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Abstract

The mod-p cohomology ring of the extraspecial p-group of expo-
nent p is studied for odd p. We investigate the subquotient ch(G) gen-
erated by Chern classes modulo the nilradical. The subring of ch(G)
generated by Chern classes of one-dimensional representations was
studied by Tezuka and Yagita. The subring generated by the Chern
classes of the faithful irreducible representations is a polynomial al-
gebra. We study the interplay between these two families of generat-
ors, and obtain some relations between them.

Introduction One of the major outstanding problems in the cohomology
of finite groups is the determination of the cohomology rings of the extraspe-
cial groups. The case of extraspecial 2-groups was solved elegantly and com-
pletely by Quillen (see [9]), and there has been much work since then on
the extraspecial p-groups for odd p. On the one hand, the cohomology ring
of the extraspecial p-groups of order p® and exponent p has been determ-
ined by Lewis for integral coefficients and by the second named author for
mod-p coeflicients (see [7], [5]). On the other hand, therc have been major
advances in the general problem, which have concentrated on calculating the
cohomology ring modulo its nilradical. Tezuka and Yagita calculated this
up to inseparable isogeny by a generalization of Quillen’s methods (see {11]),
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and Benson and Carlson have collected and refined the knowledge to date in
their expository paper [3].

In this paper we consider the problem of determining the cohomology ring
modulo its nilradical exactly, rather than up to inseparable isogeny. We shall
attempt this by studying Chern classes of the irreducible representations of
the extraspecial group p}*?" which are obtained by inducing from maximal
abelian subgroups. Chern classes will not in general generate the cohomology
ring modulo its nilradical, even for p-groups (see the paper [6] of Yagita and
the second named author, where examples of order p* and rank 2 are given).
However, this approach does indeed give us new cohomology classes.

This is clearly seen by considering the group of order p*. The cohomology
ring modulo its radical of the extraspecial group pi*? is the quotient of the
polynomial ring Fy[a, B, ko, (] by the relations o?f — aff® = 0, akg = —a?,
Bro = —fP and k2 = o*P~2 — o~ BP~1 4 4?72 Here o and § are first Chern
classes of degree 1 representations, whereas &g and ¢ are Chern classes of a
degree p irreducible representation. However, the best result known to date
for general extraspecial groups only says that this is up to inseparable isogeny
the quotient of Fy[a, 8, (] by the one relation a?8 — aff? = 0.

It is very probable that the full description of the mod-p cohomology ring
is exceedingly complicated: one just needs to look at the result for the group
of order p® to get an idea of this. It is not even certain that it is practical
to calculate the whole of the cohomology ring modulo its radical. But the
example of the p® case suggests that understanding the Chern classes will be
a major step in the right direction. When investigating the cohomology ring
of a p-group, the Chern subring modulo nilradical is therefore a worthy and
interesting object of study.

The outline of the paper is as follows. Let p be an odd prime, and n > 1.
After recalling necessary information about group cohomology, Chern classes,
extraspecial p-groups and Dickson invariants, we obtain generators for the
Chern subring modulo nilradical in Proposition 7. For p:_”", there are 3n+1
generators: ¢«; and f; for 1 < ¢ < n; & for 0 <r <n—1; and ¢. The &,
are the new generators: the other elements generate the subring studied by
Tezuka and Yagita. The k, are Chern classes of a degree p™ faithful irre-
ducible representation of p},_“", and restrict to maximal elementary abelian
subgroups as Dickson invariants.

Our aim is to understand the relationship between the new generators and
the old. In Proposition 15, we obtain an elegant alternating sum formula
expressing k2 as a polynomial in the a; and ;. Theorem 20, the main
result of the paper, generalises this by showing that x2"~ P also lies in the
subring 7 generated by the ¢; and ;. The idea behind both these results
is as follows. Pick a maximal elementary abelian subgroup M of pi*™*;
find some expression (typically a Dickson invariant) in the a; and f3; whose
restriction to M equals that of k,; patch these approximations together; and
then appeal to Quillen’s theorem, which states that the maximal elementary
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abelian subgroups detect non-nilpotent elements.

In a separate paper [4], the first named author completes this project for
n = 2 by obtaining a presentation for the Chern subring modulo nilradical
of pl“. In particular, it is shown that for all n > 1, the Chern class xg lies

outside the subring studied by Tezuka and Yagita.

A theorem of Quillen In this paper we study cohomology rings modulo
their nilradicals. The rationale for this is provided by the following theorem

of Quillen.

Theorem 1 (Quillen [8],[10]) Let G be a finite group, p a prime number,
and k a field of characteristic p. Then a class € € H*(G, k) is nilpotent
if and only if ils resiriction to every elementary abelian p-subgroup of G 1s
nilpotent. m

Let G be a finite group, and p a prime number. Define h*(G,F,) to be
the quotient of the graded commutative ring H*(G, F,) by its nilradical. If
the value of p is clear from the context, we will just write h*(G).

Of course, h*(G) is strictly commutative. If ¢: H — & is a group homo-
morphism, then nilpotent classes in H*(G,F,) are mapped under ¢* to nilpo-
tent classes in H*(#, F,): hence ¢ induces a well-defined ring homomorphism
¢*: h*(G) — h*(H). In particular, there is a well-defined restriction homo-
morphism if H is a subgroup of G. The version of Quillen’s theorem that we
shall use in this paper is now a trivial corollary of Theorem 1.

Corollary 2 Let G be a finite group; lel p be a prime number; and let £ be
a class in h*(G). Then £ is zero if and only if Ress € = 0 in h*(A) for every
elementary abelian p-subgroup A of G. n

Chern classes For a concise introduction to Chern classes of group repres-
entations, we refer the reader to the appendix of [1]. Although Chern classes
strictly belong to H*(G,Z), they can be considered as elements of h*(G)
via the map H*(G,Z) — H*(G,F,) — h*(G). Write ch(G) for the subring
of h*(G) generated by Chern classes. This algebra ch(G) is a large subquo-
tient of H*(G, F,); any pair of elements may be comnpared in a straightforward
way; and the Chern classes of the irreducible representations form a finite set
of generators (by the Whitney sum formula). This makes the algebra ch(G)
an object worthy of study. The object of this paper is to investigate it for
(G extraspecial.

Because their restrictions can be calculated directly, Chern classes lend
themselves particularily well to a study using Quillen’s theorem. Taking the
Chern classes of a representation commutes with taking its restriction to a
subgroup, and the Whitney sum formula expresses the Chern classes of a
direct sum of representations in terms of the Chern classes of the summands.
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After restricting a representation to an abelian subgroup, the irreducible
summands all have degree one; and the Chern classes of such representations
are very well understood.

The mod-p cohomology rings of the elementary abelian p-groups are well
known, and may easily be derived from the cohomology ring of the cyclic
group using the Kiinneth Theorem. Let A be an elementary abelian p-group
of prank m. Then A is also an m-dimensional F,-vector space. Embed
the additive group of F, in C* by sending 1 to exp(2xi/p). This induces
an isomorphism between Hom(A,C*), a group under tensor product, and
the dual vector space A*, a group under addition. There is therefore a map
c1: A* — h*(A) which sends an element of A* to the first Chern class of
the corresponding one-dimensional representation. The induced map from
the symmetric algebra S(A*) to h*(A) is an isomorphism of F,-algebras.
So h*(A) is an integral domain, and in fact a polynomial algebra.

Extraspecial Groups From now on we fix an odd prime p, and denote
by G the extraspecial p-group of order p?**! and exponent p. There is a

central extension 1 — N — G % E — 1 with E an elementary abelian p-
group of p-rank 2n, and N cyclic of order p. Identify N with F,, and view £
as a 2n-dimensional F,-vector space. There is a well-defined nondegenerate
symplectic bilinear form b: £ x E — N given by b(zy,z;) = [#1,%] for
any %1, 3 € G such that ¥(%;) = z;, where [a,b] = aba™'d~". There is a
natural bijection between the set of maximal elementary abelian subgroups
M of G and the set of maximal totally isotropic subspaces I of E, given by
I = M/N and M = ¢~'(I). Every M has prank n + 1, and every I has
dimension n.

To determine the irreducible characters of ¢/, embed F, in C* as before.
Let ¥ be a nontrivial linear character of N, and define x; = ¥® for 1 < j <

p— 1.

Lemma 3 There are p*™ linear characters of G, and all factor through .
These correspond to the elements of E*. The p — 1 remaining irreducible
characters all have degree p* and are induced from any mazimal elementary
abelian subgroup of G. They may be labelled X1, ..., xp—1 such that for every
1<j<p-1andeveryg€ G,

0 otherwise.

e} = { ") g€ N, and 0

It follows that, for any mazimal elementary abelian subgroup M of G, the
restriction Respr(x;) s the sum of all those linear characters of M whose
restriction to N is ¥;.

Proof: Choose a maximal elementary abelian subgroup M of GG. For each
1 <7 <p-—1, pick a linear character y}; of M whose restriction to N is x;.
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Define the character x; of G to be Indc(ﬁ). The character formula for in-
duced characters then shows that (1) is satisfied. Using the orthogonality
relations, and summing squares of degrees, it is seen that we have all irredu-
cible characters. ]

Dickson invariants We will see in Proposition 7 that the Chern classes
of the induced representations restrict to maximal elementary abelian sub-
groups as Dickson invariants. We now recall the salient facts about these
invariants. For a proof, see Benson’s book [2].

Theorem 4 (Dickson) Let V be a finite dimensional F,-vector space, and
let m = dim(V).

1. There exist Dickson invariants Do(V), ..., Dn_1(V) tn the symmetric
algebra S(V), with D, (V) in SP" =P (V) for each 0 <r < m — 1, such
that

m—1
JI(x —v)y=X"" 4> (=)™ "D (V)X*" . (2)
veV r=0

2. The Dickson invariants are algebraically independent. The ring of in-
variants S(V)FMY) is the polynomial algebra Fp[Do(V), ..., Doy (V)].

In the literature, D, (V) is usually denoted ¢, ,. New notation is intro-
duced here in order to identify the vector space V explicitly, and to avoid a
clash with the notation ¢.(p) for Chern classes.

We now describe the relationship with Dickson invariants of quotient
spaces. This takes a particularily elegant form when we work with dual
spaces.

Lemma 5 Let V be an m-dimensional Fy-veclor space, and U an €-codi-
mensional subspace. The inclusion of U in V induces a restriction map

S(V*) — S(U*) and, for every 0 <r <m —1,

D,_f(U*)" if ¢ <7, and

0 otherwise.

Resy (D, (V*)) = { (3)

Proof: Obvious from the definition of the Dickson invariants. n

The top Dickson invariant Dg(V) is, up to a sign, the product of all nonzero
elements of V. A generalisation (due to Macdonald) of this interpretation
will play an important role in this paper.



Theorem 6 (Macdonald) Let V be an m-dimensional Fy-veclor space, and
let 0 < r <m—1. Denote by Y, the set of all r-dimensional subspaces
of V. ForanyY € Y, write Pyy for the product [[,c\\y v in the symmetric
algebra S(V). Then

D.(V)y=(-1)""" Z Pyy . (4)

Yeyr

Proof: (cf. [2], p. 91) The right hand side of (4) is clearly an invariant
of GL(V), and so must be a scalar multiple of the left hand side. Pick any
Y € Y,, and project down onto S(U), where U = V/Y. This sends the left
hand side to Do(U)P". On the right hand side, all summands are sent to zero,
except that Pyy is sent to P{}‘ro. Therefore we need only establish the case
r = 0: but this is an immediate consequence of Theorem 4. =

Chern classes for extraspecial groups We start by considering the de-

gree one representations. Choose a symplectic basis Ay, ..., An, By, ...,
B, for E. That is, A; L A;, B; L B; and b(A;, B;) = §;;. Take the cor-
responding dual basis A}, ..., B} for £*, and recall that one-dimensional

representations of G are identified with elements of £*. For 1 < : < n,
define ¢ = ¢1(A?) and B; = ¢;(B}). Equivalently, consider the A7 and B} as
elements of h*(£) via the isomorphism h*(£) = S(E), and define «;, §; to
be the inflations *(A}), 1*(B}) respectively.

Let p; be a representation of G affording the induced character x;. Define
Kr = (=1)" Tepnopr(pr) for 0 < r < n—1, and ¢ = ¢pn(p1). Let v be the
element of N* corresponding to the nontrivial linear character x of N.

Proposition 7 The Chern subring of h*(pit*") is gemerated by ko, ...,
Kn-1, ¢, &1, B1, ..., oy and B,. Let M be a mazimal elementary abelian

subgroup of pit*", and I = M/N the corresponding mazimal totally isotropic

subspace of E. Notice that S(M*) = 5(1*) Qr, F,[v]. We have
Resps &, = D, (I*) for0<r <n—1, and Resy( =197 . (5)

Proof: The a; and §; arise from a basis for [£*, and so the first Chern class
of every degree one representation is in their span.

The inflation map h*(I) — h*(M) is the inclusion of I* in M*, and
the restriction map h*(M) — h%(N) is the projection of M* onto N* with
kernel 7*. Let 4 € M* be a representative of the coset whose restriction to
N* is 4. It follows from Lemma 3 that, for every 1 < j < p — 1, the induced
character x; restricts to M as the direct sum of the elements of the coset
j4+I*, considered as linear characters of M. Let p; be a representation of G



affording x;. Using the Whitney sum formula, the total Chern class of p; is

Resa c(p;) = [ (1 +37+v)

vel*
n-1
_1+Z nrD I* +J(Af +Z nrDr(I-);i,pr) .
r=0

Therefore ¢(p;) = 1+ ko4 -+ ka1 +7(, and the restrictions are as claimed.
u

Remark: An argument involving the Adams-Frobenius operations may be
used to show that the equalities ¢;(p;) = 7°¢cs(p1) for all 3 > 1 hold even in
H*(G,Z).

Important subrings There are two important subrings of ch(G). Both
of these have the same Krull dimension as ch(G) itself, and together they
generate ch(G). The structure of each of these subrings is known; but un-
derstanding how elements of one ring relate to elements of the other is more
complicated. The core of this paper is an attempt to start understanding
this relationship.

The first subring is generated by (, the ¢; and the §;, and was studied by
Tezuka and Yagita. The Chern classes which generate ch(() were originally
defined in H*(G,Z), and therefore correspond to well-defined elements of
H*(G,F,). Let T denote the subring of h*((G) generated by the a; and £;.
Forr > 1, let Ry = a1 8" —an? B+ + @nfn” — an? By

Theorem 8 (Tezuka-Yagita [11]) The subalgebra T of h*(G) is the quotient
of the polynomial algebra on the o; and §; by the ideal generated by the R, for
1 <r <n. Moreover, R, =0 in h*(G) for all v > 1. The ring T @, F,[(] is
in fact a subalgebra of H*(G,F,), and every element of H*(G,F,) has some
power lying in this subalgebra. ]

The second large subring 1s generated by { and the &,.

Proposition 9 The Chern classes kg, . .. , Kn—1 and  are algebraically inde-

pendent over F,. Moreover, no polynomial in these elements is a zero divisor
in h*(G). The F,-algebra h*(G) is finite over the subalgebra generated by the
K, and (.

Proof: Algebraic independence is a result of the algebraic independence
of the Dickson invariants. By Quillen’s Theorem, every non-zero element
of h*(G) has non-zero restriction to h*(M) for some maximal elementary
abelian subgroup M. By Proposition 7, restriction to M is an injection on
the subring we consider. But h*(M) is an integral domain. For the last
part we appeal to Venkov’s proof of the Evens—Venkov theorem, since p; is

faithful. n



That the first of these subrings is not contained in the second is clear by
degree considerations. Conversely, ¢ lies in the Tezuka-Yagita subring for
no value of n. For n = 1 this can be seen from Lewis’ paper [7], and it is
proved in [4] for general n.

We start our investigation of the relationship between these two subrings
by establishing one simple identity.

Lemma 10 Let = be one of the o; or f;; more generally, lel x be the first
Chern class of a one-dimensional representation of G. Then

n—1 n—r

— 2P kpar o+ (=12 Kyt (1)"zRo=0.  (6)
Proof: Let M be a maximal elementary abelian subgroup of G, and I the
corresponding maximal totally isotropic subspace of E. Then Resy(z) € I*,
and so [],¢;-(Resy(z) — v) = 0. But, from the definition of the «,, this
product equals the restriction to M of the left hand side of (6). The result

follows by Quillen’s Theorem. ]

We would like to obtain all the relations between the generators of ch(().
In this paper we begin this task by investigating which powers of £, lie in
the Tezuka-Yagita ring.

Bases In this section, we establish a result about the restrictions of the
Aj and B} to the dual space I*, for any maximal totally isotropic subspace
I of £. To this end, we shall introduce a symplectic form by on E*, which
will also play an important role in subsequent sections. For every 0 <r < n,
let Z, denote the set of all r-dimensional subspaces V of E* which have a
basis y1, ..., yr in which each y; is either A} or B;.

Proposition 11 Let 1 < r < n, and let [ be a mazimal tolally isotropic
subspace of E. Let V € Z._y, and suppose that the restriction of V to I* also
has dimension v — 1. Then there ezists an element of Z, which contains V,
and whose restriction to I has dimension r.

Hence, for every 0 < v < n and for every I, there is al least one V € Z,
whose restriction to I'* has dimension r.

The nondegenerate symplectic form & on I induces an [F,-vector space
isomorphism L: F — E* as follows: for all e, &' € E, L(e)(¢') = b(e, ¢').
There is then a unique symplectic form b7, on E* such that by, (L(e), L(e')) =
be,e’), for all e, ¢’ € E. Since b is nondegenerate, so is by,.

Lemma 12 Let U and V be subspaces of I2*, and let I be a lotally isotropic
subspace of E. IfU LV, if V is totally isotropic, and if U C V + L(I}, then
U 1s totally isotropic.



Proof: Let u, v' € U. Since U C V + L(I), there exist v, v' € V and
¢, ¢ € I such that v = v+ L(2) and @' = ¢’ 4+ L(z'). Then bp(u,u’) =
br(v,u’) + bp(u,v") + br(L(z), L(t")) — br(v,v"), and each of these terms is
zero by assumption. n

Proof of Proposition 11: Let U = span(A;, B}). Then V is totally iso-
tropicand I/ L V', but U is not totally isotropic. Hence, by the Lemma, U is
not contained in V + L(I). In particular, at least one of AZ, Br does not lie
in V+ L(I). But u € V + L(]) if and only if the restriction of u to I* lies in
the restriction of V. The last part follows by induction on r. n

Characteristic functions In this section we show that 2" lies in the
Tezuka—Yagita subring 7. This is a special case of Theorem 20, and the
results of this section are not necessary to prove that theorem. However, the
methods we use are more transparent here than in the general case, and we
also succeed in establishing an elegant formula for £2".

We shall prove that «2" € 7 using characteristic functions, analogously
to the alternating sum formula for the measure of a finite union. Of fun-
damental importance is the following special case of Lemma 5. Let V be
an n-dimensional subspace of £~ let M be a maximal elementary abelian
subgroup of G, and let I be the corresponding maximal totally isotropic
subspace of E. Then

Do(I*) if Res;(V) is the whole of I*, and

0 otherwise.

Resu(Du(V)) = { )

Recall that Z, denotes the set of all n-dimensional subspaces of £* which
have a basis of the form yq, ..., y, such that each y; is either A7 or B?. In
this section we will write Z for Z,,. Note that Z has cardinality 2".

We now introduce some more notation for this section. Let Z denote the
set of all maximal totally isotropic subspaces of . Tor cach subset T' of
Z, define I(T') to be the set of all I € T such that Res;(V) = I" for every
Vel UVeZ, wrte I(V) for I({V}).

For any subset T of Z, define y7: Z — {0, 1} to be the characteristic
function of [(T): that is, for I € 7,

Lif I € I(T), and
0 otherwise.

a(n = s)

For V € Z, write xy for x(v}. The following result is now a consequence of
Quillen’s Theorem.

Lemma 13 Let s > 1; let T be a non-empty subsel of Z such that |T| < s;
and let Vi, ..., V, be a sequence of elements of T in which each element of T



appears at least once. Define

Dry =" (H Do(vj)> in i2F"D(G). (9)

i=1

Let M be a mazimal elementary abelian subgroup of GG, and let I be the
corresponding mazimal totally isotropic subspace of I. Then

ResM(DT',) = XT([)DO(]*)S , (10)

and so Dt s 1s independent of the choice of the V;, which justifies the notation.
n

Lemma 14 Let Ty and Ty be subsets of Z. Then
1 |J1vy=t.

VezZ
2. (TN I(Ty) = [Ty UT3), and therefore xr,ut, = XT,XT;-
3. [T —xv)=0.

Vez

Proof: Part 1 is a consequence of Proposition 11. Part 2 is an immediate
consequence of the definition. Part 3 now follows from the formula for the
characteristic function of a union. n

Proposition 15 Let s > 2". Then

kg=— > (-1)"Dr,. (11)

P£TCZ

Proof: We of course use Quillen’s Theorem. Let M be a maximal element-
ary abelian subgroup, and I the associated maximal totally isotropic sub-
space. By Proposition 7, Resp(&3) = xe({) Do(7*)*. Now, by Lemma 13 and
Lemma 14,

Resy [ ho+ Y (=D)7'Dr, | =D (=) xr(1)Do(17)’ (12)

PETCZ TCZ
= (H (1 —XV(I))) Do(17y (13)
VeZ
=0, (14)
which proves the result. m
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This result does not imply that s} € 7 whenever s < 2", In fact, it
is proved in [4] that, for n = 2, s} € 7 if and only if s > 2. However,
the following lemma demonstrates that x) cannot be expressed in terms of
the Dy, if s < 2%,

Lemma 16 Let V € Z, and let Ty and T, be subsets of Z. Then
1. 1(2) is not empty.
2. I{Z\V) 1s strictly larger than I(Z).
3. I(Th) = I(T,) if and only if Ty = 1.

Proof: For each 1 < ¢ < n, define X; = B;A; € F; then Xy, ..., X,
generate a maximal totally isotropic subspace which lies in I(Z). The
automorphism group of G acts transitively on the set of maximal element-
ary abelian subgroups, and so in part 2 we may assume without loss of
generality that V = {A}, ..., A%}. Define elements Y;, ..., ¥, of E by
Y, = By.. BAA ifr<n—1,and Y, = B .. . Br+i=" B, A AL

r4+1
Then Yi, ..., Y, commute with each other, and generate a maximal totally
isotropic subspace which lies in /(Z \ V) but not in I(Z). Finally, part 3
now follows. -

Integrality Fach «, is integral over T, by the Tezuka-Yagita theorem.
In this section, we obtain explicit monic polynomial equations satisfied by
the x,, and prove that «”" lies in 7 for sufficiently large . Recall that E*
carries a nondegenerate symplectic form by,.

Lemma 17 Let V be a subspace of E*, and I a mazimal totally isotropic
subspace of E. Suppose that dimRes;(V) = dim(V). Then Res;(VL) = I".

Proof: Let A be the subspace L™!(V) of £. Then dimRes;(V) = dim(V)
if and only if /N A = 0, and Res;(V) = I*ifand only if A+ 7 = E. So
we must prove that A* +7 = E if IN A = 0. Since b is nondegenerate and
It = I, this is standard linear algebra. ]

Let V be a finite-dimensional Fy,-vector space. Choose one non-zero vector
from each one-dimensional subspace of V, and define A(V) € S(V) to be the
product of all these subspace representatives. Then A(V) is well-defined
up to multiplication by a scalar, and Macdonald’s Theorem shows us that
A(V)P~1 = Do(V).

Recall that the inflation map ™ induces an S(E*)-module structure

on h*(G).
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Proposition 18 Let 0 < r < n—1;letn~r < s < n; and let V be an
s-dimensional subspace of E*. Then A(V) (&f"_’ - D,H_,_S(VJ')) =0 and

Do(V) (n’r’“" - Dn+r_,(Vl)) =0 in h(pt?).

Proof: By Quillen’s Theorem, it suffices to prove these equalities after re-
striction to each maximal elementary abelian subgroup M of G. For such
an M, let [ be the corresponding maximal totally isotropic subspace I of E.
If dimRes;(V) < dim(V), then Do(V), and hence A(V), restrict to zero
by Lemma 5. Otherwise dimRes;(V) = dim(V), and so Lemma 17 tells
us that Res;(V*') = I*. Applying Lemma 5 again, Resps (Dngr—s(V1)) =
D.(I*)*""": but this is also Resp(«2"" "), by Proposition 7. n

Corollary 19 Let 0 < r < n —1; let V be a (n + s)-dimensional sub-
space of E* for some 0 < s < r; and let Y be a 2s-dimensional sub-
space of V. For any complementary subspace W of Y in V, the equation
kP Pyy = Dy o(WL)Pyy holds in h*(G). Hence &P’ Dyy(V) € T for all
t>1.

Proof: Observe that Do(W) divides Py,y. The last part follows by Macdon-
ald’s Theorem. -

Theorem 20 For every0 <r <n-—1 and every 0 < s < n,

[T (=2 = Dusrs(VH)) =0 (15)

Vez,
In particular, k" € T for all t > 2",

Proof: We use Quillen’s Theorem. Let M be a maximal elementary abelian
subgroup of G, and [/ the corresponding maximal totally isotropic subspace
of E. By Proposition 7, the restriction of &, to M is D,(/*). By Pro-
position 11, there is some V € Z, whose restriction to I has dimension
s = dim(V). Then by Lemma 17, the restriction of V' is I*. Hence
KP""" — D.(V?) restricts to zero by Lemma 5. The last part follows by
Corollary 19. =
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