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The theory of homotopy types is one of the most basic parts of topology and
geometry. At the centre of this theory stands the concept of algebraic invariants. In
what follows we give a general introduction to this subject including recent results
and explicit examples. There are three main topics:

Homotopy types with nontrivial fundamental group
(§2, §3,§4,§5)

Homotopy types with trivial fundamental group
(§6, §7,§8,§9, §12)

Stable homotopy types
(§10,§11)

Almost all definitions and notations below are explicitly described and statements'
of results are complete. Prerequisites are elementary topology, elementary algebra
and some basic nations from category theory.

Typeset by AftAS-TEX
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§ 1 What are homotopy types

For each number n = 0, 1,2, ... one has the simplex ß n which is the convex huH
of the unit veetors eo, el, ... en in the Euclidean (n + 1) -space JRn+l. Hence ßO is
a point, Ä 1 an interval, Ä2 a triangle, ß3 a tetrahedron, and so on:

•
6,0 6.3

The dimension of ß n is n. A point x E Ä n is given by barycentrie coordinates,

n

X = L tiei with
i=O

n

L ti = 1 and ti 2:: O.
i=O

The name simplex describes an object which is supposed to be very simple; indeed,
natural numbers and simplexes both have the same kind of innocence. Yet onee
the simplex was created, algebraie topology had to emerge:

For each subset a C {O, 1, ... ,n} with a = {ao < ... < ar } one has the r
dimensional face Ä a C Ä n which is the convex hull of the set of vertices eao , . .. ,ea ,..

Hence the set of all subsets of the set [n] = {O, 1, ... )n} can be identified with the
set of faces of the simplex ß n. There are "substructures" S of the simplex obtained
by the union of several faces, that is,

S = Ä a1 U Ä a2 U ... U Ä a " C .6.n.

Finite polyhedra are topologieal spaees X homeomorphic to such substructures S
of simplexes Ä n, n ~ O. A homeomorphism S ~ X is called a triangulation of
X. Hence a polyhedron X is just a topological space in which we do not see
any simplexes. We can introduce simplexes via a triangulation, but this roust
be seen as an artifact similar to the choice of coordinates in a vector space or
manifold (compare H. Weyl, Philosophy of Mathematics and Natural Science, 1949:
"The introduction of numbers as coordinates ... is an act of violence ... "). Finite
polyhedra form a large universe of objects. One is not interested in a particular
individual object of the universe but in the classific',\tion of species. A system of
such species and subspecies is obtained by the equivalence classes

homotopy types and homeomorphism types.

Recall that two spaces X, Y are homeomorphic, X ~ Y, if there are contin
uous maps 1 : X -+ Y and 9 : Y -+ X such that the composites Ig = ly
and gl = Ix are the identity maps. A class of homeomorphic spaces is called
a homeomorphism type. The initial problem of algebraic topology - Seifert and
Threlfall [LT} called it the main problem - was the classification of homeomorphism
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types offinite polyhedra. Up to now such a dassifieation was possible only in a very
small number·of special eases. One might compare this problem with the problem
of classifying all knots and links. Indeed the initial datum for a finite polyhedron is
just a set {al" .. ,ak} of subsets ai C [n] as above and the initial datum to describe
a link, namely a finite sequence of neighbouring pairs (i, i + 1) or (i + 1, i) in [n]
(specifying the crossings of n + 1 strands) is of similar or even higher eomplexity.
Hut we must emphasize that such a description of an objeet like a polyhedron or a
link cannot be identified with the object itself: there are in general many different
ways to describe the same object, and we eare only about 'the equivalence classes
of objects, not about the choice of description.

Homotopy types are equivalence classes of spaees whieh are considerably larger
than homeomorphism types. To this end we use the notion of deformation or
homotopy. The prineipal idea is to eonsider 'nearby' objeets (that is, objects,
whieh are 'deformed' or 'perturbed' continuously a little bit) as heirig similar. This
idea of perturbation is a common one in mathematics and science; properties which
remain valid under small perturbations are considered to be the stable and essential
features of an obejct. The equivalence relation generated by 'slight continuous
perturbations' has its preeise definition by the notion of homotopy equivalence: Two
spaces X and Y are homotopy equivalent, X ::: Y, if there are continuous maps
/ : X -+ Y and 9 : Y -+ X such that the composites /g and g/ are homotopic to
the identity maps, fg ::: 1y and 9/ ::: Ix. (Two maps /, 9 : X -+ Y are homotopic,
/ ::: 9, if there is a family of maps ft : X -+ Y, 0 ::; t ::; 1, with /0 = /, 11 = 9 such
that the map (x, t) I---t It (x) is eontinuous as a function of two variables.) A dass
of homotopy equivalent spaees is called a homotopy type.

Using a category C in the sense of S. Eilenberg and Saunders Mae Lane [GT]
one has the general notion of isomorphism type. Two objects X, Y in C are ealled
equivalent or isomorphie if there are morphisms f : X -+ Y, 9 : y~ -+ ~Y in C such
that / 9 = 1y and gl = 1x. An isomorphism type is a dass of isomorphie objeets in
C. We may consider isomorphism types as being special entities: for example, the
isomorphism types in the category of fini te sets are the numbers. A homeomorphism
type is then an isomorphism type in the category Top of topological spaees and

eontinuous maps, whereas a homotopy type is an isomorphism type in the homotopy
eategory Top/ ::: in whieh the objeets are topological spaces and the morphisms

are not individual maps hut homotopy dasses of ordinary continuous maps.

The Euclidean spaees IR n and the simplexes .6.n, n ~ 1, all represent different
homeomorphism types but they are contractible, i.e. homotopy equivalent to a
point. As a further example, the homeomorphism types of eonnected I-dimensional
polyhedra are the graphs whieh form a world of their own, but the homotopy
types of such polyhedra eorrespond only to numbers since eaeh graph is homotopy
equivalent to the one point union of a certain number of circ1es SI.

Homotopy types of polyhedra are archetypes underlying most geometrie struc
tures. This is demonstrated by the following table which descrihes a hierarchy of
structures based on homotopy types of polyhedra. The arrows indieate the forgetful
funetors.
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Riemannian manifolds
(isometry)

/
differentiable manifolds

(diffeomorphism)

~

Kaehler manifolds

!
complex manifolds

(complex isomorphism)

~

real algebraic sets. t
semi analytic sets

(analytic isomorphism)

polyhedra
(homeomorphism)

topological manifolds
(homeomorphism)

1
locally finite polyhedra

(proper homotopy equivalence)

polyhedra
(homotopy equivalence)

This hierarchy can be extended in many ways by further structures. Each kind
of object in the table has its own notion of isomorphisffi; again as in the case of
polyhedra not the individual ohject hut its isomorphism type is of main interest.
We only sampie a few properties of these objects.

Some of the arrows in the table correspond to results in the literature. For ex
ample, every differentiable manifold is a polyhedron, see J.H.C. Whitehead [OC] or
Munkres [EDT]. Any (metrizable) topological manifold is proper homotopy equiv
alent to a locally finite polyhedron though a topological manifold needs not to be
a polyhedron, see Kirby-Siebenmann [FE]. Any semi-analytic set is a polyhedron,
see Lojasiewicz [TS]. There are also connections between the objects in the ta
ble in terms of realizability. For example, each differentiable manifold admits the
structure of a Riemannian manifold, or each closed differentiable manifold has the
structure of an irreducible real algebraic set (in fact, infinitely many birationally
non isomorphie structures), see Bochnak-Kucharz [ANI].

The famous Poincare conjecture states that the homotopy type of a 3-sphere
contains only one homeomorpmsm type of a topological manifold. Clearly not every
finite polyhedron is homotopy equivalent to a closed topological manifold. For this
the p~lyhedron has to be, at least, a Poincare complex; yet there are also many
Poincare complexes which are not homotopy equivalent to topological manifolds.
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By the result of M.H. Freedman {TF] all simply connected 4-dimensional Poincare
complexes have the homotopy type of closed topological manifolds, they da not in
general have the structure of a differentiable manifold by the work of Donaldso'n
[AG]. Homotopy types of Kähler manifolds are very much restricted by the fact
that their (real) homotopy'type is 'formal', see Deligne-Griffiths-Morgan-Sullivan
[RH].

Now one might argue that the set given by diffeomorphism types of closed differ
entiable manifolds is more suitable and restricted than the vast variety of homotopy
types of finite polyhedra. This, however, turned out not to be true. Surgery theory
showed that homotopy types of arbitrary simply connected finite polyhedra play an
essential role for the understanding of differentiable manifolds. In particular, one
has the following embedding of a set of homotopy types iuto the set of diffeomor
phism types: Let X be a finite simply connected n-dimensional polyhedron, n > 2.
Embed ..Y. into an Euclidean space IR. k+t, k 2:: 2n, and let N(X) be the boundary
of a regular neighbourhood of X C IR. k+l. This construction yields a weIl defined
function {X} ~ {lV(..-Y)} wmch carries homotopy types of simply connected n

dimensional finite polyhedra to diffeomorphism types of k-dimensional manifolds.
Moreover for k = 2n + 1 trus function is injective, see Kreck-Schafer [CS]. Hence
the set of simply connected diffeomorphism types is at least as complicated as the
set of homotopy types of simply connected finite polyhedra.

In dimension 2:: 5 the classification of simply connected diffeomorphism types
(up to connected SUfi with homotopy spheres) is reduced via surgery to problems
in homotopy theory which form the unsolved hard core of the question. This
kind of reduction of geometrie questions to problems in homotopy theory is an old
and standard operating proeedure. Further examples are the classification of fibre
bundles and the determination of the ring of cobordism classes of manifolds.

All this underlines the fundamental importance of homotopy types of polyhedra.
There is no good intuition what they actually are, but they appear to be entities as
genuine and basic as numbers or knots. In my book [AH] I suggested an axiomatic
background for the theory of homotopy types; A. Grothendieck [PS] comrnented:

"Such suggestion was of course quite interesting for my present reflections,
as I do have the hope indeed "that there exists a 'universe' of schematie
homotopy types..."

Moreover J .H.C. Whitehead [AH] iri his talk at the International Congress of Math
ematicians 1950 in Harvard said with respect to homotopy types and the homotopy
category of polyhedra:

"The ultimate objeet of algebraie homotopy is to eonstruct a purely alge
braic theory, whieh is equivalent to homotopy theory in the same sort of
way that 'analytic' is equivalent to 'pure' projective geometry" .

Today, 45 years later, this idea still remains a dream which has not yet eome
true. The fuH realization seems far beyond the reaeh of existing knowledge and
techniques. Some progress in several directions will be deseribed below.
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§ 2 How to build homotopy types

There are many different topological and combinatorial devices which can be used
to construct the homotopy types of connected polyhedra, for example, simplicial
complexes, simplicial sets, CW-complexes, topological spaces, simplicial groups,
small categories, and partially ordered sets.

Up to now we have worked with finite polyhedra by viewing them as substruc
tures of a simplex. One needs also polyhedra which are not finite since for example
the universal covering space of a finite polyehedron, in general, is not finite, also
the Euclidean spaces IR n, n ~ 1, are non-finite polyhedra. Infinite polyhedra are
defined by 'simplicial complexes'. The following abstract notion of a simplicial COffi

plex is just a recipe for joining many simplexes together to obatin aspace which is
called the 'realization' of the simplicial complex. .

(2.1) Definition. A simplicial complex X is a set of finite sets closed under for
mation of subsets. Equivalently )( is a set of finite subsets of a set U such that U
is the union of all sets in X and for' a E X, b Ca' also b E )(. The set U = XO is
called the set of vertices of )(. The simplicial complex ~Y is a partially ordered set
by inclusion.

We obtain the realization of a simplicial complex ..Y by associating with each
element a E X a simplex ~a whichjs the convex hull of the set a in the real vector
space with basis Xo. The vertices of .6.a are elements of a. For b C a the simplex
.6.6 C .6.a is a face of ß a . The realization of X is the union of sets

(2.2) IX]' = U .6.a

aEX

with the topology induced by the topology of the simplexes. That is, a subset in
I..YI is open if and only if the intersection with all simplexes is open. If)( is finite
we cau choose a bijection XO ~ {Ol 1, ... ,N} such that I..XI cüincides with the
substructure U{ .D. j (a), a EX} in the simplex .6. N. The realization I.\" I is compact
if and only if .\" is finite.

(2.3) Definition. A polyhedron is a topological space homeomorphic to the real
ization of a simplicial complex.

Simplicial complexes have the disadvantage that für a subcomplex Y' c )( the
quotient space lXI \ IYI is not the realization of a simplicial complex. This is one of
the reasons to introduce 'simplicial sets' which are considerably more flexible than
simplicial complexes. Again a simplicial set X is a combinatorial affair, i.e. a family
of sets and maps between them from which again may be deduced a topological
space 1..\"1. There is a more general notion of a 'simplicial object' which actually
became one of the most inßuential notions of algebraic topology.

(2.4) Definition. The simplicial category .6. is the follüwing subcategory of the
category of sets. The objects are the finite sets [n] = {O, 1, . .. ,n} ln 2: 0, and the
morphisms a : [nI ~ [mI are the order preserving functions, i.e. x ~ y implies
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a(x) < a(y). A simplicial object X in a category C is a contravariant functor from
~ to the category 12; we also write -

X: ßOP ~ C

where ~op is the oppossite category of ~. Hence X is determined by objects
X[n], n ;::: 0, in C and by morphisms a* : X[m"] ~ ){[n] Olle for each order preserv
ing function a :[n] ~ [m]. Morphisms in the category sC of simplicial objects are
the natural transformations. -

Hence simplicial sets, simplicial groups and simplicial spaces are the simplicial
objects in the category of sets, s..rl, groups Gr, and topological spaces Top, re-
spectively. A simplicial set is also a 'simplicial space by using the discrete topology
functor Set C Top. A simplicial space X is good if every surjective map a in ß

induces a 'cofibration' a* : X[m] ~ X[n]. For example the inclusion IBI c lAI
given by a simplicial subcomplex B of a simplicial complex ..4. is a cofibration. We
define the realization of a good slmplicial space X by the following quotient of the
disjoint union of products ){[n] x ß n in Top,

IX! = (U X[n] x ß n) /~
_ n~O

Here the equivalence relation is generated by (a, 0' .. x) ~ (a" a, x) for a : [n ] ~
[m], a E X[m], x E ~n where 0'* : ßn ~ ßm is the restrietion of the linear map
given on vertices by 0'. For different realizations of simplicial spaces compare the
Appendix of Segal [CC].

There are the following basic examples of simplicial sets. For any topological
space X we obtain the simplicial set

(2.6) {
(SX)[n] = {a : ß n ~ .'C E Top}

SX : ßOP ~ Set =
- -, *()- - 0' a =aoO'*

which is called the singular set of X. One has the canonical map

T ': ISXI-+ X, T(a, x) = a(x)

which is a homotopy equivalence if X is a polyhedron. Moreover T is a weak homo
topy equivalence for any space X, (that is, Tinduces isomorphisms of homotopy
groups with respect to all base points). Clearly the singular set 54'C is very large.
This, however, has the advantage that SX is a '!(an set'j. for such I<:an sets it is
possible to describe homotopy theory purely combinatorially, see Curtis [SH] and
May [SO].

In the next example we use the morphisms di , Si which generate the category
ß multiplicatively. The maps di are the unique injective maps di : [n - 1] -+
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[n] - {i} C [n], and the maps Si are the unique surjective maps Si : [n] -+ (n - 1]
with si(i) == si(i + 1) == i E (n - 1].

For any small category X we obtain the simplicial set

(2.7) N erve(X) : Cl op -+ Set

which is calle~ the nerve of X. Here Nerve (X) (n ], n ~ 1, is the set of all sequences
(Al,'" , An) of n composable morphisms -

in X. For n == 0 let N erve(X)[O] be the set of objects of ){. The functor lVerve(X)
is defined on generating morphisms of Cl by so(A) == 1A for A E lVerve(.Y)[O] and

Si(At, ... ,An) == (At, ... ,Ai-l,1,Ai, ... ,".\n)

where 1 is the appropriate identity. Moreover

di(A) = { ;

for A : A"-+ B E Nerve(X)[1] and for n ~ 2

i == 0

·i == 1

for i == 0

for i == 1, . .. ,n - 1

for 1, == n

N erve(X) : t::::.. op -+ Set,

There is a more formal way to define the simplicial set N erve()[) as follows. For this
recall that any partially ordered set has the structure of a small category: objects
are the elements of the set and there is a unique morphism a -+ b iff a ~ b. This way
one obtains a functor H : ~ -+ Cat where Cat is the category of smati categories
and functors. The functor H carries the object (n] to the category H[n] given by
the ordered set {n]. Using H we define the functor

{
N erve(X)[n] == {a : H[n] -+ X E Cat}

a*(a) == a 0 ü* with G:* == H(o:)

which coincides with the definition above, compare Gabriel-Zislnan [CF]. The real
ization INerveX I is also called the c1assifying space of ..X".

Since products in the category Top of topological spaces do not behave weil with

respect to quotient maps we shall use in the next definition the full subcategory
Top( cg) of spaces whose topology is compactly generated. The product _X" x y~ in

Top( cg) yields the structure of a monoidal category. The usefulness of compactly

generated spaces was observed by Brown [CC] and Steenrod [CC].
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If X ia a small topol~s.i9~ categorv, i.e. a category enriched over the monoidal
eategory Top(cg), then NeT've(X) is a simplicial space given by X n = Nerve(X)[n]

above. F~= 0 the se~ Xo is discrete and X n , n~ 1, is the product X (":\C1 ,Xo) x
... x X(Xn,Xn- 1 ) where 'X(A, B) E Top(cg) is the space of morphisrns A -+ B
in X. In particular, if H E Top( cg) is a topological monoid, i.e. a topolog

ical category with a single object, then the simplicial space N erve(H) is the
geometrie bar construction of H, see ~or example Baues [GL]. This is a good sim
plicial space if the inclusion of the neutral element {1} CHis a closed cofibration,
(i.e. H is weIl pointed). For a weIl pointe~ topological group G E Top(cg) the
realization --

(2.8) B(G) = INerve(G)1

is the classifying space of G which is the Eilenberg-Mac Lane space K(G, 1) if G is
discrete, see Milgram (Be]: This classifying space is homeomorphic to the infinite
projective space IRPoo, CPoo and HPoo in case the topological group G is Z/2, SI
and 8 3 respectively.

A simplieial complex X is a partially ordered set and hence also a small category
and we can form the simplicial set N erve(X). The realizations

(2.9) lXI ~ INerve(X)1

are homeomorphic. In fact, INerve(X) I can be identified with the barycentric
subdivision of IX].

Simplicial complexes and simplicial sets both are of combinatorial nature, but
they tend to be very large objects even if Olle wants to describe simple spaces like
products of spheres. J .H.C. Whitehead observed that for many purposes only the
'cell structur~' of spaces is needed. In some sense 'cells' playa role in topology
which is similar to the role of 'generators' in algebra. Let

(2.10) D n = {x E IR n
, 11 xII:::; 1}

o 0

D n == {x E JR n , 1I x 11< 1}, ann = nn - nn ::: sn-l

be the closed and open n-dimensional disko An (open) n -cell e, n ~ 1, in aspace
o

X is a homeomorprnc image of the open disk Dn in .X, a O-cell is a point in X.
As a set a'CW-complex' is the disjoint union of such cells. A CW-complex is not
just a combinatorial affair since the 'attaching maps' in general nlay have very
complicated topological descriptions.

9



(2.1-1) Definition. A CW-complctl' X with skeleta ...Yo C Xl C X 2 C ... c X is
a topological space constructed inductively as follows:

(a) XO is a discrete space whose elements are the O-cells of ...Y.

(b) xn is obtained by attaching to xn-l a disjoint union of n-disks Di via
continuous functions '-Pi : 8(Di) -* X n

- 1 , i.e. take the disjoint union
xn-l '-' UDi and pass to the quotient space given by the identifications

o

x ,-...; 'Pi(X), x E aDi. Each Di then projects homeomorphically to an n-cell
ei of X. The map '-Pi is called the attaching map of er.

(c) X has the weak topology with respect to the filtration of skeleta.

The realization lXI of a simplicial comple~ is a CW-complex with the n-cells given
by elements a E X with dim(~a) = n. Also the realization !...YI of a simplicial set
is a CW-complex with the n-cells given by 'non-degenerate' elements in X[nJ. Here
an element is degenerate if and only if it is in the image if one of the functions
si : X[n - 1J -+ X[n], i E [n - 1J. A CW-complex, however, need not be a
polyhedron, see Metzler [BU], hut a CW-complex is always homotopy eqivalent to
a polyhedron. A CW-space is a topological space homotopy equivalent to a CW
complex. We now descrihe some of the many ways to create homotopy types of
polyhedra.

(2.12) Theorem. Homotopy types of polybedra are tbe same as the homotopy
types of tbe spaces in (a) . .. (f) respectively:

(a) realizations lXI of simplicial complexes X,

(b) realizations IXI of simplicial sets X,

(c) realizations ISXI of singular sets of topological spaces ~Y,

(d) classifying spaces INerve(X)1 of small categories X,

(e) classifying spaces INerve(X, ~)l of partially ordered sets (X, ~),

(f) CW-complexes.

CW-complexes X, Y have a compactly generated topology and the product}{ xY
in Top(cg) is again a CW-complex (this does not hold for the product in Top). A

CW-monoid is a CW-complex X which is also a monoid in Top(cg) such that

the neutral element is a O-cell and such that the multiplication is cellular. For
example a simplicial group G yields the realization IGI which is a CW-monoid. Here
G, considered as a simplicial set, is a group ohject in sBet with a multiplication
G x G -t G in sSet inducing the multiplication IGI x IGI = IG x GI -+ IGI in
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Top(cg).

A simplicial group F is called a [ree simplicial group if for each n ~ (). the group
F[n] is a free group with a given basis and if all si carry basis elements to basis
elements, compare Curtis [SH].

(2.13)Theorem. Homotopy types oE connected polybedra are the same as tbe
bomotopy types oE tbe spaces (a) and (b) respectively:

(a) classifying spaces B(H) = INerve(H)1 oE CW-monoids H for which the set
1ro(H) oE path components is a group,

(b) c1assifying spaces B(IGI) wbere IGI J8 tbe realization oE a free simplicial
group.

Hence free simplicial groups suffice' to describe all homotopy types of connected
polyhedra. This yields a very significant algebraic tool to construct such homo
topy types. Computations in free simplicial groups, however, are still extremely
complicated. It is shown in Baues [CH] that the complexity of simplicial groups
cau be reduced considerably in case one studies homotopy types of connected 4
dimensional polyhedra. The connection offree simplicial groups and CW-complexes
was described by Kan [CW]:

(2.14) Theorem. Let X be a CW-complex with trivial O-skeleton ..\,"o = *. Tben
there is a free simplicial group G witb X ~ B(IGI) such that tbe set oE non
degenerate generators in G[n] coincides witb the set of(n + 1) -cells in _X"; n 2: O.

This illuminates the role of cells as generators in topology. Unfortunately the free
group G[n] has also all the degenerate generators coming from cells in dimension
::; n. Therefore the free group G[n] is very large already for CvV-complexes with
a few cells. We call G a free simplicial group associated to .;r if )( ~ B(lG!) as
in the theorem. There is, in fact, an algebraic homotopy theory of free simplicial
groups which via the functors G~ B(IGI) is equivalent to the homotopy theory
of connected polyhedra (compaxe Curtis [SH] and Quillen [HA]).

(2.15) Remark. Further methods of representing homotopy types were introduced
by Smirnov [HT] (compare also Smith [IC]) and Kapranov-Voevodskii [GH].
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§3 Whitehead's realization problem

The main problem and the hard core of algebraic topology is the 'classification'
of homotopy types of polyhedra. Here the general idea of classification is to attach
to each polyheclron 'invariants', which may be numbers, or objects endowed with
algebaric structures (such as groups, rings, modules, etc.) in such a way that
homotopy equivalent polyhedra have the same invariants (up to isomorphism in
the case of algebraic structures). Such invariants are called homotopy invariants.
The ideal would be to have an algebraic invariant which' actually characterizes
a homotopy type completely. The fascinating task of homotopy theary is thus
the investigation of 'algebraic principles' hidden in homotopy types. We may be
confident that such principles are of importance in mathematics far beyond the
scope of topology as for example shown by the development of 'homological algebra'
which now plays a role in ring theory, algebraic geometry, number theory and many
other fields. A further very recent example is the use of 'operads' outside topology;
compare for example Getzler-Jones [OH] ~d Ginzberg-I{apranov [1(0].

The main numerieal invariants of a homotopy type are 'dimension' and 'degree
of eonnectedness'.

(3.1) Definition. The dimension Dim(X) :$ 00 of a CW-complex is defined by
Dim(X) :$ n if X = X n is the n-skeleton. The dimension dim(.Y) of the homotopy
type {X} is defined by dim(X) :::; Dim(Y) for all CW-complexes yP homotopy
equivalent to X.

(3.2) Definition. Aspace){ is (path) connected or O-connected if any two points
in X can be joined by a path in)(, this is the same as saying that any map 8D1 --+ )(
can be extended to a map Dl --+ X where D 1 is the I-dimensional disco This notion
has an obvious generalization: Aspace X is k-connected if for all n :::; k + 1 any
map fJDn --+ X ean be extended to a map Dn --+ ..Y. where Dn is the n-dimensiomal
disco The l-conneeted spaces are also called simply connected.

The dimension is related to homology since all homology graups above the dimen
sion are trivial, whereas the degree of connectedness is related ta homotapy since
below this degree all homotopy groups vanish. It took a lang time in the devel
opment of algebraic topology to establish homology and hamotopy groups as the
main invariants of a homotopy type. F<;>r completeness we recall the definitions of
these groups.

(3.3) Definition. Let Top· be the category of topological spaces with basepoint *
and basepoint preserving maps. The set [..\"', Y] denotes the set of homotopy classes
of maps X --+ Y in Top·. Choosing a basepoint in the sphere sn we obtain the
homotapy graups --

This is a set for n = 0 and a group for n 2:: 1, abelian for n 2:: 2. The group structure
is induced by the map J.i. : sn -+ sn V sn obtained by identifying the equator of sn
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to a point, that is for Ct,ß E 1T"n(X) we define Ct +ß = (o:,ß) 0 p,. The set 11"0(X)
is the set of path components of X and 1T"1 (X) is called the fundamental group of
X. An element f E [X, y"] induces !. : 1T"nX --t 11"n Y" by !.Ct = f 0 Q so that 11"n is a
functor on th~ category Top· / ~.

(3.4) Definition. For a simplicial set X let Cn )( be the free abelian group gen
erated by the set X (n] and let

an :CnX --t Cn-I ..Y"

be the homomorphism defined on basis elements x E ..X"[n] by

n

8n (x) = L(-l)idi(x)
i=O

Then one CaD. check that an an +1 = 0 so that the quotient group

Hn ..X" = kernel an/image 8n+1

is defined. This is the n-th homology group of X. For a topological space )( we
define the homology HnX = H n S X by use of the singular set. The homology H n
yields a functor from the homotopy category Top/ ~ to the category of abelian
groups.

. The crucial importance of homotopy groups and homology groups relies on the
following results due to J .H.C. Whitehead.

(3.5) Theorem. A) A connected CW-space X is contractible iE and only if for a

basepoint in X a11 homotopy groups 11"n(X), n 2: 1, are trivial.
B) A simply connected CW-space X is contractible if and only if all homology
groups Hn ()(), n ~ 2, are trivial.

The theo~em shows that homotopy groups and in the simply connected case also
homology groups are able to detect the trivial ho~otopy type. In fact, homotopy
groups and homology groups are ahle to decide whether t\VO spaces have the same
homotopy type:

(3.6)Whitehead~theorem. Let X and Y be connected CvV-spaces and let f :
X --t Y be a map. Tben f is a homotopy equivalence in Top/ ~ iE and only iE, for

a basepoint in X, condition A) or equiva1ently B) holds.

A) Tbe map f induces an isomorpbism between homotopy groups, f. : 11"n"X" ""'J

1rn Y, n ~ 1.

B) Tbe map f induces an isomorphism between fundamental groups, f.
1rI X ......, 11"1 Y, and tbe induced map j : X -t f~ between universal coverings
induces an isomorphism between homology groups, I. :H n.Y ""'J Hnf·, n 2::
2.

13



Hence homotopy groups constitute a system of algebraic invariants which, in
a certain sense, are sufficiently powerful to characterize the homotopy type of a
CW-space. This does not mean that X ~ Y just because there exist isomorphisms
rrnX I"V rrnY for every n = 1, 2, . . .. The crux of tp.e matter is not merely that
1T"n X I"V rrnY, butthat a certain family of isomorphisms , <Pn : 1Tn.Y rv TI"n yP, has a

geometrical realization f : X -t Y. That is to say, the latter map / induces all
isomorphisms 4>n via the functor 1t"n, namely <Pn = Jrn(/) for n ~ 1. Therefore the
emphasis is shifted to the following problem; compare Whitehead [AH].

(3.71' Realization problem of Whitehead. Find necessary aod sufficient con
ditions in order that a given set of isomorphisms or, more generally, homomor
phisms, <Pn : 1rnX -+ 7T"nY, have a geometrical realization ..Y --+ Y.

The Whitehead theorem shows that also the invariants Jr1 ..Y 1 HnX 1 are suffi
ciently powerful to detect homotopy types. Therefore there is a realization problem
for these invariants in a similar way. In particular, within the category of simply
connected CW-spaces the functors 1rn could be replaced by Hn' The realization
problem of Whitehead above is highly unsolved, and is indeed one of the hardest
problems of algebraic topology. We shall describe below solutions for some special
caseSj see (10.11). Using simplicial groups Kau gave a purely combinatorial de
scription of Whiteh~ad's realization problem. For this we need the following Moore
chain complex of a simplicial group.

(3.8) Definition. A chain complex (C,8) of groups is a sequence of homomor
phisms

...~ Cn ~ Cn - 1~ ••. 1 n E Zl

in the category of groups with image 8n+1 anormal subgroup of kernel an. For each
n, the homology H n (C, 8) is defined to be the quotient group kernel (an )/inlage (8n+1 ).

For each simplicial group Gone has the Moore chain complex, J.VG, with

Nn(G) = nkernel (d:)
i#O

an = d~ (restricted to lVn G)

We def1ne homotopy groups of G by Jrn G = H n (NG).

A basic theorem of Kan [CD] shows that homotopy groups of sin1plicial groups,
in fact, correspond exactly to homotopy groups of connected CW spaces:

(3.9) Theorem. Let G be a simplicial group. Tben tbere is a natural isomorphism
(n ~ 0)

14



Hence if Gx is associated to the connected CW-space X, that is ..x ~ B (IGx I),
we can compute 1rn+l(X) = 1rn (GX) by the Moore chain complex N(Gx). For ex
ample let Gsn+l be the free simplicial group with only one non-degenerate generator
in degree n, then Gsn+l is ,aBsociated to the sphere sn+l and

,
gives us a purely combinatorial description of homotopy groups of spheres.. This
way Kau gave a new proof of Hopf's result 1T'3 5 2 = Z. In general, however, free sim
plicial groups are so complicated that this formula was not suitable for conlputing
homotopy groups of spheres. Theorem (3.9) leads to the following interpretation of
Whitehead's realization problem.

(3.10) Theorem. Let X, Y be conDected CvV-spaces and let Gx, Gy be free
simplicial groups associated to X and Y respectively. Then a set ofbomomorphisms
4Jn : 1T'nX -+ 1T"nY is realizable by a map X -+ Y if and only if there is a map
f : GX -+ Gy in sGr inducing for n 2:: 0 tbe homomorphism

We say that two simplicial groups G, G' are weakly equivalent if there is a map
f : G -+ G' in tßiL inducing isomorphisms f .. : 1rn G ~ 1rn G'. This yields actually
an equivalence relation for free simplicial groups. As usual a 1-1 correspondence
is a function which is injective and surjective. The next result is a consequence of
(3.10) and (2.13).

(3.11) Corollary. Tbere is a 1-1 correspondence between bomotopy types of con
nected CW-spaces and weak equivalence c1asses oE free simplicial groups. Tbe
correspondence is given by X Ho Gx with tbe inverse G H- B(IGI).

We point out that 'weak equivalence' generates an equivalence relation for all
simplicial groups and that weak equivalence c1asses of all simplicial groups are the
same as weak equivalence dasses of free simplicial groups. In fact, for any simplicial
group G' there is a free simplicial group G and a weak equivalence G -+ G' which
is called a free model of G'.

(3.12) Definition. Let C be a category with a given dass of morphisms called
weak equivalences. Then the localization or homotopy categorv of C is the category
H o(C) tagether wi th a functor q : C -+ H o(C) having the following universal
property: For every weak equivalence f the morphism q(f) is an isomorphisffi;
given any functor F : C -+ B with F(f) an isomorphism for all weak equivalences
f, there is a unique functo~e : H o(C) -+ B such that 8q = F. Except for set
theoretic difficulties the category H o(C) exists, see Gabriel-Zisman [CF].

(3.13) Theorem. Let spaces be tbe category oE connected CW-spaces with base·

point and let spaces/ ~ be the corresponding homotopy category. Tllen there is

an equivalence of categories

15



H o(sGr) ..=:, spaces / ~

wbich carries a simplicial group G to the c1assifying space B(IGI).

The results (3.9) ... (3.13) are due to Kan, see Curtis [SH] and Quillen [HA].

16



§ 4 Algebraic models of n-types

When studying a CW-complex or a polyhedron ){ it is natural to consider in
succession the skeleta Xl, X 2 , • •• , where x n consists of all the cells in )( of at
most n-dimensions. Now the homotopy type of X n is not an invariant of the
homotopy type of X. Therefore J.H.C. Whitehead introduced the n-type, this
heing a homotopy invariant of X, which depends only on }{n+l. There are two
ways to present n-types. On the one hand t~ey are certain equivalence classes of
(n + 1) -dimensional CW-complexes, on the other hand they are homotopy types
of certain spaces.

(4.1) Definition. Let CW be the category of connected CW-complexes X with

basepoint * E X O and of basepoint preserving cellular maps. Let CWn+1 be the
full suhcategory of CW consisting of (n +1) -dimensional objects. For maps F, G :
X n +l ~ yn+l in CWn+1 let FIXn , G[X n : ~yn --+ yn+l be the restrietions.
Then we obtain an equivalence relation I"V by setting F /"V G iff there is a homotopy
Flxn ": Glxn in Top·. Let CWn+1

/ I"V be the quotient category. Now an n-type in

the sense of J.H.C. Whitehead is an isomorphism type in the category CvVn+l
/ I"V.

(4.2) Definition. Recall that spaces is the category of connected CvV-spaces \vith

basepoint and pointed maps. Let

n - types C spaces / ~

be the full subcategory consisting of spaces X with ?Ti (X) = 0 for i > n. Such
spaces or their homotopy types are also called n-~.

The two definition of n~types are compatible since there is an equivalence of
categories

(4.3)

We define the functor Pn by.use of the following n - th Postnikov functor

Pn : CW I ~--+ n - types

For X in CW we obatin PnX by 'killing homotopy groups', that is, we choose a
CW-eomplex PnX with (n + 1) -skeleton

'(Pn x)n+l = ..X"n+l

and with 1ri(PnX) = 0 for i > n. For a cellular map F : ..\. -t y~ in CvV we choose
a map P Fn+l : PnX --+ Pny" whieh extends the restrietion pn+l : .yn+l -t yn+l
of F. This is possible since ?TiPnY = 0 for i > n. The functor Pn in (4.4) and (4.3)
carries X to PnX and carries F to the homotopy dass of PnF. Different choices
for PnX yield canonically isomorphie functors Pn.
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Isomorphism types in CWn+1
/ r-..J were originally called "(n + 1) -types', they

are now called n-types since they correspond to homotopy types for which only
1rl, . .. ,1rn might be non trivial..

There is an important relationship between n-types and homotopy types of
(n + 1) -dimensional CW-spaces. Two (n + 1) -dimensional connected CW-spaces
X n+1, y~+l have the same n-type iff one of the following conditions (A) and (B)
is satiesfied:

(A) There is a map F : X n+1 -+ yn+l which induces isomorphisms Jri(F) for
i $ n.

(B) There is a homotopy equivalence Pnxn+1 ~ Pny~n+l

(4.4) Theorem. (J.H. C. Whitebead [SHJ): Let .yn+l, l'~n+l be t\VO finite (n + 1) 
dimensional CW-complexes which have the same n-type. Tben tbere exist a, b < 00

such that tbe one point tulions

x n+1 VVsn+l ~ yn+l V Vsn+l

a b

are homotopy equiva1ent.

The th~rem shows that each n-type Q determines a connected tree HT(Q, n+l)
which we call the tree of homotopy types for (Q, n + 1). The vertices of this tree
are the homotopy types {X n+1

} offinite (n + 1) -dimensional CW-complexes with
Pnxn+1 ~ Q. The vertex {.Xn +l } is connected by an edge to the vertex {yn+l}
if yn+l has the homotopy types of X n +l V sn+l. The roots of this tree are the
homotopy types {yn+l} which do not admit a homotopy equivalence yn+l ::::
X n+1 V sn+l. Theorem (4.4) shows that the tree HT(Q,n + 1) is connected. For
a proof of theorem (4.4) see II.§ 6 in Baues [CH].

Remark. There are various results on the tree HT( Q, n + 1) in case Q == !{(1r, 1)
is an Eilenberg-Mac Lane space of degree 1. In this case the tree is determined by
.the group Jr. Results of Metzler [HZ], Sieradski [58] and 5ieradski-Dyer [DA] show
that for n ~ 1 there exist trees HT(K(rr, 1), n + 1) with at least two roots.

As pointed out by Whitehead [CHI] one has to consider the hierarchy of cate
gories and functors

(4.5) p 2 p 3 p1 - types +--=- - types t-=- - types t-=- ...

whe~e the functor P is given by the Postnikov functor above. 8ince I-types are
the same as Eilenberg-Mac Lane spaces K(rr, 1) we can iden~ify aI-type \vith an
abstract group. In fact, the fundamental group ?Tl gives us the equivalence of
categories

(4.6)
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From thiB point of view n-types are natural objects of higher eomplexity extending
abstract groups. Following up on this idea Whitehead looked for a purely algebraie
equivalent of an n-type, n ~ 2. An important requirement for such an algebraie
system is "realizability", in two senses. In the first sense this means that there is an
n-type which is m. the appropriate relation to a given one of these algebraie systems,
just as there is aI-type whose fundamental group is isomorphie to a given group.
The second sense ia the 'realizability' of homomorphisms between such algebraic
systems by maps of the correaponding n-types.

Mac Laue-Whitehead [TC] showed that a 'crossed module' ia a purely algebraic
equivalent of a 2-type:

(4.7) Definition. An N -group or an action of a group N on a group M ia a
homomorphism f from N to the group of automorphisms of NI. For x E M, a E
N we denote the action by xQ == f(ß)(x) where ß is the inverse of a. Then a
pre-crossed module {) : M -+ N is a group homomorprusm together with an action
of N on M such that

that ia, 8 is equivariant with respect to the action of N on N by inner automor
phisms. A Peiffer commutator in M is the element

(x, y) == X-I y-I x(y8x) for X, y E IV!.

Now a is a crossed module if all Peiffer eommutators are -trivial. A morphism
between erossed modules (or pre crossed modules) is a eommutative diagrarn in Gr

M g) M'

N !) N'

where 9 is f-equivariant, tq.at is g(x Q
) == (gx)(!a). This is a weak equivalence if

(f,g) induces isomorphisms 1T"j(8) I"',J 1l"j(8') for i == 1,2 where iTI(8) == cokernel(8)
and 7r2 (8) == kernel(8).

(4.8) Theorem. Let cross be tbe category of crossed modules and let H o(cross)
be tbe localizations witb respect to weak equivalences. Tben tbere is an equivalence
of categories

2 - types ~ H o(cross)

For a proof ofthis result compare (111.8.2) in Baues [eH]. Ivlany further properties
of crossed modules are described in this book, in particular, crossed modules lead to
algebraic models which determine the homotopy types of connected 3-dimensional
polyhedra.

Using Kan's result (3:13) also a simplicial group 9 with 1rj(G) = 0 for 'i ~ 2 is an
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algebaric model of a 2-type. The crossed module Ba associated to G is obtained by
the Moore chain complex N(G) in (3.8). We have

(4.9)
-1-

with No(G) = G{O]. Here G{O] acts on N1 (G) by XO = -,' 80(0) ~·.x·. so(o) so that d:
N1 (G) ~ No(G) is a pre-crossed module. The normal subgroup dNz(G) of N1 (G)
contains all Peiffer commutators so' that Ba induced by d is a weIl defined crossed
module. Hence Ba reduces the complexity of the simplicial group G considerably,
so that a crossoo module describes the algebra behind a 2-type more precisely and
simpler than a simplicial group.

After Step Two in the hierarchy of n-types was achieved by Nlac Lane-vVhitehead
in 1950 one had to consider Step Three. The solution for Step Three was obtained
recently in Baues [eH] where 'quadratic modules' are shown to be the appropriate
algebraic models of 3-types.

(4.10) Definition. A quadraticmodule a = (w,<5,8) is a diagrarn of lV-groups
and N -equivariant homomorphisms

satisfying the equations

08 =0

x-:01y-l x(y8x) = Jw({x} 0 {y})

a -1 b-1 ab =w ( { Jci} C9 {<5b})

a 8% = a . w ({0a} ® {x} + {x} ® {oa})

for a, bEL and x, y E M. Here C is the abelianization of the quotient group
MI P2(O) where P2(O) is the subgroup of M generated by Peiffer commutators
(x, y) in the pre-crossed module o. The element {x} E C is represented by x E lvI
and the action of a E N on the Z-tensor product C ® C is given by ({x} 0 {y})O =
{XO} 0 {yO}. A morphism .

<p : (J" = (w, ö, 0) ~ a' = (w', ö', 8')

between quadratic modules with <.p = (l, m, n) is given by a commutative diagrarn
in Gr

C®C
w

L
0 M a

N) ) )

llfJ.0lfJ. 11 1m ln
c' ® c' ) L' > M' ) lV'

w' J' 8'

where (m, n) is a map between pre-crossed modules which 'induces 'P* : C -t C'
and where l is n-equiVBIiant. This is a weak equivalence if<.p induces isomorphisms
r.p * : 7ri ( (J") I'V 7ri ( a') for i = 1, 2, 3 where
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1t"I ( (T) = cokernel a
1r2 ((T) = kernel ajimage 0

1r3 ((T) = kernel J

(4.11) Theorem. Let quad be tbe category oE crossed modules and let Ho(quad)

be tbe localization ~itb respect to weak equivalences. Tben tbere is an equivalence
oE categories

3 - types"":::'" Ho(quad)

Compare (IV.§ 10) in Baues [CH]. In this book many further properties and
examples of quadratic modules are described, in particular quadratic modules lead
to algebraic models which determine homotopy types of connected 4-dimensional
polyhedra. One can deduce from a simplicial group G ·with 1ri(G) = 0 for i 2:: 3
the associated quadratic module (Ta as folIows: We derive from the Nloore chain
complex N(G) in (3.8) the quadratic module (Ta = (w, 0, 8) with

(4.12)

Here the action of No(G) = G[O] is obtained by s~ and s~ s~ as in (4.9) and <5 and
aare induced by the boundary maps in N(G). Moreover P3(8) is the subgroup of
NI (G) generated by tripie Peiffer commutators (x, (y, z)) and ((x, y)., z) in the pre
crossed module a = di, see (4.9). We define for x, y E NI (G) the formal Peiffer
bracket (x, y) E N 2 ( G) by

(x, y) = s;(X-Iy-IX)(SQX)-l (s;y)(sQx),

Then d2 (x,y) = (x,y) holds. Now U is the subgroup of N 2(G) generated by formal
tripie brackets (x, (y, z)), ((x, V), z) and by elements d3 (u) with u E lV3 (G). Finally
the function w is defined by w({x} 0 {V}) = {(x,y)} where (x,y) is the fonnal
Peiffer bracket. See also (IV. B. 11) in Baues [CH].

Again a quadratic module is a considerable simplification of a simplicial group G
representing a 3-type. In fact, we restrict G to clegrees ::; 2 and

r
we are even allowed

to divide out tripie Peiffer commutators and formal tripie Peiffer commutators in
the Moore chain complex. We therefore say that a quadratic module has 'nilpotency
degree two', a crossed module has 'nilpotency degree one'.

Remark. Theorem (4.8) goes back to the work of J.H.C. Whitehead [CHII] and
Mac Lane-Whitehead [TC] though they do not formulate the result as an equiv
alence of categories. In the literature there are two ways to generalize crossed
modules in order to obtain models of n-types, n 2:: 2. On the one hand Loday [SF]
defines algebraic systems called 'catn_groups', (see also Porter [TS] and Bullejos
Cegarra-Duskin [CG]) on the other hand Conduche [NIC) considers 'crossed ·mod
ules of length 2' representing 3-types which were generalized by Carrasco [CH] and
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Carrasco-Cegarra [GTJ for n-types; this approach of Conduche and Carrasco de
~cribes additional structure for the Moore chain complex N( G) which is sufficient
to determine the simplicial group G. Moreover Brown-Gilbert [AN!] and Joyal
Tierney obtained further algebraic models of 3-types. But the quadratic mo.dules
above are the only models of 3-types which have nilpotency degree 2.

A 'nilpotent'- algebraic model for 4-types is not known. For simply connected n

types, however, we can use the work of Curtis [LC] for the construction of nilpotent
models.

(4.13) Definition. For a group G let r m+l G be the subgroup of all iterated
commutators of length m + 1. Then G has nilpotency degree m or equivalently
is a nil(m)-group if rm+l G is trivial. Let nil(m) be the fuH subcategory in Gr
consisting of nil(m) -gi-oups. A free nil{m) -group, i.e. a free object in nil(m), is
the same as the quotient FIrm+ 1 F w here F is a free group. Let sni I(;;r be the

. category of simplicial nil(m) -groups with weak eguivalences defined as in sGr. A
free simplicial nil(m) -group is defined in a similar way as a free simplicial group,
see §2.

Let {a} be the least integer 2:: a.

(4.14) Theorem. For 2 ~ n ::; 1 + {log2(m)} let T(n, m) be tbe full subcategory
oE snil(m) consisting oE objects G witb 7riG = 0 for i = 0 and i 2:: n. Tben tbere
exists an equivalence oE categories

n - types 2 ~ H oT(n, m)

Here tbe leEt band side denotes tbe full homotopy catgeory of simply connected
n-types.

For m = 2 and n = 3 the result is also a consequence of (4.11). This indicates
that there might be a suitable generalization of both, theorem (4.11) and (4.14),
available for n-types which are not simply connected.

Theorem (4.14), as it stands, is not contained in the work of Curtis. The equivalence
in the theorem carries the n-type X to a free simplicial nil( m) -group Gx with
7riGx = 0 for i ~ n and for which

c;. = (Gx Irm+1 GX )n.

Here both sides denote the corresponding subobjects generated by basis elements
in degree ::; n. Hence Gx is the 'n-type' of Gx Irm+l Gx in the category snil (m),
compare the construction of the Postnikov section in (4.4). The result of Curtis
[LC] implies that there is a natural isomorphism (i 2:: 0)

7ri(GX) = 7T"i+l()C)

for all simply connected n-types X. The inverse of the functor .Y~ Gx carries
the simplicial group G in T (n, m) to the classifying space B (IGI)·
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We have seen that the category 2-types has the algebraic model category~

in (4.8). T~s generalizes a.s follows. --

(4.15) Definition. _A crossed complex p is a sequence

d4 da d2... ----=+ P3 --=-t P2 ~ PI

ofhomomorphisms between PI -groups ~here d2 is a crossed module and Pn, n ~ 3,
is abeliari and a 7fI - madule via the action of PI where 7t"I = cokernel(d2 ). Moreover
dn-Idn = 0 for n ~ 3. A morphism I : p -t p' is a sequence of homomorphisms
In : Pn ~ p~ which commute with dn and are 11 -equivariant. Let Jrn(p) =
kernel(dn)I image(dn +1) be the homology of p. Then f is a weak equivalence if Jrn (f)
is an isomorphism for all n. Let!Z..Q.§.§.. n be the category of crossed chain complexes
p wlth Pi = 0 for i > n and 11'"i(p) ,0 for 1 < i < n so that cross 2 = cross.

The next result is a consequence of the work of Brown-Higgins [eS].

(4'.16) Theorem. Let K n C n - types be tbe ftill homotopy category of n-types
-1 --

X with 1riX = °for 1 < i < n, n ~ -2. Tben there is an equivalence of categories

K; ~ Ho(cross n
)

For n, = 2 this is exactly the result in (4.8). The objects in cross n W hieh are
by (4.16) models of special n-types have only nilpotency degree 1. In particular
3-types X with 1T"2X have a model in cross3 so that in trus case a quadratic module
a cis in (4.10) is not needed to determine the homotopy type. We can assoeiate
with er the crossed chain complex p(a),

(4.17) L/w(C 0 C) ~ M/ow(C 0 C) ~ lV,

obtained by dividing out the 'quadratic part'. If 11'"2 (a) = 0 then p(a) determines
the homotopy type of (1. Therefore the quadratic structure W of a is only relevant
if 1r2 =f: 0; In the next section we study the category I{~ from a different point of
Vlew.
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§5 Cohomology of groups and cohomology of categories

We show that the classical cohomology of groups is related to special homotopy
types. We also introduce the cohomology of categories with coefficients in a natural
system, which generalizes the cohomology of groups and which turned out to haye
deep impact on homotopy classification. We shall need the cohomology of categories
in particular for the comparison of Postnikoy invariants and boundary invariants;
see (8.11) below.

Let 7r be a group. A (right) 1T'-module M, also denoted by the pair (1T', lvI), is
an abelian group M together with an action of 1T' on M. As usual the homotopy
group 1T'n(X), n ~ 2, are actually 1T'1 (X) -modules. Let lvlod and mod be the
following categories. Objects in both are the modules elf, IvI) as aboye. Morphisms
(1T' , M) -+ (1T", M') are pairs

(et, f) = (a : 1T' -+ 1T", / : M -t M') E M od

(e,g) = (b : 'Jr' -+ 1T', 9 : M -r M') E mod

where a, b are maps between groups and /, 9 are maps between abelian groups such
that f(xQ) = f(x)a(Q) and g(xb(ß)) = g(x)ß for x E IvI, Q E iT, ß E rr/. Using
homotopy graups oue has a functor (n ~ 2)

(5.1)

The cohomology of groups is a functor (see K.S. Brown [CG] and (5.12) below)

(5.2) H n
: mod -+ Ab-- --

whieb carries (1T' 1 M) to H n ( 1T' , M). Let b*lvI be the 1T" - module 1\11 giyen by x ß =
xb(ß). Then (b, 1) : (1T', M) -+ (1T", b* M) is a morphism in ·,nod which induces
b* = Hn(b, 1),

b* : H n (1T', M) -+ Hn(rr/, b* Al).

On the other hand (1, f) : (1T', M) -+ (1T', a* lvI') in mod induces !* = Hn(l, I),

f* : Hn(1T',lvI) -+ Hn(rr,a* lvI').

We use the cohomology of groups for the definition of the following category, which
is the 'Grothendieck construction' of the functor Hn in (5.2).

(5.3) Deftnit ion. The objec ts in tbe category Gro( H n) are triple (rr, lvI, k) where
('Jr, M) is a 1T' -module and k E Hn (1T', M). lvIorphisms (Jr, j\1~ k) --+ (rr /, 111', k') are
maps (a, f) : (1T', M) -+ (1T", M') in M od wbich satisfy the equation

a+(k' ) = f*(k) E Hn(rr, a* 2vl')

Composition is defined as in IvIod; the forgetful functor Gro(Hn) --+ lvloeZ is faithful.

The objects in Gro(Hn+l) are in fact algebraic models of special n-types.
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(5.4) Theorem. For tbe full bomotopy category [{~ C n - types of n-types X

witb 1rjX = 0 for 1 < i < n there is a functor

T n
: K~ -+ Gro(H"+l)

with tbe following properties: Tbe functor Tn is full and ref1.ects isomorphisms
and for each object (1r, M, k) in Qr.Q( Hn+ 1) there is ..}{ in [(n and an isomor-

-- -1
pbism (1r',M,k) ~ Tn(x) in Gro(Hn+l). The functor Tn is defined by Tn(x) =
(1rl(X),1rn{X),k(X)) wbere k{X) is tbe k-invariant.

In consequence of these properties of the functor Tn an object in Gro(Hn+l)
may be described as an algebraic equivalent of an-type in I(~; that is, Tn induces
a 1-1 correspondence between homotopy types in I(~ and isomorphism types in
Gro{Hn+l). Theorem (5.4) is due to Mac Lane-vVhitehead [TC] for n = 2 and
Eilenberg-Mac Lane [CW] for n ~ 3. It is also a consequence of the 'Postnikov
tower' of aspace, see for example Baues [aT]. The theorem yields a special solution
of Whitehead's realization problem (3.7):

(5.5) Corollary. Let X, Y be objects in [{~, then q;. : 7r••Y -+ Jr .. y~ has a geo
metrical realization X -+ Y iE and only if (rPl ,q;n) is a morphism in 1110d and tbe
equation

(q;l)*k(Y) = (q;N).k()[)

bolds wbere k(X), k(Y) are tbe k-invariants. .

In view of theorem (5.4) elements in the cohomology of groups can be considered
as representatives of special n-types. We now recall the following notation which
partially already was used in the theorem above.

(5.6) Notation. Let F : C -+ K be a functor. vVe say that F is fuH, resp. faithful
if the induced map on morphism sets F : C(){, y~) -+ [((F.Y, FY~) is surjective,
resp. injective for all objects X, r~ in C. Nloreover F reflects isomorphisms if f
in Q. is an isomorphism if and only if F(f) in ]( is an isonl0rphislll. The functor
F is representative if for each obj~ct Y~ in [{ there is an object _Y in C and an
isomorphism F(X) "" Y. We call X a 'realization' of y~. We say that F is a
detecting functor if F reflects isomorphisms, is full and representative. A cletecting
functor which is faithful is the same as an equivalence of categories.

The properties of the functor Tn in (5.4) just say that Tn is a cletecting functor.
One readily checks that every detecting functor F : k -+ [( induces a 1-1 corre
spondence between isomorphism types of objects in C ancliso1norphism types of
objects in K. The functor Tn has actually a further nice property which is less weIl
known, namely Tn is a 'linear extension' of categories. To this end we recall from
Baues [AR] the following concept of a linear extension which plays a crucial role in
topology and algebra.
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(5.7) Notation. Let e be a category. The category of factorizations in C, denoted
by Fe, is given as foll~s: Objects are the morphisms I, g, ... ,in e and morphisms
f -+-9are pairs (a,ß) for which -

A a) A'

11 19

B (ß B'

commutes in e. Hence afß = 9 is a factorization of g. Composition is defined by
(a',ß')(a,ß) == (a'a,ßß'). We clearly have (a,ß) = (a,1)(1,ß) = (1,ß)(a,1). A
natural system (of abelian groups) on Q. is a functor

D: Fe -+ Ab

from the category of factorizations to the category of abelian groups. The functor
D carries the object I to D1 = D(f) and carries the morphism (0:, ß) : I -+ 9 to
the induced homomorphism

D(a,ß) = o:.ß* : Df -+ Dafß == D g

where D(a, 1) = 0*, D(l,ß) == ß*. We say that

D~E~C
- -

is a linear extension of Q. by the natural system D if the following properties hold.
The categories E and Q have the same objects and p is a fuH functor which is
the identity on objects~F6r each morphism f : B -+ A in C the abelian group
D facts transitively and effectively on the subset p-l (I) of morphisms in E with
p-l (I) c E(B, A). We write 10 + 0: for the action of 0: E Df on /0 E p-l (f).
Moreover, the action satisfies the linear distributivity law:

(fo + 0)(90 +ß) = logo + /.ß + 9*a

Two linear extensions E, E' axe equivalent if there is an isomorphism e : E r"V E' of
categories with p'e == p and e(/o +0:) == e(fo) +a. The extension E is split if there
is a functor s : C -+ E with ps == 1.

As an example we obtain the natural system

(5.8) H n
: Mod -+ Ab-- --

which carries the object (a, f) : (11", M) -+ (11"', M') to the abelian group

Hfa,J) == H n
( 11", a· lvI')

which is the cohomology of 1i with coefficients in a·l\JI'. Hence Hta,f) depends on a

and not on f. Induced maps are given by (a', I'). (x) == (/'). (x) and (a", /"). (x) =
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(a")*(x) for x E H<ad)' The natural system H n on Mod yields also a natural
system Hn on Gro(Hn+l) via the forgetful functor in (5.3). Using the functor Tn
in (5.4) we identify isomorphism types in K~ and in Gro(Hn +1

) so that this way
Tn is the identity on objects. The next result is a consequence of (VIII.2.5) in
Baues [AH].

(5.9) Theorem. The category K~ is part oE a linear extension of categories

H n -±..r K~ ~ Gro(Hn+1
)

which is not split.

The result classifies maps in K~ completely in tenns of the cohomology of groups.
Since the functor T n is not split the extension, however, is non-trivial. We now
introduce the cohomology of categories which classifies linear extensions. In analogy
to the category mod in (5.2) we obtain the category nat of natural systems: Objects
are pairs (C, D) where D is a natural system of the small category C. Morphisms
are P8Jl'S

(5.10)

where</> : C' ~ C is a functor and where T : </>* D -t D' is a natural transformation.

Here </>* D : FC' -+ Ab is given by (cP·D)f = D4Jf and 0:. = 4>( Q' )., ß* = </>(ß)··
A natural transformation T : D -+ iJ yields as weIl .the natural transformation
</>*t : 4>* D -+ </>*b. Now morphisms in nat are composed by the formula

(7j; 0 P , a) (<f; 0 P , T) = (<f;1jJ t P , a 0 .1jJ. T )

The cohomology of categories (introduced in Baues-Wirsching [eS] and Baues [AH])
is the functor

(5.11 ) Hn
: nat -t Ab
- -

defined in (5.13) below. One has the full inclusion of categories

mod c nat-- --
which carries ('lr, M) to (Q.., D) where Q = 1r is the category given by the group 1r

and where D is the natural system on C with D f = lvI for f E 1r and 0* = identity
and ß*(x) = xß for x E M, ß E tr. Then the composition of functors

(5.12)

coincides with the cohomology of groups in (5.2). In fact, we may consider the
cohomology of categories as a canonical generalization of the cohomology of groups.
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(5.13}Deflnition. Let X be a small category and let D be a natural system on
X. The n-th cochain group pn is the abelian group of all functions

! : Nerve(X)[n] --+ U Dg

gEMor(20

with !()..1,'" ,)..n) E D>'lo...o>'n and /(A) E DIA for n = O. The right hand
side denotes the disjoint union of all abelian groups D g with 9 a morphism in
X. Additions in pn is given by adding pointwise in the abelian goups D g • The
coboundary 0 = 8n - 1 : pn-1 --+ pn is defined by the formula

(8j)(A) = A*!(A) - A* f(B) for A: A --+ B, n = 1,

(8/)()..1" .. ,An) = (Al )./(A2,' .. ,"\n)
n-1

+ L(-1)i/(A1, ... ,AiAi+I, ... ,An)
i=l

One can check that 00 = 0 so that the cohomology

Hn(X,D) = kernelon /imageon
-

1

is defined. Induced maps (4)0P, T). = 4>. T.. for the functor Hn in (5.11) are giyen by

(4)·T.f)(A~,... ,A~) = Tj 0 f(4)A~, ... ,4>..\~)

This completes the definition of the functor Hn in (5.11).

It is proved in Baues-Wirsching [eS] that an equivalence of categories cf> induces
an isomorphism 4>* for cohomology groups as above. Nloreover a crucial property
of this cohomology is the next result:

(5.14) Theorem. Let NI(}{, D) be tbe set of equivalence c1asses of linear exten
sions D ~ E ~ X wbere X is a sI11:all category. Then there is a natural bijection

whicb carries the split extension to the trivial element.

If X = Gis a group this is the c1assical result on the c1assification of extensions of G.
W;-define the bijection <p as follows. Let s : Mor(_Y) ~ ivIor(E) be a functio.n with
ps(f) = /. For (/\1,A2) E Nerve(X)[2] there is a unique element C("\11/\2) E D A1A2

satisfying
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This defines a cocycle c E p2 which represents the cohomology dass 4>{E} = {c}.
By 'change of universe' we can define the cohomology above also in case )( is not
smap. so that (5.14) remains true. -

As an example we now consider the linear extension (5.9) w~ch represents a noo
trivial cohomology class 4>{K:}; in fact, the functors Hn, Hn+l and this cohomol
ogy class determine the category K~ up to equivalence. Pirashvili [CE] computed
the following. restrictions of the class cP{Kj} .

(5.15) Theorem. Let 1r be a finite group and let Gro(Hn+l)1f be tbe subcategory
ofGro(Htl+l) consisting oEobjects (rr,M,k) and morpmsms (l1f,j). lvloreover let
K: be tbe corresponding subcategory oE K~. Tben one bas tbe linear extension

H tl -±..,. K: -+ Gro(H n+1 )1I"

wbicb is a restrietion oE tbe linear extension (5.9). Tbis extension represents the
generator

wbere the right band side is acyclic group oi order Irrl = number oE elements oE rr.
Moreover tbe cobomology groups

are trivial otberwise.
- .

These examples may suffice to show that cohomology of groups and cohomology
of categories are both important ingredients of the homotopy classification prob
lem. Further applications of the cohomolohy of categories above can for example
be found in Jibladze-Pirashvili [CA], Dwyer-Kan [RNI] , 1tIoerdijk-Svensson [SL],
Pavesic [De]. Basic properties are described in Baues-vVirsching [es], Baues [AR],
Baues [eH] .and Baues-Dreckmann [eR].
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§6 Simply connected homotopy types and H 1T"..d uality

Any group can be obtained as the fundamental group of a polyhedron. This
yields a multifacted relationship between homotopy theory and group theory. There
are natural restrietions to avoid the full complexity of homotopy theory. For exam
pIe one can' restriet to homotopy types which are determined by the fundamental
group; such homotopy types are the acyclic spaces for which the universal covering
space is contra.ctible. Many basic examples in geometry deal with acyclic spaces in
which the complexities of higher homotopy theory do not arise. From the point of
view of homotopy theory acyclic spaces are extremely special since they are just
I-types or Eilenberg-Ma~Laue spaces K(G, 1), G E Gr.

In contrast to acyclic spaces it is natural to consider simply connected spaces
which avoid the complexities of group theory arising from the fundamental group.
Indeed, for spaces with fundamental group 1r one has to use the theory of group
rings Z[7T] and Z[7l']-modules which are highly intricate algebraic objects. For simply
connected spaces only the ring Z and abelian groups are needed. From now on we
deal with simply connected homotopy types.

An important feature of the theory of simply connected homotopy types is an
H7l'-duality between homology groups and homotopy groups. Though the defini
tions of these groups are completely different in nature it turned out that they have
many properties which are "dual" to each other. This kind cf duality is different
from Eckmann-Hilton duality discussed in Hilton [DH]. We shall describe various
examples of H1T-dual properties though a complete axiomatic characterization is
not known. The starting point is again the theorem of Whitehead which yields
H7l'-dual properties as follows: A simply connected CW-space )( is contractible if
and only if homology groups, or equivalently homotopy groups vanish so that

(6.1) H.(X) = 0 <==> rr.("X") = O.

Here H. denotes the reduced homology. A map f : ){ ~_ y~ behveen simply
connected CW-spaces is a homotopy equivalence if and only if f induces an isomor~

phism for homology groups, or equivalently homotopy grOUPSl hence

(6.2) H.(f) IS ISO <==> 7r.(f) IS ISO.

Moreover for any abelian group A and n 2: 2 there are simply connected CvV-spaces
X, Y with

(6.3) {
Hn(X) '" A and HiX = 0 for i i= n

1T"n(Y) '" A and 1T"iX = 0 for 'i =I n

The homotopy types of ..X., y~ are wen defined by (A, n) and ){ = fd(.A., '11.) is called
a Moore space and Y = K (A, n) is called an Eilenberg-NIac Laue space. The next
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result shows that these spaces are the important building blocks for simply COil

nected homotopy types. First we observe by (6.3) the following realizability result.
Let Ai be a sequence of abeliao groups, i E Z, with Ai = 0 for i ~ 1. Then there
exist simply connected CW·spaces X, Y with

(6.4) .

For this we take

{
Hj(X) = Ai for i 2:: 0

1T"i(Y) = Ai for i ~ 0

to be the oue point union of Moore spaces and we take

to be the product of Eilenberg-Mac Lane space (with the CW-~opology). All simply
connected homotopy types can be obtained by 'twisting' these constructions, see
(6.7) below.

In the category Top· ofpointed spaces one has the notions offibration and cofibration

which are Eckmann-Hilton dual to each other. Compaxe for example Baues [AH].
We consider pull backs and push outs in Top· respectively,

X' X

1 pull la
Y' )Y

f

X ) X"

Ib push I
Y ) y~"

9

where a is a fibration and b is a cofibration. If)( is contractible we call .Y' --t

Y' ~ Y a fiber sequence and Y -+ Y" -+ X" a cofiber sequence. If also y~/, y." are
contractible we write

X' = f2(Y) = loop space of ·Y,

~y." = ~(Y) = suspension of Y.

We have the H1T-dual properties
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(6~5)
. {EM(A,n) = M(A,n + 1),

OK(A,n) = K(A,n -1)

of Moore spaces and Eilenberg-Mac Laue spaces respectively. Nloreover if f and g
are null-homotopic we get

X' ~ Y' x n{y)

X" ~ y" V E{Y)

where the right hand side is a product and a one point union respectively. If f and
9 are not null homotopic we consider X' and JY" as 'twisted' via f and g. Then f
is called a classifying map for X' and g is called a coclassifying map for ..X".

(6.6) Definition. Let A. = (An, n ~ 2) be a sequence of abelian groups. A
homotopy decomposition associated to A. is a system of fiber sequences (n ~ 3)

Yn -t Yn- 1 ~ K(An,n + 1)

with Y2 = K(A2 , 2). This implies that Yn is an n-type and therefore kn induces the
trivial homomorphism on homotopy groups. A homolog)' decomposition associated
to A. is a system of cofiber sequences (n ~ 3)

k'
X n +- X n - 1~ 1\tl(An1 n - 1)

with X2 = M(A2 , 2) where k~ is required to induce the trivial homomorphism on
homology groups.

Homology and homotopy decompositions are H 7r-dual constructions for which the
following classical result holds (due to Postnikov [HT] and Eckmann-Hilton [HH],
Brown-Copeland [HA]). Let Ern and Ern be the direct and inverse limits in Top.

---+ +-- =
(6.7) Theorem. Let X be a simply connected CvV-space. Then there exists a
bomology decomposition associated to H.X and a Inap

limXn -t X
--t

wbich induces an isomorpbism of homology groups. lvIoreover tbere exist a homo
topy decomposition associated to rr.X and a map

..Y: ~ lim Yn+--
wbicb induces isomorpbisms of homotopy groups.

Hence each simply connected homotopy type X can be constructed in two ways,
either by a homology decomposition or by a homotopy decomposition. The space
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Yn ~ PnX may also be obtained by the Postnikov functor in (4.3). Using the
Postnikov decomposition Schön [Ee] showed that an 'effective' classification of ho
motopy types of simply connected compact polyhedra is possible. The Whitehead
theorem (6.2) and theorem (6.7) somehow show that a simply connected homotopy
type is 'generated' by ho~ologygroups and in a dual way also by homotopy groups.
For this compare also the minimal models in (12.9), (12.11) below. TheoI;'em (6.7),
however, does not tell us how to compare two homology decompositions or two ho
motopy decompositions respectively, that is, we do not know under which condition
two such decompositions represent the same homotopy type. For this Olle has to
solve Whitehead's realization problem.

{6.8} Remark. Dwyer-Kan-Smith [TF] construct for a graded abelian group A.
(with Ai = 0 for i ~ 1) aspace B(A.) which parameterizes all homotopy decom
positions associated to A•. More precisely the set of path components, 7roB(AS.),
coincides with the set of all homotopy types X for which there exists an isomor
phism A. ~ 1l'".(X). The fundamental group of the path component Ex c B(A.),
corresponding to X, is the same as the group of homotopy equivalences 7roE( ..Y) of
X. In fact, the path component Ex has the homotopy type of the eIassifying space
B(E(X)) where E(X) is the topological monoid of homotopy equivalences of ~Y,

i.e. Bx ~ B(E(X)).

We now consider the functorial properties of Moore spaces and Eilenberg-IvIac
Lane spaces respectively. Let Ab be the category of ahelian groups and for n ~ 2
~ -

(6.9)

be the full homotopy categories consisting of spaces j((A, n.) and .ivI(A, n) respec
tively with A E Ab.

(6.10) Lemma. Tbe n - th bomotopy group functor

7:."n '" Ab1l'"n ::fl. --+_- -

is an equivalence of categories. The n :..- th 'bomology group functor

Hn : Mn ---t Ab

is not an equivaJence but a detecting functor, see (5.6).

{6.11} Remark. In fact there is a functor Ab -+ Top which carries an abelian group

A to aspace K(A, n). For this we observe that the classifying space B(H) of an
abelian topological monoid H is again an abelian topological monoid in a canonical
way. Hence we can iterate the classifying space construction and ohtain the n-fold
classifying space

j((A, n) = B ... B(A)
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Compare Segal (CC]. On the other hand there is no functor Ab -+ Top/ ~ which

carries A to M(A, n) and which is compatible with the homology H n . For this we
observe that there is actually a linear extension of categories .

E n -+ Mn -+ Ab

which represents a non trivial dass in H2(Ab, En), see Baues [AH]. The bifunctor
En on Ab is given by -

En(A, B) = Ext(A, r? B)

where rjB = BEB 7lf2 for n 2: 2 and ri(B) = r(B) is the quadratic construction
of J.H.C. Whitehead [CE].

The lemma and the remark describe a lack of H 1r -duality. VVe shall describe many
further examples of H 1r -dual properties; yet this duality does not cover all impor
taut features of homotopy groups and homology groups respectively. In paxticulax
homology is often computable while there is still no simply connected (non con
tractible) finite polyhedron known for which all homotopy groups are computed.
The homotopy groups 1T'*M(A, n) of a Moore space are H1r -dual to the homology
groups H.K(A, n). If A is finitely generated it is a fundamental unsolved problem
to compute 1T'*M(A, n). The computation of H .. K(A ,n), however, was achieved in
the work of Eilenberg-Mac Lane [CW] and Cartan [HC]. For example we have

(6.12)

where we use r 1 in (6.11). Recall that [X, Y·] denotes the set of homotopy classes
of pointed maps )( -+ Y·, The homology H.K(A, n} is usecl for the computation of
the groups

[I{(A ,n), K(B, m)]

whose elements are also called cohomologyoperations, In particular the first non
trivial classifying map in a homotopy decomposition is such an operation. Applica
tions of cohomology operations axe discussed by Steenrod [CO]. On the other hand
the groups

[M(A, n), iVI(B ,m)]

are not at all understood; for A = B = 7l these are the homotopy groups of spheres.

A further lack of H 1T' -duality is the following result on decompositions in (6.7).

(6.13) Proposition. The bomotopy decomposition of)( can be c110sen in Top
to be functorial in JY. The bomology decomposition of )( callnot be chosen to be
functorial, neitber in Top nor in the homotopy category Topf ~.

Using Eilenberg-Mac Lane spaces and Moore spaces we obtain the groups (n 2: 2)
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(6.14)

Hn(X,A) = [X,K(A,n)),

iTn(A, X) = [M(A, n), )[]

which are called the cohomology of X, resp. the homotopy group of )( with coefficients
in the abelian group A. Hence the decompositions of ..Y in (6.7) yield elements

(6.15)

knX = kn E Hn+1(Pn_l'X:, iTn.rY)

k~X == k~ E 7rn -l(Hn X, ..Yn - 1 )

Here knX is actually an invariant .of the hornotopy type of J: in the sense that a
map f : X -+ Y satisfies

(6.16)

in Hn+1(Pn_lX, 7rn Y). Here we use the Postnikov functor Pn- 1 and the naturality
of the Postnikov decomposition in (6.13). The element kn ..Y in (6.15) is called
the n - th k-invariant or Postnikov invariant of X. The element k~.Y given by a
homology decomposition of X is not an invariant of ..Y since the homotopy type
of X n is not weH defined by the homotopy type of ..X. We shall describe below
new invariants of X which are H7r -dual to Postnikov invariants and which we call
boundary invariants of X. They are given by the 'invariant portion' of the elements
k~X; see (8.10) below.

The groups in (6.14) are part of natural short exact seqllences which are H 7f'

-dual to each other:

(6.17)

Ext(Hn-1}[,A) ~ Hn(X,A) ~ Hom(Hn.Y,A.)

Ext(A, 7rn+lX) ~ 7rn(A, X) ~ Horn(A, 7rn ..Y)

Here the surjection fl carries tp : X -+ K (A, n), resp. '0 : lvI (A, n) --+ -Y, to the
induced map

Hntp: HnXC -+ HnK(A,n) = A., resp.

1rn7/J : A == 7rnM(A, n) -+ 7rn.Y.

The exact sequence for Hn(X, A) is always split (unnaturally) while the exact
sequence for 1rn (A, X) needs not to be split. We point out that the cohomology
Hn (X, A) may also be defined by

(6.18) Hn(X, A) == [C.X, C.iVJ(A, n)]
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Here C,. is the singular chain complex and the right hand side denotes the set of
homotopy classes of chain maps.. Dually we define the pseudo-hon10logy

(6.19) Hn(A,X) = [C.M(A, n), C•.Y]

which yields a weil defined bifunctor Abop x Top -t Ab. This is the analogue of

1rn (A, X) in the category of chain complexes. As in (6.17) one has the natural short
exact sequence

(6.20)

which is always split (unnaturally).
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§ 7 The Hurewicz homomorphism

Homology groups and homotopy groups are connected by the Hurewicz homo
morphism "

(7.1)

This is the special case A = Z of the homomorphism

hA = hn (A, X) : 7T"n ( A, X) -+ H n ( A, .Y)

which carries "p : M(A, n) -+ X to th~ induced chain map C."IjJ. These homomor
phisms are compatible with the short exact ß - Jl -sequences in (6.17) and (6.7),
and they are natural in )( and hence invariants of the homotopy type of .Y. In
fact, the next result shows that the Hurewicz homomorphism has a strong impact
on homotopy types.

(7.1) Proposition. Let X be a simply connected CW-space. Then (A) and (B)
hold.

(A) Tbe Hurewicz homomorpbism hnX is split injective for all n if and only if
X bas tbe homotopy type of a product of Eilenberg-ivlac Lane spaces.

(B) Moreover hnX is split surjective far a11 n iE and only iE.\ has the bomotopy
type of a one point union of Moore spaces.

Properties (A) and (B) form a further nice example of H Jr -duali ty.

Proof. (A) Let r n be a retraction of hnX and let In E Hn(.y, 7rn .Y) be a map with
J..'(fn) = rn, see (6.17). Then the collection {In} defines a 01ap

I : )( -+ X K(Jrn.Y, n)
n;:::2

which is a homotopy equivalenee by the Whitehead theorem.
(B) Let Sn be a splitting of hnX and let gn E 1rn(Hn)[,.Y) be a 01ap with p'(gn) =
Sn. Then the collection {gn} defines a map

g: VM(HnX,n) -+)[

n2:2

which is a homotopy equivalence by the Whitehead theorem. q.e.d.

We now discuss topological analogues of the Hurewicz honlomorphism. We
consider for a simply connected CW-complex .Y the infinite symmetrie product
SPoo = lim SPnX where

(7.3)

is the space of orbits of the action of the symmetrie group Sn on the n-fold product
xn = X x ... x X obtained by permuting coordinates. The Inap SPn-1-Y -t SPn.Y
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is induced by the indusion X n- 1 = X n- 1 X * C x n \vhere * is the base point of
X. The inclusion

induces the Hurewicz homomorphism

where the right hand side is the Dold·Thorn isomorphism [QU]. Let f.Y be the
homotopy fiber of X c SPooX so that

(7.4)

is a fiber sequence. Using the simplicial group GX there is an alternative way to
obtain this fiber sequence by the short exact sequence

(7.4') f 2 X >-+ GX --* A..Y

where AX is the abelianization and where r 2 .y is the commutator subgroup of GX.
Then f X ~ BIr2 X I is the cl~sifyingspace of the realization of r2.Y and the functor
BI I applied to (7.4') yields (7.4) up to homotopy equivalence. For this compare
Kan [He] who as weil proved that GX -+ A..X induces the Hurewicz homomorphism.
Using the skeleta x n of a CW-complex J.H.C. Whitehead introduced the r -groups
of X given by

(7.5)

where the homomorphism is induced by the indusion ...}(n-l c .yn. Moreover we
introduce in Baues [HT] the r -groups with coefficients f ll (A~ .Y) by the following
push-puil diagram derived from the ~ - p. -sequence (6.7)

Ext(A, r n+l.Y)
p.

Ext(A,7Tn+l xn )(

Al pU-Jh r ~
r n(A, X) p lr/1 (A; );n)

,,'
.~ ~ puLt lp

Hom(A,rnX) ) H orn( ..'1., lrIl){n )
l.

, Here i : r nX C 1rn X n is the indusion and 'P : 7Tn +l.yn --* f r1 + 1.y is the projection
defined by (7.5).
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(7.6) Proposition. let}( be a simply connected CW-camplex. Then tbere are
natural isomorphisms

(a) r nX = tr"nrX
(b) r n(A, X) = 7rn(A, r X)
(c) HnX = 7rn SPooX
(cl) Hn(A,X) = 7rn(A,SPoo X)

Tbe isomorphisms whieh we sball use as identiEcations are carnpatible with ß - f...L

exact sequences above.

Here (a) and (c) are clue to Kan [HCl and Dold-Thom [QU] respectively. Hence
the long exact sequence of homotopy groups for the fiber sequence (7.4) yields by
iclentification, as in (7.6), the exact sequences

(7.7)

in which all operators are compatible with the ~ - f...L exact sequences. We call
these the r-sequence and the f-sequence with coefficients in A respectively. Hence
kernel and cokernel of the Hurewicz homomorphisms can be determined by the
operators i, b in these sequences. Here i and i A are induced by )(n C ~Y and b is
the secondary boundary operator of J.H.C. Whitehead. In Baues [HT] (11.3.5) we
give also an explicit description of the operator bA . The r -sequence Coillcides with
the classical certain exact sequence of J.H.C. Whitehead which is the special case,
A = Z, of the second exact sequence. Clearly both exact sequences are invariants
of the homotopy type of )(. In fact, J.H.C. Whitehead [CE] used part of the r
-sequence as a classifying invariant of a simply connected 4-dilnensional homotopy
type.

The definition of r n ..Y in (7.5) shows that this group depellcls only on the (n - 1)
-type of X, in fact we have the natural isomorphisol

(7.8)

induced by a map Pn-l : )( -+ Pn-1 ..Y which extends the indusion ~yn C Pn - 1){,

see (4.3). Moreover the map Pn-l applied to the r -sequence of ){ yields natural
isomorphisms

(7.9)
H nPn-l X = r~-lPn-l"\"' = r~_d ..Y)

H n +1Pn - 1 )[ = rnPn-lX = r n(X)

where r~_lx = kernel(rn-l){ -t ?rn-IX). These groups are used in the following
result on the 'realizabilitv of Hurewicz homomorphisms', proved in 111.4.7 of Baues
[HT].
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(7.10) Theorem. Let y~ be a simply connected (n - 1) -type and let

(*) . H] --+ r n Y --+ 1r -+ Ho --+ r~_]Y --+ 0

be an exact sequence of abelian groups wbere H] is free abelian. Tben there exists
an (n + 1) -dimensional complex X and a map p : )( -r y~ inducing isomorphisms
'1rkX E! '1rkY for k ::; n - 1 together witb a commutative diagram .

--~) 1rn ..Y' h
---+0) HnX ---+) 0

H] r n Y 1r Ho ) r~_l Y ) 0

in wbicb a11 vertical arrows are isomorphisms. Tbe top row is part of the r -sequence
of X. Tbe space Y togetber witb tbe sequence (*) in general does not determine
tbe bomotopy type of X.

The result shows exactly what kind of abstract homomorphisms rr -r Ho between
abelian groups can be realized as a Hurewicz homomorphism rrn -r H n of aspace
with a given (n -1) -type. This also demonstrates to what extend homotopy groups
and homology groups depend on each other.

{7.11} Example. We may choose for Y in (7.10) an Eilenberg-ßIIac Lane space

Y = K(A,k) with 2::; k::; n - 1

Then the groups, see (7.9),

r nY = Hn+1 K(A·, k)

r~_]Y=HnK(A,k)

are known by the work of Eilenberg-Mac Laue and Cartall. Hence any exact se
quence

H1 --+ Hn+1 I«A, k) ~ 1r --+ Ho -+ HnI((A, k) --+ 0

with H] free abelian can be realized as a r -sequence of an (11. + 1) -dimensional
CW-complex )[ with Pn-1 ..Y = K(A, k). For example for k = 5~ 11 = 9 we have

H 10 [«A, 5) = A2(A) EB A. * Z/6

Hg I«A, 5) = A 0 Z/6

where A2 is the exterior square and Z/6 is the cyclic group of order 6. Hence for
anyexact sequence

H10 --+ A2 (A) EB A * Z/6 --+ 1T"g --+ Hg --t .40 Z/6 --+ 0

of abelian groups with H 10 free abelian there exists a 10-dirnensional CW-complex
X with 1I"sX = A, 1Ti = 0 for i < 5 and 5 < ·i < 9, such that chis sequence is part
of the r -sequence of X.

40



§8 Postnikov invariants and boundary invariants

Recall that the n - th Postnikov invariant of a simply connected space ..Y is an
element

(8.1)

This element is higWy related to the r -sequence of .Y. For this we observe that by
(6.17) and (7.9) we obtain the natural short exact sequence

Each element k E Hn+1(Pn_1X, A) yields elements

k. = j.t(k) E Hom(rnX,A)

kt = ~ -1 q. (k) E Ext(r~_I"){' cok k.)

where q : A -Ho cok(k.) is the projection of the cokernel of k•. vVe have by (..Y, A) f-+

Hn+l (Pn- 1X, A) a bifunctor in X and A.

(8.3) Theorem on Postnikov invariants. To each l-connected CvV-space X
tbere is canonically associated a sequence oE elements (k3 , k4 , ... ) "vi th

kn = knX E H n+1(Pn_l.Y ; rrn.Y)

such that tbe Eollowing properties are satisned:

(a) Naturality: For a map F : X ---t Y we bave

(b) Compatibility with -in ..Y in the r -sequence:

(c) Compatibility with the extension HnX in tbe r -se({uence:

Here tbe extension element {Hn ..Y} is given by the exact r -sequence oE ..Y~

r '\T inX X H X r" 'v' 0n ..'\. .:..:....t 7T"n ---t n -t n -1 - \. -t

(cl) Vanisbing condition: All Postnikov invariants are trivial iE and only iE ..Y
has tbe bomotopy type oE a product oE Eilenberg-l\Jac La.ne spaces.
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This result wmch partially seems to be unknown is proved in (11.5.10) of Baues
[HT]. We now introduce new invariants which are Hrr -dual to the Postnikov in- .
variants above. For this we first define the subgroup

(8.4)

obtained by all elements a E rn-l(A,X) for which /-l(a)(A) C r~_l.Y' Hence one
has the short exact sequence

(8.5)

Here r~_l is actually a bifunctor in A E Ab and ~Y E TO]J~ /~. To see this we

observe that the map Pn-l : X -t Pn-l"Y induces abinatural isorllorphism

(8.6)

Here the right hand side is the pseudo homology and we use the r -sequenee
with coefficients in A and (7.9). Since bnX : Hn){ -t r n-l-Y" yields a surjection
bnX : HnX -t r~_l.Y we see that the boundary operator bA in the r -sequenee
with coefficients maps to r~_l (A, ..Y). Hence we obtain the following commutative
diagram which is natural in A E Ab and simply eonneeted spaces ~\ .

.:l IlExt(A, Hn+l~\) ) Hn(A, X) > HO1n(A 1 Hn~Y)

1(bn+1X). 1b.A 1(bnX).

~
Ext(A, rn.l\) > r~-l (A, X) ) HO1n(44, r::-1.y)

(8.7) Definition. Consider this diagram for A == Hn.Y and let 1 E Hn(Hn){,.Y)
be an element with f.l ( I) == identity of Hn)e Thell the easet of bA ( I) madula the
image of ~(bn+1.\'"). is the baundary invariant ßn){ of )C that is

We have the short exaet sequence

which is natural in A E A.b and simply cannected spaces )(. This sequence is the
H 7r -dual of the sequence in (8.2) above. Each elerllent
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yields ~lements

ß. = J.1.(ß) E H om(A, r~_lX) .

ßt = ß -I j·(ß) E Ext(ker ß.l cok bn+I.Y)

where j : ker ß. C A is the inclusion of the kernel of ß•. The next result is the H 1r

-dual of the 'theorem on Postnikov invariants' in (8.3).

(8.9) Theorem on boundary invariants. To eacb l-connected CW-space X
tbere i8 can?nica1ly associated a sequence of elements (ß3, ß4, ... ) witb

ß ß
r~_l(Hn ..Y,X)

n = n X E. (zmß bn+1X).

such tbat tbe following properties are satisned:

(a) Naturality: For a map F : X -+ Y we bave

(b) Compatibility with bnX in the r -sequence:

(c) Qompatibility with tbe extension 1rn X in the r -seguence:

Here tbe extension element {11"nX} is determmed by the exact r -sequence
oEX,

(cl) Vanisbing condition: All boundary invariants are tl'ivial if and only iE X
bas the bomotopy type of a one point union of lvloore spaces.

This result is proved in 11.6.9 of Baues [HT].

(8.10) Remark. The boundary invariants have the following connection with the
coclassifying maps k~ in a homology decomposition of _Y. Für this let .Y = Em ..Yn

be given by a homology decomposition. Then X is a CW-conlplex with skeleta xn
and there are inclusions

Moreover the classifying map k~ can be chosen such that the following diagram
commutes, H n = Hn ..Y.
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, Xn - 1

Yl
M(Hn ,n-1) ß) ){n-l

i t
---7) ..yn-2

Hence ß represents an element in r n-l(Hn,X) by using the definition in (7.5) and
this element represents the boundary invariant ßnX. Therefore (8.9) (c) yields an
exp~cit formula how to derive 1t"nX from k~.

(8.11) Remark. Let C be a homotopy category of simply connected spaces. Then
we have the functors-

(1)

which both appear in a dual fashion in the natural exact sequences (8.2) and (8.5).
There is an obstruction 0 for the existence of a splitting of (8.2) which is natural
in X E Q. and A E Ab. Tms obstruction is an element in the coholuology of C,

(2)

Here Ext(r~_l'rn) is the natural system which carries f : )( -t }.~ in C to the
abelian group Ext(r~_l.Y'r nY)' The element 0 determines the extensio~(8.2)as
a bifunctor in X E C, A E Ab up to equivalence. On the other hand there is an
obstruction 0' for the existence of a splitting of (8.5) which is natural in )( E C
and A E Ab. This obstruction turns out to be as weil an element in the cohomology
(2), -

0' E Hl(C,Ext(r~_l,rn)) (3)

Again 0' determines the extension (8.5) as a functor in ",Y E C l ~4 E Ab up to
equivalence. Now the extension (8.2) and (8.5) are dual in the explicit sense that
the elements (2) and (3) actually coincide; that is 0 = (J'. This is proved in 111. §3
of Baues [HT]. In the next section we use the extensions (8.2) and (8.5) in a crucial
way to obtain models of homotopy types wmch are H Ir -dual co each other.
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§9 The classiflcation theorems

We now show that k-invariants and boundary invariants both can be used to
classify homotopy types. For this we choose a fuH subcategory

(9.1) C c (n - 1) - types

consisting of simply connected (n -1) -types. For example we can take for 1 < k < n
the category Q. = K k ~ Ab consisting of Eilenberg-Mac Laue spaces ]((A, k) with
A E Ab. We consider the functor

(9.2)

where the left hand side is the fuH homotopy catgeory of (n + 1) -dimensional CW
spaces U for which the (n - 1) -Postnikov section Pn - 1U is in C, similarly the right
hand side is the full homotopy catgeory of n-types V for which Pn - 1V is in C. The
functor Pn is the restrietion of the Postnikov functor in (4.3). In the next definition
we use the new ward 'kype' which is an amalgamation of k-invariant and type.

{9.3)Deßnition. Le~ C be a category as in (9.1). A C~

Jt = (X, rr, k, H, b)

is a tuple consisting af an object )( in C, abelian groups rr ~ Hand elements

k E H n +1(X, Jr)

b E Hom(H,rn~Y)

such that the sequence

b k
H ~ r n ~~ 2.t rr

is exact, see (8.2). A morphism between C -kypes

(I, !.p,tP) : (){, rr, k, H, b) ~ (.Y'l rr'l k', H'. b'·)

is given by a map I : )( --+ )(' in C and homomorphisms r.p : rr --+ rr', ~l : H --+ H'
between abelian groups such that -

f*(k') = Y'*(k)

(rnf)b = b'lj;

The Q -kype X is free, resp. injective, if H is free abelian, resp. b is an injective
homomorphism. Let](ypes( C), resp. kypes( C) be the categories of free, resp.

injective C -kypes with illorphisms as above. vVe have the forgetful functor
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t/J: Kypes(C) -t kypes(C)

which carries (X, 1r, k, H, b) to (JY, 1r, k.H' ,b' ) where H' is the image of b and where
b' is the inclusion of this image. The functor t/J is easily seen to be fuH and repre
sentative. .

Recall that a 'detecting' functor is a functor which reflects isomorphisms and is
full and representative.

(9.4) Classiflcation by Postnikov invariants. Tbere are detecting functors A, A
for wbich tbe following diagram offunctors commutes up to natural isomorpbism.

spacesn+ 1(Q)

n - types(C)

A

,\

I(ypes( C)

1~
kypes(C)

Here the functor A carries the space JY. to the free C -kype

(9.5)

given by the Postnikov invariant (8.1), see (8.3). We point out that only the de
tecting functor A is a classical result of Postnikov, the existence of the detecting
functor A seems to be a new property of k-invariants \vhich did not appear in the
literature. Theorem (9.4) is proved in 111.4.4 of Baues [HT].

Using boundary invariants we übtain the H 1r -dual of the classification theorem
above. We are now going to use a new ward 'bype' which is an anlalgamation of
boundary invariant and type.

(9.6) Definition. Let Q be a category as in (9.1). A C -bvpe

..t = (X,Ho,Hl,b,ß)

is a tuple consisting af an object JY in C, abelian groups Ho, H1 and elements

bE Hom(H1,r n }{)

ß r~-l (Ho, X)
E im (.6. b.)

Here we use .6. in (8.5) and b. : Ext(Ho, H)) -+ Ext(Hol r n-Y). ~\'Ioreover the
induced homomorphism

ß. = j.t(ß) : Ho ~ r~_l X

is surjective, see (8.5). A morphism between C -bypes
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(!,CPO,CPI) :.(X,Ho,HI,b,ß) -t ()(',H~,H~,b',ß')

is given by a morphism f : X -t X' in Q and by homomorphisms cpo Ho-t
H~, CPI : HI -+ H~ such that

(rnf)b = b'CPo

f. (ß) = cp~ (ß')

The Q -bype X is free, resp. injective, if H1 is a free abelian group, resp. b is an
injective homomorphism. Let Bypes(C), resp. bypes(C), be the categories offree,

resp. injective, C -bypes with morphisms as above. vVe have the forgetful functor

4> : Bypes(Q) -t bypes(C)

which carries (X,Ho,H1,b,ß) to (H,Ho,H~,b',ß)where H~ is the image of band
where b' is the inclusion of this image. The functor cP is fuH and iepresentative.

(9.7) Classification by boundary invariants. Tbere are detecting fUl1ctors A', A'
for which tbe following diagram of fun ctors commutes up to -natural isomorpbism.

n - types(C)

AI
------+) Bypes(C)

Here the ftmctor A' carries the space U to the free C -bype

(9.8)

given by the boundary invariant ßnX in (8.7), see (8.9). The classification theorem
(9.7) ia proved in 111.4.4 of Baues [HT]. It shows that boundary invariants can be
used in the same way as Postnikov invariants for the classification of homotopy
types. In the book Baues [HT] we give many explicit examples of applications for
the classification theorems above.

(9.9) Remark. J.H.C. vVhitehead [CE] obtained for the homotopy category of sim
ply connected 4-dimensinal CW-spaces two detecting functors. These coincide ex
actly with A and A' above if we t~e n = 3 and C = 1(2. This is, in fact, a very
.simple case of the classifi~ation theorems above for which we llse

r 3 I{(A l 2) = r(A)

r~K(Al 2) = 0

We leave this as an exercise to the reader, see also (10.8) below. In Baues [HT] we
use (9.7) for the classification of simply connected 5-dimensional hOluOtOpy types.
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§ 10 Stahle homotopy types

The suspension :E is an endofunctor of the homotopy category Top* / :::: given by
the quotient space --

(10.1) :EX = I x X/ ({O} x X u I x * U {1} x ){)

where I = [0, 1] is the unit interval, see also (6.5). The functor E carries a map
f : X ~ Y to 'EI : :E){ -+ EY with (Ej)(t, x) = (t, Ix) for tEl, x E .Y. It is
easy to see that :E carries homotopic maps to homotopic maps. We say that two
finite dimensional CW-complexes X, Y are stably homotopv equivalent if there is
k ~ 0 and a homotopy equiV'alence EkX ~ Eky where Ek is the k-fold suspension.
A stable homotopy type is a class of stably homotopy equivalent CW-complexes.
Since the classification of homotopy types is so harcl Spanier- \Vhitehead [FA] sup
posed that stahle homotopy types might give a first approxirnation of the homotopy
classification problem which is easier to understand. For this the "stable homotopy
theory of spectra' was invented which, however, turned out to be still an extremely
complicated world, see G.W. Whitehead [RA].

The impact of the suspension operator E comes from a classical result of Freuden
thal which we state in the following form.

(10.2) Freudenthal suspension theorem. Let spaces k be the full bomotopy
. 1l

category in Top· / :::: consisting of (11. - 1) -connected (11. + k) -dimensional CW-

complexes, n 2: 1, k 2: O. Tben tbe suspension yields a functor

E : spaces k -+ spaces k

=====n n+l

whieh is an equivalence of (addi tive) categories for k +1 < n. and 'IVhieh is a. detecting
functor for k + 1 = n. Moreover for k = n this funetor is representative.

Compare for example Gray [HT].

For n 2: 2 the functor :E in the theorem reflects isomorphisms. This follows from
the Whitehead theorem (6.2) since the (reduced) hon10logy of a suspension satisfies

(10.3)

As pointed out in §3 the main numerical invariants of a homotopy type are dimen
sion and degree of connectedness. These invariants are of particular importance
in the theory of manifolds. Therefore it is natural to consider for given n, k the
properties of (n - 1) -conneted (n + k) -dimensional CvV-complexes which J.H.C.
Whitehead [HT] called ..4~ -polyhedra. The A~ -polyhedra~ n 2: 1. are the objects
in the homotopy categories of the sequence

k ~ k k ~ kspaces ~ spaces ~ ... spaces ~ spaces ~

=====1 2 n n+l

48



which by Freudenthal's theorem above 'stabilizes' for n 2: k + 2. Hence there are
only k + 2 different categories in this sequence. This also shows that the stahle
homotopy types of A~ -polyhedra (n ;::: 0) can be identified with the hDmotopy
types in the category spaces k , n ;::: k + 1. We say that A~ -polyhedra are stable if

=::::::::==n
n2:k+l.

Each homotopy type of an A~ -polyhedron can be represented by a (reduced) CW
complex X with X n

-
l = * and dim()() = n + k. Hence ){ - {*} has only cells in

dimension n, n + 1, ... ,n + k. For k = 0 the CW-complex )( is thus a one point
union of n-spheres. This also shows that one has equivalences of categories

(10.5)

spacesO = category of free groups
====1
spaces 0 = category of free abelian groups
:::::::::::::==2

where ~ coincides with the abelianization functor for groups. For k > 0 the alge
braic models of the categories in (10.4) get more complicated. .l.H.C. \rVhitehead
[CE], [HT], [CHII] studied the case k = 2 and we study the case k = 3 in Baues
[CH], [HT], see (10.8) and (10.11) below. Moreover Unsöld [AP] considers for
k = 4, n ;::: 3 the subcategory of spaces4 consisting of CVv-conlplexes with finitely

n
generated torsion free hamology. We da not think that it is reasonable to inves-
tigate the case, say k = 10, completely. It will, however, increase our knowledge
on the nature of homotopy types considerably if we are able to discuss in detail
homotopy types of A~ -polyhedra for small k, say k :s; 5. This for example includes,
for n = 2, simply connected 7-dimensional homotopy types.

(10.6) Remark. M.J. Hopkins [GM] discuss~s new global 111ethods to study stahle
homotopy types. For this a fundamental filtration of the stable honlotopy category
~ of 'p-Iocal finite spectra':

~ :J Cl :) ... :) k n :) kn+l :> ...

is considered where Cn contains all objects which are acyclic with respect to the
Morawa K-theory J{(n - 1).

The classical dimension filtration of the stable honl0topy category, coming from
the sequence (10.4), is more related to problems like the classification of manifolds
in a particular dimension. J.H.C. Whitehead [CE] obtained the following algebraic
models of stahle A~ -polyhedra, n 2: 3.

(10.7) Definition. An A2 -svstern

S = (Ho, H 2 , 7rl, b2 ,17)

is a tuple consisting of abelian groups Ho, H2,1r1 and elelnents

b2 E H orn(H2 , Ho 0 Z/2)

'/] E H om(Ho 0 Z/2, 7rd
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such that the sequence

is exact. A morphism

(c,oO,c,o2,c,opi): (Ho,H2, 7fl,b2,T]) -r (H~,H~,1r~,b;,r")

is given by homomorphisms c,oi : Hi -r Hi for i = 0,2 and c,oTr : Jrl ~ 1T~ such that
the diagram

H2
b:l

) Ho t$) Z/2 11
1TI

~:ll 1~o0Z/2 1~~
b' '1

I

HI :2 ) H~ 0 Z/2 1T'2 I

commutes. The A2 -system S is free, resp. injective: if H2 is free abelian resp. b2

is injective. Let A2 - Systems, resp. A2 - systems be the categories of free, resp.

injective A2 -systems with morphisms as above. ,Vve have a forgetful functor

4J : A2 - Systems -r A2 - systents

which carries (Ho, H2 , 7fI, b2 , 1J) to (Ho, H~, trI, b2,17) where H~ is the image of b2

and b2 is the inclusion of this image.

Let types k be the full homotopy category of (n - 1) -connected (n + k) -types and
=n .

let

P k k k-l
n : space.s -r types

n --11

be the restriction of the Postnikov functor,

(10.8) Classification of J .H.C. Whitehead. For n 2:: 3 there exist detecting
functors A, A for which tbe following diagram of functors comnlutes up to natural
isomorpmsm,

spaces 2

n

A
A 2 - SY$ten~s

typesl
=n

>. ) A2 - systems

This result is an easy application of (9.4), compare (9,9) and (6.12). The functor
A carries aspace JY to paxt of the r -sequence of )( ~

Hn +2 X .!+ r n+lX 4 Jrn+l-Y

where r n+lX = HnX 0 Z/2. Here 17 can be identified with the Postnikov invariant
1] = kn+1X.
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Next we deseribe algehraie mo~els of stahle A~ -polyhedra, n ;::: 4. For this let Z/2
be the eyclic group of two elements and let

Hon"(0Z/2, -): Abop x ..4b -t Ab

be the funetor whieh carries H, L to Hom(H ® Z/2, L). rvIoreover let

(10.9) Gro(Hom(®Z /2, -))

. be the Grothendieck construction of this functor. Objects in the category (10.9) are
tripie Tl = (H, L, 1]) with 1] E Hom(H 0 Z/2, L) and morphisms (t/Jl ,tPo) : 1] -+ 1]f
are homomorphisms 'l/Jl : L -t L', 'l/Jo : H -t Hf with tPl1] = r7'(l/Jo 0Z/2). We point
out that there is an obvious equivalence of categories

Gro( H om(0Z /2, - )) ~ A 2
- systenl.S

For each abelian group A we have the short exact sequence

associated to the natural homomorphisms

(1)

(2)

TA: A*Z/2= {x E A, 2x = O} C A ~ A./2A = ..40Zj2

The abelian extension (2) is determined up to equivalence by .6 -1 (2/-l- 1(x)) = TA (x)
for x E A * Z /2. Let

Ce c' C Gro(Hom(0Z/2,-)) (3)

be the following subcategories. Objects in G are the tripie A. - (A.~ C(A),~)

given by (2) and morphisms are pairs (i.p, tp) wmch are cOlnpatible with (2), that is
J.1.cj) = (i.p * Z/2)J.l. There is a fuH forgetful functor

(4)

which carries (A, G(A),.6.) to .4. and there is an equivalence G = j\tjfl: n ~ 3, where
Mn is the homotopy category of Moore spaces in clegree n; see (6.9). NIoreover
Cf in (3) is the fuH subcategory consisting ·of objects '7 = (H, L, '7) for which there

ß
exi~ts a factorization 1] : H 0 7l /2 >-4 G( H) -t L. \Ve shall need the group G( T])
defined by the puh out diagram

~@lr r
H (?) 7l /2 ----t-) C( H)

L0Zj2 ß ) C(17)

I! (5)

Moreover we shall use a canonical bifunctor
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(6)

which carries the pair of objects (A,1]) to an abelian group G(A l '1]). We here only
define this group if A or H is finitely generated; for a con1plete definition of G see
IIIV.1.3 (B) in Baues [HT]. Using (2) we have the dual extension

Ext(A,Z/2)

11

) Ll ) Horn(G(A),Z/4) tl »'. Hom(A./Z/2)

11 11
(7)

Hom(A*Z/2,Z/4) )......-----+) Horn(G(A),Z/4) --);* Hom.{A0ZJ2,ZJ4)

which we use in the following push out diagram for the definition of G(.o4,'7)'

q.r
Ext(A, H ® Z/2)

11

Ext(A,Z/2)®H ----+) Hom(G(A),71/4)e;H

Ext(A,L) G(A,1])

(8)

The bottom row is obtained by applying the functor - (9 H to (7). The top row is
short exact. Induced homolll0rphisms for the functor G'are defined by

(cp,<;3)* = Ext(ep,L) EB Hom(rp,71/4.) 0 H

(1/;1 ,.I/J) * = E xt( A,.!/J1 ) EB H om(G(.4) 1 7l J4) 0 't/Jo (9)

Using these constructions of G(1]) and G(A,1]) we are now' ready to define the
following algebraic models of stahle A~ -polyhedra.

(10.10) Definition. An ..4.3 -system

S = (HOl HZl H3 , 7Tl, b:2, 1]: b3 , ,ß)

is a tuple consisting of abelian groups Ho, H2 , H3l TrI and elements
.i

b2 E Honl.(H2 , Ho 0 ZJ2),

/] E Hom(Ho 0 Z/2, 7Td

b3 E Hom(H31 G(1])),

ß E G(H2 ,1]ti)·

Here 1], = q6.(1] ® 1) is the composition
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/
1101 .:l , q

1]# : Ho 0 Z 2~ 11"1 0 Z/2 -+ G(q) ~ cok (b3 ) (3)

where q is the quotient map for the cokernel of b3 . These elements satisfy the
following conditions (4) and (5). The sequence

is exact and ß satisfies

J.l(ß) = b2

where J.l is the operator on G in (10.9) (8). A morphism

('PO, 4'2, <P3,4'7f,tpr) : S -t S'

between A3 -systems is a tuple of homomorphisms

(4)

(5)

(6)

{

'Pi: H; --+~: (i = 0,2,3)

1.p7f : 7T"1 -t 1T1

SOr : G( 77) -t G(77')

such that the following diagrams (7), (8), (9) commute and such that the equation
(10) holds.

H2
62

) Ho 0 Z/2 '1
) 7T"1

1~2 Ilp001 1~~
H~ ) Hb 0 Z/2 ) 7T"~

b' 'I':2

7r1071/2
.:l

G(77) J.l
) H) * 7l/2)

1~~01 Ilpr 1'Po· 1

7r~ 071/2 ) G(77') > Hb * 7l/2
~ J.l

(7)

(8)

H3
63 G(ry))

Ilp3 1'Pr (9)

H' ) G(ry')3
bl

3

Hence tpr induces tpr : cok(b3 ) -t cok(b;) such that (SOo, <pr) : q.6('1.,01) -t q~(1]'01)
is a morphism in G' which induces (<po, 4'r). as in (10.9) (9). \Ve have

(10)

in G(H2 , q6.(1]' 01)). In (10) we ch60se ~2 for 4'2. The right hand side of (10) does
not depend on the choice of "P2.

53



An AJ ·system S as above is free if H3 is free abelian, and S is injective if ba :
Ha -+ G(7J) ia injective. Let A3 -Systems (resp. Aa - syste'ms be the full category

of free) resp. injective, ..43 -systems. "We have the canonical forgetful functor

4> : .4a - Systems -t Aa - systems (11 )

whieh replaces ba : Ha -t G(7J) by the inclusion ba(H3) c G(17) of the image of
b-a. One readily checks that this forgetful functor c/J is full anel representative. We
associate with" an Aa -system S the exact r - sequence

H 3 ~ G(7J) -t 1r2 -t H2 4'Ho &; Z/2 -4 1Tl -+ H 1 -+ 0 (12)

Here H1 = cok (7J) is the cokemel of 7J and the extension

is obtained by the element ß, that is, the group 1T2 is given by the extension element
ßt E Ext (ker (b2 ), cok (ba)) defined by

ßt == ß -1 (j, J)* (ß).

Here j : ker (bz) C H 2 is the inclusion~

(10.11) Classiflcation theorem. For n ~ 4 there exist detecting functors A', /\'
for wbicb tbe following diagram offunctors commutes up to natural isomorphism

spaces 3

n

types2

=n

A'
----+0) A 3 - Systen~s

,.\'
----+0) A3 - systerHS

Moreover for S == A'(~X"), X E spaces 3 , tbe r -sequence of S describes part of the
n

r -sequence of X, that is Ho == HnX and

1I

G(7J) -+ iT2-+

11 I1 I1 I1 11

In addition G(A, 1]) == r n+l(A,X}.

In Baues [HT] we prove siInilar theorems also for n == 2,3. \Ve point out that the
functor )..' classifies all homotopy types y~ for which at most the homotopy groups
iTnY, iTn+1 Y, iTn+2 Y are non trivial, i.e. Y E types 2

. The functor A' carries 4X" to the
=n

Aa -system (HnX, Hn+2~X", Hn+aX, iTn+l X , bn+24Y, '7 == k ll + 1_Y. bll +3.Yl ßn+2.Y )
given by the r -sequence of ~Y and the boundary invariant ßII+2-Y. In fact, the
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ciasaHication theorem (10.11) is an application of (8.9); see VIIL1.6 in Baues [HT]
and (4.10) in Baues-Hennes [He].

(10.1~) Example. Let lR.P4 be the real projective space of dimension 4. Then the
iterated suspension En- 11RP4 is an object in spaces3 which satisfies

n

A'(E n
-

1 IRP4) = (Z /2;Z/2, 0, Z/2, 0, 1,0, .6.( 1)).

Therefore G(Tl) = Z /4 and the extension

is non trivial so that 7r2 = Z/8. This yields a new proof that 7rn +2:E'1-1 lRP4 = Z/8;
see for example G.W. Whitehead [RA].

The classification theorem (10.11) shows exactly what honl0logy homomorphisms
are realizable by maps between stabl~ A; -polyhedra. Hence (10.11) yields a partial
solution of Willtehead's realization problem descrihed' in (3.7).

(10.19) Remark. Oue of the deepest problems of homotopy theory is the computa
tion of homotopy groups of spheres 7rn+k{sn). Ravenel [LPJ writes

"The study of the homotopy groups of spheres can be compared \vith astronomy.
The groups themselves are like distant stars waiting to be cliscovered by the deter
mined. observer, who is constantly building better telescopes to see further into the
distant sky. The telescopes are spectral sequences and other algebraic constructions
of various sorts. Each time a better instrument is built new discoveries are made
and our perspective changes. The more we find the more we see how complicated
the problem really is."

For us elements of homotopy groups of spheres, 0' E 7rn+ k -1 (5 Il L yield very special
elementary A~ -polyhedra

x = sn Uo en+k

obtained by attaching via a an (n +k) -cell to the sphere sn. Such A~ -polyhedra
with k ~ 2 are determined by the homological condition

Hi(X) =° for i =I- H: n + k

Hi()[)=Z for i=n,n+k

and the homotopy type of ..:\ essentially can be ~dentified with the homotopy class
a. Hence the 'telescopes' above are directed to only a very sluall but distinguished
section of the universe of homotopy types. In view of 'Freycl's generating hypothesis'
[SH] one might speculate that the classification of finite stable hOlllOtopy types is
of similar complexity as the computation of all stahle homotopy groups of spheres.
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§ 11 Decomposition oe stahle ho~otopy types

Given a class of objects with certain properties one would like to furnish a
complete list of isomorphism types of such objects. This is an ultimate objective
of classification. In mathematics indeed many classification problems arise but
complete solutions are extremely rare. We here describe a complete list of homotopy
types of (n -1) -connected (n +k) -dimensional polyheclra w hieh are fini te and stable
with k S; 3. Trus also yields a list of all (n - 1) -connected (n + k) -types with.
finitely generated homotopy groups and k S; 2, n ~ k + 2.

Let C be a category with an iWtial object * and assurne sunIS or products,
denotedby A VB, exist in C. An object X in C is decomposable if there exists an
isomorphism X I"">.J A V B in C where A and B-are not isomorphie to *. Hence an
object X is indecomposable if X I"">.J A V B implies A I"">.J * or B "'v *. A decomposition
of X is an isomorph.ism

)( ~ Al V ... V An, n < oo~ (11.1)

in Q where Ai is indecomposable for a1l i E {1, ... ,n}. The decomposition of X
is OOique up to permutation if BI V ... V B rn "'v X "'" Al V ... V An implies that
m = n and that there is a permutation (7 with B"i "'v Ai for all i. A rnorphism f
in Q is indecomposable if the object f is indecomposable in the catgeory Pair(Cl.
The objects of Pair( C) are the morphisms of C anel the nl0rphisms of C and
the morphisms f -+ 9 in P air (C) are the pairs (0', ß) of nIorphism in C with
90 = ßf. The surn of f and 9 is the morphism f V 9 = (it /, i 2g). Below we
consider decompositions of CW-spaces in the homotopy category C = Top· / ~

where the operation V is either the one point union or the produet of spaces. The
main (and perhaps hopeless) purpose of representation theorv is the determination
of indecomposable objeets in the category of R-modules satisfying some finiteness
restraint.

(11.2) Theorem. Let k ~ 3 and n ;::: k + 1 and let _X' be an (n - 1) -connected
(n + k) ·dimensional finite CW-complex. Tben there exists a decomposition

..:Y ~ Xl V ... V Xr, r < 00,

wbere tbe one point union of CW-complexes Xi on the right hand side is unique
up to permutation.

Hence homotopy types in the theorem admit a unique prilue factorization with re
spect to the operation of 'oue point union'. The prime factors are callecl indecomposable
A~ -polyhedr~ k ~ 3. For k ~ 4 a unique prime factorization as in the theorem
does not exist. For this we describe the following exanlple. Let a be the generator
of the cyclic group 1r n+3Sn = 7l/24 where n 2:: 5. Then the spaces

v sn U n+....
..:l.to = to e

are indecomposable for 0 < t < 24 hut there is a hOlllotopy equivalence
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which shows that in this case the decomposition is not unique. The homotopy
equivalence is obtained in 4.25 of Cohen [SH]. In the presence of only one prime
such decompositions are unique; see (12.12). Below we give a complete list of all
indecomposable stable A~ -polyhedra, k S; 3, which are the prime factors in (11.1).

General aspects on stable indecomposable polyhedra can be found in chapter 4
of Cohen [SH].

(11.3) Theorem. Let k ~ 2 and n ~ k+2 and let Y be an (n-l) -connected (n+k)
-type witb finitely generated bomotopy groups. Then there exists a decomposition

y ~ K 1 X ... x Kr, r < 00,

wbere tbe product of CW-spaces Ki on the rigbt hand side is unique up to permu
tation.

Thus homotopy types in this theorem admit a unique prinle factorization wi th
respect to the product operation. We call the prime factors indecomposable a~

-types, k ~ 2. For k 2: 3 a unique prime factorization as in the theorem does not
exist. The next result shows that the prime factors in (11.2) correspond exactly to
the prime factors in (11.3); this is a consequence of (4.4).

(11.4) Theorem. Let k ~ 3 and n 2: k + 1. Then tlle Postnikov functor Pn+k-l
yields a bijection

wbere the left hand side is the set of all indecomposable A~ -llomotopy types differ
ent from tbe spbere sn+k and tbe right band side is the set of all indecomposable
a~-1 - homotopy types,

These results are proved in chapter X of Baues [HT].

The elementary Nfoore spaces are the spheres sm and the !\tIoore spaces J.\;f(71/pi, m)
where pi is apower of a prime p. The elementary Eilenberg-1VIac Lalle spaces are
K(Z, m) and K(71/pi~-m). The following result is easy to prove.

(11.5) Proposition. For k = 0, n 2: 1 there is only one indecomposable A.~ 
polyhedron namely the sphere sn. For k = 1, 11 2: 2 tlle illdecomposable .4.~

-polyhedra are exactly the elementary Nloore spaces. For k = O~ n 2: 2 the inde
composable a~ -types are the elementary Eilenberg-l\IIac Lalle spaces.

The first non trivial case is described in the next result clue to .J.H. C. \Vhi tehead
[CE] and Chang [AB]. For this we define the

(11. 6) EIementary Cha719 complexes. Let 1]n be the Hüpf luap in Jr 11 +1 sn and let p
and q be powers of 2. The elementary Chang cOlnplex .Y in the list below is the
mapping cone of the corresponding attaching map where i 1 , i 2 clenote the incIusion
of sn, sn+l in sn V $11+1.
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x attaching map

X{YJ) = sn U eri+2 YJn : sn+l -t sn
X{YJq) = sn V sn+l U en+2 qi1 + i 2 YJn : sn+l -t sn+l V sn
X{PYJ) = sn U en+1 U en+2 (YJn,P) : sn+l V sn -t sn
X{PYJq) = s.n V sn+l U en+1 U en+2 (qi 1 + i27]n,pi2 ) : sn+l V sn -+ sn+l V sn

These complexes are also discussed. in the books of Hilton [rH], [HT]. Our notation
of the elementary Chang complexes above in terms of the "words" 7}, 1]q, pT}, p1]q

is compatible with the notation on elementary A~ -complexes below. These words
can' also be visualized by the following graphs where vertical edges are associated
with numbers p, q and where the edge, connecting level 0 and 2, is denoted by 1].

_...,.Z ....."ZI_q_ .....7__ 21....q__

......-;Z .....Z ·pV pV _
Tl 'flq p'fl pTJq

Hence the elementary Chang complexes correspond to all subgraphs (or sub
words) of p1]q which contain 7]. We shall describe the elementary A~ -polyhedra by
subgraphs (or subwords) of more complicated graphs.

(11.7) Theorem. Let n ~ 3. Tbe elementary Moore spaces and tbe elementary
Cbang complexes furoish a complete list of a11 indecomposable A~ -polybedra.

(11.8) Elementary Chang types. Let p, q be powers of 2 and let 7} : Z -t Z /2 -+ Z / q
and 1]' : Z/p -+ Z/2 -+ Z/q be the unique non trivial homomorphisms. The
elementary Chang types K(Z, Z/q, n) and K(Z / p, Z/q, n) are the (n -1) -connected
(n + 1) -types with k-invariant TJ and 1]' respectively.

Using (11.4) we get the following application of Chang's theorem.

(11.9) Corollary. Let n ;;::: 3. Tbe elementary Eilenberg-Mac Lane spaces and
tbe elementary Cbang types furnisb a complete list of indecomposable a~ -types.
Moreover tbe bijection in (11.4) is given by tbe following list.

x

sn
sn+l

M(Z/p, n)
M(Z/q,n+ 1)

X(TJ)
X(p1J)
X(TJq)
X(p7}q)

K(Z, Z/2, n)
K(Z,n+ 1)

K(Z/p,Z/2,n)
K(Z/q,n+ 1)

K(Z, n)
K(Z/p,n)

K(Z, Z/2q, n)
K(Z/p, Z/2q, n)
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Moreover Pn+1 carries an elementary Moore space of add primes in ..4~ to the
corresponding elementary Eilenberg-Mac Lane space.

We say that a CW-space X is finite if there is a finite CW-complex homotopy
equivalent to X. Let spaces k (finite) be the fuil homotopy catgeory of finite (n - 1)

n

-connected (n + k) -dimensional CW-spaces ..Y. Then Spanier- \'Vhitehead duality
[DB] is an enclofunctor D of this category with n ~ k +2 satisfying DD = identity.
We say that the 'space X is self-dual if there is a homotopy equivalence D){ ::::: X.

(11.9) Ezample. Let .Y = M - * be obtained by deleting a point in an (n - 1) 
connected closed differential manifold M of dimension 2n + k with n 2:: k + 2. Then
X is self dual. Compare Baues {GHJ and Stöcker [TP]. Hence self-dual CW-spaces
play an important role in the classification of higWy cannected nlanifolds.

Spanier-Whitehead duality carries a one point union to a one point union, i.e.
D(X V Y) = D(X) V D(Y), and hence D carries indecomposable polyhedra to inde
composable polyhedra. In particular we have the following properties of elementary
Chang complexes.

(11.10) Proposition. The Spanier- Whitehead duality functor D : A~ '" A~ sat

isnes DX(1]) = ~Y(7]),' D..Y(1]q) = X(q1]), DX(p'T]) = )((q]J) , D)((p7]Q) = .Y (ql]p).
Hence tbe Spanier- vVhitebead duality turns the graphs in (11.6) around by 180
degrees. For example .Y (p 1]p), X (17) and X (p 7]) V){ ('T]p) are self-dual. Wbile c1early
X(p1]) is not self-dual.

For the de"scription of the indecomposable objects in A~ 1 11. 2 4, we use certain
words. Let L be a set, the elements of which are called :'letters~'. A ward with
letters in L is an element in the free monoid generated by L. Such a ward a is
written a = a1 a2 ... an with ai E L, n ~ 0; far n. = 0 this is the empty ward
<p. Let b = b1 ••. bk be a ward. We write w = ... b if there is a ward Cl with
w = ab, similarly we write w = b... if there is a word c with t"v = bc and we
write w = ... b . .. if there exists words a and c with w = abc. A subword of
an infinite sequence a_2a-1 aoa1a2 . .. with ai E L ~ i E Z, is a finite connected
subsequence a n a n +1 Cln+k, n E Z. For the word Cl = (l1 ... an we define the ward
-a = anan-! ... a1 by reversing the order in a.

(11.11) Definition. vVe define a collection of finite words w = WIW2 ... Wk. The
letters Wi of W are symbols ~,1], € or natural nunlbers t. 8i~ ri, i E Z, which are
powers of 2. We write the letters Si as upper indices~ the letters l'i as lower indices,
and the letter t in the middle of the Ene since we have ta distinguish between these
numbers. For example174~21]8 is such a word with t = 4.1'1 = S, Si = 2. A basic
sequence is defined by

(1)

This is the infinite product a(1)a(2) ... ofwords a(-i) = ~8i,t7ri~ i 2:: 1. A basic ward
is any subward of (1). A central sequence is defined by
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(2)

A central word w iso any subword of (2) containing the number t. Hence a central
ward w is of the fonn w = atb where -a and b are basic words. An e -sequence is
defined by

(3)

An e -word w is any subwo)"d of (3) containing the letter e; again we can write
w = aeb where -a and b are basic words.

A general ward is a basic word, a central word 01' an e -ward.

A general ward w is called special if w contains at least one of the letters ~,''7 or e
and if the following conditions (i), D(i), (ii) and D(ii) are satisfied in case 'LU = a€b
is an e -word. We associate with b the tuple

if b == ... ~

otherwise

if b = ... TI

other\vise

where 81 ... Sm and '1 ... rl are the words of upper indices and lower indices re
spectively given by b. In the same way we get s( -al == (8~a : s:;a .... ) and r( -a) =
(r1a,r2a,. .. )with siaE {S-i, 00, I} and 'io E {i-i: <:."0, lL i E N. The conditions
in question on the € -ward w = acb are:

(i)

(D(i) )

b = cl>~ a =1= ~2

a = <p~ b i= 2 1]

Moreover if a #- cP and b =1= t/> we have:

(ü) SI = 2~ r-l ~ 4 and

(D(ii) ) r -1 = 2~ SI ~ 4 anel
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The index i runs through i = 2,3, ... as indicated. In (ii) lind D(ii) we use the
lexicographical ordering from the left, that is (nI, n2, ... ) < (mI, m2, ... ) if and
only if there is t 2: 1 with nj = mj for j < t and nt < mt.

Finally we define a cyclic word by a pair (w, <p) where w is a basic word of the form
(p ~ 1)

(4)

.and where r..p is an automorphism of a finite dimensional Z/2 -vector space V 
V( r..p). Two cyclic words (w, r..p) and (w', 4") are equivalent if w' is a cyclic permu
tation of w, that is

and if there is an isomorprusm 'iJ : V(4') "J V(4") with 4' = W- l 4"w. A cyclic ward
(w,<p) is a special cyclic ward if 4' is.an indecamposable automorphism and if w is
not of the form w = w'w' ... w' where the right hand side is a j-fold power of a
ward wlprime with j > 1. '

Th~ sequences (1), (2), (3) can be visualized by the infinite graphs sketched below.
The letters Si, resp. Ti, correspond to verticBl edges connecting the levels 2 and 3,
resp. the levels 0;1. The letters 1], resp. ~, correspond to diagonal edges connecting
the levels 0 and 2, resp. the levels 1 and 3. Moreover € connects the levels 0 and
3 and t the levels 1 and 2. We identify a general word with the connected finite

, subgraph of the infinite graphs below. Therefore the vertices of level i of a general
word are defined by the vertices oflevel i ofthe corresponding graph, i E {O, l,2,3}.
We also write lxi = i if x is a vertex of level i.

basic sequence

central sequence

t-sequence

~1



Remark. There is a simple rule which creates exactly a1l graphs corresponding to
general words. Draw in the plane }R2 a connected finite graph of total height
at most 3 that alternatingly consists of vertical edges of height one and diagonal
edges of height 2 or 3. Moreover endow each, vertical edge with apower of 2. An
equivalence relation on such graphs is generated by refiection at a verticalline. One
readily checks that the equivalence classes of such graphs are in 1-1 correspondence
to all general words.

(11.12) Definition. Let w be abasie word, a central word or an € -word. We
obtain the dual word D(w) by reßection of the graph w at a horizontalline and by
using the equivalence defined in (2.2). Then D(w) is again abasie word, a central
word, or an € -word respectively. Clearly the reßection replaces each letter ~ in w

by the letter 77 and vice versa, moreover it turns a lower index into an upper index
and vice versa. We define the dual cyclic word D(w 1 ep) as folIows. For the cyclic
ward (w,ep) in (3.1) (4) let D(w,ep) = (w', (ep*)-l). Here we set

and we set ep* = Hom(ep,Z/2) with V(ep*) = Hom(V(ep),71/2). Up to cyclic
permutation w' is just D(w) defined above. We point out that the dual wards
D(w) and D(w, Cf') are special if and ooly if w and (w, ep) are special.

As an example we have the special words w = 21J4~27J8~41J and D(w) = ~47J8~21J4~2

which are dual ta each other, they correspond to the graphs

Hence the dual graph D(w) is obtained by turning around the graph of w.

We are going to construct certain A~ -polyhedra, n 2:: 4, associated to the words
in (2.1). To this end we first define the homology of a ward.
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(11.13) Definition. Let w be a general word and let r a ••. rß and sJJ ... Sv be the
WO~~ of lower indices and of upper indices respectively given by w. We define the
torsion groups of w by

(1)

(2)

(3)

To(w) = Z/ra ffi ... ffi Z/rßl

T1(w) = Z/t if w is a central word,

T2 (w) = z/S IJ ffi ... ffi Z / S v 1

and we set Ti (w) = 0 otherwise. We define the integral homology of w by

(4)

Here ßi (w). Li (w) +Ri (w) is the Betti number of Wj this is the number of end
points of the graph w which are vertices of level i and which are not vertices of
vertical edges; we call such vertices x spherical vertices of w. Let L(w), resp.
R(w), be the left, resp. right, spherical vertex of w in case they occur. Now we
set Li(W) = 1 if IL(w)1 = i and Ri(W) = 1 if IR(w)j = i, moreover Li(w) = 0 and
Ri (w) = 0 otherwise.

Using the equation (4) we have specified an ordered basis Bi of Hi(w). We point
out that

(5)

For a cyclic ward (w, r.p) we set

(6)
v

where v = dim V (r.p) and where the right hand side is the v-fold direct surn of Ti (w ) .

As an example we consider the special words
- ~ - -- - - ~

R(w)
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The homology of these words is:

w = e321]8~

r-v

, - 2 ,,4
W - 1]8~ 1]16

Z
Z/32
o

'ZffiZ/8

o
Z/4
Z/2
Z/8 ffi Z/16

Here w has 2 spherical vertices while w' has no spherical vertex. We point out that
the numbers 2k attached to vertical edges correspond to cyclic groups Z/2 k in the
homology; We describe many further examples below.

For the construction of polyhedra X(w) associated to words w we use the following
generators.

(11.14) Generators of homotopy qroups. Let r, s be powers of 2. We have the Hopf
maps

1] = 1]n : 5n+1 ---t sn, e= 71n+1 : sn+2 ---t sn+1, e = 71~ : sn+2 ---t sn

We use the compositions

Tl = iTln : sn+1 --t M(71/r, n), e= 1]n+lq : M(Z/r, n +1) --+ 5 n+1

which are (2n + 1) -dual. Moreover we have the (2n + 2) -dual groups, n 2: 4

n+2 _ {71/4e2 for r = 2
[S ,M (71 / r, n )] - Z/ 2er + Z/2 er for r 2: 4

{
Z/41J2 for r = 2

[M(Z/s,n+l),sn]= Z/21J8+71/2 e!l for s2:4

r

[M(Z/s,n+ l),M(Z/r,n)] =

Z /2 ei ffi Z /21]~ for s = r = 2

Z/4 e~ ffi Z/21J~ for s 2: 4, r = 2

Z/2 e; Ei) 7l/41]; for s = 2, r 2: 4

Z/2 e: Ei) 7l /21J: ffi 7l /2 e~ otherwise

Here we have e: = X;' e2Q, t]: = it]2 Xi and e: = iTl~Q. We have the (2n+2) -dualities
D(e;) = 1]~ and D(e~) = e~. •

(11.15) Definition. Let n 2: 4 and let w be a general word. VVe define the A~

-polyhedron X(w) = Cf by the mapping cone Cf of a map f = f(w) : A -+ B
where
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(1) {
A = M(H3 ,n + 2) V M(H2 ,n + 1) V S~+l

B = M(Ho,n) V S~+l V S~+l

Here Hi = Hi(W) is the homology group above. We set S~+l = sn=l if w is a
central word and we set S~+l = * otherwise, moreover we set S~+l = sn+l if w is
a basic word of the form w = e... and we set S~+l = * otherwise. The attaching
map

(2) f = f(w) : M(H3 ,n + 2) V M(H2 ,n + 1) V S~+l -+ M(Ho,n) V S~+l V S~+l

is constructed exactly via the pattern defined by the word w or the associated graph
w. For this we subdivide the graph of w by a horizontalline between level 1 and 2;
all edges crossing this line are summands in the attaching map f(w). For example
consider the graphs f321]ae, 21]ae4 1]16 and 21J4~21J8~41] above. Then we get

M(Z/32,n+1) V sn+2

!(E32T/8~) = t, ~ Le
v lvJ(Z /8, n)

sn+l V M(Z/4, n +~)

!(2T/8~4T/16) = L2 ~" ~ ~
sn+l V M(Z/S, n) V M(Z/16, n)

sn+l V M(Z/2, n + 1) V M(71/4, n + 1)

!(2T/4eT/8eT/) = li~n ~ 1e ~ 1e~
M(Z/2,n) V sn+l V J.'vJ(Z /8, n) V sn

Here e, 1], f are the corresponding generators in (11.14). For a cyclic word (w, rp)
the construction of X(w, rp) is slightly different; see Baues-Hennes [HC]. Clearly
the homology of X(w) or X(w,rp) is the homology in (11.13).

(11.16) Theorem. Let n 2: 4. Tbe elementary Moore spaces, tbe complexes
X (w) wbere w js a special ward, and tbe complexes X (w, Cf') wbere (w, Cf') js a
special cyclic ward furnjsh a complete list of a1l jndecomposable A~ -palybedra.
For two complexes X, X' jn tbis list tbere is a homotopy equivalence ~Y ~ ..'L' 'if and
only if tbere are equivaJent special cyc1ic words (w, rp) rv (w', rp') \vitb ..\ = .Y(w, <p)
and X' = X (w' , <p'). Moreover Spanier-Wbi tebead duali ty D satisnes

D(X(w)) = X(Dw)

D(X(w,rp)) = X(D(w,ep))
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wbere tbe rigbt band side is given by tbe dual words in (11.12).

The proof of this theorem relies on the classification by A3 -systems in (10.11).
The result is then obtained by classifying the indecomposable A3 -systems with
finitely generated homologyj this being a purely algebraic question can be consid
ered as a problem of representation theory. For a complete proof see Baues-Hennes
[He].

(11.17) Example. Let p~ = RPn+3/IRPn-l be the truncated real projective space.
Then one has stahle equivalences, n ~ 1,

X(2~2) for n =1(4)

X(1]2~) for n =2(4)p31"'oJn
Xe1J2) for n =3(4)

sn V sn+3 V M(Z/2,n+ 1) for n =0(4)

Hence the graphs of these stable spaces eire (k 2:: 0)

71 2

N
7 r

2~7 S
~l 7 jJ

P;t+l P;k+2 PJi;+3 P;k

where Pik with k 2:: 1 is a one point union of Moore spaces.

We now give an application of the c1assification theorem (11.16). We describe
explicitely all indecomposable (n - 1) -connected (n + 3) -dimensional homotopy
types X, n ~ 4, for which all homology groups HiX are cyclic, i 2:: O.

Let H. = (Ho, H1 , H2 , Ha) be a tuple of finitely generated abelian groups with Ha
free abelian and let N(H.) be the number of all indecomposable homotopy types
X as ahove with homology groups Hn+i(X) I"V Hi for i E {O, 1, 2,3}.

{11.18} Corollary. Let n ;::: 4. The indcomposable (n - 1) -connected (n + 3)
-dimensional bomotopy types X, for wbicb all homology groups Hi (X) are cyc1ic,
are exactly the elementary Moore spaces, the elementary Chang complexes, and
tbe spaces X (w) wbere w is one of tbe words in tbe following list.

The list describes all w ordered by the homology H* I"V H*{..Y(w)). The attaching
map for X(w) is obta:ined by (11.15). Let (r, t, s) be powers of 2.
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H. = (Ho H1 H2 Ha) N(H.) w with H.X(w) :: H.

Z/r Z/t Z/s I 3 ~T 7]t~s, t~~ 1]r ~, ! ~r 1]t~

l/r Z/t l/s 0 3 r TJt~6, t~$ TJr, $ ~r TJt

Z/r Z/t 0 Z 2 r1]t~, ~r 1]t

Z/r Z Z/s Z 1 ~$1]r~

Z/r Z Z/s 0 1 ~$1]r

Z/r 0 Z/s Z { 2, r=s=2 s7]r~, !~re and
3, rs > 8 ~res for rs 2: 8,

Z/r 0 Z/s 0 { 3, r=s=2 r~$, sTJr, (TJ3~r, 1), and
4, rs ~ 8 Tes for rs 2: 8

Z/r 0 Z Z 1 'fJT~

Z/r 0 0 Z 2 TC TC

Z Z/t l/s 0 2 TJt~S, t~! 1]

Z I/t '0 Z 1 ' qtf.

Z Z I/s 0 1 f.s7]

Z 0 Z/s 0 2 7]T, 'cT

Z 0 0 Z 1 c

All words in the list are special words, except the word (1]s~r, 1) which is a special
cyclic word associated to the automorphism 1 of 7l/2.

Example. Let 11. ;::: 4 and let H.. = (Ho, H1, H2, H3) be a tuple of cyclic groups with
H3 E Z, O. Then it is easy to describe (by use of (11.18)) all simply connected
homotopy types X with Hn+1(X) = Hi for 0 ::; i ::; 3 and i > n+3. In fact all such
homotopy types are in a canonical way one point unions of the indecomposable
homotopy types in the list above. For example for H. = (Z/6, 7l/2, Z/2, 0) there
exist exactly 9 such homotopy types X which are:
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M(Z/6, n) V M(Z/2, n +1) V M(Z/2, n + 2)

M(Z/6, n) V X(2~2) .

M(Z/3,n) v X(21]2) V M(Z/2,n + 2)

M(Z/3, n) V X( 2~2) V M(Z/2, n + 1)

M(Z/3, n) V X(2 712 ) V M(Z/2, n + 1)

M(Z/3, n) V X(112~2, 1) V M(Z/2, n + 1)

M(Z/3, n) V X( 2712~2)

M(Z/3, n) V X(2~27]2)

M(Z/3, n) V X (2~27]2)

Similarly we see that there are 24 homo.topy types X for H ... = (Z /2, Z/2, Z/2, Z);
we leave this as an exercise.

Next w~ describe explicitLY all indecomposable (n - 1) -connected (n + 2) -types
X, n 2:: 4, for which all homotopy groups are cyc1ic. For this we use the bijection
(11.4) and the computation of 1rn+2X, 1rn+lX, 1rnX in (10.11). Let 1r... = (1ro, 1il, 1i2)
be a tuple of finitely generated abelian groups and let N(1ia) be the number of
a1l indecomposable homotopy types X with homotopy graups 1in +i(X) ~ 1ii for
i = 0, 1,2 and 1rj(X) = 0 otherwise, n 2:: 4.

{11.19} Corollary. Let n 2:: 4. The indecomposable (n - 1) -connected (n + 2)
-types X for wbich al1 bomotopy groups 1ri(X) are cyc1ic are exactly the elementary
Eilenberg-Mac Lane spaces, the elementary Cbang types, and tbe spaces Pn+2X(W)
where w is one of tbe words in tbe following list.

The list describes all W of the theorem ordered by the homotopy groups 1r*' rv

1r.X(w). Let r, t, S "2: 2 be powers of 2 and far t, S "2: 4 let 2t' = t and 2s' = s.
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I

Z/r
Z

Z/r

Z

l/r
Z

l/r

l/r

l/r
r;:::4

Z/2

l/r
r>4

Z/2

o
o
o
o

I

I

I/t

I/t
t;:::4

Z/t
t2::4

Z/2.

Z/2

Z/2

Z/2

I

I

l/s

Z/s

Z/s
Z/s
Z/S

l/s
8;:::4

Z/2

l/s
s;:::4

l/s
s2:4

Z/2

Z/2

1

1

1

3

1

1

1

2

1

2

2

2

1

T/
T/re
237]

{

21]r for 8 = 2, 21]re~1 'for 8 = 2s' > 4

2~ 7]r ~ , ( 1]~er, 1)

e3
TJ

~3TJre

{

Pn+2 sn, t = 8 = 2
TJt!, t = 2t' > 4, 8 = 2 .
€3 ' , t = 2, s = 28' 2: 4

TJt/~3', t = 2t' 2: 4, 8 = 2sJ 2: 4

{
er TJtJ~!', !'er TJt'<
with t = 2tJ

, S = 2s'

~r1Jt', t = 2tJ

{
,

3 er c and
!' - 1erc , s - 28

1
p'n+21\1(Z/2, n) for 8 = 4 and

3 e2€ for 8 = 28' 2: 4, and

2~3" for s = 4sJl ~ 8

{
rc and

r<

For all tupIe of cyclic groups 'Tr. = ('TrO, 'TrI , 'Tr2), 'Tro i=- 0, Jr2 i=- 0 whieh are not in
the list we have N( 'Tr.) = O. All words in the list are special words, except the word
(TJ~~r, 1) which is a special cyclic word associated to the identity automorphism 1
of Z/2. '

Example. Let n :2: 4 and let 7r. = ('rro, 1rl , 'Tr2) be a tuple of cyclic groups. Then
it is easy to describe all homotopy types X with 7rn +i(X) I'V 7rj for -i = 0,1,2 and
1rj X = 0 for j < n and j > n +2. In fact all such homotopy types are in a canonical
way products of the indecomposable homotopy types in (11.19). For example for
'Tr. = (Z/6, Z/2, Z/2) there exist exactly 7 such homotopy types X which are
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[«Z/6, n) X K(Z/2, n +1) x [«Z/2, n + 2)

K(Z/6, n) x J«Z/2, Z/2, n + 1)

K(Z/3, n) x J«Z/2, Z/2, n) X J«Z/2, n + 1)

K(Z/3,n) x K(Z/2,n +1) x Pn+2X(27J2)

K(Z/3, n) XJ«(Z/2, n + 1) XPn+2X (41]2~)

K(Z/3, n) x K(Z/2, n +1) x Pn+2X(.,,2e2, 1)

K(Z/3, n) X Pn+2X( 2e)

It is clear how to compute the homology H n , H n+ l and Hn +2 of these spaces and,
in fact, we can easily describe the A3 -system of these spaces. We leave it to the
reader to consider other cases, for example for 1r* = (!l4, !lID, Z) there exist exactly
3 homotopy types X with 1r. :: 1r*X.

Finally we have the following applications of the classification theorem (11.16)
wmch single out spaces which are higWy desuspendable.

(11.20) Theorem. Tbe stable bomotopy types ofconnected compact 4-dimensional
polybedra coincide witb finite one point unions Xl V ... V X r wbere tbe ...Yj are ele
mentary Moore spaces in A~ or tbe spaces X(t~6), X(t~), X(~S), X(~), and X(r~S).

Here r, s, t are powers of.2 and r 2: s.

For. this compare V Appendix A in Baues [HT]. The theorem shows that only
a few spaces arise as prime factors in the stabilization of 4-dimensional polyhedra.
This, for example, has the practical effect that the computation of generalized
homology and cohomology groups of 4-dimensional polyhedra can be easily achieved
by computing these groups only for the elementary spaces in (11.20).

(11.21) Theorem. Tbe stable bomotopy types of simply connected compact 5-
dimensional polybedra coincide with finite one point unions ..Y1 V VX r where the
Xi are elementary Moore spaces in A~ or tbe elementary spaces Y (w ), X (w, <p).
Here tbe special words satisfy tbe following conditions (1), (2),

(1) w # 1]6 ..• and w 1= ... 81],

(2) for eacb subword of tbe form r1]6 or 6T]r of w (that is LV = ... r1J~ ••• or
W = ... 87Jr ... ) we bave r > s.

See X.7.3 in Baues [HT).
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§ 12 Localization

A generalized homology theory k. (as for exampie defined in Gray [HTJ) can be
used to define equivalenee classes of spaees which are ealled ' k. -Ioeal homotopy
types'. We assume that k. satisfies the limit axiom, namely that for all CW
eompiexes X the map limk.(Xa ) -+ k.X is an isomorphism where the ..Y.Cf run over--r
all finite subeompiexes of X. We eonsider mainIy the classical homology theory

(12.1 ) k~(X) = H.(X, R) = H.(SX 0z R)

given by the homology of X with coefficients in a ring Rj compare (3.4).

(12.2) Definition. Let spaces be the full subeategory of Top consisting of CW

spaees. A CW-pair (X, A) is a cofibration A >--+ X in Top for which A and X

are CW-spaees. For example a CW-eomplex X together with a subcomplex A is a
CW-pair. A map f : X -+ Y between CW-spaces is a k. -equivalence if f induees
an isomorphism

f. : k.(X) '"'-J k. (Y)

A CW-space A is k. -Ioeal if eaeh CW-pair (X, A) for whieh A >--+ X is an k.
-equivalenee admits a retraction A -+ X. A map 9 : Y -+ A is ealled a k.
-localization if A is k. -loeal and 9 is a k. -equivalence.

Recall that we introduced the loealized eatgeory Ho( C) In (3.12). The next
result is due to Bousfield [L8]. -

(12.3) Theorem. For all CW-spaces tbere exist k. -localizations. lvIoreover there
is an equivalence of categories

H"Ok. (spaces) ~ .spaces / ~
=====k.

wbere the left band side is the localization with respect to k. -equivalences and
the right band side in tbe full bomotopy category in Top/ ~ eonsisting oE k. -loeal

CW-complexes. The equivalence carries a CW-space to its k. -loealization.

We refer the reader also to 1.5.10 in Baues [AH] where we consider k. -equivalences
as weak equivalences in a 'cofibration eategory'. The k. -equivalences generate an
equivalenee relation for CW-spaees as follows. 'vVe say that CW-spaces -"Y., Y are k.
-equivalent if there exist finitely many CW-spaces Xi, i = 1, ... ,n together with
k. -equivalenees Q'i,

X = Xl ~ X 2 ~ X 3 ~ .•. X n = Y,

where Q'i and Q'i+l have opposite direetions. The theorem shows that the corre
sponding k. -equivalence classes can be identified with the homotopy types of k.
-loeal CW-spaces which are called k. -loeal homotopy types. The k. -loeal homo
topy type of a CW-space X singles out the k. -specific properties of ..Y.. This turned
out to be a very suecessful teehnique of homotopy theory.
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(12.4) Theorem. ,Let R be a subring of Q and let X be a simply eonneeted CW
space. Then X is H. (-, R) -loeal if and only if (a) or equivalently (b) is satisfied:

(a) The homotopy groups 1rn X are R-modules.
(b) The homology groups HnX are R-modules.

Moreover an H.(-, R) -loealization f : X ~ XR induees isomorprusms

1rn (X) 0z R ~ 7T'n(XR)

Hn(X) ®z k rv Hn(XR)

whieh earries e® 1 to i. (e).

A proof 'can be found for example in Hilton-Mislin-Roitberg [LN]. Spaces as
in the theorem are also called R -loeal, these are the rational spaces if R = Q.
Moreover for a prime p these are the p -local spaces if R = Zp is the subring of Q
generated by l/q where q runs over all primes different from p. The classification
theorems in §9 are aetually compatible with R-localization, R c Q. For trus we
define for the category Q in (9.1) the full subcategory

(12.5) CR C (n - 1) - types

consisting of R-localizati.ons XR 'of objects X in C. Let

fR: C ~ eR

be the localization functor. A CR -kype XR = (XR, 1r, k, H, b) is R -local if 7I" and
H are R-modules, and XR is R -free if H is a free R-module. Similarlya eR -bype

Y = (YR, Ho, H 11 b,ß) in R -Iocal if Ho, H 1 are R-modules, and YR is R -free if H 1

is a free R-module. Let

spaces~+l(C R)

be the full homotopy category of R-local CW-spaces )( with Pn-IX E eR and with
Hi(XR) = 0 for i > n + 1 and Hn+1(XR) a free R-module.

(12.6) Classification theorem. There are detecting functors AR, A'n for which
the following cliagrams of functors commute up to natural isomorphism.

spaces n+1(C) A
Kypes(C)

lR1 -liR

spaces n+ I (Q ) AR
Kypes (C R))

R -R R-

Here KypesR{C R) is tbe category of free R-kypes and eR denotes tbe obvious
localization functors.
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spacesn+ 1 (.Q.) A'

/\'
spaces~+l(CR) R) Bypes R(CR)

Here BypesR(Q.R) is the category of free R-bypes and eR denotes again tbe local

ization functors.

For the definition of AR, AR we use the r -sequence of Xg which coincides with
( r -sequence of X) ®R. The theorem shows:

(12.7) Corollary. Tbe Postnikov mvariants oE the localization ..:r.R are obtained
by R-localizing tbe Postnikov invariants of X. The boundary invariants of the
localization XR are obtained by R-localizing the boundary invariants of X.

If R = Q is the ring of rational numbers the theory of Postnikov invariants
and boundary irivariants is completely understood. In fact Postnikov invariants
correspond to the differential in the .'minimal model of Sullivan' and boundary
invariants correspond to the differential in the 'Quilien minimal model' constructed
in Baues-Lemaire [MM]. Compare Quillen [RH], Sullivan [Ie] and chapter I in Baues
[AH].

(12.8) Definition. Let V be a graded Q ·vector space with Vi = 0 for i :s; O. Let
T(V) = EB{V0n , n 2: O} be the tensor algebra of V which is a Lie algebra by

[X, y] = xy - (-l)lxIlYlyx.

The free Lie algebra L(V) is the Lie subalgebra of (T(V), [ , ]) generated by V.
Let [L(V), L(V)] C L(V) be the subset of all brackets [x, y] with x, y E L(V) and
let

d : L(V) -+ [L(V), L(V)] C L(V)

be a Q -linear map of degree -1 satisfying dd = 0 and d[x, y] = [dx, y]+( -l)lxl[x, dy].
Then (L(V), d) is called a Quillen minimal model with differential d. A morphism
between such models in a Q -linear map of degree 0 compatible with brackets and
differentials.

(12.9) Theorem. Homotopy types of l-connected rational spaces JY are in 1 - 1
correspondence with isomorphism types of Quillen minimal models (L(V), d) lNbere
Vi = Hi+l(X, Q) and Hi(L(V), d) = 7T"i+l X for i 2: 1.

(12.10) Definition. Let V be a graded Q -vector space such that Vi is finitely
generated and V2 = 0 for i :s; 1. Let A(V) be the free graded-commutative algebra
generatecl by V, that is

A(V) = Exterior algebra (vodd
) 0 Symmetrie algebra (veven

)

Let Ä(V) . Ä(V) be the subset of products x . y with x, y E A(vf
), lxi, lyI 2: 1 and

let
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d : A(V) -+ Ä(V) . A(V) C A(V)

be a Q -linear map of dgree +1 satisfying dd = 0 and d(xy) = (dx)y + (-1)lx 1x(dy).
Then (A(V), d) is called a Sullivan minimal model with differential d. A morprusm
between such models is a tQ -linear map of degree 0 compatible with multiplications
and differentials.

(12.11) Theorem. Homotopy types of l-connected rational spaces X (or which
HnX is a finitely generated Q -vector space, n E Z, are in 1 - 1 correspon
dence witb isomorphism types of Su1livan minima{ models (A(V), d) wbere Vi =
Hom(1T"i(X), Q) and Hi(A(V), d) = Horn(Hi(X), Q for i ~ 1.

These minimal models yield solutions of Whitehead's realization problem for ra
tional spaces, see (3.7). They illustrate again that homology groups and homotopy
groups respectively both 'generate' a homotopy type in a mutually H 1r -dual way.
The Baues-Lemaire conjecture [MM] (recently proved by Majewski [BLJ) describes
the algebraic nature of trus H1r -duality. The minimal models allow a deep analysis
of the rational properties of a simply connected space. For example we refer the
reader to the wonderful torsion gap result of Halperin [TG} or to the alternative
'hyperbolie-elliptie' for rational spaces in Felix [DE].

There are p-Iocal analogues of A~ -polyhedra as follows. We say that a p-loeal
CW-space X is a pA~ polyhedron if X is (n - 1) -conneeted, n ~ 2, and the
homology HiX is trivial for i > n + k and is a free Zp -module for i = n + k.
Moreover X is a finite pA~ -polyhedron if in addition all HiX are finitely generated
Zp -modules. In the stahle 'range we have ,hy 3.6 (2) in Wilkerson [GC} unique
deeompositions as follows.

(12.12) Theorem. Let p be a prime and n 2: k + 1 2: 2. Then each finite pA~

-polybedron X admits a homotopy equivalence

x ~ Xl V ... V X r

wbere tbe one point union of p-local indecomposable CW-spaces on the right band
side is unique up to pennutation.

(12.19) Remark. Generalizing the result of Chang (11. 7) Renn [CL] furnished a
complete list of indecomposable pA~ -polyhedra for k = 4p - 5 and p odd. Such
spaces are detected by primary cohomology operations w hile the A~ -polyhedra in
(11.16) are not deteeted by primary cohomology operations. The classifications of
Renn uses implieitely the boundary invaxiants of X.

(12.14) Remark. For the ring R = Z/p where p is a prime the H*( -, 7l/p) 
loealization X p of a simply conneeted space X is the p -completion of Bousfield-Kan
[HL}. Ir in addition X has finite type then X p is the p-profinite completion for which
7rn X p is given by the p-profinite completion of 1rn X; compare Sullivan [GT} and
Quillen [AS]. Reeently Goerss [SC] considers simplicial coalgebras as models of
H.( -, IF) -loeal spaces where lF is an algebraic1y closed fieldi see also Kriz [AR].
Moreover Bousfield [HT] and Franke [UT} consider "algebraie models of k. -ioeal
spaces with k. = K -theorYi they restriet, however, to the stable range.
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