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We construct an invariant for closed, oriented three-manifolds from the Kontsevich inte-
gral 7, which includes Lescop’s generalization of the Casson-Walker invariant. Combining
this result and a formula for computing the Kontsevich integral in [17], we can compute
the Casson-Walker invariant combinatorially in terms of ¢-tangles (non-associative tan-
gles in [3]). To get a three-manifold invariant, we impose the following three-term (3T)

relation to the space of chord diagrams.

T :;1:' i :__ =0 (3T relation).

In this relation, dotted lines present chords and the threc chord diagrams are identical
except within discs where they are as above.

The Kontsevich integral Z has values in the space A of chord diagrams subject to
the four-term relation {13, 2, 17]. We know that a three-manifold is obtained by the
surgery on a non-oriented framed link in S® [22]. Oriented three-manifolds obtained
from two links are homeomorphic if one of the links are obtained from the other by a
sequence of Kirby moves given in Figure 2 [12]. Framings of the links are given by the
blackboard framings and the part of L] in L’ parallel to L, is actually parallel on the
blackboard. We construct a three-manifold invariant by taking Kirby move invariant part
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from the Kontsevich integral Z; of oriented framed links constructed in [17]. We modify
Z; so that it has a good property with respect to the KII moves. Let v = Zg(U) 1,
where U is the Morse knot given in Figure . This is the factor introduced in [2, 17]
to normalize the effect of maximal and minimal points. For an f-component link L, let
Z4(L) = Zs(L)#(v,v,--- ,v). This means that we connect-sum v to each string of Zs(L).
We take a certain quotient A of A so that the image of Z,(L) is stable under the KII
moves. Let A’(L) denote this image of Z;(L). Our construction of A’(L) is compatible
with the structure of the category of the ribbon Hopf algebra in [26] and so A’(L) factors
the Jones-Witten invariant in [23, 26] without the normalization factor for the KI moves.

We will write detail of the related facts elsewhere.

()

FIGURE 1. The diagram U.

®ky | L] U ~ L]~ 8] U

Ly L L
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L=LiUL - --ULg~L =LiUL 1 UL

FIGURE 2. Kirby Moves

In this paper we study A’(L) modulo one more relation (stable equivalence, see Defini-
tion) concretely, and we show that it consists of the order of the first homology group and
the Casson invariant. For a Z/rZ-homology 3-sphere (r : odd prime), we already know
that the Jones-Witten invariant [11, 28] dominate the Casson-Walker invariant [24]. The
element Z;(L) in A dominates both the Jones-Witten invariant and the Casson invariant.
However, we still don’t know a relation between them for general three-manifolds.

The main results (contents of Section 1) are announced in [14].
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1. MODIFICATION OF THE UNIVERSAL VASSILIEV-ICONTSEVICH INVARIANT FOR

THREE-MANIFOLDS

We use notations in (17, 19]. Let C be a chord diagram with a distinguished string s,
and let & be the number of end points of chords on s. Let A(C) denote the sum of 2*
diagrams obtained by adding a string parallel to s and changing each point on s as in

Figure 3. Note that this is different to the coproduct introduced in [2].

FIGURE 3. Parallel of a chord diagram

Proposition 1. Let L and L' be two links as in the KII move in [igure 2. Let Z;(L) =
S X:chord Gy X. Then Zf(L’) = Y X:chord Cx X', where X' is obtained from X as in Figure

diagram diagram

4.

This is proved in Section 2.

Let A denote the C-linear space spanned by the chord diagrams on a disjoint union
of £ SVs subject to the four-term relation. We add two types of rclations to A4®. The
first one is for orientations of strings. Let D be a chord diagram and let D' the chord
diagram obtained by changing the orientation of a string s of D. Then we impose D’ ~
(—1)*() D, where e(s) denotes the number of end points on s. We call this the orientation

independence relation. The second relation is for the KII move given in Figure 5. We call
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- -

ZI(L) = E/\':Chord éx X Zf([’,) = Zx\':chord cx X’

diagram diagram
FIGURE 4. Difference of Z; by the second Kirby move

it the KII relation of chord diagrams. Let
A = A /(Orientation independence relation,KII relation) ,

and let A’(L) be the image of Z;(L) in A® for an -component link L.

0l e
BERER 11y
—— INl Il

FicURE 5. Relation for second Kirby moves

Proposition 1'. A'(L) is invariant under KII moves and orientation change of any

component.
We normalize a low degree part of A’(L) for the KI moves.

Definition. Two elements D, D’ in AY is called stably equivalent if DUOU---UO =
D'UOU---UO in A for some k > 0, where © denotes the chord diagram on a circle

with one chord. Let A(lt) denote the set of stable equivalence classes of A,

Proposition 2. jﬁ‘) is a two-dimensional vector space with basis {@LUOU---U 0O, O, L

OU---UB}, where ©, denotes the chord diagram on a circle with two chords as in Figure

6.

FIGURE 6. © and ©,
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This is proved in Section 3.

For two elements D; € /-‘15‘1’ and Dy € j(lz"), let D) Dy be the image of D, U D, €
.ﬂgt"l"l?). For ¢,,¢, > 1, /T(lzl) and flﬁ‘?’ are 1somorphic by identifying the corresponding
basis. Let jﬁ“) be the space spanned by g, and ¢, which correspond to @UOU---UO
and ©, U O U ---U O respectively and we identity A\ with A, Then AP has two-
dimensional algebra structure with multiplication given by the disjoint union, which is
given by go 0o = o, G091 = 9196 = G, and g, g, = 0. Note that gy + c; 9y € AL
is invertible if and only if ¢, # 0. Let A/(L) denote the image of A/(L) in AL, Then,
for trivial knots cosy with %1 framings, we have A{(co,,) = 195+ 2 g;, and Aj(co_,) =
—3 90+ 2 g,. Hence A{(coy,) is invertible and we can modify A}(L) for the KI moves as
in the case of the Jones-Witten invariant. Let oy (L) (resp. o_(L)) denote the number of

positive (resp. negative) eigenvalues of the linking matrix By of L, and let
Ar(D) = 2077+ (07D Al (00, Yo+ ) A (0o )70 AY(L).
Let Ay o{L) and A, 1(L) be the coeflicients of A;(L) with respect to g, and gy, i.e.
ALYy = MNo(L) gy + Aia(D) g,
For a framed link L and the corresponding three-manifold M}, we have the following.

Theorem 1. A;(L) is a topological invariant of the three-manifold My,

Theorem 2. (1) A1o(L) = |Hi(ML)|, the order of the first homology group of My, if
b, (ML) =0, and 0 if b, (M) > 0, where b, (My,) is the first Betti number of Mj,.

(2) Ava(L) = =3 A (ML), where A(My) is twice Lescop’s generalization [21) of the Casson-
Walker invariant (Walker’s normalizeation) A(My) [1, 27] satisfying :\(ML) = |H:1(ML)| %
A(ML) if b, (ML) = 0.

Theorem 1 is a direct consequence of our construction ol A;. To prove Theorem 2, we
use the fourth author’s diagonalizing lemma given in [25, Corollary 2.5] and [24, Lemma
2.2]. According to the diagonalizing lemma, we can restrict our attention to algebraically
split links, for which we can prove (1). See Section 4 for detail. To prove (2), adding to
the diagonalizing lemma, we use Dehn surgery formula obtained in [10] and [21] which
expresses the Casson-Walker invariant in terms ol linking numbers and coefficients of the
Conway polynomial [21]. For algebraically split links, this formula is rather simple and
we can compare directly our invariant and their formula. Then we get (2). For detail, see

Sections 5 and 6.
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2. PROOF OF PROPOSITION 1.

We prepare several lemmas. Suppose X is a one-dimensional oriented manifold whose
components are numbered. A chord diagram with support X is a set consisting of a
finite number of unordered pairs of distinct non-boundary points on X, regarded up to
orientation and component preserving homeomorphisms. We view each pair of points as
a chord on X and represent it as a dashed line connecting the two points. Let A(X) be
the vector space over C spanned by all chord diagrams with support X, subject to the
well-known 4-term relation (see, for example, {2, 17}). The vector space A(X) is graded
by the number of chords, and, abusing notation, we use the same A(X) for the completion
of this vector space with respect to this grading. When X is n numbered lines, A(X) is
denoted by P,. All the P, are algebras: the product of two chord diagrams D; and D,
1s obtained by placing D, on top of D;. The algebra P is commutative [2, 13].

We recall the associator € P in [16, 17], which is equal to Z;(|] ), where | /]
presents the trivial g-tangle on three strings with brackets (*(#*)) at the top and ((**)*)
at the bottom. This associator corresponds to the associator of quasi-Hopf algebras in
[5, 6] and is also studied in [3]. For p = (p,, -+, p,), g(p) = ¢ is the length of p, and
|P| = p, +p,+---+p,. For p and r with the same length g, p > rmeansp; 27, p>r
means p; > r;, p > 0 means p; > 0, and p > 0 means p; > 0 for I <7 < g. Let

. . 1
(21) C(zla" : :“-‘) = f) 73
ml<m<m*€N?n, My
and
(22) T(pl,q,,...,Pn,qn) = C(la-”)laql +1317'--)13(I2+1;”':qn+ 1)
p—1 Pyl

Then, as described at the end of [16],

(23) d=1 + i Z Z (_1)|Q|T(p11qh"' )pgsqg) X

k=2 g>1 p>0, >0,

[pl+lal=*,
g(p)=gla)=g
g . .
Z (_1)|1‘| (l-l' (pl) (qs)) B|5]Apl—r1 Bh~%  APe~Te qu—-agA|r|’
o(r)=g(s)=g, i=t \Ti/ \5i

0<r<p, 0<8<q

where A (resp. B) denotes the chord connecting the first and second (resp. the second

and third) strings.
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Proof of Proposition 1. Let I:_é._j'"" denote ¢, }--|~ ----- + &, ’ } ————— , where
g; = 1 (resp. —1) if the :-th string is oriented downward (resp. upward). Then, for any

X € Py, we have

11 11
(2.4) - =8 .

LI (L

This is a special case of Lemma 2.1 in {19]. Let A be a mapping from P53 to P, applying A
to the first string of Ps. Let E=f £}, a= i ],cv’z [ijj =] | {4
and 8’ = }-{ | | . Notethat Fa = FEo and Ef = E . For X € Ps, we have

(2.5) EaA(X)=EA(X)d, EBA(X)=EA(X)S

By applying (2.4) with X = o' and X = 3’ to each end point on the first string of X, we

get these formulas. Since [Z:j-] =€ ] [:} + &,

(2.6) B =p0d

-l , we have

We use the above expression for ®. Then, in A(®), A (A) = —a and A(B) = (. By
(2.5) and (2.6), we have £ B8l aPr=m §0=21 | aPe~"a 39575 olfl = £ o/IP1 g9 Hence

(2.7) EA(®) = E +

i Z Z T(pl)‘h: e ’pg! qg) Z (_1)|D| (—l)lq' (—1)|r| (ﬁ (P,) (qi)) Eaf’ipl ﬁ’lcﬂ.

k=2g¢>1 p>0, g>0, g(r)=g(8)=g, i=1 \" =h
pl+lal=*, 0<r<p, 0<s<q
g(p)=g(a)=9

However, we know that Zf';g(—l)"-' (’,ff) = 0 for p; > 0. Therefore, all the terms except

the first one of the right hand side of the above expression for ® vanish and so we get
(2.7) EA(P)=F

Recall that v is an element in P such that v=' = Z;((\_J ). By the remark at the

end of Section 5 in [19], we have Z( “) | o | and Z;( ) =

E@J for some a and b such that ab = A(v) (v~! @ »~!). Hence, by (2.7) and its

opposite version, we get

A{™) Ay oy T
(2.8) Z(A )=[ a s i IEXEE
(B = | AR =
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A(D)
As g-tangles, IA([])]| = T/]
I S 3

and

LY

4
A (

i

t
I

)

A(

N
J

] ) = v where the brackets

N———

are as (((#*)*)*). On the other hand, Z; is obtained from Z; by adding v!/? at each

maximal and minimal point. Hence, from (2,8), we get Zf( M ) = e |,

Zy( N ) = . Therefore, the difference of Z;(L) and Z;(L') is given

as in Figure 7. Hence, by adding extra v’s to each component to get Z; and using

O

ab=A(v)(v~' @ v7!), we get Proposition 1.

I [
RN
Ll |

)(

~

Zf(L) = E){:Chord éX X

diagram

XI

Zj(Lf) = EX_:chord éX X’

diagram

FIGURE 7. Difference of Z; by the second Kirby move

3. PrRooOF OF PROPOSITION 2

We extend the notion of chord diagrams as in [2]. Let

(
a1
+d

i

From this definition, the order of the edges at the branch point has meaning and we have

hl | |
+ 1 1
.{ l..r-l

—— c—t—

(Flipping relation).

Then, according to the four-term relations, this element with a branch point on chords is

well-defined in the space spanned by chord diagrams with the four-term relations. From

the four-term relation, we have the following relation, which is called the [HX relation in

[2].

-

e

-——d1 - 1

! 1
Ly o
e

el Jaa

From the IHX and flip relations, we have

=0

(IHX relation).

(triangle reduction formula).
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Let A® denote the space spanned by chord diagrams with branch points subject to the
IHX relation, and let jg‘” denote the stably equivalent classes of chord diagrams without
strings subject to the KII relation and the orientation independence relation.

By using the KII relation and the orientation independence relation, we get several

useful relations. From the orientation independence relation, we have

O-- =0 (1 vanishing formula),

i.e. if a chord diagram has a string without any end point of a chord; then it is equal to
r=-- r==1

0 in A®. Next, from the KII relation for chord diagrams, we have O O = @ +

Fe=n F=="

@ and so @ = (. Hence, in ./IEE), we get

O u (Uf”l@) 0 (0 vanishing formula)

Similarly, we have ) (D D D +2 D + terms equal to 0 by

ra

the 0 and 1 vanishing formulas. Hence we have D + 2 D = 0. This means
that, in .40,

-0 = L S| (pushout formula).

1 LI}
| )t I

i 1 [}
[ | 1)

We derive another important relation: ) () = (j —}- (j + D) +

[}
i) [}

D 4+ terms equal to 0. Hence we have D) D) + @) = 0. By

using the pushout formula, we get : ' Uoe+ r“ Ho —|— __ U© =0. Hence, in .A

I...|| —

E + e _|. =0 (3T relation).

This relation is called the three-term (87T) relation. From 37T relation, we get following

two relations.

. . 1 [ 1 1 1 )
L1 =3 Lol — ) coo (two legs reduction),
R . [ T— [ S -
> | .
» L == (. (three legs reduction).
—_— ——

Moreover, for two chord diagrams Dy, D, € ,ﬂﬁ“), we have
Dy l_] Dy = —=Dy#Dy — Di#D, in AE"’ (connected sum formula),

where D\ # D, denote the connected sum of two diagrams at chords. D1#D, is also the

connected sum at the same chords, but D, is attached to D, differently as in Figure 8.
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Dy [} 1] D Dy | D Dy t-:-1 D,
Dy U D, D1# D, Di#D,

F1GURE 8. Connected sum of two chord diagrams without strings.

In the above, we get the 3T relation and the 0 vanishing formula from the K1 relation

for the chord diagrams. Conversely, we have the following.

Lemma 1. The KII relation comes from the 1HX, 8T, orientation independence rela-

tions, and the 0 vanishing formula, 1.e.

jlgt) = A /(8T relation, orientation independence relation, 0 vanishing formula) .

k l(Eh(?rds "o

(RN
i

Proof. We show )Cj = @ by an induction on k. Tor & = 0, this formula is
trivially satisfied. For k = 1, this formula is satisfied by the 0 vanishing formula. For
k = 2, this formula comes from the 0 and 1 vanishing formulas, where the 1 vanishing
formula is a consequence of the orientation independence relation. For k& > 2, we reduce

it to the case for fewer chords by using the two and three legs reductions. O
By using the above relations, we get the following lemma.
Lemma 2. The space ,&E‘) s spanned by

{DU(U'®) | D : connected chord diagram in A©) with less than three branch points}.

Proof. By using the two and three legs reduction (and 0, 1 vanishing formula), we can
reduce any chord diagram to a linear combination of chord diagrams such that any of its
strings has just two end points of chords. Then, by using the pushout formula for these
diagrams, we get a linear combination of chord diagrams of the form D U (LI@), where
D is a chord diagram without a string. Here, by using the connected sum formula, we
reduce D to a scalar multiple of a connected diagram.

Let 8 denote the diagram E} . By using the 3T relation, we can reduce a connected
chord diagram with 2d branch points to a scalar multiple of a connected sum of d 8’s.

Now we assume that D has 2d branch points with d > 1 and show that D vanishes in

.iﬁ". By the above argument, we may assume that D is a connected sum of d §’s, and,
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moreover, we may assume that D has a part given by 272 | From the 3T relation, we

-LJLa_

have
o Lo ot
(31) 2 : ls + r-n "_ L':-l = O
[ IR L -d. —addo
. . r==A9 f) . r==-"
By using this, we have 177 = —1/2 120 +1/2 12 Since 11 = rara
and 11 =1/2 202 by the triangle reduction formula, we have 5/4 rara =0,
andso [Ir1 =0. O

Proof of Proposition 2. For a chord diagram D € f_l(lz), let deg(D) be
deg(D) = (number of branch points and end points of D)/2 — ¢,

and we call it the degree of D. All relations to define ./I(lt) are homogeneous with respect
to this degree. Lemma 2 shows that the degree 0 and 1 parts of A are both at most
1-dimensional and other parts are all O-dimensional. Therefore, it is enough to show that
the elements LU‘© and ©, U (l_I‘"IO) do not vanish. To do this, we list up all the non-
zero chord diagrams of degree 0 and 1 in fﬁe) and show that they are reduced uniquely
to scalar multiples of U‘© and ©, U (LI“‘G)) by the IHX, 3T, orientation independence
relations and 0 vanishing formula. We write down exactly all such non-zero diagrams as
scalar multiples of LI‘O and 0, U (LJ‘"'@), and check that all the relations are compatible
with these elements.

Non-zero diagrams of degree 0 are disjoint union of chord diagrams with several com-

ponents connected by chords as a chain in Figure 9. Then we have
(3.2) DW= 1/(-2)*" (U*e).

Hence, for a diagram D € ./1(15) of degree 0 with j disjoint chains, D = (—2)~(¢-7) (UCO).
Non-zero diagrams of degree 1 are disjoint union of one component of degree 1 and

k)>

zero or some) D¥)’s. Non-zero connected diagrams of degree 1 are DiFik2), D) and
g g =

D(ikf kaks) i, IFigure 9. Then we have

Dik) = 1/(—2)h+k @, U (UhHh0),
(3.3) DUk = 1 /(—2)k =1 @, 1 (l_lk,+k2®) ’

DY) = 13 () iththotD @, 1y (b thth i)

So, combining (3.2) and (3.3), we get expressions for all the non-vanishing diagrams.
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000 00 -0
Dik) /AN —
%, h
D.(__klrkg) ngl'k?}

FIGURE 9. Non-trivial diagrams

Now we can check all the relation for the above elements. Computation is rather

elementary and we omit the detail. O

4, ORDER OF THE FIRST HOMOLOGY GROUP

We first recall the fourth author’s diagonalizing Lemma, by which we can restrict our
work to simple cases. For a framed link L, let By, denote the linking matrix of L. A

framed link L is called an algebraically split link if By, is a diagonal matrix.

Lemma 3 (Diagonalizing Lemma, [25, Corollary 2.5} and [24, Lemuna 2.2)) Let L be a
framed link. There is an algebraically split link L' with a non-degeneraie linking matriz

such that L U L' is equivalent to an algebraically split link by the Kirby mouves.

Proof of Theorem 2 (1). To prove (1), we compute the integral for a framed link L
corresponding to the configuration of disjoint union of D®). Let w(K) be the writhe of
a knot K and Ik(K, i) be the algebraic linking number of knots /; and K,. Here we
give a coordinate in R® by (z,7) € C x R & R We first assume that L is a knot. In
this case, we need the coeflicient of DV, which is equals to ©. The coefficient of @ in
Z¢(L) is known to be a half of the writhe of L [17]. Next, we assume that L is a two

component link with components L, and L,. In this case, we need the coefficients of D(?
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and D) U D, which are given by the following integrals: The coefficient of D(®) is

1 / ! ’ t
— > €, €1 €96y dlog(z, — z1) A dlog(z, — 23)
(2m/=1) Ji <t z €Lin{t=t, )2 €Lan{t=t,} ’

zp€lin{t=t,},zj€lan{i=t,}
where ¢;, (resp. €]) is 1 if the link L is oriented upward at the point (¢;, z;) (resp. (¢;,z})),

t) 1

and is equal to —1 if L is oriented downward at this point. This integral is equal to

1 , 1
5 m ; zleng%t:tf;El dlog(z, — z)) 27 /=1 Jiy z,ebl;{tﬂii g5 dlog(z; — 23)
z €Lan{t=t,} Helan{t=t,}

As in [13], we know that
1 /
m -[1 zleLln{m:lgiqun{t:t,}El e otz = Z’) = Hell o)
and so the coefficient is equal to
%lk(l;l, Ly)2.

As in the case of knot, the coefficient of DM U D) is equal to
'UJ(L]) 'UJ(L')').

Now consider the case lor f-component link L with components L, Lo, -+, L,. We
first compute the coefficient of D whose components corresponding to Ly, ---, L are
connected by chords in that order. It is given by the following integral:
1 !
e /t 3 /\ e, el dlog(z, — 2,).

izt "tz ,€Lin{t=t, },2 ,€lan{t=t, } k=1
z,,eLG{t t,}zh€Lan{t= t.z}

2, ELen{t=t,} 2, €lnN{t=t,}

Let Lgyy be Ly, then the above integral is equal to

1 /!
j e € dlog(zx — 2).
k=1 2” VT e, ELkn{t..tk}
zkELk+]ﬂ{t t.}

Hence, the coefficient is equal to
¢
H Lka LL-H

Next we compute the coefficient of a disjoint union of several D*)’s, In this case, the
result is a product of coefficients corresponding to every D given above.
We show that A (L) is equal to the absolute value of det B,. According to diagonaliz-

ing Lemma, we have to prove only for.algebraically split links. that L is an algebraically
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&

L. IL_

FIGURE 10. Add full twist to L _.
split link since det By = det By, det By, Let L =L, U L,U---U L; be an £-component
algebraically split framed link. In this case, lk(L;, L;} = 0 if 7 # j and so there is only
one chord diagram of degree 0 whose coefficient does not vanish. That is | [_, © and the

coeflicient is

f-l. w(L;)
=1 2 .
Therefore,
~ _ 1 —o4 (L) 1 —o_(L) ¢ w Li ¢
AI,O(L) — 2( o4 (L)—a-(L) (§> (_5) l'l’ (‘) ) — ’Hw([’!)l — |det BLI,
=1 = i=1

since o4(L) and o_(L) are equal to the number of components of L with positive writhes

and negative writhes respectively. This implies Theorem 2 (1) since | det 8,

is equal to the

order of the first homology group of My, if b(M) =0, and is equal to 0if b,(Mr) > 0. O

5. SKEIN RELATION FOR Ay,

We make a skein relation for Ay (L) for an algebraically split link L and then compare
it with Lescop’s formula. Let Ly and L_ be two links which are identical except in a
small ball B where L, N B is a positive crossing and L_ N B is a negative crossing.

We first consider the case that L, and L_ are knots. Let L_ be the knot obtained
from L_ by adding a positive full twist as in figure 10. Note that the writhes of L, and
L_ are equal. We separate A, ;(L4) and Ay (L_) into the g-tangles corresponding to the
crossing points in B and the added full twist, and the contribution from the other parts.
Let Py be the integral from the crossing, T be that from the full twist, and @ be that
from the other part. Then, Py, P_ are given in [17] and

k-4 k-4 F- F-4
= — ) = — 4 4. P —exp(——1) = - 4
P+—exp(2) | |+2+8+ ; P_ = exp( 2) || 2+8+
The contribution of 7 is given by the connected sum of Q)+ 0 +0,/2+4 - to the integral

of L_. Let Pf‘), T® and Q™ denote parts consisting of terms with chord diagrams with
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N s -1 52 e 52
“ s U st U st

Q" Q) Qs

FIGURE 11. Chord diagrams in QU, where s denote the sring corre-
sponding to K,

k chords. Let Ay, and A}, be coefficients of A} with respect to g, and g, in Section 1,
ie., AJ(L) = Al o(L) g+ AL (L). Then
Alu(Ly) =P QW + PR QW + PP QO
AL (L) =P9 QB 4 pU Q) 4 pB) QO
Therefore, by the above formulas for Py, we have
A(Ls) = A (D2)
= (P — PO Q® 4 (P — Py QW — (PP Q)0 +
(PP — PPy QO — (P QY0 — (P Q40 /2.
Since (P! Q©)#6 = —0,/2 and (P Q©)#0,/2 = 0,/2, we have
AL(Ly) = A(L-)
= (P = P QU — (PP Qe
= v (] | uW)#e.

We compute Q) exactly. Let K1), K be the two components obtained from L4
by smoothing in B. There are three kinds of chord diagrams in Q) given in Figure 11.
Let «,, oy, a5 be the integrals for configurations corresponding to Q(l'), gl), le). Then
o, = w(KM)/2, a, = k(KM K?), and oy = w(K?)/2. Hence

KW 4 w( K@)
2

! ! T w - -
Aa(Le) = Ay (L) = ( Oz + Ik(K W, K (2)) @
w(KW) + 2Uk(KD, £®) + w(K®)

9 2

= - 3lk(KW, Ko,
Here we use the relation @ = —~20,. So we get
ANy(Ly) = Ay (Do) = =31k(sc M K@) (skein 1)
For a knot L, we have

Avi(L) = 2sign(w(L)) (A’I'I(L) - %sign(w(z;)) A’I‘O(L)) ,
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where sign(z) = 1 if > 0 and sign(z) = —1 if z < 0. Since w(Ly) = w(L_) and
A1o(L) = |w(L)| for any knot L, we have

Aa(Lg) — Ay (L2) = —6sign(w(Ly)) k(KM K@), (skein I)

Now we consider a skein relation at a crossing point with strings of different components.
Let L,_ = Lg_ll U Lf)_ UL® U.-.UL® be an f-component algebraically split link with a
positive crossing and a negative crossing of Ls_ll and Lg?l in small balls By, B, respectively,
Lo =IWuL® ur®y...u LY be alink obtained from L4_ by a crossing change in
By, and L_y = L(_l_l U L(_zl UL® .- U LY be alink obtained from f,__ by a crossing
change in B;. We compute the difference A} (£L4-) — A} (L-4). Note that L_y is an
algebraically split link since so 1s Ly_.

We first compute A} ,(Ly-) — A} (L__). Let K} be the knot obtained from Lﬂl and
Lfl by smoothing in By, and [; = Ky U L® U ..U LY. Let Py, P_, P, denote the
contribution to the integral from the ¢-tangles corresponding to parts of Ly_, L__, Ly in
By, and @ be that form other part. Note that @ is the same one for Ly_, L__, L;. We
represents the chord diagrams in @ as in the figure 12. We know in [17] that

k-1 k-1
Py=exp(—),  Po=exp(-—), hA= X.
Let P:Lk), Pl(k) and Q) denote parts consisting of terms with chord diagrams with &

chords. Then, as before, we have

A’m(L+—) - A,I,I(L—--) = |"‘| U Qma Af1,1(L1) = >< U Q(t)-

The chord diagrams nontrivially contributing to Q¢ are listed in Figure 12. The in-
tegral corresponding to a middle chord of --O--O-- is given by the linking number of the
two components containing the end points of the chord. We assumed that Ly_ is an
algebraically split link, and hence the integral corresponding to a chord diagram contain-
ing a part --O- -0 - vanishes. By using this, we list up all chord diagrams of Q® which
do not vanish in Figure 13. Let Q(li'j), -+, @33 be the above diagrams. Let E%i'j), RN
F33 be diagrams obtained by inserting |-{ to @i, -+, @33, and let F'l(i'j), oo, Fag be
diagrams obtained by inserting X to @i, ---, Q33. Then Ej (or ED EM) = e, (or
el elhi)y (U‘_l(ﬂ) U®; and Fy (or F,Si), F,Ei’j)) = [, (or 12 f,ﬁ"’")) (L_I“l@) L0, in ALY
for k=1, 2,---,29. By using relations in ﬂ(le), they are given as follows. e(li’j) = 3/16,
e = 3716, ) = 174, &) = —1/2, ) = 174, ) = —3/8, ) = 3/8, {) = —3/8,
el =378, el =1/4, ¢l = —1/2, € = 1/4, €5 = —1/2, €1, =1, €5 = —1/2, €, = 3/4,
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Ol‘dy = 0,

00, (64, (1169, [0, (80, @00
100 64, (2150 (60, (L8 M09
700 00 (2160 60, [H60 69
7160 700, (2169, (160, (160, [HED
09 08

TV 1T

ordp = 1/2,
v, L],
ordy =

700, (7100, 60 (7109

FIGURE 12. Non-trivial diagrams

€7 =0, ;3 = —3/4, ‘319 = 1/2 620:1 €1 = —1/2, €3 =0, €33 =0, €, =0, ey = 0,
efa = —3/8, el = 3/8, eld = 3/8, &l = =3/8, /| = —1/2, £ = 1/4, ¥ = —1/2,

D=L =y = 0 = i) = ) = 12, ) = -1 Y =

(‘) =-1/2, fi3 =1 Jiu=-2, fis=1, fie=-2 fiz=1 fis=1 fie =1, foo = -2,
fa =V =1 = =2 fa = 1, fos = =2 f33 = 3/4, [ = =3/4, fid = =3/4,
/39 = 374, Similarly, we have B = 1/4 DI 11 (LPO), B = —1/2D{? U (L%0),
Bap =0, Ess = 0, F§) = —1/2 D\ U(LP0), F5y = DI 0(L20), Fy = DI L(L20),
F33 = Dy (=2) (U?0). Let o (or ai), ai 'J)) denote the integral c0r1espond1ng to @k (or
QY Q). Then we have

! ! 1
Al,l(L+—~) - A1,1(L——) -+ § All,l(Ll) =

¢ . . .
- Y @+ )16+ Y (o) + ol + ol +af)/8 — ao/4 + a1 /2 — /4

3<igi<e i=3

+ 0y /2 — gy + 9y /2 — g + TU(LS})—) A11.1(15’)/“1 + w(Lf_)_) A'I,I(L,)/"]a

where L/ = LO U LW U --. U L®, Here, the last two terms correspond to integrals for
I3 and F3;. We get A{ (L") by summing up integrals of all the possible configurations
for D,. We know that

®)
o™ ol = (L) LY k(LY LY k(L) LO) k(L L

k?‘:t J

It is a product of linking numbers and so it is equal to 0 because L, _ is an algebraically
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split link. By the same reason, we have

: : , , e (k)
o) o) + ol + ol = (L), LY (LE, LY (282 12 T —“’(2 ) o,
(=
and (1) r( )
Ik(LyZ ! L : L ow(L)

g+ Qg = ( 1—[
k=3

We also know that o, = ( - i(L—(J—)l) o(L (])) ( )/4 Moreover, a,, — 2, =
I

5A’1,1(L$l) (l'[fzs ﬂ#) and agy — 2095 = 5A] (LY 2 2) (I'[E_3 M) Hence, we have

1, A (I
M () = M) + 2 80 () = B (00 a2

¢ w(LU))) w( LYo L) + 10 A7 (L) + 10 A7, (2)

+(H 5 4

j=3
Similarly, let L, be a link obtained from L_; by smoothing at the crossing in the ball B,.

Then we have

' ., AL (L) _
Nalbos) = 0+ 30,0 = 22D ) 402

(LYY w(L)w(LE) + 107, (L8)) + 107, (22)
+ 1T —5 1 :
1=3

Since L,,._ and L(_'L are of the same knot type for « = 1 and 2, we have

Noa(Bar) =Mooy = =3 (ML (L) = ALy (L) (skein D)

By using the relation between A;; and A}, we get
Aa(Lgs) = Ava(Ly) = —sign(w( L) w(LE ) w(L)) (A a(Lr) — Ava(L2)) . (skein 11)

6. COINCIDENCE WITH THE CASSON-WALKER INVARIANT

We show the equivalence of A;; and A by using the diagonalizing Lemma, the Dehn
surgery formula for A, and the formulas (skein 1) and (skein II) in the previous section.
Let A}, and A}, be the degree 0 and 1 part of A} respectively. For two links L, and L,

let L; U Ly denote the split union of these two links. Then we have
(61) 1\1'1([11 U Lg) = Al,l(Ll) Al'o(Lg) + !\1_0([/]) Al,l(Lg).

Since X satisfies similar formula with respect to a split union of framed links, we get the

formula in Theorem 2 (2) for L, if it is true for L, and L, U Ly. Hence, it is good enough
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to prove Theorem 2 (2) only for algebraically split links according to the diagonalizing
Lemma.
For an {¢-component algebraically split link L = Ly U Ly U --- U Ly, a Dehn surgery

formula for the Casson invariant is obtained in [10, 20, 21], which is given by

i=1 G

>oo2 (]__[ sign(w(L,-))) (H]w(l);)l) a1 (UJ ). (Dehn surgery formula)

Ic{1,2,,¢)  \iel igl i€l
Here |/| denotes the number of elements in /, and a,(L) is the coefficient of t¥ of the

Conway polynomial V(t) [4], which is defined by the following skein relation:
Vi (1) = Vi (8) = =t Vi, (8),

where Ly, L_, Lo are links identical except within a ball at which they are a positive cross-
ing, negative crossing and their smoothing as usual. Note that there is a minus at the right
hand side of the relation. Recall that A(My) = |Fy (M) AM(My) =TI, lw( L)) MMy) if

My, is a homology sphere.

Proof of Theorem 2 (2). For an f-component algebraically split link L with non-
degenerate linking matrix, we will prove that —3 ([T, [w(L:)|) M ML) = Ay 1(L). The
computation of Ay,; is reduced to those for split links by the relations (skein IT). By using
(6.1), Ay, for a split link is determined by A, ; and A, for each component. Moreover,
Ay of a knot is reduced to A;; of trivial knots with framings by (skein I). Therefore, to
prove Theorem 2 (2), it is enough to show the following three things:

(1) For any trivial knot L with a framing, —3AMMg) = Ay ((K).
(2) For any knot L, —3 A\(M},) satisfies (skein 1).
(3) For any link L, —3 A(My) satisfies (skein II).

We first show (1). Since Z;(K) = O + (w(£)/2) 0O + (w(K)?*/8) O2+ (terms with
more than two chords), and v = O + (1/24) (0, — ©)+ (terms with more than two
chords), we have A, (K) = sign(w(K)) (w(K)* — 3{w(K)| + 2)/4. On the other hand,
MMg) = —sign(w(K)) (w(K)? = 3|w(K)| + 2)/12 by the Dehn surgery formula. Hence
(1) is true.

Now we show (2). Let Ly, L_, L_, K and K® be knots as in the proof of (skein I1).
Since w(Ly) = w(L_), (2) comes from the relation a,(L.) —ay(L_) = ay(Ls)—ay(L_) =
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—a, (KW U K®) = k(K®, K®) ((4.7) in [7] and Theorem 2 in [8]).
It remains to prove (3). We use the notations in (skein IT). We also know that w(Lgl)) =
w( L), w(L) = w(L®)) and w(LP) = w(LP)). Then, we have

:\(ML+—) - S‘(M‘L—+) =

2 > sign(w(LY) w(LE)) (rﬂw ) ( IT |w(L(£))|) X

JC{3,4,,} jE€J t€{3,4,, }\J
(aIJ|+3(L£L) U L8 U (Ujes 9)) = ap (L8 U L U (Uses L J))))

since the other terms of :\(ML+_) are identical to the correspoinding terms of S\(ML_+).

Similarly, we have

AML)=AMp)=2 3 sign(w(LiY))) (Ultv(L”’)l)( IT IW(L“")I)><

JC{34,.¢} ieJ i€{3,4,,EN\J
(alJ|+2(L£1) U (Ujes L9)) = a|J|+2(L§1) U (UjeJL(j)))) )
where L, = Li‘) UL® U ULY and L, = L“) ULBU---U LY. From the definition of

V, we have
a)aa(LLLULE U(Ujes L9)) a1, LELUL U(Ujes L)) = —ay 1,0 L1V U(Uses L),

a’|J[+3(L(—1+ vzt 'J(U:’EJLU)))—'fl|1|+3(1['(—1l UL U(Ujes 1)) = —G|J|+2(Lgl)U(UJEJLU)))-

Hence, we have (3), completing the prool. O
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where st denote the string corresponding to the i-th component of Ly_, ©7 is a split
union of 7 ©’s and ng) is a non-vanishing chord diagram of order 1 with k£ components.

FIGURE 13. Non-vanishing chord diagrams in Q¢ for an algebraically split link



