiIlcd for (10 (ß) in tlle salne way) for arbitrary
ß E P- (cf. [H), Prop.3.5).

Proof It suffices to check the stateolent for (one of) {Tj }. Given 1 E a(ß),
its inlage Tj(xß) is a linear conlbination of {xi} such that {", - 0:', "',1 - Ta} C

a(ß) for Sj("Y)=,-Ta,whereaiseitherai.i>O. 01' -(). 0

4. Macdonald '8 polynomials. We set 1nß = l:1'E W(ß) x1' for ß E r - .
These fnonomial symmet7'ic functions fornl a base of C[x] w. Let us introduce the
involution l.: d --t <5- 1, qV --t (q,")-1 on Co~q. and the Macdonald conjugation

Xß ~ X-ß, leaving 6, q invariant. Fronl now on we ilupose the conditions

thou~h nluch holds good without this restriction. One has: q(.) = tko.. where k(.) d~
k Va for Q = [0,']. qj = tkj for k j = kaj • We set

One can check that this skew Macdonald pair'ing (with l.) is non·degenerate Qver
Co (cf. [Ml,M2]). Indeed, it is definite if eS = 1 and the coefficients of f #- 0 are
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real:

J.tkf I" = (_1)k.tiFpI. for F = / II (x~/2 - X;1/2)kn , (FFI.) > O. (4.3)
aE14

Hence, given a finite-dinlensional V C C[x]~ one nlakes (I, f)k 1:- 0 for any 0 :f: 1 E V
if t5 E C is rather elose to 1.

Thus (/, f)k # 0 E CJ for any /, and we nlay introduce the Macdonald polyno­
mials Pß(x) = p1k

) (x). ß E r _. by nIeans of the conditions

Pß - 111ß E EBOt,. rßCJln,., (pß,ln,.)k =0 for , >- ß, '1 E r _. (4.4)

They can be deternlined by the Gram ·Schnlidt process and fornl a base in CJ[x]w,
We mention that ,ük = Jtk ({l'k is a product of an even nunlber of ternlS satisfyinp;

relations Cf' = -( )), and Pß = P# for any ß E P- because Pß satisfy (4.4) as weH.
It olakes our results conlpatible with the Macdonald original definitions. We need
t because of the following theorenl.

Let us introduce two anti-involutions on the operators fronl Sec.3 (acting in
CJ[x]):

H+ = L w-1g(X)t( -b)', H* = 1-'1: 1H+ J-Lk for H = L b'g(X)'W, (4.5)

and rational functions 9(x) ~ 'W E W, bEB (b' is defined in (1.1)). The second
involution serves the skew Macdonald pairing: (H /, g)k = (f~ H*g)k .

Here we regarded P'k as an operator substitllting X for x (as it was done for g).
We will do it pernlanently for this and sonle other functions without any cODllllent.

THEOREM 4.1.

P1·OOf. First of all, let us rewri te Yb in ternlS of b' and

Gö. = qö + (qö. - qÖ 1)(X61
- 1)-1(1 - sö), ci E Ra.

(4.6)

(4.7)

We follow (2.17). Given b' = ?TrtU E B~ (positive b are enollgh to conside) and a
reduced deconlposition W = Sjl ••. Sj1' l = l( 7.ü)~ one has:

Yb = b'Gal ... GOI, where a 1 = ajl' a 2 = sit (ah)' a 3 = sj1si2(aj3), .. ·· (4.8)

We have to check that J&kYb-1 =Yb+J-Lk, which can be rewritten as J-LkC;;) ... (b')-l =
G~l ... (b')-lJtk' A straightforward calculation for Al gives that JtkC:;ll = G~lI-L~

for JLk = 8it (JLk)' Hence we can continue replacing Jt~G:;21 by G~2 J-tZ, where J-t~ =

sit 8h (JtkL and so on. Finally (after G~l) we arrive at I-tLI) == tÜ- l (I-&k). To nlake the

proof complete, we need the relation Jt~l) (b') -1 = (b') -1

'

&k, which directly follows

from (0.3) ((b'lÜ-1)(J&k) = 7rr (J-tk) =Jtk). 0
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COROLLARY 4.2.

~klLj~k == L j for f E C[y]W ~ w}]ere <Pk == TJ;1 Jtb

1Jk dE rr {(t-k(>"x~/2 - tk(>"x-;;I/2)/(x~/2 - x-;;1/2)} E Ct[x]. (4.9)
oEI4

Proof. We onlit SOUle details because this statement will not be applied to the
Macdonald conjectures. Tbe relations Ti.c f = .cfTi for 1 ~ i ~ n and the fornlulas

T.. = - :-1 + ( .+ 1)( :-1x~/2 _ 'X~I/2)/(X~/2 _ X-:- 1/2), q, 8, q, 1 q, 1 1 1 ~ (4.10)

result in ~fP = P7Jk~f1Jkl for P d;j IWI-1 LwEW w. Use the W-invariance of cPk
and the relations .cfP = Li P = PLf to check that

<PkL icP"klp = cPk(L f P)cP"k1 = PJtk.cjJL"kl ==

P~j = (~jP)+ == LjP. (4.11 )

o
We note that <Pk when used instead of J-'k does not alter the Macdonald polyno­

nuals (see [M2]). Moreover. tbe following statenlents hold true.

PROPOSITION 4.3.
Th e ort]]ogonality cOllm tion in (4.4) is equivalent to t]l e req uirelllen t:

(4.12)

W}lere (t; d;J ITe
a
<t;(x~2 - X~1/2)~ a E R+ ~ € == {€,,,~ LI E LlR} is [rolll (3.9),

Pt; == € • P == Ev €vPv.

Proof. One has:

(1/Jlpß X -""(,) = (1/JkPßP:" (x --y' ) } for

p~ def IWI-1 L (_l)l((w),w, lt;(w) == €. {lv(w)}.
wEW

Hence, we nIay check the above conditions for (t;111_-y instead of x_-y', where 1 >­
ß~1 E P- (since P~(x_-y') is divisible by (0)' Thus (4.12) can be replaced by
(<PkPß111_..,) == 0, which is equivalent to the relation (J-lkP/3111_-y) == 0 because of the
followin~ lernnla.
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LEMMA 4.4.
Let W(ß) = {1O(ß) ~ 10 E W}. Tllen (1Jkf) =dk(f) for f E C[x]w.,

ka;tO

dk deI IW(k . p)I-1 II (tk.la+ka - t-k.la-ka})/(tk.la - t- k .lo ). (4.13)

O'ER+

Pr'oof.

dk = IWI-1
( L 1O(1]k))1];:1
wEW

IWI-1 L t k .{l.,(wo)-2l.,(w)}.

wEW

The fomllua for the latter is known (see [M2]. Sec.12). OD

MAIN THEOREM 4.5.
We take € = {€v} sudl tllat €v = 1 jf kJ1 > 0 for 11 E 11R· Gjvell f (Y1' .... Yn) E
C[y]W and ß E P_,

Lf(P~k») = f(tk.lol-(n~l{3)~ ..• ,tk'lan-(Cl~~{3»)p~k), (4.14)

GE(p~k») =

(_1Y"Kt k 'KII (t k 'la -ka _(nY ,ß) _ t-k.la+ko+(oV ,ß) )p~':pE} ~ (4.15)

ea~E

wllere a E ~! p'"'! = 0 jf 'Y tt p_.

Pr'oof. Proposition 3.6 gives that L f preserve "E(ß). Hence L f preserve
ffiOt'"'!tßC6111.,",! for arbitrary f, ß. The standard arguDlents (due to Macdonald)

show that Theorenl 4.1 ensures the proportionality of L f (p~k») and p~k). The corre-

spondinp; coefficient is detemlined by Proposition 3.1. As for GE' it takes p~k) to a

polynonlial from EBOtitß+Pt C6111.i which (we are going to check it DOW) is orthog­
onal to E90ti~ß+P(C611l.-y relative to ( , )k+E' Again it Dleans the proportionality
(cf. the proof of Theorenl 3.15 fronl [R]) and we can calclllate the coefficient using
Proposition 3.1.

The relations Y; = ±Ye (see Theorenl 4.1), XE* = ±XE, and XE = 7]k(E lead to
the fornuuas

r: = 4>k1]k(YEX:)r(;14>J;1 = 4>k€;1 X:YE€E 4>Z 1 = 7/JkFE{ 7/Jk} -1, (4.16)

(7/Jk+EGE(P~k»)X-i/) = (1f{:FE(p~k})X_i') == (1fJlp~k){X:YE(xi')}-j.)~ (4.17)
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where ( )-L = (-y. If '"/ E ao(ß) then X:Yt;(X-y') E 'Eo(ß - Pt;) (Propositi~n 3.6)
and the r.h.s. of (4.17) equals zero (Pro,po'sition 4.3). However the l.h.s., is straight

() ( (k)) . (k)from 4.12 for Gt; Pß .ß + PE' and k + € Instead of P{3 .ß. and k.
o

5. The Macdonald conjecture. We preserve the notations fronl Sec.4 and
put lJk). L(k) and so on to enlphasize the dependence of k.

THEOREM 5.1.
Given arbitrary ß, I E P-.l one 11as: (p~k), p;k») k = 0 if ß 1:- I alld

(p~k), p~k»)k = (-l)k·~IW(k. P _ ß)IIW(k . p)I- 1

ka:#OII (t k .la +ka _ t-k',la -ka ) / (tJ.:·l n _ t-k,la)

o:ER+

k n -1 tk.la-(O:V ß)+i _ t-k.1n+(cr:v ~{3)-i

II II tk·1a-(av,ß)-i _ t-k·1n+(oV ~ß)+i' (5.1)
o:ER+ i=1

Proof. The orthogonality _of p~k), p;k) for ß 1:- I results frOllI (4.6) and (4.14):

(5.2)

The corresponding eigenvallIes distinguish ß 1:- I for a proper W -invariant polyno­
mial f. It gives the desired stateolent. It was established by.Macdonald by nleans
of the simpiest self-adjoint difference operators satisfying (we introduced thenl in
assertion of Proposition 3.4).

Actually one operator is enough to split {P{3 Land therefore to check the orthog­
ouallty. However we need the conllpiete set {L f } is inlportant to establish (5.1) (we
need rather complicated operator J\Yt; - see (5.8)) and to sonle other applications.
By the way. it gives a unifornl proof of the ortogonality for all root systems.

The renlaining (nlain) rart is based on the following chain of the shift operators
that will he applied to P~-k'P = 1H{3-k.p one after one:

where k = s{ 1,1} + r€ for € = {€v} such that nv €v = O. We use the visual
hut not quite correct notation {I, I} for the vector with unit conlponents. Let
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k(i)~ €(i)~ 0 ~ i :$ r + s - 1, be the correspondin~ indices of G = G(i) be~innin~

from G(O) = G~O).

Firstly, we have to consider the product of the G for the indices 0, 1, ... , r - 1. If
o..s; i < r, then k(i) = i€~ €(i) = €. Our ainl is to express Mi+i in ternlS of

Fornlula (4.15) results in the relation

M . - (g.gl.)-I(G(ifO)(p(ifO) ) G(ifO) (p(ie) )).
1+1 - 1 i ~ /:3'+ip~' ~ /:3'+ipl (I+l)~,

for gi = TI ·(tifOa-i~.'o-+(OV 113' +ipl) _ t-i~a+ifO"a-(oV ~ß'+ip(») =

ea$e

TI (tiea+(ov,.ß') - t-i~o--(oV :,81»).

ea $€

(5.4)

(5.5)

Ni d!l (y~ ifO) (P~'~ip(), y~ ifO) (p~i'~ip( ) )i~ =

(( a
(ie) (ie:) a(iE) (iE») ~ . ( =

i e P{3'+ip( ~ E P/:3I+ipl (i+l)E 01 i

TI (tie:aX~/2 - t-ieaX;;I/2)(t-(i+l)fOaX~2 - t(i+l)e,,- x ;;I/2)-I. (5.6)
e a $;e

Applyin~ Lemnla 4.4 twice. we arrive at the relation

Then one may use Theorenl 4.1 and (4.14) to calculate Ni:

N (y"'(iE)y(ie:)( (ifO) ) (ie») "'M
i = ~ e: P/:3'+ipl' P/:3'+ipl i€ = gigi i!

Y"'(i~) = TI (t- iEo-y-l/2 _ t ieo-yl/2)
e oV OV ~

ea$E

[/i = TI (tiEo- _(a
V

:13') _ t-i€a+(OV ,13'»).

ea$e:

where

(5.7)

(5.8)

Here we replaced Y· by Y. This chan~es Ni by a tenn (tLieX€(ie) (I - (-l)E"~tuo(/)))
for the longest elenlent 'Wo E Wand a proper f E Ct[x). that is zero because of
the W-invariance of ( ). Then we nlade use of the fact that the product yJiE)yJit)

corresponds to an element fronl Ct[y]w.
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Finally,

(5.9)

In the case i 2:: r the formula will be just the sanle with k(i) = (i - r){ 1,1} +
Tf, €(i) ={I, 1L dk(i) instead of if, f, dit;o .

To cOlllplete the proof let HS put together the relations for i = 0, .... r + s - 1:

7'+~-1

Mr+~ = (-l)k.t~dk II gi(g~)-lMo = r.h.s. of (5.1). (5.10)
i=O

Here we regrouped the ternlS with respect to Cl: and used the equality du = 1. 0

COROLLARY 5.2.

ko. ;t0
(-1) k·~ (/Lk) = II {( tk.lo. +ka - t -k·lo. -ka ) / (t k " a - t -k·la' ) }

aEI4
ko.-1II II {(tk"o.+ko. -i - t-k.10. -ka+ i ) / (t k " a -i _ t- k .1o +i)}.

o:ER+ ;=1

(5.11)

o
This fornlula coincides with (0.4) and could be sonlewhat sinlplified by nIeans

of formula (3.2) fronl [M3].

COROLLARY 5.3.
Let pt) = hbk

)p~k), ßI = ß - k . p (see (5.4)., w]lere

k .. >i~(k .. -ko.)

h~k) -_ II (ti+(Clv~ß') - t- i -(ov!{3'))', t' k {k} (I:: 12),.., J.or· ... = Dlax'v ' ;).

Tllen the coeflicients oEp~k) expressed in tenllS oE {111.[} are Laurent polynolllials
in t 2 over Z (belonl{ to Z[t2 , t-2 ]).

The proof is based on the representation of p~k) by nIeans of the chain frolll
(5.3). The operators G act over Z[t, t- 1] (which follows froDl the the sanle property
of {T} ). Hence we can apply (4.15) again (~d use the functi ons 9 froDl (5.5)). The
resulting statenlent is connected with (6.3) (and the corresponding Conjecture) frolll

[MI]. 0
We nlention that (5.1) is equivalent to Conjecture 1 fronl the end of [M 1) in

the case of coinciding {k v } and Conjecture (12.6') fronl [M2] when nv kv 1= O.
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The latter was checked in [AI] (for Ad~ [AWJ (the case of BCI )! and proved by
Macdonald for An (unpublished).

By the way, fomlulas (5.l)~ (5.11) were checked by conlputer in the case of the
root systems B 2 ,3 for quite a few k! ß (in the range of 30 MB). It seenlS that the
{Pß} have (many) other rather renlarkable algebraic properties. Soule of thenl are
connected with those from papers [S!MIL where the so-called Jack polynonlials and
their q, t-counterparts were considered (in the case of An).

There are quite a few works about orthogonal polynoDlials. We nlentioned
hefe only (a small part of the) papers directly connected with the Macdonald q­
conjecture. We would like to add that a certain generalization of the q-Jacobi­
Askey-Wilson- Macdonald polynoDlials of type BCn can be found in [Ko]. The
coincidence of the polynonlials of type A for q = t2

! q = t 1
/

2 with q-spherical
functions of the syolnletric spaces GL(n)jSO(n) ~ GL(2n)jSp(2n) was established

in [NJ.
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