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ARemark About Arithmetic Miyaoka-Yau Inequality

Lin Weng

It is we1l-known that a direct consequence of arithmetic Miyaoka-Yau inequality is

Szpiro inequality about the minimal discriminant of elliptic curves [5]. As a byproduct,

according to Frey [2], we will have the asymptotic version of Fermat last theorem. In this

line, there are two different approaches: One is by Vojta [8] who deduces the problem to

that only associated with so-called limited family, by using the famous Kodaira-Parshin

construction. The other is by Frey and Kani [3], who deduce the problem to one only

related with curves of genus 2, but with the inequality associated their Jacobians, by using

the fact that elliptic curves may be covered by curves of genus 2 and the arithmetic proper

ties of them.

On the other hand, to try to oHer a proof of arithmetic Miyaoka-Yau inequalities

seems to be very difficult as we really do not know how to "translate" the proof in the case

of functional fields. Hut for some special kinds of surfaces, there is certain method to do so.

In this note, we will oHer a strategy to study hyperelliptic a~ithmetic surfaces. Note that in

the functional field cases,the corresponding Miyaoka-Yau inequality can be obtained just

by using some properties of double covering [4], [7], [9]. We hope that it can also be

done for hy"perelliptic arithmetic surfaces. In this case, our last form of conjectural arithme

tic Miyaoka-Yau inequality takes the form as that of Parshin, but with the coefficients

a1(g), ~(g), a3(g) J the functions of genus. At last, it can be proved that for the applica-
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tion to Szpiro inequalityJ this form is enough.
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I. Geometrie Situation

Let f: X --+ Y be a relative minimal fibration of curvcs of genus g over a smooth

projective eurve Y with X also smooth.

For y EY ,let

6 := 2g-2 + X(X ) .y y

Then the relative Noether formula becomes

wi/y + l: Oy = 12 deg(f*wX/ y ) .
y

On the other hand, for every hyperelliptic fibration f: X --+ Y , there exists a 1P1-bundle

p : P := IProj (f*wx /y) --+ Y

and a double eovering

.:~--+p
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such that X. is birational to X over Y . There exists an open set yO of Y such that

i) P-1(yO) is isomorphie to !p
l )( yO

ii) r 1(yO) ean be identified with the closure of

2{(x,t,z) E 4: )( Y )( (I z = <p(x,t)} ,

where x is an inhomogeneous coordinate of !p
l and cp is a polynomial of x of degree

2g+1 or 2g+2 with eoefficients in K(YO).

Proposition [4]. Let A(cp) denote the discriminant of cp as a polynomial of x . Then

dx dx 1 dx 4(2g+1)
II := A(cp)g(- " x - A ••• A xg- -)

Z Z Z

defines a regular seetion of

whieh depends only on f: X --+ Y .

Let

Then we have the following
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Theorem [4]: Let f: X ---+ Y be a relative minimal hyperelliptic fibration of genus g.

Für every closed point y E Y ,

Remark: There are three steps to prove it. At first, by elementary transformation, we may

assume that the branch locus has "good" singu1arities. Then we can estimate

ord &(cp)g
y

and

dx dx -1 dx 4(2g+1)
ord (- A X - A ••• A ~ -)

Y z z z

respectively.

A direct consequence of the above theorem is the following

Proposition: 1.

2.

Remark: With respect to Miyaoka-Yau inequality, this resu1t ia bad enough. But we argue

that
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1. locally, the above bound is the sharp onej

2. the proof of this rough result may be translated to arithmetic case.

Also for some certain purposes,the above result is very usefu!. For example, if g = 2 we

have

2
Theorem [9]: KX ~ 8 x(Ox) .

In fact, with more detailed discussion, we can have an even better global result.

n. Arithmetic Situation

At first let us recall the arithmetic Noether formula. Let S be the spectrum of a

henselian discrete valuation ring with algebraically closed residue field and consider a pro

per Hat regular S-Scheme f: X ---+ S with smooth generic fibre. The Artin conductor of

X over S is the integer defined by

*Art(x/s) = X(X-) - X(X ) + Sw H (X-'~D)1J S S 1].{,.

*where SwsB (x1j'~t) is the alternating sum of the Swan conductor.

Now with the help of the following

Theorem (Mumford, Deligne) For any arbitrary proper smooth geometrically connected

curve f: X ---+ Y I there exists a canonical unique (np to sign) isomorphism
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13
(det(RI*wX/ y ))

One can prove that

Theorem (T. Saito) Let S be the spectrum of a henselian discrete valuation ring with

algebraically closed residue field and f: X --+ S be a proper regular geometrically

connected S-Curve with smooth generic fibre. Then

- Art(X/S) = ord ~ .

Here we think ~ as a canonical nonzero rational section of an invertible OS-module

defined by the above theorem and the order of a nonzero rational section t of an inver

tible OS-module L is a unique integer n such that

n° -t=pLs

with p the maximal ideal of Os .

From here, if we globalize it, we can easily have the following

Arithmetic Noether Formula (Faltings, T. Saito) For an arithmetic surface f: X --+ Y
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2
13 deg R f* wX/Y - deg R f*( w X/Y)

Imitating the above prücess, für hyperelliptic curve, we also have the following canonical

nonzero rational section

ä' = ä' XIS

of an invertible OS-module

Thus we ca"n introduce the hyperelliptic discriminant as the order of ä' divided by

4(2g+1) .

Theorem For an arithmetic surface f: X ---+ Y with generic fibre a hyperelliptic curve,

\ ordä'logq + \ 0l(x)EL v v L u u
vEYfin uEYm

Remark: The above theorem is in fact another version of Noether formula. Combinating
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this with Deligne's Riemann-Roch theorem, we have the following

30rd 4'
Lw cm ,ZjY = ; ( ) +

vEYfin

- 6 )log qv v

with 6' (Xu ) the modification of Faltings' o-function by a constant depend only on genus

g.

From here, with respect to the corresponding theorem in the first section J we have the

following

Conjectural Arithmetic Miyaoka-Yau Ineguality: There exist 3 effective1y computable

positive numbers a1(g) J a2(g) ,a3(g) such that for all number fields K and all minimal

arithmetic surfaces f: X --+ Y = Spec(OK) of genus g J

(}X/Y 5 a1(g) ; 0y €y + az(g)log IDK/ QI + a3(g) [k : Q]
vEY

with

[

log qv J v no n-Archimedean

f = 1 v re alv J

2 v computes

and
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{
-Artin conductor

Gv = Fa!ti ngs G function

v non-A r chimedean

othe r wi se

Remark: We note that this kind of inequality is too wide than Parshin's original one. But

in practice, it is hopeful that our formula can be obtained for some special arithmetic sur

faces. And in the next section, we will see that for the application of Szpiro inequality it is

enough.

III. Szpiro Inequality

The aim of this section is to emphasize the fact that the conjectural arithmetic

Miyaoka-Yau inequality above also has Szpiro inequality as its direct consequence.

In fact if aO is an aboslute constant, a1(g) = (g-l) • a1 with a1 another absolute

constant, then Parshin offered a proof of the following

Theorem (Parshin) Suppose that the arithmetic Miyaoka-Yau inequality is true with

above condition for all arithmetic surfaces with stable fibres and generic fibre of genus

> 1 . Then the following statements hold:

1. For every arithmetic surfaces X, there is an eHectively computable constant c(X)

such that, for any section i: Y ---+ X ,

i(Y)wX/ y ~ c(X)

2. There'exist effectively computable constants cl' c2' cg , such that

a) for all elliptic curves E over Q with stable reduction
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c
4min(E) ~ N(E) 1

where fJ. • (E) is the minimal discriminant and N(E) is the conductor;
IDln

b) for'al! ellipric curves E over a number field K, on which they have stable re-

duction,

where H(E) is the canonical height of the curve E.

The basic tool in the proof is Kodaira-Parshin construction. After with some modifi

cations of deep use of this method, Vojta also forms a conjecture of this style. All of them

have the asymptotic Fermat last theorem as their consquence.

Note that Parshin's proof still holds if we use the conjecture stated in the last section,

we have

Corollary. If the conjectural arithmetic Miyaoka-Yau inequality holds, the above

Parshin's theorem is true without any condition about al(g), ~(g), a3(g) .

Remark: After I finish the above work, I suddenly find a simila modification of Parshin's

arithmetic Miyaoka-Yau inequality in [10], with the help of Dr. U. Jannsen.
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