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Abstract. We obtain the following characterization of the solv-
able radical R(G) of any finite group G: R(G) coincides with the
collection of g ∈ G such that for any 3 elements a1, a2, a3 ∈ G the
subgroup generated by the elements g, aiga−1

i
, i = 1, 2, 3, is solv-

able. In particular, this means that a finite group G is solvable if
and only if in each conjugacy class of G every 4 elements generate
a solvable subgroup.
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1. Introduction

1.1. Main results. Our goal is to prove

Theorem 1.1. The solvable radical of a finite group G coincides
with the collection of g ∈ G satisfying the property: for any
3 elements a, b, c ∈ G the subgroup generated by the conjugates
g, aga−1, bgb−1, cgc−1 is solvable.

This statement may be viewed as a theorem of Baer–Suzuki type
with respect to the solvability property, in light of

Theorem 1.2. (Baer–Suzuki) The nilpotent radical of a finite group
G coincides with the collection of g ∈ G satisfying the property: for
any a ∈ G the subgroup generated by g, aga−1 is nilpotent.

Theorem 1.1 implies

Corollary 1.3. A finite group G is solvable if and only if in each
conjugacy class of G every four elements generate a solvable subgroup.

Remark 1.4. These characterizations are the best possible: in the
symmetric groups Sn (n ≥ 5) any triple of transpositions generates a
solvable subgroup.

Definition 1.5. Let k ≥ 2 be an integer. We say that g ∈ G

is a k-radical element if for any a1, . . . , ak ∈ G the subgroup H =
〈a1ga1

−1, . . . , akgak
−1〉 is solvable.

Recall that a finite group G is called almost simple if it contains a
unique normal simple group L such that L ≤ G ≤ Aut (L).

The main step in our proof of Theorem 1.1 is

Theorem 1.6. Let G be a finite almost simple group. Then G does
not contain nontrivial 4-radical elements.
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The statement of Theorem 1.1 remains true for arbitrary linear
groups.

Theorem 1.7. The solvable radical of a linear group G coincides
with the collection of g ∈ G satisfying the property: for any
3 elements a, b, c ∈ G the subgroup generated by the conjugates
g, aga−1, bgb−1, cgc−1 is solvable.

Proof. The passage from Theorem 1.1 to Theorem 1.7 is quite stan-
dard, cf. [GKPS]. For the sake of completeness we give it below.

First of all, every element of the radical R(G) is a k-radical element
for any k since R(G) is a characteristic subgroup of G.

We shall prove the opposite inclusion, i.e. the set S(G) of all 4-
radical elements is contained in R(G). Let H be the subgroup gener-
ated by S(G). It is enough to show that H is solvable. Take a finitely
generated subgroup Hn = 〈a1, . . . , an〉, where ai ∈ S(G), i = 1, . . . , n.
It is well known that any finitely generated subgroup of a linear group
is residually finite [Mal]. Therefore Hn can be embedded into a carte-
sian product D of finite groups Gj, each of those is generated by
4-radical elements and is thus solvable by Theorem 1.1. Moreover,
the solvability class of Gj is bounded by the rank of the linear group
G. Since the class of solvable groups of fixed solvability class is closed
under cartesian products, we conclude that D is solvable, hence so is
Hn. We now observe that every finitely generated subgroup of H lies
in some Hn and is thus solvable. This means that H is locally solv-
able. It remains to apply a theorem of Zassenhaus [Za] saying that
any locally solvable linear group is solvable. �

Our main results can be restated is follows.

Definition 1.8. Let G be a finite nonsolvable group, and let x ∈
G \ R(G). We define βG(x) as the smallest integer ` such that the
conjugacy class of x contains ` elements generating a nonsolvable sub-
group of G.

We shall often drop the subscript G.

Definition 1.9. Let G be a finite nonsolvable group. We define

BS(G) := max
x∈G\R(G)

β(x).

We call this number the Baer–Suzuki width of G.
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With this terminology, our Theorem 1.6 says that the Baer–Suzuki
width of any finite almost simple group is at most 4.

Definition 1.8 should be compared with

Definition 1.10. [GS] Let G be a finite almost simple group, with
L = F ∗(G) the unique minimal normal subgroup of G, and let x ∈
G be a non-identity element. Then α(x) is defined as the minimal
number of L-conjugates of x which generate the group 〈L, x〉.

Clearly, if G is a finite almost simple group and 1 6= x ∈ G, we have
β(x) ≤ α(x).

Another obvious remark (which will, however, be important for in-
duction arguments) is that if H is a subgroup of G and x ∈ H, then
βG(x) ≤ βH(x).

1.2. Historical perspective, analogues and generalizations.

The whole story goes back to a pioneering paper by R. Baer [Ba]
whose influence on the present article is two-fold. First, basing on a
theorem of Zorn [Zo] characterizing the class of finite nilpotent groups
in terms of the Engel identities, Baer obtained a description of the
nilpotent radical N(G) of a finite group G as the collection of the
Engel elements of G. This description gave rise to an attempt to
use recent characterizations of finite solvable groups in terms of ex-
plicit identities in two variables [BGGKPP1], [BGGKPP2], [BWW]
for getting a similar explicit description of the solvable radical R(G)
[BBGKP, Conjecture 2.12]. On the other hand, the same theorem
of Baer yielded another description of the nilpotent radical which,
for convenience, we reformulated above as Theorem 1.2. This asser-
tion admits many equivalent reformulations some of which are com-
monly known as the Baer–Suzuki theorem (a few years after the paper
[Ba] appeared, Suzuki discovered a new proof of this result [Su] which
played an important role in structure theory of finite groups; a very
short proof was later found in [AL]). Numerous analogues and gener-
alizations of this result are known, both in the context of finite [GR]
and infinite [As], [So], [Mam] groups. Although a direct analogue of
this statement for finite solvable groups cannot hold (say, because two
involutions generate a dihedral group which is solvable), Flavell proved
that there is an absolute constant k with the property: R(G) coincides
with the collection of y ∈ G such that any k conjugates of y generate
a solvable subgroup; moreover, one can choose k = 10 [Fl]. (Note that
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his proofs do not use the classification of finite simple groups.) In
[GGKP1], [GGKP2] we improved on Flavell’s theorem, proving that
one can choose k = 8, and stated a conjecture that one can choose
k = 4 (which is certainly sharp). Our proof went through yet another
description of R(G) in terms of commutators and heavily relied upon
the classification of finite simple groups (see the above cited papers
for details). In the present paper we prove this conjecture (Theorem
1.1).1

Let us note another result which is more close to the original Baer–
Suzuki theorem. Restrict ourselves to considering elements of prime
order greater than 3. For such an element x one can prove a stronger
statement:

Theorem 1.11. Let G be a finite group. An element x of prime
order p > 3 belongs to R(G) if and only if for any y ∈ G the subgroup
〈x, yxy−1〉 is solvable.

As above, it is enough to prove that for any element x of prime
order p > 3 in an almost simple group G we have β(x) = 2. The proof
is given in [GGKP3].

We dare formulate a stronger conjecture:

Conjecture 1.12. Let G be a finite group. An element x of order
n ≥ 4 belongs to R(G) if and only if for any y ∈ G the subgroup
〈x, yxy−1〉 is solvable.

The case n = 4 looks a bit suspicious, being close to the case of
involutions, but nevertheless we hope it does not break the general
picture.

Let us note here another parallel between the nilpotent and the solv-
able cases. Namely, there is yet another description of R(G) [GKPS]
in the style of a theorem of J. Thompson [Th]: R(G) coincides with
the collection of y ∈ G such that for every x ∈ G the subgroup 〈x, y〉
is solvable. In such a form this statement does not admit a direct
analogue in the nilpotent case. However, one can reformulate this de-
scription as follows. For any x, y ∈ G denote by

〈

y〈x〉
〉

the minimal

1R. Guralnick informed us that this statement, as well as Theorem 1.11, was
independently proved in his unpublished joint work with P. Flavell and S. Guest
[FGG]. We shall present the proof of Theorem 1.11 in [GGKP3].
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normal subgroup in 〈x, y〉 containing y. Then R(G) can be described
as the collection of y ∈ G such that for every x ∈ G the subgroup
〈

y〈x〉
〉

is solvable. In this form, a direct analogue holds in the nilpo-
tent case:

Proposition 1.13. Let G be a finite group. The nilpotent radical
N(G) of G coincides with the collection of all y ∈ G such that for any
x ∈ G the subgroup

〈

y〈x〉
〉

is nilpotent.

Proof. Let y ∈ N(G). Take an arbitrary x ∈ G and consider H =
N(G) ∩ 〈x, y〉. We have H ≤ N(G), so H is nilpotent. On the other
hand, H is a normal subgroup in 〈x, y〉 and y ∈ H. Since

〈

y〈x〉
〉

is the

minimal normal subgroup containing y, we have
〈

y〈x〉
〉

≤ H. Since H

is nilpotent,
〈

y〈x〉
〉

is nilpotent too.

Conversely, suppose that y has the property that the subgroup
〈

y〈x〉
〉

is nilpotent for any x ∈ G. Evidently, for any x ∈ G the com-

mutator [x, y] belongs to
〈

y〈x〉
〉

. Since
〈

y〈x〉
〉

is nilpotent, the Engel
series [[x, y], y, . . . , y] terminates at 1. Thus y is an Engel element and
therefore, according to the above mentioned theorem of Baer, belongs
to N(G). �

The Baer–Suzuki theorem allows one to improve this characteriza-
tion in the best possible way: instead of considering the subgroup
〈

y〈x〉
〉

, it is enough to consider the subgroup 〈y, yx〉 because its nilpo-
tency for any x ∈ G already guarantees y ∈ N(G).

Finally, in light of the approach in a recent paper [GPS], we dare
propose a further generalization, in style of problems of Burnside type.

Recall that a class of groups X is called a radical class if in every
group G there is a maximal normal subgroup X(G) belonging to X .
One can impose various conditions on X which guarantee the exis-
tence of X(G). For example, a class X of finite groups closed under
homomorphic images, normal subgroups and extensions is a radical
class inside the class of all finite groups.

Definition 1.14. Let X be a radical class of finite groups. The Baer–
Suzuki width of X is defined as the smallest integer n := BS(X ) with
the property: for every finite group G ∈ X , the X -radical X(G) coin-
cides with the set of elements g ∈ G such that for every x1, . . . , xn ∈ G

the subgroup 〈gx1, . . . , gxn〉 belongs to X . If such an n does not exist,
we set BS(X ) := ∞.
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We have BS(N ) = 2 for N the class of finite nilpotent groups
(Baer–Suzuki) and BS(S) = 4 for S the class of finite solvable groups
(Theorem 1.1).

Problem 1.15. Study other radical classes of finite groups for which
BS(X ) < ∞.

1.3. Notation and conventions. Whenever possible, we maintain
the notation of [GGKP2] which mainly follows [St], [Ca1], [Ca2]. In
particular, we adopt the notation of [Ca2] for twisted forms of Cheval-
ley groups (so unitary groups are denoted by PSUn(q

2) and not by
PSUn(q)). However, the classification of outer automorphisms follows
[GLS, p. 60], [GL, p. 78]. In order to avoid misunderstandings we re-
call this classification. Let us call the subdivision of automorphisms of
Chevalley groups into inner, diagonal, field, and graph automorphisms
in the sense of [St], [Ca1], the usual one.

In the classification of finite simple groups a slightly different subdi-
vision of automorphisms is used. Let G be an adjoint Chevalley group,
untwisted or twisted (the cases where G is a Suzuki or a Ree group are
treated separately). Denote by Aut (G) the group of automorphisms
of G. Then ([GLS, Definition 2.5.13]):

1. Inner-diagonal automorphisms coincide with usual inner-diagonal
automorphisms.

2. Field automorphisms are as follows:

2.1. If G is untwisted, then a “field” automorphism is an Aut (G)-
conjugate of a usual field automorphism.

2.2. If G = dG is a twisted group, then a “field” automorphism is
an Aut (G)-conjugate of a usual field automorphism of order relatively
prime to d.

2.3. If G is a Suzuki or a Ree group, then a “field” automorphism
is an Aut (G)-conjugate of a usual field automorphism.

3. Graph automorphisms are as follows:

3.1. If G is untwisted, then a “graph” automorphism is an Aut (G)-
conjugate of a graph-inner-diagonal usual automorphism with nontriv-
ial graph part, except for the cases B2, F4, G2 with the characteristics
of the ground field p = 2, 2, 3, respectively, in which cases there are no
“graph” automorphisms.
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3.2. If G = dG is a twisted group, then a “graph” automorphism is
an element of Aut (G) whose image modulo the group of inner-diagonal
automorphisms has order divisible by d.

3.3. If G is a Suzuki or a Ree group, then there are no graph
automorphisms.

4. Graph-field automorphisms are as follows:

4.1. If G is untwisted, then a “graph-field automorphism” is an
Aut (G)-conjugate of a usual graph-field automorphism where both
components are nontrivial, except for the cases B2, F4, G2 with the
characteristics of the ground field p = 2, 2, 3, respectively, in which
cases all conjugates of usual graph-field automorphisms with nontrivial
graph part are considered as “graph-field” automorphisms.

4.2. If G = dG is a twisted group, then there are no graph-field
automorphisms.

4.3. If G is a Suzuki or a Ree group, then there are no graph-field
automorphisms.

In particular, in this sense a “graph” automorphism may be a com-
position of an automorphism of the Dynkin diagram with an inner-
diagonal automorphism, or (in the case of a twisted form dL of a simple
group L) a field automorphism of order divisible by d.

We also use some other conventions from [GLS, pp. 410–413] with-
out special notice.
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2. Strategy of proof

Actually, the proof grounds on a further refinement of methods and
results from [GGKP2] and [GS].

We first reduce Theorem 1.1 to Theorem 1.6, exactly in the same
way as in [GGKP2, Section 2].

Although this reduction is fairly standard, we sketch its main steps
below. Let S(G) be the set of all 4-radical elements of the group
G. Obviously, R(G) lies in S(G) and we have to prove the opposite
inclusion. We can assume that G is semisimple (i.e., R(G) = 1), and
we shall prove that G does not contain nontrivial 4-radical elements.
Assume the contrary and consider a minimal counterexample, i.e. a
semisimple group of smallest order with S(G) 6= {1}.

Recall that any finite semisimple group G contains a unique maxi-
mal normal centreless completely reducible (CR) subgroup (by defini-
tion, CR means a direct product of finite non-abelian simple groups)
called the CR-radical of G (see [Ro, 3.3.16]). We call a product of
the isomorphic factors in the decomposition of the CR-radical an iso-
typic component of G. Denote the CR-radical of G by V . This is a
characteristic subgroup of G.

Since G is minimal, it has only one isotypic component. Any g ∈ G

acts as an automorphism g̃ on V = H1 × · · · × Hn, where all Hi,

1 ≤ i ≤ n, are isomorphic nonabelian simple groups.

Suppose that g 6= 1 is a 4-radical element. The next step shows that
g cannot act on V as a non-identity element of the symmetric group
Sn.

Denote by σ the element of Sn corresponding to g̃.

By definition, the subgroup Γ = 〈g, xigx−1
i 〉, i = 1, . . . , 4, is solvable

for any xi ∈ G. Evidently, the subgroup 〈[g, x1], [g, x2]〉 lies in Γ.

Suppose σ 6= 1, and so σ(k) 6= k for some k ≤ n. Take x̄1 and

x̄2 of the form x̄i = (1, . . . , x
(k)
i , . . . , 1), where x

(k)
i 6= 1 lies in Hk

(i = 1, 2). Then we may assume (x̄i)
σ = (x

(k)
i , 1, . . . , 1), and so [g, x̄i] =

(x̄i)
σx̄−1

i = (x
(k)
i , 1, . . . , (x

(k)
i )−1, . . . , 1).

As Hk is simple, it is generated by two elements, say a and b. On

setting x
(k)
1 = a, x

(k)
2 = b, we conclude that the group generated by

[g, x̄1] and [g, x̄2] cannot be solvable because the first components of
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these elements, a and b, generate the simple group Hk. Contradiction
with solvability of Γ.

So we can assume that a nontrivial 4-radical element g ∈ G acts as
an automorphism of a simple group H. Then we consider the extension
of the group H with the automorphism g̃. Denote this almost simple
group by G1. By Theorem 1.6, G1 contains no nontrivial 4-radical
elements. Contradiction with the choice of g̃.

Let G be an almost simple group, L ≤ G ≤ Aut (L). If G =
L is simple, Theorem 1.6 is an immediate consequence of [GGKP2,
Theorem 1.15]. Indeed, this Theorem states that for any x ∈ L there
exist 3 elements a, b, c such that the commutators [x, a], [x, b], [x, c]
generate a nonsolvable subgroup. Hence the subgroup

〈

x, xa, xb, xc
〉

is
nonsolvable too. Thus we only have to consider outer automorphisms
x of L. The case where L is an alternating group is straightforward
(Section 3). If L is a group of Lie type, we consider the separate cases
where x is an inner-diagonal (Section 5), field (Section 6), graph, or
graph-field automorphism (Section 7). The first case was treated in
[GGKP2] (see the discussion at the end of Section 4 of this paper for
groups of small Lie rank), so we only need to complete the induction
arguments. Field, graph, and graph-field automorphisms are treated
using their classification. Here we mainly follow the approach of [GS],
as we do when considering the groups of small Lie rank as the base
of induction in Section 4. The remaining case of sporadic groups is
treated in Section 8.

3. Alternating groups

Theorem 3.1. Let L = An be the alternating group on n letters,
n ≥ 5, and let L ≤ G ≤ Aut (L). Then BS(G) ≤ 4.

Proof. We first exclude the group G = A6 since this is the only non-
abelian simple alternating group for which the group of outer auto-
morphisms Out(G) is equal not to Z2 but to Z2 ×Z2. In the notation
of [CCNPW] we have A6 ≤ G ≤ Aut (G) for: G = S6 = A6 : 2a, G =
PGL2(9) = A6 : 2b, G = M10 = A6 : 2c, and G = Aut (A6) = A6.2

2,
where a, b, c are the involutions in Z2×Z2. In all these cases the state-
ment of the theorem is checked by a direct MAGMA computation. So
we assume n 6= 6, and G is either An or Aut (An) = Sn. For G = An

see [GGKP2]. If G = Sn and x is an automorphism of prime order, we
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may assume that x is an involution. If x is a transposition, we have
β(x) = 4, so the estimate in the statement of the theorem is sharp.
For an arbitrary involution we proceed by induction. For n ≤ 6 we
establish the result by a direct computation. Let now n > 6. If x

fixes at least one letter, we conclude by induction. If not, n = 2m is
even and x is conjugate to y = (12)(34)(56) . . . (2m − 1, 2m). Then
we can find a1, . . . , a4, lying in the subgroup S6 < Sn fixing the last
n − 6 letters, such that the group generated by aizai

−1, i = 1, . . . 4
(where z = (12)(34)(56)), is not solvable. Hence the group generated
by aiyai

−1, i = 1, . . . 4, is nonsolvable too. �

4. Groups of Lie type of small rank

Theorem 4.1. Let G be an almost simple group of Lie type of Lie
rank at most 2. Then BS(G) ≤ 4.

Proof. For x ∈ L, the result immediately follows from [GGKP2, The-
orem 1.11], so we only have to consider outer automorphisms. We
follow very closely the arguments of [GS]. Since we do not pretend
to make the estimate of BS(G) sharp, in our case-by-case analysis we
only have to consider those x for which the estimate α(x) ≤ 4 is not
established in [GS].

Remark 4.2. For all almost simple groups of Lie type of Lie rank at
most 2 over the fields with 2 or 3 elements the statement of Theorem
4.1 is checked by explicit MAGMA computations.

As usual, we may and shall assume that x is an element of prime
order.

Groups of Lie rank 1.

In the case L = PSL2(q), q ≥ 4, [GS, Lemma 3.1] shows that it
is enough to consider a field automorphism x of order 2 of PSL2(9).
In that case we have 〈L, x〉 = S6, and 4 conjugates of x generate S5,
so β(x) = 4. If L = PSU3(q

2), q > 2, the result follows from [GS,
Lemma 3.3]. If L is a Suzuki or a Ree group, we have α(x) ≤ 3 by
[GS, Prop. 5.8].

Groups of Lie rank 2.

The case L = PSL3(q) is established in [GS, Lemma 3.2].
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Let now L = PSp4(q). Although [GS, Theorem 4.1(f)] does not
provide the needed estimate, we can use the arguments mutatis mu-
tandis. The cases q = 2 and q = 3 are treated by a direct computation,
so assume q > 3. Let x be a field automorphism. Then x normalizes
SL2(q). So, x is a field automorphism of SL2(q) and by [GS, Lemma
3.1] we have α(x) ≤ 4.

If x is an inner-diagonal automorphism, the proof literally follows
[GGKP2] for the group 〈L, x〉, see also Section 5.

If x is an involutory graph-field automorphism, then α(x) ≤ 4 ([GS])
and we are done.

If L = G2(q), [GS, Theorem 5.1] gives only α(x) ≤ 5, so we have to
analyze the arguments. The case q = 2 is treated directly, so assume
q > 2. If x is a field automorphism, then again x normalizes SL2(q)
and we are done.

If x is an involutory graph automorphism (which exists if q = 3a

with a odd), then α(x) ≤ 4 (ibid.).

Let us now go over to twisted groups.

Let L = PSU4(q
2). In that case [GS, Lemma 3.4] gives the required

estimate α(x) ≤ 4 for all x except for an involutory graph automor-
phism and a transvection for q = 2. The latter case is treated by a
direct computation, so suppose we are in the first case.

Let first q be odd. Since the case q = 3 can be treated by a direct
computation, assume q > 3. According to the classification of graph
automorphisms (see [GLS, Table 4.5.1]), either x normalizes (and does
not centralize) SU3(q

2) (and we can use the above considerations for
the groups of Lie rank 1), or CL(x) = PSp4(q). In the latter case
the argument of [GS] yields α(x) ≤ 6, so we have to reconsider it.
One can choose a conjugate of x acting on S = SU2(q

2) ◦ SU2(q
2) by

interchanging the components. Let a, b denote a pair of generators of
the first copy of SU2(q

2). Then the subgroup in 〈S, x〉 generated by
two commutators [x, a] and [x, b] contains the first copy of SU2(q

2) and
is thus nonsolvable. Hence the subgroup generated by x, axa−1, bxb−1

is nonsolvable too.

If now q is even, then there are two classes of such automorphisms.
In the first case x normalizes (but does not centralize) SU2(q

2), and
we can use the result for groups of Lie rank 1 (because q > 2). In the
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second case, one can find a conjugate of x acting on S by interchanging
the components, and the above argument works because q > 2.

The case G = PSU5(q
2) will be considered in Section 7, along with

the groups of higher rank.

It remains to consider 2F4 and 3D4. In the first case, let us look
at the arguments in the proof of [GS, Theorem 5.1]. Let first L =
2F4(q

2)′. If q = 2, the estimate α(x) ≤ 4 is given in [GS, Prop. 5.5]
(and may be confirmed by a straightforward computation), so assume
q > 2. Since x is a field automorphism, it normalizes a parabolic
subgroup P . We then arrive at the rank 1 case and can proceed as in
Section 6 (or as in the beginning of the proof of [GGKP2, Theorem
7.1]).

Let now L = 3D4(q
3). A convenient account of its properties is

presented in [FM, Section 3], see also [GL, 9-1], [Kl]. The group
L = 3D4(q

3) possesses field and graph automorphisms. Since a
field automorphism acts nontrivially on SL2(q

3), we have to consider
only graph automorphisms. There are two classes of such automor-
phisms. Denote their representatives by g1 and g2, respectively [Kl].
For the first one, we have CL(g1) ∼= G2(q), and there is a subgroup
L1 = SL2(q

3) of L on which g1 acts as a field automorphism [LS,
Lemma 5.3], so the result follows from Theorem 4.1. In the second
case, CL(g2) = PGL±

3 (q) [GLS, Table 4.7.3A], if p 6= 3, q ≡ ±1
(mod 3). One can choose g2 in the form g2 = tg1 where t is (the inner
automorphism corresponding to) an element of order 3 lying in CT (g1),
T standing for a maximal torus in L [GL, p. 104]. According to [FM,
Lemma 3.11(3)], we have t ∈ L1 = SL2(q

3), so g2 also normalizes and
does not centralize L1, and we are done by Theorem 4.1. If p = 3,
then g2 normalizes (and does not centralizes) a subgroup of type A2.
This case is considered above.

�

5. Inner-diagonal automorphisms

We shall use the same approach as in [GGKP2].

Let σ be a diagonal automorphism corresponding to the Borel sub-
group B = HU where H is a maximal split torus of G such that
σ(h) = h for every h ∈ H. Further, let H̃ = 〈σ, H〉. Now replace the
simple groups G with the group G̃ = 〈σ, G〉. Note that the group G̃
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has the “Borel subgroup” B̃ = H̃U with the similar properties as for
the group G (for instance, the Bruhat decomposition).

Let x be an inner-diagonal automorphism of G. Then we may regard
x as an element of G̃. One can easily check that the arguments of
[GGKP2] used in the case of an inner automorphism of a simple group

also hold for the case of the group G̃. Thus, we get our statement in
the same way as in Theorem 1.11 of [GGKP2].

6. Field automorphisms

Let |q| > 3. Since x evidently normalizes but does not centralize a
rank 2 group, the result follows from Theorem 4.1.

Let |q| = 2 or |q| = 3. We choose an appropriate rank 2 or rank
1 group normalized by x. The result follows from explicit MAGMA
computations.

7. Graph and graph-field automorphisms

Theorem 7.1. Let L be a finite simple group of Lie type, and let x

be a graph or graph-field automorphism of L of prime order. Then
β(x) ≤ 4.

Proof. As in Section 4, we closely follow [GS].

7.1. Linear groups. Let L = PSLn(q), n ≥ 4. The graph and
graph-field automorphisms of prime order were classified in [AS, §19]
and [Li, 3.7]. As in [GS, p. 535], we shall use the matrix description
given in [LS, pp. 285–286]. They are all of order 2. We denote by τ
the map sending a matrix to its inverse-transpose. If n is odd, there
is only one conjugacy class of graph automorphisms represented by τ .
If n is even and q is odd, there are 3 classes represented by τJ , τJ+,
and τJ−, where

J =





















0 −1
1 0

.
.

.
0 −1
1 0





















, J+ =





















0 1
1 0

.
.

.
0 1
1 0





















,
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J− =





























0 −1
1 0

.
.

.
0 −1
1 0

µ
1





























(where −µ/2 is non-square).

Their centralizers are of type PSpn(q), PSO+
n (q), and PSO−

n (q), re-
spectively [GLS, Table 4.5.1]. If n and q are even, there are two classes
represented by τJ and τJu, where

u =

















1 1
0 1

.
.

.
1

















.

Their centralizers are of type PSpn(q) and CPSpn
(q)(t) (where t stands

for a transvection in PSpn(q)), respectively [AS, (19.9)]. If x is a
graph-field automorphism, then q = q2

0 is a square, and x can be
represented as x = τφ where φ is a field involution [LS, loc. cit.].

In all cases, x leaves invariant the subgroup fixing the decomposition
V = A⊕B where A has codimension 1 or 2 in V (cf. [GS, p. 535]), i.e.
SLn−1(q) or SLn−2(q) (for the graph automorphisms) or SLn−1(q0)
(for the graph-field automorphism), therefore we can use induction.
Indeed, for q > 3 the result immediately follows from Theorem 4.1,
and for q = 2, 3 from straightforward computations with the groups
PSL4(2), PSL5(2), PSL3(3) and PSL4(3).

7.2. Unitary groups. Let L = PSUn(q
2), n ≥ 5. In this case, there

are no graph-field automorphisms. As in the previous subsection, we
use the classification of graph automorphisms of prime order [AS, §19],
[Li, 3.7]. If n is odd, such an automorphism is unique (up to conjuga-
tion), and we can represent it by a field involution. Such an involution
normalizes SUn−1(q

2) (cf. [LS, p. 288], [GS, p. 536]), and we proceed
by induction or use Section 6. Let now n = 2m be even. If q is odd,
there are 3 classes of graph automorphisms, with centralizers of type
PSpn(q), PSO+

n (q), and PSO−
n (q), respectively [GLS, Table 4.5.1].

We analyze these cases following [GS, pp. 536–537]. In the first case,
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arguing as in the proof of Theorem 4.1, we can choose a conjugate of
x acting on S = SUm(q2)◦SUm(q2) by interchanging the components.
Choose a pair of elements (c, d) generating the first component. Then
the subgroup generated in 〈S, x〉 by two commutators [x, c], [x, d] con-
tains (the first copy of) SUm(q) and thus cannot be solvable (because
m ≥ 3). Therefore the group generated by x, cxc−1 and dxd−1 is non-
solvable too, and β(x) = 3. In the remaining two cases, x normalizes
(but does not centralize) SUn−1(q

2), and we proceed by induction. If q

is even, there are two conjugacy classes of graph automorphisms, one
of which normalizes but does not centralize SUn−1(q

2), and the other
acts on S = SUm(q2) ◦ SUm(q2) by interchanging the components, so
we argue as in the odd case.

(An alternative induction argument uses the case analysis of [LS,
Lemma 3.14].)

7.3. Symplectic groups. If n > 2, then there are no graph or graph-
field automorphisms with the single exception L = PSp4(q). This
group was already treated in Theorem 4.1.

7.4. Orthogonal groups. In this case a graph automorphism of or-
der 2 is conjugate to an inner-diagonal automorphism [LS, p. 287],
[LLS, p. 399]. More graph automorphisms only exist for L =
PSO+

8 (q). Here x is of order 3, and there are two possibilities [GS,
Lemma 3.15], [GS, p. 541]: either x normalizes but does not central-
ize G2(q) (and we can apply Theorem 4.1), or x is conjugate to the
standard triality. In the latter case it is shown in [GS, loc. cit.] that
there exists a conjugate of G2(q) normalized but not centralized by x,
and we are done.

Let now x be a graph-field automorphism, so L = PSO+
n (q), q = q2

0.
If x is of order 2, then there is a unique class of such an involution
which normalizes but does not centralize On−1(q0) [GS, p. 541]. If
x is of order 3, then n = 4, and we proceed exactly as for graph
automorphisms.

7.5. Exceptional groups. Having Theorem 4.1 at our disposal, we
may assume the Lie rank of L is greater than 2. If L = F4(q), then
there is a unique (up to a conjugation) automorphism x of order 2, and
in this case q = 2a, a is odd, CL(x) = 2F4(q

2). This x is conjugate to
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some element acting as an inner involution of 2F4(q
2) [GS, Prop. 5.5].

We finish by applying Theorem 4.1.

If L = E6(q) or 2E6(q), then x normalizes but does not centralize
some subgroup of type F4(q) [GS, Prop. 5.2, 5.3], and we are reduced
to the above considered case.

For all other groups, there are no graph or graph-field automor-
phisms.

Theorem 7.1 is proved. �

Remark 7.2. In the cases of field and graph-field automorphisms one
can produce an alternative induction proof based on a recent theorem
of Nikolov [Ni] which implies that any such automorphism normalizes
a quasisimple subgroup of type An defined over some subfield of the
ground field.

8. Sporadic groups

Since the simple groups were treated in [GGKP2], we only have to
consider the almost simple sporadic groups. Of 26 sporadic groups,
only 12 have the nontrivial automorphism group (of order 2): M12,
M22, HS, J2, McL, Suz, He, HN , Fi22, Fi′24, O′N , J3. Those having
only one conjugacy class of outer involutions x, are very easy to treat:
indeed, a simple look at the lists of maximal subgroups of L and G =
Aut (L) = L : 2 gives an almost simple subgroup H < L normalized
but not centralized by x. There are 7 such cases: 1) L = M12, H =
PSL2(11); 2) L = He, H = PSp4(4); 3) L = J2, H = PSU3(3

2);
4) L = McL, H = PSU3(5

2); 5) L = HN , H = A12; 6) L = O′N ,
H = A6; 7) L = J3, H = PSL2(16) : 2.

In the cases M22, HS and Suz, where there are two conjugacy
classes of outer involutions, we use [GS, Proof of Lemma 7.6]: for any
such involution x it is proved that α(x) ≤ 4. Hence β(x) ≤ 4, as
needed.

The group G = Fi24 also has two nonconjugate outer involutions
(with classes 2C and 2D in the notation of [CCNPW]). An involution
from the class 2C is a 3-transposition and thus belongs to Fi23 (and
also to PSO7(3)) whereas a representative of 2D belongs to PSO+

8 (3)
[LW, Table 10.5], and we are done.
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It remains to consider G = Fi22 : 2. This group has three conjugacy
classes of outer involutions (2D, 2E, 2F in the notation of [CCNPW]).
Consider a subgroup H = G2(3) in Fi22. According to [Wi84, Table
4], there are 3 conjugacy classes of such subgroups, one normalized
(but not centralized) by an outer automorphism and two others in-
terchanged. Therefore for an outer automorphism normalizing H, the
result follows from Theorem 4.1. According to [Mo], given one outer
involution x, each of two others can be obtained from x by multiplying
by an inner involution t commuting with it, so each of two other outer
involutions also normalizes but does not centralize a subgroup of type
G2(3) (note that G2(3) is not contained in the centralizer of any outer
involution), and we are done.
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