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The theory of homotopy types is one of the most basic parts of topology and
geometry. At the centre of this theory stands the concept of algebraic invariants. In
what follows we give a general introduction to this subject including recent results
and explicit examples. There are three main topics:

Homotopy types with nontrivial fundamental group
(§2’ §3?§4’§5)

Homotopy types with trivial fundamental group
(§67 §7,§8)§9’ §12)

Stable homotopy types
(§10,811)

Almost all definitions and notations below are explicitly described and statements
of results are complete. Prerequisites are elementary topology, elementary algebra
and some basic notions from category theory.
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§1 What are homotopy types

For each number n = 0,1,2,... one has the simplex A™ which is the convex hull
of the unit vectors eg, ey, ... e, in the Euclidean (n + 1) -space R™*!. Hence A° is
a point, Al an interval, A? a triangle, A® a tetrahedron, and so on:

TAA

A° Al A? A

The dimension of A™ is n. A point z € A" is given by barycentric coordinates,

r=) tie; with » t;=1 and ;>0
i=0 1=0
The name simplex describes an object which is supposed to be very simple; indeed,
natural numbers and simplexes both have the same kind of innocence. Yet once
the simplex was created, algebraic topology had to emerge:

For each subset a C {0,1,...,n} with a = {ap < ... < a,} one has the r-
dimensional face A, C A™ which is the convex hull of the set of vertices e, ... ,€q,-
Hence the set of all subsets of the set [n] = {0,1,... ,n} can be identified with the
set of faces of the simplex A™. There are “substructures” S of the simplex obtained
by the union of several faces, that is,

5=0gUAg, U...UA,, CA™

Finite polyhedra are topological spaces X homeomorphic to such substructures S
of simplexes A®, n > 0. A homeomorphism S =~ X is called a triangulation of
X. Hence a polyhedron X 1is just a topological space in which we do not see
any simplexes. We can introduce simplexes via a triangulation, but this must
be seen as an artifact similar to the choice of coordinates in a vector space or
manifold (compare H. Weyl, Philosophy of Mathematics and Natural Science, 1949:
“The introduction of numbers as coordinates ... is an act of violence ...”). Finite
polyhedra form a large universe of objects. One is not interested in a particular
individual object of the universe but in the classification of species. A system of
such species and subspecies is obtained by the equivalence classes

homotopy types and homeomorphism types.

Recall that two spaces X,Y are homeomorphic, X = Y, if there are contin-
uous maps f : X — Y and g : ¥ — X such that the composites fg = 1y
and gf = lx are the identity maps. A class of homeomorphic spaces is called
a homeomorphism type. The initial problem of algebraic topology - Seifert and
Threlfall [LT] called it the main problem - was the classification of homeomorphism
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types of finite polyhedra. Up to now such a classification was possible only in a very
small number-of special cases. One might compare this problem with the problem
of classifying all knots and links. Indeed the initial datum for a finite polyhedron is
just aset {ay,... ,ax} of subsets a; C [n] as above and the initial datum to describe
a link, namely a finite sequence of neighbouring pairs (¢, + 1) or (i + 1,7) in [n]
(specifying the crossings of n + 1 strands) is of similar or even higher complexity.
But we must emphasize that such a description of an object like a polyhedron or a
link cannot be identified with the object itself: there are in general many different
ways to describe the same object, and we care only about the equivalence classes
of objects, not about the choice of description.

Homotopy types are equivalence classes of spaces which are considerably larger
than homeomorphism types. To this end we use the notion of deformation or
homotopy. The principal idea is to consider ‘nearby’ objects (that is, objects,
which are ‘deformed’ or ‘perturbed’ continuously a little bit) as being similar. This
idea of perturbation is a common one in mathematics and science; properties which
remain valid under small perturbations are considered to be the stable and essential
features of an obejct. The equivalence relation generated by ‘slight continuous
perturbations’ has its precise definition by the notion of homotopy equivalence: Two
spaces X and Y are homotopy equivalent, X =~ Y, if there are continuous maps
f:X =Y and g: Y — X such that the composites fg and gf are homotopic to
the identity maps, fg ~ ly and ¢f ~ 1x. (Two maps f,g: X — Y are homotopic,
f ~ g, if there is a family of maps f; : X = Y, 0 <t <1, with fo = f, fi = g such
that the map (z,t) — f:(z) is continuous as a function of two variables.) A class
of homotopy equivalent spaces is called a homotopy type.

Using a category C in the sense of S. Eilenberg and Saunders Mac Lane [GT]
one has the general notion of isomorphism type. Two objects X,Y in C are called
equivalent or isomorphic if there are morphisms f : X = Y, ¢g:Y — X in C such
that fg = 1y and gf = 1x. An isomorphism type is a class of isomorphic objects in
C. We may consider isomorphism types as being special entities: for example, the
isomorphism types in the category of finite sets are the numbers. A homeomorphism
type is then an isomorphism type in the category Top of topological spaces and

continuous maps, whereas a homotopy type is an isomorphism type in the homotopy
category Top/ ~ in which the objects are topological spaces and the morphisms

are not individual maps but homotopy classes of ordinary continuous maps.

The Euclidean spaces R™ and the simplexes A" n > 1, all represent different
homeomorphism types but they are contractible, i.e. homotopy equivalent to a
point. As a further example, the homeomorphism types of connected 1-dimensional
polyhedra are the graphs which form a world of their own, but the homotopy
types of such polyhedra correspond only to numbers since each graph is homotopy
equivalent to the one point union of a certain number of circles S*.

Homotopy types of polyhedra are archetypes underlying most geometric struc-
tures. This is demonstrated by the following table which describes a hierarchy of
structures based on homotopy types of polyhedra. The arrows indicate the forgetful
functors.



real algebraic sets Kaehler manifolds

| l

semi analytic sets complex manifolds Riemannian manifolds
(analytic isomorphism) (complex isomorphism) (isometry)

N/

differentiable manifolds

(diffeomorphism)
polyhedra topological manifolds
(homeomorphism) (homeomorphism)

locally finite polyhedra

(proper homotopy equivalence)
J /

polyhédra
(homotopy equivalence)

This hierarchy can be extended in many ways by further structures. Each kind
of object in the table has its own notion of isomorphism; again as in the case of
polyhedra not the individual object but its isomorphism type is of main interest.
We only sample a few properties of these objects.

Some of the arrows in the table correspond to results in the literature. For ex-
ample, every differentiable manifold is a polyhedron, see J.H.C. Whitehead [OC] or
Munkres [EDT]. Any (metrizable) topological manifold is proper homotopy equiv-
alent to a locally finite polyhedron though a topological manifold needs not to be
a polyhedron, see Kirby-Siebenmann [FE]. Any semi-analytic set is a polyhedron,
see Lojasiewicz [TS]. There are also connections between the objects in the ta-
ble in terms of realizability. For example, each differentiable manifold admits the
structure of a Riemannian manifold, or each closed differentiable manifold has the
structure of an irreducible real algebraic set (in fact, infinitely many birationally
non isomorphic structures), see Bochnak-Kucharz [AM].

The famous Poincaré conjecture states that the homotopy type of a 3-sphere
contains only one homeomorphism type of a topological manifold. Clearly not every
finite polyhedron is homotopy equivalent to a closed topological manifold. For this
the polyhedron has to be, at least, a Poincaré complex; yet there are also many
Poincaré complexes which are not homotopy equivalent to topological manifolds.
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By the result of M.H. Freedman [TF] all simply connected 4-dimensional Poincaré
complexes have the homotopy type of closed topological manifolds, they do not in
general have the structure of a differentiable manifold by the work of Donaldson
[AG]. Homotopy types of Kahler manifolds are very much restricted by the fact
that their (real) homotopy type is ‘formal’, see Deligne-Griffiths-Morgan-Sullivan

Now one might argue that the set given by diffeomorphism types of closed differ-
entiable manifolds is more suitable and restricted than the vast variety of homotopy
types of finite polyhedra. This, however, turned out not to be true. Surgery theory
showed that homotopy types of arbitrary simply connected finite polyhedra play an
essential role for the understanding of differentiable manifolds. In particular, one
has the following embedding of a set of homotopy types into the set of diffeomor-
phism types: Let X be a finite simply connected n-dimensional polyhedron, n > 2.
Embed X into an Euclidean space R¥*!, k > 2n, and let N(X) be the boundary
of a regular neighbourhood of X ¢ R¥*!, This construction yields a well defined
function {X} — {N(X)} which carries homotopy types of simply connected n-
dimensional finite polyhedra to diffeomorphism types of k-dimensional manifolds.
Moreover for & = 2n + 1 this function is injective, see Kreck-Schafer [CS]. Hence
the set of simply connected diffeomorphism types is at least as complicated as the
set of homotopy types of simply connected finite polyhedra.

In dimension > 5 the classification of simply connected diffeomorphism types
(up to connected sum with homotopy spheres) is reduced via surgery to problems
in homotopy theory which form the unsolved hard core of the question. This
kind of reduction of geometric questions to problems in homotopy theory is an old
and standard operating procedure. Further examples are the classification of fibre
bundles and the determination of the ring of cobordism classes of manifolds.

All this underlines the fundamental importance of homotopy types of polyhedra.
There is no good intuition what they actually are, but they appear to be entities as
genuine and basic as numbers or knots. In my book [AH] I suggested an axiomatic
background for the theory of homotopy types; A. Grothendieck [PS] commented:

“Such suggestion was of course quite interesting for my present reflections,
as I do have the hope indeed-that there exists a ‘universe’ of schematic
homotopy types...”

Moreover J.H.C. Whitehead {AH] in his talk at the International Congress of Math-
ematicians 1950 in Harvard said with respect to homotopy types and the homotopy
category of polyhedra:

“The ultimate object of algebraic homotopy is to construct a purely alge-
braic theory, which is equivalent to homotopy theory in the same sort of
way that ‘analytic’ is equivalent to ‘pure’ projective geometry”.
Today, 45 years later, this idea still remains a dream which has not yet come
true. The full realization seems far beyond the reach of existing knowledge and
techniques. Some progress in several directions will be described below.



§ 2 How to build homotopy types

There are many different topological and combinatorial devices which can be used
to construct the homotopy types of connected polyhedra, for example, simplicial
complexes, simplicial sets, CW-complexes, topological spaces, simplicial groups,
small categories, and partially ordered sets.

Up to now we have worked with finite polyhedra by viewing them as substruc-
tures of a simplex. One needs also polyhedra which are not finite since for example
the universal covering space of a finite polyehedron, in general, is not finite, also
the Euclidean spaces R™, n > 1, are non-finite polyhedra. Infinite polyhedra are
defined by ‘simplicial complexes’. The following abstract notion of a simplicial com-
plex is just a recipe for joining many simplexes together to obatin a space which is
called the ‘realization’ of the simplicial complex. -

(2.1) Definition. A simplicial complex X is a set of finite sets closed under for-
mation of subsets. Equivalently X is a set of finite subsets of a set U such that U
is the union of all sets in X and fora € X,bC aalsob € X. Theset U = X0 is
called the set of vertices of X. The simplicial complex X is a partially ordered set
by inclusion.

We obtain the realization of a simplicial complex X by associating with each
element a € X a simplex A, which.is the convex hull of the set a in the real vector
space with basis X°. The vertices of A, are elements of a. For b C a the simplex
Ay C A, is a face of A,. The realization of X is the union of sets

(2.2) xI=|J A

aeX

with the topology induced by the topology of the simplexes. That is, a subset in
|X| is open if and only if the intersection with all simplexes is open. If X is finite
we can choose a bijection X° =~ {0,1,..., coincides with the
substructure U{4;(,), @ € X} in the simplex AYN. The realization |X| is compact
if and only if X is finite.

(2.3) Definition. A polyhedron is a topological space homeomorphic to the real-
ization of a simplicial complex.

Simplicial complexes have the disadvantage that for a subcomplex ¥ C X the
quotient space |X |\ |Y| is not the realization of a simplicial complex. This is one of
the reasons to introduce ‘simplicial sets’ which are considerably more flexible than
simplicial complexes. Again a simplicial set X is a combinatorial affair, i.e. a family
of sets and maps between them from which again may be deduced a topological
space |X|. There is a more general notion of a ‘simplicial object’ which actually
became one of the most influential notions of algebraic topology.

(2.4) Definition. The simplicial category A is the following subcategory of the
category of sets. The objects are the finite sets [n] = {0,1,... ,n}, n > 0, and the
morphisms « : [n] — [m] are the order preserving functions, i.e. z < y implies
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a(z) < a(y). A simplicial object X in a category C is a contravariant functor from
A to the category C'; we also write

X:é"”—)%

where A°? is the oppossite category of A. Hence X is determined by objects
X[n], n 20, in C and by morphisms a* : X[m] — X[n] one for each order preserv-
ing function « : [n] = [m]. Morphisms in the category sC of simplicial objects are
the natural transformations. T

Hence simplicial sets, simplicial groups and simplicial spac-es are the simplicial
objects in the category of sets, Set, groups Gr, and topological spaces Top, re-

spectively. A simplicial set is also a‘simplicial space by using the discrete topology
functor Set C Top. A simplicial space X is good if every surjective map o in A
induces a ‘cofibration’ a* : X[m] — X[n]. For example the inclusion |B| C |4|
given by a simplicial subcomplex B of a simplicial complex A is a cofibration. We
define the realization of a good simplicial space X by the following quotient of the
disjoint union of products X[n] x A™ in Top,

X = U XInjx A" ]/~
n>0

Here the equivalence relation is generated by (a,a,z) ~ (a*a,z) for a : [n] —
[m], a € X[m], z € A™ where a, : A® = A™ is the restriction of the linear map
given on vertices by a. For different realizations of simplicial spaces compare the

Appendix of Segal [CC].

There are the following basic examples of simplicial sets. For any topological
space X we obtain the simplicial set

SX)n]j={a: A" > X € 2}

a*(a) =aoa,

(2.6) SX : A% — Set, {

which is called the singular set of X. One has the canonical map

T:|SX|— X, T(a,z) = a(z)

which is a homotopy equivalence if X is a polyhedron. Moreover T is a weak homo-
topy equivalence for any space X, (that is, T induces isomorphisms of homotopy
groups with respect to all base points). Clearly the singular set SX is very large.
This, however, has the advantage that SX is a ‘Kan set’; for such Kan sets it is
possible to describe homotopy theory purely combinatorially, see Curtis [SH] and

May [SO].

In the next example we use the morphisms d;,s; which generate the category
A multiplicatively. The maps d; are the unique injective maps d; : [n — 1] —
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[n] - {z} C [n], and the maps s; are the unique surjective maps s; : [n] = [n — 1]
with s;(z) = si(i +1) =1 € [n—1].

For any small category X we obtain the simplicial set

(2.7) Nerve(X) : AP — Set

which is called the nerve of X. Here Nerve(X)(n], n > 1, is the set of all sequences
(M,...,Aq) of n composable morphisms

A A
X0,<—1X14—...(—"Xn

in X. Forn = 0 let Nerve(X)[0] be the set of objects of X. The functor Nerve(X)
is defined on generating morphisms of A by s3(A) = 14 for 4 € Nerve(X)[0] and

3:();,... ,/\n)=()\1,... ,/\,‘_1,1,/\,‘,... ,/\n)

where 1 is the appropriate identity. Moreover

. A i=0

for \: A= B € Nerve(X)[l] and for n > 2

(Azy. .., A,) for 1 =0
df( M, 5 2) =< (A, Mg, AR) for :=1,...,n-1
(A1yov oy Ano1) for i1=n

There is a more formal way to define the simplicial set Nerve(X ) as follows. For this
recall that any partially ordered set has the structure of a small category: objects
are the elements of the set and there is a unique morphism a — biff a > b. This way
one obtains a functor H : A — Cat where Cat is the category of small categories
and functors. The functor H carries the object [n] to the category H([n] given by
the ordered set [n]. Using H we define the functor

Nerve(X)[n] = {a: H[n] = X € Cat}

= a*(a) =aoa, with «, = H{a)

Nerve(X) : A" — Set, {

which coincides with the definition above, compare Gabriel-Zisman [CF]. The real-
ization |NerveX| is also called the classifying space of A.

Since products in the category Top of topological spaces do not behave well with

respect to quotient maps we shall use in the next definition the full subcategory
Top(cg) of spaces whose topology is compactly generated. The product X x ¥ in

Top(cg) yields the structure of a monoidal category. The usefulness of compactly
generated spaces was observed by Brown [CC] and Steenrod [CC].
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If X is a small topological category, i.e. a category enriched over the monoidal
category Top(cg) then Nerve(X) is a simplicial space given by X, = Nerve(X)[n]
above. For n = 0 the set Xo is discrete and X,,, n > 1, is the product X (X1, Xo) x

. X X(X5,Xn-1) where X(4,B) € Zgg(cg) is the space of morphisms 4 — B
in é In particular, if H € @(cg) is a topological monoid, i.e. a topolog-
ical category with a single object, then the simplicial space N erve(H) is the
geometric bar construction of H, see for example Baues [GL]. This is a good sim-
plicial space if the inclusion of the neutral element {1} C H is a closed cofibration,
(i.e. H is well pointed). For a well pointed topological group G € Top(cg) the
realization S ' T

(2.8) B(G) = |Nerve(G)|

is the classifying space of G which is the Eilenberg-Mac Lane space K(G, 1) if G is
discrete, see Milgram [BC]: This classifying space is homeomorphic to the infinite
projective space R Po,, CP,, and HP,, in case the topological group G is Z/2, S!
and S3 respectively.

A simplicial complex X is a partially ordered set and hence also a small category
and we can form the simplicial set Nerve(X). The realizations

(2.9) | X ~ | Nerve(X)]

are homeomorphic. In fact, |Nerve(X)| can be identified with the barycentric
subdivision of | X]|. :

Simplicial complexes and simplicial sets both are of combinatorial nature, but
they tend to be very large objects even if one wants to describe simple spaces like
products of spheres. J.H.C. Whitehead observed that for many purposes only the
‘cell structure’ of spaces is needed. In some sense ‘cells’ play a role in topology
which is similar to the role of ‘generators’ in algebra. Let

(2.10) D" ={z eR" || z|[<1}

D" ={z eR", || z|<1},8D" = D" — D" = §"~

be the closed and open n-dimensional disk. An (open) n -cell e, n > 1, in a space

X is a homeomorphic image of the open disk D" in X, a O-cell is a point in X.
As a set a‘CW-complex’ is the disjoint union of such cells. A CW-complex is not
just a combinatorial affair since the ‘attaching maps’ in general may have very
complicated topological descriptions.



(2.11) Definition. A CW-complex X with skeleta X° C X' ¢ X* C...C X is
a topological space constructed inductively as follows:

(a) X? is a discrete space whose elements are the O-cells of X.

(b) X™ is obtained by attaching to X™~! a disjoint union of n-disks D? via
continuous functions ¢; : 9(DPF) — X" ie. take the disjoint union
X™1 — UD? and pass to the quotient space given by the identifications

z ~ @i(z), z € OD?. Each D} then projects homeomorphically to an n-cell
el of X. The map y; is called the attaching map of el.

(c) X has the weak topology with respect to the filtration of skeleta.

The realization |X| of a simplicial complex is a CW-complex with the n-cells given
by elements a € X with dim(A,) = n. Also the realization |X| of a simplicial set
is a CW-complex with the n-cells given by ‘non-degenerate’ elements in X [n]. Here
an element is degenerate if and only if it is in the image if one of the functions
3 : X[n-1 - X[n],7 € [n -1]. A CW-complex, however, need not be a
polyhedron, see Metzler [BUJ, but a CW-complex is always homotopy eqivalent to
a polyhedron. A CW-space is a topological space homotopy equivalent to a CW-
complex. We now describe some of the many ways to create homotopy types of
polyhedra.

(2.12) Theorem. Homotopy types of polyhedra are the same as the homotopy
types of the spaces in (a) ... (f) respectively:

(a) realizations |X| of simplicial complexes X, -
(b) realizations |X| of simplh'cial sets X,

(c) realizations |SX| of singular sets of topological spaces X,

(d) classifying spaces |Nerve(X)| of small categories X,

(e) classifying spaces |Nerve(X, <)| of partially ordered sets (X, <),
(f) CW-complexes.

CW-complexes X, Y have a compactly generated topology and the product X xY
in Top(cg) is again a CW-complex (this does not hold for the product in Top) A
CW-monoid is a CW-complex X which is also a monoid in Top(cg) such that
the neutral element is a O-cell and such that the multiplication is cellular. For
example a simplicial group G yields the realization |G| which is a CW-monoid. Here
G, considered as a simplicial set, is a group object in sSet with a multiplication
G x G — G in sSet inducing the multiplication |G| X |G| = |G x G| = |G| in
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Top(cg).

A simplicial group F is called a free simplicial group if for each n > (. the group
F[n] is a free group with a given basis and if all s! carry basis elements to basis
elements, compare Curtis [SHJ.

(2.13)Theorem. Homotopy types of connected polyhedra are the same as the
homotopy types of the spaces (a) and (b) respectively:

(a) classifying spaces B(H) = |Nerve(H)| of CW-monoids H for which the set
no(H) of path components is a group,

(b) classifying spaces B(|G|) where |G| is the realization of a free simplicial
group.

Hence free simplicial groups suffice to describe all homotopy types of connected
polyhedra. This yields a very significant algebraic tool to construct such homo-
topy types. Computations in free simplicial groups, however, are still extremely
complicated. It is shown in Baues [CH] that the complexity of simplicial groups
can be reduced considerably in case one studies homotopy types of connected 4-
dimensional polyhedra. The connection of free simplicial groups and CW-complexes
was described by Kan [CW]:

(2.14) Theorem. Let X be a CW-complex with trivial O-skeleton X° = . Then
there is a free simplicial group G with X ~ B(|G|) such that the set of non-
degenerate generators in G[n] coincides with the set of (n + 1) -cells in X, n > 0.

This illuminates the role of cells as generators in topology. Unfortunately the free
group G[n] has also all the degenerate generators coming from cells in dimension
< n. Therefore the free group G[n] is very large already for CW-complexes with
a few cells. We call G a free simplicial group associated to X if X ~ B(|G]) as
in the theorem. There is, in fact, an algebraic homotopy theory of free simplicial
groups which via the functors G — B(|G]) is equivalent to the homotopy theory
of connected polyhedra (compare Curtis [SH] and Quillen [HA]).

(2.15) Remark. Further methods of representing homotopy types were introduced
by Smirnov [HT] (compare also Smith [IC]) and Kapranov-Voevodskii {GH].
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§ 3 Whitehead’s realization problem

The main problem and the hard core of algebraic topology is the ‘classification’
of homotopy types of polyhedra. Here the general idea of classification is to attach
to each polyhedron ‘invariants’, which may be numbers, or objects endowed with
algebaric structures (such as groups, rings, modules, etc.) in such a way that
homotopy equivalent polyhedra have the same invariants (up to isomorphism in
the case of algebraic structures). Such invariants are called homotopy invariants.
The ideal would be to have an algebraic invariant which actually characterizes
a homotopy type completely. The fascinating task of homotopy theory is thus
the investigation of ‘algebraic principles’ hidden in homotopy types. We may be
confident that such principles are of importance in mathematics far beyond the
scope of topology as for example shown by the development of ‘homological algebra’
which now plays a role in ring theory, algebraic geometry, number theory and many
other fields. A further very recent example is the use of ‘operads’ outside topology;
compare for example Getzler-Jones [OH] and Ginzberg-Kapranov [KOJ.

The main numerical invariants of a homotopy type are ‘dimension’ and ‘degree
of connectedness’.

(3.1) Definition. The dimension Dim(X) < oo of a CW-complex is defined by
Dim(X) < nif X = X" is the n-skeleton. The dimension dim(X) of the homotopy
type {X} is defined by dim(X) < Dim(Y) for all CW-complexes ¥ homotopy
equivalent to X.

(3.2) Definition. A space X is (path) connected or 0-connected if any two points
in X can be joined by a path in X, this is the same as saying that any map 0D! — X
can be extended to a map D! — X where D! is the 1-dimensional disc. This notion
has an obvious generalization: A space X is k-connected if for all n < k£ + 1 any
map D" — X can be extended to a map D™ — X where D" is the n-dimensiomal
disc. The 1-connected spaces are also called simply connected.

The dimension is related to homology since all homology groups above the dimen-
sion are trivial, whereas the degree of connectedness is related to homotopy since
below this degree all homotopy groups vanish. It took a long time in the devel-
opment of algebraic topology to establish homology and homotopy groups as the
main invariants of a homotopy type. For completeness we recall the definitions of
these groups.

(3.3) Definition. Let Top® be the category of topological spaces with basepoint *

and basepoint preserving maps. The set [X, Y| denotes the set of homotopy classes
of maps X — Y in Top®. Choosing a basepoint in the sphere 5" we obtain the

homotopy groups
o (X) = [S™, X]

This is a set for n = 0 and a group for n > 1, abelian for n > 2. The group structure
is induced by the map pu: S™ = S™ V S™ obtained by identifying the equator of 5™
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to a point, that is for a, 3 € 7,(X) we define a + 8 = (a,3) o u. The set ng(X)
is the set of path components of X and m;(X) is called the fundamental group of
X. An element f € [X,Y] induces f, : 7y X — 7, Y by fua = foa so that 7, is a
functor on the category Top®/ .

(3.4) Definition. For a simplicial set X let C,, X be the free abelian group gen-
erated by the set X[n] and let

On : CnX = Ch X
be the homomorphism defined on basis elements = € X [n] by

n

Oa(z) = ) (~1)d}(a)

=0

Then one can check that 8,8,41 = 0 so that the quotient group

H,X = kernel 0, /image 0+,

is defined. This is the n-th homology group of X. For a topological space X we
define the homology H, X = H,SX by use of the singular set. The homology H,
yields a functor from the homotopy category Top/ ~ to the category of abelian
groups. -

" The crucial importance of homotopy groups and homology groups relies on the
following results due to J.H.C. Whitehead.

(3.5) Theorem. A) A connected CW-space X Is contractible if and only if for a
basepoint in X all homotopy groups n,(X), n > 1, are trivial.

B) A simply connected CW-space X is contractible if and only if all homology
groups Hn(X), n 2> 2, are trivial.

The theorem shows that homotopy groups and in the simply connected case also
homology groups are able to detect the trivial homotopy type. In fact, homotopy
groups and homology groups are able to decide whether two spaces have the same
homotopy type:

(3.6)Whitehead theorem. Let X and Y be connected CW-spaces and let f :
X =Y be amap. Then f is a homotopy equivalence in Top/ = if and only if, for

a basepoint in X, condition A) or equivalently B} holds.

A) The map f induces an isomorphism between homotopy groups, f. : mp X =
Y, n > 1.

B) The map f induces an isomorphism between fundamental groups, f. :
mX = mY, and the induced map f: X — Y between universal coverings

induces an isomorphism between homology groups, f.  H, X~pH, Y,n>
2.

-
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Hence homotopy groups constitute a system of algebraic invariants which, in
a certain sense, are sufficiently powerful to characterize the homotopy type of a
CW-space. This does not mean that X ~ Y just because there exist isomorphisms
X = 7,Y for every n = 1,2,.... The crux of the matter is not merely that
™X = 7,Y, but that a certain family of isomorphisms, ¢, : 7,.X = 7,Y, has a
geométrical realization f : X — Y. That is to say, the latter map f induces all
isomorphisms ¢, via the functor #,, namely ¢, = m,(f) for n > 1. Therefore the
emphasis is shifted to the following problem; compare Whitehead [AH].

(3.7) Realization problem of Whitehead. Find necessary and sufficient con-
ditions in order that a given set of isomorphisms or, more generally, homomor-
phisms, ¢, : 71, X — m,Y, have a geometrical realization X — Y.

The Whitehead theorem shows that also the invariants m X, H, X, are suffi-
ciently powerful to detect homotopy types. Therefore there is a realization problem
for these invariants in a similar way. In particular, within the category of simply
connected CW-spaces the functors m, could be replaced by H,. The realization
problem of Whitehead above is highly unsolved, and is indeed one of the hardest
problems of algebraic topology. We shall describe below solutions for some special
cases; see (10.11). Using simplicial groups Kan gave a purely combinatorial de-
scription of Whitehead’s realization problem. For this we need the following Moore
chain complex of a simplicial group.

(3.8) Definition. A chain complex (C,3d) of groups is a sequence of homomor-
phisms

..._>Cnﬁ)Cu—1_>-..,n€Zg

in the category of groups with image 0,+1 a normal subgroup of kernel 9,. For each
n, the homology H,(C, 0) is defined to be the quotient group kernel (9, )/image (On+1)-
For each simplicial group G one has the Moore chain complex, NG, with

Na(G) = [ kernel (d})
i£0 ’
On =dp (restricted to N,G)

We define homotopy groups of G by 7,G = H,(NG).

A basic theorem of Kan [CD] shows that homotopy groups of simplicial groups,
in fact, correspond exactly to homotopy groups of connected CW spaces:

(3.9) Theorem. Let G be a simplicial group. Then there is a natural isomorphism
(n20)

n(G) = ma|G| = T4 1 B(|G])

14



Hence if Gx is associated to the connected CW-space X, that is X = B(|Gx|),
we can compute Tp41(X) = 7,(Gx) by the Moore chain complex N(Gx). For ex-
ample let Ggn+1 be the free simplicial group with only one non-degenerate generator
in degree n, then Ggn+1 is associated to the sphere S**! and

Tntk(Gont1) = Hapk N(Ggnir ) = Mg S™H

gives us a purely combinatorial description of homotopy groups of spheres. This
way Kan gave a new proof of Hopf’s result 7352 = Z. In general, however, free sim-
plicial groups are so complicated that this formula was not suitable for computing
homotopy groups of spheres. Theorem (3.9) leads to the following interpretation of
Whitehead’s realization problem.

(3.10) Theorem. Let X,Y be connected CW-spaces and let Gx, Gy be free
simplicial groups associated to X and Y respectively. Then a set of homomorphisms
¢n : mn X — m,Y is realizable by a map X — Y if and only if there is a map
f:Gx = Gy in sGr inducing for n > 0 the homomorphism

fe .
Ont+1 : Tnt1 X = 7Gx — 7 Gy = Tp41Y.

We say that two simplicial groups G,G’ are weakly equivalent if there is a map
f: G = G’ in sGr inducing isomorphisms f, : 71,G = #,G'. This yields actually
an equivalence relation for free simplicial groups. As usual a 1-1 correspondence
is a function which is injective and surjective. The next result is a consequence of

(3.10) and (2.13).

(3.11) Corollary. Thereis a 1-1 correspondence between homotopy types of con-
nected CW-spaces and weak equivalence classes of free simplicial groups. The
correspondence is given by X — Gx with the inverse G — B(|G]).

We point out that ‘weak equivalence’ generates an equivalence relation for all
simplicial groups and that weak equivalence classes of all simplicial groups are the
same as weak equivalence classes of free simplicial groups. In fact, for any simplicial
group G’ there is a free simplicial group G and a weak equivalence G — G’ which
is called a free model of G'.

(3.12) Definition. Let C be a category with a given class of morphisms called
weak equivalences. Then the localization or homotopy category of C is the category
Ho(C) together with a functor ¢ : € — Ho(C) having the following universal

propjrty: For every weak equivalence f the morphism ¢(f) is an isomorphism;
given any functor F': C' — B with F(f) an isomorphism for all weak equivalences
f, there is a unique functor © : Ho(C) — B such that ©q = F. Except for set

theoretic difficulties the category Ho(C) exists, see Gabriel-Zisman [CF].

(3.13) Theorem. Let spaces be the category of connected CW-spaces with base-
point and let spaces/ ~ be the corresponding homotopy category. Then there is
an equivalence of categories

15



Ho(sGr) — spaces/ ~

which carries a simplicial group G to the classifying space B(|G|).

The results (3.9) ... (3.13) are due to Kan, see Curtis [SH] and Quillen [HA].
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§4 Algebraic models of n-types

When studying a CW-complex or a polyhedron X it is natural to consider in
succession the skeleta X', X2, ... where X™ consists of all the cells in X of at
most n-dimensions. Now the homotopy type of X™ is not an invariant of the
homotopy type of X. Therefore J.H.C. Whitehead introduced the n-type, this
being a homotopy invariant of X, which depends only on X"**!. There are two
ways to present n-types. On the one hand they are certain equivalence classes of
(n + 1) -dimensional CW-complexes, on the other hand they are homotopy types
of certain spaces.

(4.1) Definition. Let CW be the category of connected CW-complexes X with

basepoint * € X° and of basepoint preserving cellular maps. Let Q_ﬂn“ be the
full subcategory of CW consisting of (n + 1) -dimensional objects. For maps F,G :
Xt o yrtloin CWH let FIX™, G|X™ : X™® — Y™ be the restrictions.
Then we obtain an equivalence relation ~ by setting F' ~ G iff there is a homotopy
F|X" ~ G|X" in Top®. Let _C_E"'H/ ~ be the quotient category. Now an n-type in

the sense of J.H.C. Whitehead is an isomorphism type in the category CW™*!/ ~.

(4.2) Deflnition. Recall that spaces is the category of connected CW-spaces with
basepoint and pointed maps. Let

n — types C spaces/ ~

be the full subcategory consisting of spaces X with m;(X) = 0 for ¢+ > n. Such
spaces or their homotopy types are also called n-types.

'The two definition of n-types are compatible since there is an equivalence of
categories

(4.3) P, : CW™/ ~ 5 n— types

We define the functor P, by use of the following n — th Postnikov functor

P,:CW/ ~— n - types

For X in CW we obatin P, X by ‘killing homotopy groups’, that is, we choose a
CW-complex P, X with (n + 1) -skeleton

_(PnX)n+l = .Xn+1

and with 7;(P,X) =0 for i > n. For a cellular map F : X — Y in CW we choose
a map PF"t1: P, X — P,Y which extends the restriction F™*! : X+l 5 yntl
of F. This is possible since m; P,Y = 0 for ¢« > n. The functor P, in (4.4) and (4.3)
carries X to P,X and carries F to the homotopy class of P,F. Different choices
for P, X yield canonically isomorphic functors P,.
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Isomorphism types in CW" !/ ~ were originally called ‘(n + 1) -types’, they
are now called n-types since they correspond to homotopy types for which only
T1,... ,Tn might be non trivial. .

There is an important relationship between n-types and homotopy types of
(n 4+ 1) -dimensional CW-spaces. Two (n + 1) -dimensional connected CW-spaces
X7+ Y™+ have the same n-type iff one of the following conditions (A) and (B)
is satiesfied:

(A) There is a map F : X"t - Y"*! which induces isomorphisms m;(F) for

1 <n.

(B) There is a homotopy equivalence P, X"*! ~ P, Y ™+!

(4.4) Theorem. (J.H.C. Whitehead [SH]): Let X"*!, Y™*! be two finite (n+1) -
dimensional CW-complexes which have the same n-type. Then there exist a,b < oo
such that the one point unions

Xn+1 v v Sn+1 ~ Yn+1 . v Sn+1
a b

are homotopy equivalent.

The theorem shows that each n-type @ determines a connected tree HT(Q,n+1)
which we call the tree of homotopy types for (Q,n + 1). The vertices of this tree
are the homotopy types {X™*!} of finite (n + 1) -dimensional CW-complexes with
P, X"t ~ Q. The vertex {X"*'} is connected by an edge to the vertex {Y 1}
if Y"1 has the homotopy types of X™*+! v §»*1  The roots of this tree are the
homotopy types {Y**!} which do not admit a homotopy equivalence Y **! ~
Xn+ly §n+1 Theorem (4.4) shows that the tree HT(Q,n + 1) is connected. For
a proof of theorem (4.4) see I1.§6 in Baues [CH].

Remark. There are various results on the tree HT(Q,n + 1) in case @ = K (m, 1)
is an Eilenberg-Mac Lane space of degree 1. In this case the tree is determined by
the group m. Results of Metzler [HZ], Sieradski [SS] and Sieradski-Dyer [DA] show
that for n > 1 there exist trees HT(K(m,1),n + 1) with at least two roots.

As pointed out by Whitehead [CHI] one has to consider the hierarchy of cate-
gories and functors

(4.5) 1 — types +— 2 — types +— 3 — types <— ...

where the functor P is given by the Postnikov functor above. Since 1-types are
the same as Eilenberg-Mac Lane spaces K(w, 1) we can identify a 1-type with an
abstract group. In fact, the fundamental group m; gives us the equivalence of
categories

(4.6) 7 : 1 —types — Gr
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From this point of view n-types are natural objects of higher complexity extending
abstract groups. Following up on this idea Whitehead looked for a purely algebraic
equivalent of an n-type, n > 2. An important requirement for such an algebraic
system is “realizability”, in two senses. In the first sense this means that there is an
n-type which is in the appropriate relation to a given one of these algebraic systems,
just as there is a 1-type whose fundamental group is isomorphic to a given group.
The second sense is the ‘realizability’ of homomorphisms between such algebraic
systems by maps of the corresponding n-types.

Mac Lane-Whitehead [TC] showed that a ‘crossed module’ is a purely algebraic
equivalent of a 2-type:

(4.7) Definition. An N-group or an action of a group N on a group M is a
homomorphism f from N to the group of automorphisms of M. For z € M, a €
N we denote the action by z* = f(8)(z) where g is the inverse of a. Then a
pre-crossed module 0 : M — N is a group homomorphism together with an action

of N on M such that
A(z*) = a1 9(z)a
that is, 0 is equivariant with respect to the action of N on N by inner automor-
phisms. A Peiffer commutator in M is the element
(z,y) =z 'y 'z (y?") for =z,y€ M.

Now O is a crossed module if all Peiffer commutators are trivial. A morphism
between crossed modules (or pre crossed modules) is a commutative diagram in Gr.

M —2 5 M

T

N —L s N

where ¢ is f-equivariant, that is g(z®) = (gz)/®. This is a weak equivalence if
(f,g) induces isomorphisms m;(9) = m;(&) for i = 1,2 where m(9) = cokernel(0)
and m2(8) = kernel(d).

(4.8) Theorem. Let cross be the category of crossed modules and let Ho(cross)
be the localizations with respect to weak equivalences. Then there is an equivalence
of categories

2 — types — Ho(cross)

For a proof of this result compare (111.8.2) in Baues [CH]. Many further properties
of crossed modules are described in this book, in particular, crossed modules lead to
algebraic models which determine the homotopy types of connected 3-dimensional
polyhedra.

Using Kan’s result (3.13) also a simplicial group G with m;(G) = 0 for i > 2 is an
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algebaric model of a 2-type. The crossed module 3¢ associated to G is obtained by
the Moore chain complex N(G) in (3.8). We have

(4.9) G : N1(G)/dN2(G) = No(G)
-4

with No(G) = G{0]. Here G[0] acts on N1(G) by 2* = - s§(a) »z-» sj(a) so that d :
N1(G) = No(G) is a pre-crossed module. The normal subgroup dN:(G) of N1(G)
contains all Peiffer commutators so.that dg induced by d is a well defined crossed
module. Hence Jg reduces the complexity of the simplicial group G considerably,
so that a crossed module describes the algebra behind a 2-type more precisely and
simpler than a simplicial group.

After Step Two in the hierarchy of n-types was achieved by Mac Lane-Whitehead
in 1950 one had to consider Step Three. The solution for Step Three was obtained
recently in Baues [CH] where ‘quadratic modules’ are shown to be the appropriate
algebraic models of 3-types.

(4.10) Definition. A quadratic module ¢ = (w,4,3) is a diagram of N-groups
and N-equivariant homomorphisms

COC-LHL-M-LN
satisfying the equations
05=0
27y 2(y%) = sw({z} ® {y})
a*b7'ab = w({fa} ® {8b})
0% = a- w({da} ® {z} + {2} & {6a})

for a,b € L and z,y € M. Here C is the abelianization of the quotient group
M/ P,(0) where P3(0) is the subgroup of M generated by Peiffer commutators
(z,y) in the pre-crossed module 0. The element {z} € C is represented by = € M
and the action of & € N on the Z-tensor product C ® C is given by ({z} @ {y})* =
{z*} ® {y*}. A morphism '

0:0=(wd,9d) oo = (v, )

between quadratic modules with ¢ = (I,m,n) is given by a commutative diagram
in Gr

é a

CeC —— L y M >y N
ltp.@ﬁa. ll lm lﬂ
c'ecC — ! po M’ po N’

where {(m,n) is a map between pre-crossed modules which induces ¢, : C = C’
and where ! is n-equivariant. This is a weak equivalence if ¢ induces isomorphisms
w« : Wi(0) Z mi(o') for i = 1,2,3 where
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71 (o) = cokernel 0
n2(0) = kernel §/image ¢

w3(0) = kernel §

(4.11) Theorem. Let quad be the category of crossed modules and let Ho(quad)

be the localization with respect to weak equivalences. Then there is an equivalence
of categories

3 —types — Ho(quad)

Compare (IV.§10) in Baues [CH]. In this book many further properties and
examples of quadratic modules are described, in particular quadratic modules lead
to algebraic models which determine homotopy types of connected 4-dimensional
polyhedra. One can deduce from a simplicial group G with m;(G) = 0 for ¢ > 3
the associated quadratic module og as follows: We derive from the Moore chain
complex N(G) in (3.8) the quadratic module ¢ = (w, 4, d) with

(4.12) C®C - Ny(G)/U -5 N\(G)/P3(8) -2+ No(G)

Here the action of No(G) = G[0] is obtained by s§ and s}sg as in (4.9) and § and
0 are induced by the boundary maps in N(G). Moreover P3(3) is the subgroup of
N1(G) generated by triple Peiffer commutators (z, (y, z)) and {(z,y), 2) in the pre
crossed module 9 = d}, see (4.9). We define for z,y € N1(G) the formal Peiffer
bracket (z,y} € No(G) by

(z,y) = s1(z 7'y 2)(s52) 7 (s]y)(s5 ).

Then d2{z,y) = (z,y) holds. Now U is the subgroup of N2(G) generated by formal
triple brackets (z, (y, z)), {(z,¥), z)} and by elements d3(u) with uv € N3(G). Finally
the function w is defined by w({z} ® {y}) = {(z,y)} where (z,y) is the formal
Peiffer bracket. See also (IV. B. 11) in Baues [CH].

Again a quadratic module is a considerable simplification of a simplicial group G
representing a 3-type. In fact, we restrict G to degrees < 2 and'we are even allowed
to divide out triple Peiffer commutators and formal triple Peiffer commutators in
the Moore chain complex. We therefore say that a quadratic module has ‘nilpotency
degree two’, a crossed module has ‘nilpotency degree one’.

Remark. Theorem (4.8) goes back to the work of J.H.C. Whitehead [CHII| and
Mac Lane-Whitehead [TC] though they do not formulate the result as an equiv-
alence of categories. In the literature there are two ways to generalize crossed
modules in order to obtain models of n-types, n > 2. On the one hand Loday [SF]
defines algebraic systems called ‘cat™-groups’, (see also Porter [TS] and Bullejos-
Cegarra-Duskin [CG]) on the other hand Conduché [MC] considers ‘crossed mod-
ules of length 2’ representing 3-types which were generalized by Carrasco [CH} and
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Carrasco-Cegarra [GT] for n-types; this approach of Conduché and Carrasco de-
scribes additional structure for the Moore chain complex N(G) which is sufficient
to determine the simplicial group G. Moreover Brown-Gilbert [AM] and Joyal-
Tierney obtained further algebraic models of 3-types. But the quadratic modules
above are the only models of 3-types which have nilpotency degree 2.

A ‘nilpotent” algebraic model for 4-types is not known. For simply connected n-
types, however, we can use the work of Curtis [LC] for the construction of nilpotent
models. ‘

(4.13) Definition. For a group G let I';;1G be the subgroup of all iterated
commutators of length m + 1. Then G has nilpotency degree m or equivalently
is a nil{m)-group if I'n41G is trivial. Let pil(m) be the full subcategory in Gr.
consisting of nil(m) -groups. A free nil(m) -group, i.e. a free object in nil(m), is
the same as the quotient F/T 41 F where F is a free group. Let snil(m) be the
. category of simplicial nil(m) -groups with weak equivalences defined as in sGr. A
free simplicial nil(m) -group is defined in a similar way as a free simplicial group,
see §2.

Let {a} be the least integer > a.

(4.14) Theorem. For 2 <n <1+ {loga(m)} let T(n,m) be the full subcategory
of snil(m) consisting of objects G with n;G = 0 for i = 0 and i > n. Then there
exists an equivalence of categories

n — typess — HoT(n,m)

Here the left hand side denotes the full homotopy catgeory of simply connected
n-types.

For m = 2 and n = 3 the result is also a consequence of (4.11). This indicates
that there might be a suitable generalization of both, theorem (4.11) and (4.14),
available for n-types which are not simply connected.

Theorem (4.14), as it stands, is not contained in the work of Curtis. The equivalence
in the theorem carries the n-type X to a free simplicial nil(m) -group Gx with

;G = 0 for 1 > n and for which

Gy = (Gx/Tm41Gx)".

Here both sides denote the corresponding subobjects generated by basis elements
in degree < n. Hence G is the ‘n-type’ of Gx/T'm+1Gx in the category snil(m),
compare the construction of the Postnikov section in {4.4). The result of Curtis
[LC] implies that there is a natural isomorphism (¢ > 0)

mi(Gx) = mip1 (X)

for all simply connected n-types X. The inverse of the functor X — Gy carries
the simplicial group G in T(n,m) to the classifying space B(|G|).
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We have seen that the category 2-types has the algebraic model category cross
in (4.8). This generalizes as follows.

(4.15) Deflnition. A crossed complex p is a sequence

d d d
...—‘>p3—3—)p2—2>p1

of homomorphisms between p; -groups where d; is a crossed module and p,,, n > 3,
is abelian and a 7m; -module via the action of p; where m; = cokernel(d;). Moreover
dp—1d, = 0 for n > 3. A morphism f : p = p’ is a sequence of homomorphisms
fa ¢ pn — pl, which commute with d,, and are f; -equivariant. Let m,(p) =
kernel(d,; )/image(dn+1) be the homology of p. Then f is a weak equivalence if 7, ( f)
is an isomorphism for all n. Let cross ™ be the category of crossed chain complexes
p with p; = 0 for i > n and m;(p) =0 for 1 < i < n so that ¢cross > = cross.

The next result is a consequence of the work of Brown-Higgins [CS].

(4.16) Theorem. Let g’; C n — types be the full homotopy category of n-types
X with m;X =0 for 1 <i < n,n >2. Then there is an equivalence of categories

K7 — Ho(cross")

For n = 2 this is exactly the result in (4.8). The objects in cross™ which are
by (4.16) models of special n-types have only nilpotency degree 1. In particular
3-types X with 7, X have a model in cross® so that in this case a quadratic module
o as in (4.10) is not needed to determine the homotopy type. We can associate
with o the crossed chain complex p(o), '

(4.17) Ljw(C®C) = M/sw(CoC)-L N,

obtained by dividing out the ‘quadratic part’. If m2(¢) = 0 then p(o) determines
the homotopy type of 0. Therefore the quadratic structure w of ¢ is only relevant
if m3 # 0. In the next section we study the category K ;‘ from a different point of
view.
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§ 5 Cohomology of groups and cohomology of categories

We show that the classical cohomology of groups is related to special homotopy
types. We also introduce the cohomology of categories with coefficients in a natural
system, which generalizes the cohomology of groups and which turned out to have
deep impact on homotopy classification. We shall need the cohomology of categories

in particular for the comparison of Postnikov invariants and boundary invariants;
see (8.11) below.

Let m be a group. A (right) m-module M, also denoted by the pair (7, M), is
an abelian group M together with an action of # on M. As usual the homotopy
group m,(X), n > 2, are actually m;(X) -modules. Let Mod and mod be the
following categories. Objects in both are the modules (7w, M) as above. Morphisms
(m, M) = (7', M') are pairs

(a,f)=(a:m—=n', f: M- M)e Mod
(e,g)=(b:x" = m g: M- M') € mod

where a, b are maps between groups and f, g are maps between abelian groups such
that f(z%) = f(z)*® and g(z*®) = g(z)? for ¢ € M,a € 7, 3 € ='. Using
homotopy groups one has a functor (n > 2)

(5.1) (m1,mn) : Top™ = Mod

The cohomology of groups is a functor (see K.S. Brown [CG] and (5.12) below)

(5.2) H™ : mod — Ab

which carries (7, M) to H"(r, M). Let b*M be the 7' -module M given by z# =
%8, Then (b,1) : (m,M) — (n',b*M) is a morphism in mod which induces
b* = H™(b,1),

b* : H*(m, M) — H" (=", b" M).
On the other hand (1, f) : (x, M) = (7,a*M’) in mod induces f, = H"(1, f),

fo: Ho(n,M) = H™(r,a* M").
We use the cohomology of groups for the definition of the following category, which
is the ‘Grothendieck construction’ of the functor H™ in (5.2).
(5.3) Deflnition. The objects in the category Gro(H™) are triple (m, M, k) where
(r,M) is a m -module and k € H"(r, M). Morphisms (r,M k) = (x', M’ k") are
maps (a, f) : (7, M) = (7', M") in Mod which satisfy the equation

a* (k') = fu(k) € H"(r,a*M')
Composition is defined as in Mod; the forgetful functor Gro(H™) — Mod is faithful.

The objects in Gro( H™*!) are in fact algebraic models of special n-types.
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(5.4) Theorem. For the full homotopy category LT Cn - types of n-types X
with m;X = 0 for 1 < 1 < n there is a functor

n . n n+1
T : K’ — Gro(H"™")

with the following properties: The functor T" is full and reflects isomorphisms
and for each object (m,M,k) in Gro(H"*') there is X in K7 and an isomor-
phism (7, M, k) = T™(X) in Gro(H"*'). The functor T™ is defined by T™(X) =
(m1(X), mn(X), k(X)) where k(X) is the k-invariant.

In consequence of these properties of the functor T an object in Gro(H ntly
may be described as an algebraic equivalent of a n-type in i ;‘; that is, T" induces
a 1-1 correspondence between homotopy types in I ;‘ and isomorphism types in
Gro(H™*!). Theorem (5.4) is due to Mac Lane-Whitehead [TC] for n = 2 and
Eilenberg-Mac Lane {CW] for n > 3. It is also a consequence of the ‘Postnikov

tower’ of a space, see for example Baues [OT)]. The theorem yields a special solution
of Whitehead’s realization problem (3.7):

(5.5) Corollary. Let X,Y be objects in K7, then ¢, : m.X — m.Y has a geo-
metrical realization X — Y if and only if (¢1,¢») is a morphism in Mod and the
equation '

| (91)"K(Y) = (¢n)uk(X)
holds where k(X), k(Y') are the k-invariants.

In view of theorem (5.4) elements in the cohomology of groups can be considered
as representatives of special n-types. We now recall the following notation which
partially already was used in the theorem above.

(5.8) Notation. Let F': C — K be a functor. We say that F' is full, resp. faithful
if the induced map on morphism sets F' : C(X,Y) — L(FX, FY) is surjective,
resp. injective for all objects X,Y in C. Moreover F reflects isomorphisms if f
in C is an isomorphism if and only if F(f) in K is an isomorphism. The functor
F is representative if for each object ¥ in g_tTlere is an object .X in C and an
isomorphism F(X) = Y. We call X a ‘realization’ of Y. We say that F is a
detecting functor if F reflects isomorphisms, is full and representative. A detecting
functor which is faithful is the same as an equivalence of categories.

The properties of the functor T™ in (5.4) just say that T" is a detecting functor.
One readily checks that every detecting functor F' : C — K induces a 1-1 corre-
spondence between isomorphism types of objects in C and isomorphism types of
objects in K. The functor T™ has actually a further nice property which is less well
known, namely T™ is a ‘linear extension’ of categories. To this end we recall from
Baues [AH] the following concept of a linear extension which plays a crucial role in
topology and algebra.
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(5.7) Notation. Let C be a category. The category of factorizations in C, denoted
by F(C, is given as follows: Objects are the morphisms f, g, ... in C and morphisms
f — g are pairs (a, 3) for which

A —T 4

L

B« p

commutes in C. Hence af8 = g is a factorization of g. Composition is defined by

(o', 8)(e, B) = (a'a, BB'). We clearly have (a,8) = (e, 1)(1,8) = (1,8)(a, 1). A
natural system (of abelian groups) on (' is a functor

D:F_Q_‘__—)_/}TI.J_

from the category of factorizations to the category of abelian groups. The functor
D carries the object f to Dy = D(f) and carries the morphism (a,3) : f = g to
the induced homomorphism -

D(a,ﬁ) = C!.‘,ﬁ"l : Df - Dafﬂ = Dg
where D(a, 1) = a,, D(1,0) = 3*. We say that

pLELC

is a linear extension of ' by the natural system D if the following properties hold.
The categories £ and C have the same objects and p is a full functor which is
the identity on objects. For each morphism f : B — A in C the abelian group
Dy acts transitively and effectively on the subset p~!(f) of morphlsms in E with

p~Y(f) C E(B,A). We write fo + o for the action of @ € Dy on fo € p~1(f).
Moreover, the action satisfies the linear distributivity law:

(fo +a)(go +8) = fogo + f.B + g7

Two linear extensions E, E' are equivalent if there is an isomorphism e : E = E' of

categories with p'e = p and &(fo + @) = e(fo) + . The extension E is split if there
is a functor s : ' = E with ps = 1.

As an example we obtain the natural system

(5.8) H™: Mod — Ab

which carries the object (a, f) : (7, M) — (7', M') to the abelian group

H{, sy =H"(m,a"M')

which is the cohomology of m with coefficients in a*M’. Hence H(, ;) depends on a
and not on f. Induced maps are given by (a’, f')u(z) = (f')«(z) and (a”, f"')*(z) =
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(a")*(z) for z € H{, ;- The natural system H™ on Mod yields also a natural
system H™ on Gro(H™*!) via the forgetful functor in (5.3). Using the functor T
in (5.4) we identify isomorphism types in K7 and in Gro(H"*') so that this way
T"™ is the identity on objects. The next result is a consequence of (VIIL.2.5) in
Baues [AH].

(5.9) Theorem. The category K is part of a linear extension of categories

H"® ___‘_*'_)‘ é‘; __T:> @(Hn-i-l)

which is not split.

The result classifies maps in K ;' completely in terms of the cohomology of groups.
Since the functor T™ is not split the extension, however, is non-trivial. We now
introduce the cohomology of categories which classifies linear extensions. In analogy
to the category mod in (5.2) we obtain the category nat of natural systems: Objects
are pairs (C, D) where D is a natural system of the small category C. Morphisms
are pairs -

(5.10) (¢°P,7): (C, D) = (L', D)

where ¢ : g’ — C is a functor and where 7 : ¢*D — D' is a natural transformation.
Here ¢*D : Fg’ — Ab is given by (¢*D)s = Dys and a. = ¢(a)., §* = #(F)".
A natural transforma.tion T:D—=D yields as well the natural transformation
¢*t: ¢*D — ¢*D. Now morphisms in nat are composed by the formula

(WP, 0) (¢, 1) = (¢9)°?, 0 0 b7 7)

The cohomology of categories (introduced in Baues-Wirsching [CS] and Baues {AHJ)
1s the functor

at —

P

(5.11) H":

[=

defined in (5.13) below. One has the full inclusion of categories

mod C nat
which carries (7, M) to (C, D) where C = = is the category given by the group =
and where D is the natural system on C with Dy = M for f € 7 and a* = identity

and B.(z) = z? for x € M, B € . Then the composition of functors

ati) b

(5.12) od C Ab

3
3

coincides with the cohomology of groups in (5.2). In fact, we may consider the
cohomology of categories as a canonical generalization of the cohomology of groups.
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(5.13)Definition. Let X be a small category and let D be a natural system on
X. The n-th cochain group F”™ is the abelian group of all functions

f : Nerve(X)[n] — U D,
gEMor(é_‘{_)

with f(A1,...,An) € Dxjo..on, and f(A) € Dy, for n = 0. The right hand
side denotes the disjoint union of all abelian groups D, with g a morphism in
X. Additions in F™ is given by adding pointwise in the abelian goups D,. The
coboundary § = §*~1 : F*~1 5 F" is defined by the formula

(GHAN) =ANf(A) =N f(B) for A:A—= B,n=1,
(5f)()\19 a/\n) = (Al)*f(’\Q"'- s’\n)

n—1
+ Z(_l)'f(/\ly e )/\i/\i-l-ly' .. 1/\11)

=1

+ (=1)"(Aa)* f(A1,-00 y An-1)
One can check that éé = 0 so that the cohomology

H"™(X, D) = kernel 6™ /image §"~
is defined. Induced maps (¢°?, 7). = ¢*7. for the functor H, in (5.11) are given by

(" )ALy AR) = Tro f(PAL,. . dAL)
This completes the definition of the functor H" in (5.11).

It is proved in Baues-Wirsching [CS] that an equivalence of categories ¢ induces
an isomorphism ¢* for cohomology groups as above. Moreover a crucial property
of this cohomology is the next result:

(5.14) Theorem. Let M(X, D) be the set of equivalence classes of linear exten-
sions D — E — X where X is a small category. Then there is a natural bijection

¢: M(X,D) = H*(X, D)

which carries the split extension to the trivial element.

If X = G is a group this is the classical result on the classification of extensions of G.
We define the bijection ¢ as follows. Let s : Mor(X) — Mor(E) be a function with

ps(f) = f. For (A1, Az) € Nerve(X)[2] there is a unique element c(A1,Az) € Di;a,
satisfying

S(/\l /\2) = 3(/\1)3(/\2) <4 C(/\l,/\2)
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This defines a cocycle ¢ € F? which represents the cohomology class ¢{E} = {c}.
By ‘change of universe’ we can define the cohomology above also in case X is not
small so that (5.14) remains true. -

As an example we now consider the linear extension (5.9) which represents a non-
trivial cohomology class ¢{K}; in fact, the functors A", H"*! and this cohomol-
ogy class determine the category K" up to equivalence. Pirashvili [CE] computed
the following, restrictions of the class ¢{K]}.

(3.15) Theorem. Let 7 be a finite group and let Gro(H™*'), be the subcategory
of Gro( H™*!) consisting of objects (r, M, k) and morphisms (1, f). Moreover let
K : be the corresponding subcategory of KT'. Then one has the linear extension

H" i> En 4@(Hn+l )ﬂ
= ]

which is a restriction of the linear extension (5.9). This extension represents the
generator

K"} € H(Gro(H" ), H™) = Z/|7]|

where the right hand side is a cyclic group of order |w| = number of elements of =.
Moreover the cohomology groups

0= H(Gro(H™*" ), H™), 1 # 2
are trivial otherwise.

These examples may suffice to show that cohomology of groups and cohomology
of categories are both important ingredients of the homotopy classification prob-
lem. Further applications of the cohomolohy of categories above can for example
be found in Jibladze-Pirashvili [CA], Dwyer-Kan [HM], Moerdijk-Svensson [SL],
Pavesic [DC]. Basic properties are described in Baues-Wirsching {CS], Baues [AH],
Baues [CH] and Baues-Dreckmann [CH].
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§6 Simply connected homotopy types and Hr-duality

Any group can be obtained as the fundamental group of a polyhedron. This
yields a multifacted relationship between homotopy theory and group theory. There
are natural restrictions to avoid the full complexity of homotopy theory. For exam-
ple one cam restrict to homotopy types which are determined by the fundamental
group; such homotopy types are the acyclic spaces for which the universal covering
space is contractible. Many basic examples in geometry deal with acyclic spaces in
which the complexities of higher homotopy theory do not arise. From the point of
view of homotopy theory acyclic spaces are extremely special since they are just
1-types or Eilenberg-Mac Lane spaces K(G,1), G € Gr.

In contrast to acyclic spaces it is natural to consider simply connected spaces
which avoid the complexities of group theory arising from the fundamental group.
Indeed, for spaces with fundamental group 7 one has to use the theory of group
rings Z[r] and Z[r|-modules which are highly intricate algebraic objects. For simply
connected spaces only the ring Z and abelian groups are needed. From now on we
deal with simply connected homotopy types.

~ An important feature of the theory of simply connected homotopy types is an
Hm-duality between homology groups and homotopy groups. Though the defini-
tions of these groups are completely different in nature it turned out that they have
many properties which are “dual” to each other. This kind of duality is different
from Eckmann-Hilton duality discussed in Hilton [DH]. We shall describe various
examples of Hn-dual properties though a complete axiomatic characterization is
not known. The starting point is again the theorem of Whitehead which yields
Hr-dual properties as follows: A simply connected CW-space X is contractible if
and only if homology groups, or equivalently homotopy groups vanish so that

(6.1) H,(X) =0 m(X)=0.

Here H, denotes the reduced homology. A map f : X — Y between simply
connected CW-spaces is a homotopy equivalence if and only if f induces an isomor-
phism for homology groups, or equivalently homotopy groups, hence

(6.2) H,(f) 1siso < m.(f) isiso.

Moreover for any abelian group 4 and n > 2 there are simply connected CW-spaces
X,Y with

Hy(X)=2A and H;X=0 for 1#n
(6.3)

(YY) A and mX =0 for 1#n

The homotopy types of X,Y are well defined by (4,n) and X = M(4,n) is called
a Moore space and Y = K(A4,n) is called an Eilenberg-Mac Lane space. The next
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result shows that these spaces are the important building blocks for simply con-
nected homotopy types. First we observe by (6.3) the following realizability result.
Let A; be a sequence of abelian groups, ¢ € Z, with A; = 0 for ¢ < 1. Then there
exist simply connected CW-spaces X,Y with

(6.4) -

Hi(X)=A; for 120
m(Y)=A; for i>0

For this we take

X =\/ M(4n,n)

n>2

to be the one point union of Moore spaces and we take

Y = x K(An,n)
n>2

~ to be the product of Eilenberg-Mac Lane space (with the CW-topology). All simply
connected homotopy types can be obtained by ‘twisting’ these constructions, see
(6.7) below.

In the category T E‘ of pointed spaces one has the notions of fibration and cofibration

which are Eckmann-Hilton dual to each other. Compare for example Ba.ues [AH].
We consider pull backs and push outs in Top respectively,

X — X

l putl l

Y’T)Y

X — X"

=

Y — Y”
g
where a is a fibration and b is a cofibration. If X is contractible we call X' —
Y’ —» Y a fiber sequence and Y —+ Y” — X" a cofiber sequence. If also Y, Y are '
contractible we write

= Q(Y) = loop space of Y,
= ¥(Y) = suspension of Y.

We have the Hw-dual properties
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(6:5) , {ZJM(A,n)=M(A,n+1),

QK(A,n) = K(A,n 1)

of Moore spaces and Eilenberg-Mac Lane spaces respectively. Moreover if f and g
are null-homotopic we get

X' ~Y" x Q)
X" =YV E(Y)

where the right hand side is a product and a one point union respectively. If f and
g are not null homotopic we consider X' and X" as ‘twisted’ via f and ¢g. Then f
is called a classifying map for X’ and g is called a coclassifying map for X”.

(6.6) Definition. Let A, = (A, n 2> 2) be a sequence of abelian groups. A
homotopy decomposition associated to A. is a system of fiber sequences (n > 3)

Yo = Yooy =2 K(An,n+1)

with Y5 = K(A,,2). This implies that Y, is an n-type and therefore &, induces the
trivial homomorphism on homotopy groups. A homology decomposition associated
to A, is a system of cofiber sequences (n > 3)

X e Xnoy €2 M(An,n—1)

with X, = M(A,2) where k], is required to induce the trivial homomorphism on
homology groups.

Homology and homotopy decompositions are Hr-dual constructions for which the
following classical result holds (due to Postnikov [HT] and Eckmann-Hilton [HH],
Brown-Copeland [HA]). Let h_l}n and I(EJ be the direct and inverse limits in Top.

(6.7) Theorem. Let X be a simply connected CW-space. Then there exists a
homology decomposition associated to H.X and a map

lim X, — X
—_—

which induces an isomorphism of homology groups. Moreover there exist a homo-
topy decomposition associated to v, X and a map

..X _> ]im Yn
—

which induces isomorphisms of homotopy groups.

Hence each simply connected homotopy type X can be constructed in two ways,
either by a homology decomposition or by a homotopy decomposition. The space
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Y, ~ P, X may also be obtained by the Postnikov functor in (4.3). Using the
Postnikov decomposition Schon [EC) showed that an ‘effective’ classification of ho-
motopy types of simply connected compact polyhedra is possible. The Whitehead
theorem (6.2) and theorem (6.7) somehow show that a simply connected homotopy
type is ‘generated’ by homology groups and in a dual way also by homotopy groups.
For this compare also the minimal models in (12.9), (12.11) below. Theorem (6.7),
however, does not tell us how to compare two homology decompositions or two ho-
motopy decompositions respectively, that is, we do not know under which condition
two such decompositions represent the same homotopy type. For this one has to
solve Whitehead’s realization problem.

(6.8) Remark. Dwyer-Kan-Smith [TF) construct for a graded abelian group A.
(with A; = 0 for 1 < 1) a space B(A,) which parameterizes all homotopy decom-
positions associated to A.. More precisely the set of path components, 7o B(AS.),
coincides with the set of all homotopy types X for which there exists an isomor-
phism A, = 7,(X). The fundamental group of the path component Bx C B(A.),
corresponding to X, is the same as the group of homotopy equivalences my E(X) of
X. In fact, the path component By has the homotopy type of the classifying space
B(E(X)) where E(X) is the topological monoid of homotopy equivalences of X,
i.e. Bx ~ B(E(X)).

We now consider the functorial properties of Moore spaces and Eilenberg-Mac
Lane spaces respectively. Let 4b be the category of abelian groups and for n > 2
let '

(6.9)

[

n M’nc

~

op/ =~

be the full homotopy categories consisting of spaces K (4,n) and M{(A,n) respec-
tively with A € Ab.

(6.10) Lemma. The n — th homotopy group functor

~

7r,,:£“-—+Ab

is an equivalence of categories. The n — th homology group functor

is not an equivalence but a detecting functor, see (5.6).

(6.11) Remark. In fact there is a functor Ab — Top which carries an abelian group

A to a space K(A4,n). For this we observe that the classifying space B(H) of an
abelian topological monoid H is again an abelian topological monoid in a canonical
way. Hence we can iterate the classifying space construction and obtain the n-fold
classifying space

K(A,n) = B...B(A)
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Compare Segal [CC]. On the other hand there is no functor 4b — Top/ =~ which

carries A to M(A,n) and which is compatible with the homology Han. For thlS we
observe that there is actually a linear extension of categories -

E“—>M_="-—>A=b

which represents a non trivial class in H?(Ab, E™), see Baues [AH]. The bifunctor
E™ on Abis given by

E™(A,B) = Ezt(A,T"B)

where [''B = B@® Z/2 for n > 2 and T'?(B) = I'(B) is the quadratic construction
of J.H.C. Whitehead [CE].

The lemma and the remark describe a lack of H7 -duality. We shall describe many
further examples of Hr -dual properties; yet this duality does not cover all impor-
tant features of homotopy groups and homology groups respectively. In particular
homology is often computable while there is still no simply connected (non con-
tractible) finite polyhedron known for which all homotopy groups are computed.
The homotopy groups 7, M(A,n) of a Moore space are Hm -dual to the homology
groups H.K(A,n). If A is finitely generated it is a fundamental unsolved problem
to compute m,M(A,n). The computation of H,K(A,n), however, was achieved in
the work of Eilenberg-Mac Lane [CW] and Cartan [HC]. For example we have

(6.12) Hus2 K (A1) = may1 M(A,n) = DF(4)

where we use I'T in (6.11). Recall that [X,Y] denotes the set of homotopy classes
of pointed maps X — Y. The homology H.K(A,n) is used for the computation of
the groups

[K(A,n), K(B,m)]

whose elements are also called cohomology operations. In particular the first non
trivial classifying map in a homotopy decomposition is such an operation. Applica-
tions of cohomology operations are discussed by Steenrod [CO]. On the other hand
the groups

[M(A,n), M(B,m)]

are not at all understood; for A = B = Z these are the homotopy groups of spheres.

A further lack of Hr -duality is the following result on decompositions in (6.7).

(6.13) Proposition. The homotopy decomposition of X can be chosen in Top

to be functorial in X. The homology decomposition of X cannot be chosen to be
functorial, neither in Top nor in the homotopy category Top/ ~.

Using Eilenberg-Mac Lane spaces and Moore spaces we obtain the groups (n > 2)
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H'(X,A) = [X, K(A,n)],
(6.14) | (4, X) = [M(A,n), X]

which are called the cohomology of X, resp. the homotopy group of X with coefficients
in the abelian group A. Hence the decompositions of X in (6.7) vield elements

| knX =ky € H"Y(Pa_y X, 1 X)
(6.15) KX =k € ey (HoX, Xn-1)

Here k, X is actually an invariant of the homotopy type of X in the sense that a
map f: X — Y satisfies

(6.16) (Pact1f)knY = (maf)eknX

in H*+*1(P,_, X, 7,Y). Here we use the Postnikov functor P,_; and the naturality
of the Postnikov decomposition in (6.13). The element £,X in (6.15) is called
the n — th k-invariant or Postnikov invariant of X. The element &, X given by a
homology decomposition of X is not an invariant of X since the homotopy type
of X, is not well defined by the homotopy type of X. We shall describe below
new invariants of X which are Hn -dual to Postnikov invariants and which we call
boundary invariants of X. They are given by the ‘invariant portion’ of the elements
k. X; see (8.10) below.

The groups in (6.14) are part of natural short exact sequences which are Hr
-dual to each other:

Ext(Hno1 X, A) > H™ (X, A) 5 Hom(H, X, A)
(6.17) Ext(A, mny1 X) = (A, X) 2 Hom(A, 7 X)
Here the surjection u carries p : X — K(A,n), resp. ¢ : M(4,n) — X, to the

induced map

Hpp: H, XC - H,K(A,n) = A, resp.
Y A=m,M(A,n) = m,X.
The exact sequence for H™(X, A) is always split (unnaturally) while the exact

sequence for m,(4, X) needs not to be split. We point out that the cohomology
H™(X, A) may also be defined by

(6.18) H™X,A) = [C.X,C.M(A,n)]
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Here C, is the singular chain complex and the right hand side denotes the set of
homotopy classes of chain maps. Dually we define the pseudo-homology

(619) . HH(AWX) = [C*M(Aan):ct*}(]
which yields a well defined bifunctor Ab°? x Top ~» Ab. This is the analogue of

mn(A, X) in the category of chain complexes. As in (6.17) one has the natural short
exact sequence

(6.20) Ezt(A, Hop1X) = Ha(A, X) 5 Hom(A, H, X)

which is always split (unnaturally).
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§7 The Hurewicz homomorphism

Homology groups and homotopy groups are connected by the Hurewicz homo-
morphism

(7.1) h=h,X :mnX = Ho X
This is the special case A = Z of the homomorphism

Rt = ha(A4,X) : ma(A, X) = Ha(4,X)

which carries ¥ : M{A,n) = X to the induced chain map C,. These homomor-
phisms are compatible with the short exact A — p -sequences in (6.17) and (6.7),
and they are natural in X and hence invariants of the homotopy type of X. In
fact, the next result shows that the Hurewicz homomorphism has a strong impact
on homotopy types.

(7.1) Proposition. Let X be a simply connected CW-space. Then (A) and (B)
hold.

(A) The Hurewicz homomorphism h,X is split injective for all n if and only if
X has the homotopy type of a product of Eilenberg-Mac Lane spaces.

(B) Moreover h, X is split surjective for all n if and only if X has the homotopy
type of a one point union of Moore spaces.

Properties (A) and (B) form a further nice example of Hr -duality.

Proof. (A) Let r, be a retraction of h, X and let f, € H*(X, r,.X') be a map with
t(fn) = rn, see (6.17). Then the collection {f,} defines a map

f: X — x K(mp, X, n)
n>2

which i1s a homotopy equivalence by the Whitehead theorem.
(B) Let s, be a splitting of h, X and let g, € 7, (H, X, X) be a map with u(gn) =
Sn. Then the collection {g,} defines a map

g: \| M(H,X,n) — X
n>2
which is a homotopy equivalence by the Whitehead theorem. q.e.d.

We now discuss topological analogues of the Hurewicz homomorphism. We

consider for a simply connected CW-complex X the infinite symmetric product
SPy = lim SP, X where

(7.3) SP.X = X"/S,

is the space of orbits of the action of the symmetric group S, on the n-fold product
X™ = X x...x X obtained by permuting coordinates. The map SP,.,X = SP, X
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is induced by the inclusion X"~! = X™~! x x C X" where * is the base point of
X. The inclusion
X =5PAX - SP X

induces the Hurewicz homomorphism

haX i mpX = 1, SPoX. = Ho X

where the right hand side is the Dold-Thom isomorphism {QU]. Let T'X be the
homotopy fiber of X C SP,X so that

(7.4) F'X - X = SP X

18 a fiber sequence. Using the simplicial group GX there is an alternative way to
obtain this fiber sequence by the short exact sequence

(7.4) ToX — GX — AX

where AX is the abelianization and where I'; X is the commutator subgroup of GX.
Then I'X =~ B|T';X| is the classifying space of the realization of T'2.X and the functor
B| | applied to (7.4’) yields (7.4) up to homotopy equivalence. For this compare
Kan [HC] who as well proved that GX — AX induces the Hurewicz homomorphism.
Using the skeleta X™ of a CW-complex J.H.C. Whitehead introduced the I" -groups
of X given by

(7.5) I'.X =image(m, X*™! = m, X™)

where the homomorphism is induced by the inclusion X™®~! ¢ X". Moreover we
introduce in Baues [HT) the T' -groups with coefficients T',,(A4, X) by the following
push-pull diagram derived from the A — p -sequence (6.7)

Ezt(A,Thi1 X) «=— Ezt(A, mpp X)

N Y

Ta(4,X) —— P — Tl (A X)

/u\“ l pull L

Hom(A,T,X) —— Hom(4, 7, X")

le

,Here 1 : T, X C 7, X™ is the inclusion and ¢ : 7p41 X" - [, X is the projection
defined by (7.5).
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(7.6) Proposition. let X be a sxmpIy connected CW-complex. Then there are
natural isomorphisms

(a) ThX =m X

(b) Th(4,X) =m,(A,TX)

(¢) HoX = mpSPooX

(d) Hp(A, X) =m,(A4,SPuX)

The isomorphisms which we shall use as identifications are compati bIe with A—p
exact sequences above.

" Here (a) and (c) are due to Kan [HC] and Dold-Thom [QU] respectively. Hence
the long exact sequence of homotopy groups for the fiber sequence (7.4) yields by
identification, as in (7.6), the exact sequences

cee Hn+1X _b> L X —‘) TaX —h) H, X —b)

(7.7)
pA- ;A A B
o Ho1 (A, X) 25 Th(A, X) 2 (4, X) = H,(4,X) 25

in which all operators are compatible with the A — u exact sequences. We call
these the [-sequence and the [-sequence with coefficients in .4 respectively. Hence
kernel and cokernel of the Hurewicz homomorphisms can be determined by the
operators 7,b in these sequences. Here ¢ and 4 are induced by X® C X and b is
the secondary boundary operator of J.H.C. Whitehead. In Baues [HT]| (I1.3.5) we
give also an explicit description of the operator b*. The I -sequence coincides with
the classical certain exact sequence of J.H.C. Whitehead which is the special case,
A = Z, of the second exact sequence. Clearly both exact sequences are invariants
of the homotopy type of X. In fact, J.H.C. Whitehead [CE] used part of the T
-sequence as a classifying invariant of a simply connected 4-dimensional homotopy
type.

The definition of ', X in (7.5) shows that this group depends only on the (n —1)
-type of X, in fact we have the natural isomorphism

(7.8) De(X) =T(Paa1X), k <n,
induced by a map pp—; : X = P,_1X which extends the inclusion X" C P, X,

see (4.3). Moreover the map p,—; applied to the I' -sequence of X yields natural
isomorphisms

H,Po1 X =T _Pa1 X =T0_(X)
(7.9) Hy Py X =T,Po1 X =Th(X) -
where I'!_, X = kernel(I',-1 X — ma—1X). These groups are used in the following
result on the ‘realizabilitv of Hurewicz homomorphisms’, proved in II1.4.7 of Baues
[HT].
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(7.10) Theorem. Let Y be a simply connected (n — 1) -type and let

(*) "Hy — WY —r— H— I _|Y —0

be an exact sequence of abelian groups where H, is free abelian. Then there exists
an (n + 1) -dimensional complex X and a map p: X — Y inducing isomorphisms
meX Z mY for k <n —1 together with a commutative diagram

Hop1X —— X — X —— H, X —— I X — 0

n—1<
T B
H —TI)Y —9 # —— Hy —— II_JY — 0

in which all vertical arrows are isomorphisms. The top row is part of the I" -sequence
of X. The space Y together with the sequence (*) in general does not determine
the homotopy type of X.

The result shows exactly what kind of abstract homomorphisms = = Hy between
abelian groups can be realized as a Hurewicz homomorphism 7, — H, of a space
with a given (n—1) -type. This also demonstrates to what extend homotopy groups
and homology groups depend on each other.

(7.11) Ezample. We may choose for ¥ in (7.10) an Eilenberg-Mac Lane space

Y=K(A,k) with 2<k<n-1
Then the groups, see (7.9),

T,Y = Hupy K(A4,k)
TV = H, K(A k)

are known by the work of Eilenberg-Mac Lane and Cartan. Hence any exact se-
quence

H — H,1 K(A)k) — 7 — Hy — H, K(A k) — 0

with H; free abelian can be realized as a I -sequence of an (n + 1) -dimensional
CW-complex X with P,_1 X = K(A4,k). For example for £ =5, n =9 we have

Hig K(A,5) = A*(A) 9 A+Z/6
HyK(A,5)=AR®Z/6

where A? is the exterior square and Z/6 is the cyclic group of order 6. Hence for
any exact sequence

H10—>A2(A)@A*Z/6—>TF9——)H9—-}.‘-1®Z/6—}0

of abelian groups with Hp free abelian there exists a 10-dimensional CW-complex
X with msX = A, m; = 0for < 5 and 5 < ¢ < 9, such that this sequence 1s part
of the I" -sequence of X.
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§ 8 Postnikov invariants and boundary invariants

Recall that the n — th Postnikov invariant of a simply connected space X is an
element

(8.1) knX € H" Py X, 1 X)

This element is highly related to the I' -sequence of X. For this we observe that by
(6.17) and (7.9) we obtain the natural short exact sequence

(8.2) Ezt(T_ X, A) 2 ™ (Po_1 X, A) 2 Hom(T, X, A)

Each element k € H**}(P,_1 X, A) yields elements

ke = p(k) € Hom(I X, A)
ky = A‘lq.(k) € Ext(T_, X, cok k,)

n—1-

where q : A —» cok(k.) is the projection of the cokernel of k,. We have by (X, A) —
H"+1(P,_, X, A) a bifunctor in X and A.

(8.3) Theorem on Postnikov invariants. To each I-connected CW-space X
there is canonically associated a sequence of elements (k3 ky,...) with

ko, = kn.X c Hn+1(Pn_1.Y; Tl'n.X)

such that the following properties are satisfied:
(a) Naturality: For a map F: X - Y we have

(MnF)u(knX) = F*(kY) € H™Y(Py_ X, 7,Y)

(b) Compatibility with i, X in the I' -sequence:

(knX)s = inX € Hom(Dp X, 7uX)

(¢) Compatibility with the extension H, X in the I' -sequence:

(knX)t = {HaX} € Ezt(T_, X, cok i, X)
Here the extension element {H, X} is given by the exact I' -sequence of X,

in X "

r. X 3 X—-H,X->T Y =90

n—1-

(d) Vanishing condition: All Postnikov invariants are trivial if and only if X
has the homotopy type of a product of Eilenberg-Mac Lane spaces.
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This result which partially seems to be unknown is proved in (I1.5.10) of Baues
[HT]. We now introduce new invariants which are Hn -dual to the Postnikov in- .
variants above. For this we first define the subgroup

(84) j;:---1(1‘11 X) C I‘n-l(Av -X)

obtained by all elements o € I';_;(A4, X) for which u(a)(4) C T
has the short exact sequence

1-V. Hence one

A
(8.5) Ezt(A,T.X) - T _(AX) 5 Hom(A, T | X)
Here '}, _; is actually a bifunctor in A € 4b and X' € Top"/ ~. To see this we
observe that the map p,.; : X = P,-1X induces a binatural isomorphism

(8.6) T”_ (4, X) = Ha(A, Py_1 X)

Here the right hand side is the pseudo homology and we use the I' -sequence
with coefficients in A and (7.9). Since b, X : H, X — '\ yields a surjection
b.X : H,X — T”_, X we see that the boundary operator b in the I' -sequence
with coefficients maps to I, _; (A, X'). Hence we obtain the following commutative
diagram which is natural in 4 € Ab and simply connected spaces ..

Ezt(A Hpp X) —2— Hn(A4,X) —2— Hom(A H,X)

J—(bn.+l-\’)- h lb“ l{bn-\’)-

Ezt(A,TnX) —2 TV_(4,X) —— Hom(A,T!_,X)

n—1-

(8.7) Definition. Consider this diagram for 4 = H,X and let 1 € Hno(Ha X, X)
be an element with u(I) = identity of H,X. Then the coset of 5#*(1) modulo the
image of A(bp+1X)s is the boundary invariant 5,.X of X, that is

-1 (Hn X, X)

s v o frA(T
B X = {b (1)} € im (A(bp+1X))

We have the short exact sequence

’ " A,X
(8.8) Ezt(A, cok bps X) = - no1( A X)

H, t
= Hom(4,I,_| X
im (A(bap1 X)) (AT X

which is natural in A € Ab and simply connected spaces .X. This sequence is the
Hr -dual of the sequence in (8.2) above. Each element

::—1 (Aa X)
m (A(bn+lX)* )

B e
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yields elements

B. = u(B) € Hom(A, T, X) .
Bt = A™'5*(B) € Ext(ker 8., cok bu+1.X)

where j : ker 3, C A is the inclusion of the kerrnel of §.. The next result is the Hnx
-dual of the ‘theorem on Postnikov invariants’ in (8.3).

(8.9) Theorem on boundary invariants. To each I-connected CW-space X
there is canonically associated a sequence of elements (83, Bs,...) with

Lh_ 1 (Ha X, X)
m A(bn+]X)*

,Bn =ﬁnx €

such that the following properties are satisfied:
(a) Naturality: For a map F': X — Y we have

I _ (HaX,Y)
im A(bntr X )

(b) Compatibility with b, X in the I' -sequence:

(HnF)‘(:BnY) = F*(ﬁnX) €

(c) Compatibility with the extension 7, X in the I' -sequence:

(BaX)e = bp X € Hom(H, X,T"_, X)

(BnX)t = {mn X} € Ext(ker b, X, cok by X)

Here the extension element {n, X} is determined by the exact I' -sequence

of X,

bny1 X bn X r
Hop1 “H DX =»mpX - H, X 2570 X

(d) Vanishing condition: All boundary invariants are trivial if and only if X
has the homotopy type of a one point union of Moore spaces.

This result is proved in I1.6.9 of Baues [HT].

(8.10) Remark. The boundary invariants have the following connection with the
coclassifying maps k!, in a homology decomposition of X. For this let X =lm X,
be given by a homology decomposition. Then X is a CW-complex with skeleta X™
and there are inclusions

X leX,cXxn

Moreover the classifying map k| can be chosen such that the following diagram
commutes, H, = H, X.
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M(Han—-1) —2 4 xn-

T T

M(Hp,n—1)""2 — 4 Xn-?

Hence 3 represents an element in ', 1 (Hy, X) by using the definition in (7.5) and
this element represents the boundary invariant 5,X. Therefore (8.9) (c) yields an
explicit formula how to derive 7, X from k/,.

(8.11) Remark. Let C be a homotopy category of simply connected spaces. Then
we have the functors

Ln,Th_y:C— Ab (1)

which both appear in a dual fashion in the natural exact sequences (8.2) and (8.5).
There 1s an obstruction O for the existence of a splitting of (8.2) which is natural
in X € C and A € Ab. This obstruction is an element in the cohomology of C,

O € H(C, Ext(T!_,,T'). (2)

Here Ezt(I'},_,,I's) is the natural system which carries f : X — Y in C to the
abelian group Ezt(T7_, X,T,Y). The element O determines the extension (8.2) as

a bifunctor in X € C, A € Ab up to equivalence. On the other hand there is an
obstruction @' for the existence of a splitting of (8.5) which is natural in X € C
and A € Ab. This obstruction turns out to be as well an element in the cohomology

(2),
O € HYC, Ext(T)_,,Tv)) (3)

Again O’ determines the extension (8.5) as a functor in X € (', A € 4b up to
equivalence. Now the extension (8.2) and (8.5) are dual in the explicit sense that
the elements (2) and (3) actually coincide; that is O = @', This is proved in III. §3
of Baues {HT). In the next section we use the extensions (8.2) and (8.5) in a crucial
way to obtain models of homotopy types which are Hr -dual to each other.
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§9 The classification theorems

We now show that k-invariants and boundary invariants both can be used to
classify homotopy types. For this we choose a full subcategory

(9.1) C C (n—1)—types

consisting of simply connected (n—1) -types. For example we cantakeforl <k <n
the category £ = K ko Ab consisting of Eilenberg-Mac Lane spaces K (A, k) with
A € Ab. We consider the functor

(9.2) P, : spaces™*(C) — n — types(C)

where the left hand side is the full homotopy catgeory of (n + 1) -dimensional CW-
spaces U for which the {(n —1) -Postnikov section P,,_1U is in C, similarly the right
hand side is the full homotopy catgeory of n-types V for which P,_;V isin C. The
functor P, is the restriction of the Postnikov functor in (4.3). In the next definition
we use the new word ‘kype’ which is an amalgamation of &-invariant and type.

(9.3)Definition. Let { be a category as in (9.1). A C -kyvpe
X =(X,n,k H,D)

is a tuple consisting of an object X in C, abelian groups 7, H and elements

ke H™Y(X, )
be Hom(H,TnX)

such that the sequence
HAT, x5«
is exact, see (8.2). A morphism between C -kypes

(fa@a’b) : (-X"TrakaHa b) - (‘X-Iawlakf!Hf*b{)

is given by amap f : X = X' in C and homomorphisms ¢ : 7 = 7', ¥ : H — H’
between abelian groups such that

FHK") = pa(k)
(Tnf)b =109

The C -kype X is free, resp. injective, if H is free abelian, resp. b is an injective
homomorphism. Let Kypes(C), resp. kypes(C) be the categories of free, resp.

injective C -kypes with morphisms as above. We have the forgetful functor
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)

which carries (X, 7w, k, H,b) to (X, m, k. H',b') where H' is the image of b and where
b’ is the inclusion of this image. The functor ¢ is easily seen to be full and repre-
sentative.

¢ : Kypes(C) — kypes(C

Recall that a ‘detecting’ functor is a functor which reflects isomorphisms and is
full and representative.

(9.4) Classification by Postnikov invariants. There are &eteéting functors A, A
for which the following diagram of functors commutes up to natural isomorphism.

spaces™1(C) —2— Kypes(C)

I s

n — types(C) 2 kypes(C)

Here the functor A carries the space X to the free C' -kype

(9.5) AX) = (Paci X, 70 X, kn X, Hop1 X, b1 X)

given by the Postnikov invariant (8.1), see (8.3). We point out that only the de-
tecting functor A is a classical result of Postnikov, the existence of the detecting
functor A seems to be a new property of k-invariants which did not appear in the
literature. Theorem (9.4) is proved in II1.4.4 of Baues [HT].

Using boundary invariants we obtain the Hn -dual of the classification theorem
above. We are now going to use a new word ‘bype’ which is an amalgamation of
boundary invariant and type.

(9.6) Definition. Let C be a category as in (9.1). A (' -bvpe

X = (Xa-HOvHIsbaﬁ)

is a tuple consisting of an object X in C, abelian groups Ho, A, and elements

b€ Hom(H,,TnX)

’r:—l(HOrX)
P e = ab)

Here we use A in (8.5) and b, : Ezt(Ho,H1) = Exzt(Ho,['nX). Moreover the
induced homomorphism

Bo=p(B): Ho»T7_ 1 X
is surjective, see (8.5). A morphism between C -bypes
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(f?‘POa‘Pl) :-(Xa HO:HI:b'lB) - (.Y’,Hé,H{,b’,ﬁ’)

is given by a morphism f : X — X' in ¢ and by homomorphisms ¢¢ : Ho —
Hj, o1 : Hi = Hj such that

(T f)b = b0

f+(B) = ¢o(8")
The ¢ -bype X is free, resp. injective, if H; is a free abelian group, resp. b is an
injective homomorphism. Let Bypes(C), resp. bypes(C), be the categories of free,

resp. injective, C' -bypes with morphisms as above. We have the forgetful functor

¢ : Bypes({) — bypes(C)
which carries (X, Hg, Hi,b,0) to (H, Hp, H},b', ) where H] is the image of b and

where b’ is the inclusion of this image. The functor ¢ is full and representative.

(9.7) Classification by boundary invariants. There are detecting functors A’, \

for which the following diagram of functors commutes up to natural isomorphism.

1

spaces™t1(C) A Bypes(C)

I~ -

n — types( :

) —2— bypes(C)

I

Here the functor A’ carries the space U to the free C -bype

(9.8) AU = (Pacr X, Ho X, Hog1 X, bup1 X, B X)

given by the boundary invariant 8, X in (8.7), see (8.9). The classification theorem
(9.7) is proved in 1I1.4.4 of Baues [HT]. It shows that boundary invariants can be
used in the same way as Postnikov invariants for the classification of homotopy
types. In the book Baues [HT] we give many explicit examples of applications for
the classification theorems above.

(9.9) Remark. J.H.C. Whitehead [CE] obtained for the homotopy category of sim-
ply connected 4-dimensinal CW-spaces two detecting functors. These coincide ex-
actly with A and A’ above if we take n = 3 and C = K%, This is, in fact, a very
simple case of the classification theorems above for which we use

T3K(4,2) = T(4)
TYK(4,2)=0

We leave this as an exercise to the reader, see also (10.8) below. In Baues [HT] we
use (9.7) for the classification of simply connected 5-dimensional homotopy types.
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§10 Stable homotopy types

The suspension ¥ is an endofunctor of the homotopy category Top®/ ~ given by
the quotient space

(10.1) EX=IxX/({0} x XUIx=*xU{1} x X)

where I = [0,1] is the unit interval, see also (6.5). The functor ¥ carries a map
f: X 2YtoLf: LX = ZY with (Zf)(t,z) = (¢, fz)fort € I,z € X. It is
easy to see that L carries homotopic maps to homotopic maps. We say that two
finite dimensional CW-complexes X,Y are stably hometopy equivalent if there is
k > 0 and a homotopy equivalence £¥X ~ B¥Y where ©* is the k-fold suspension.
A stable homotopy type is a class of stably homotopy equivalent CW-complexes.
Since the classification of homotopy types is so hard Spanier-Whitehead [FA] sup-
posed that stable homotopy types might give a first approximation of the homotopy
classification problem which is easier to understand. For this the ‘stable homotopy

theory of spectra’ was invented which, however, turned out to be still an extremely
complicated world, see G.W. Whitehead [RA].

The impact of the suspension operator ¥ comes from a classical result of Freuden-
thal which we state in the following form.

(10.2) Freudenthal suspension theorem. Let spaces* be the full homotopy

category in Top*/ =~ consisting of (n — 1) -connected (n + k) -dimensional CW-
complexes, n > 1, k > 0. Then the suspension yields a functor

T : spaces® — spaces®
n n-+t1

which is an equivalence of (additive) categories for k+1 < n and which Is a detecting
functor for k + 1 = n. Moreover for k = n this functor is representative.

Compare for example Gray [HT].
For n > 2 the functor T in the theorem reflects isomorplﬁsms. This follows from
the Whitehead theorem (6.2) since the (reduced) homology of a suspension satisfies

(10.3) H, X =H,_1X forall n.

As pointed out in § 3 the main numerical invariants of a homotopy type are dimen-
sion and degree of connectedness. These invariants are of particular importance
in the theory of manifolds. Therefore it is natural to consider for given n,k the
properties of (n — 1) -conneted (n + k) -dimensional CW-complexes which J.H.C.
Whitehead [HT) called AX -polvhedra. The A% -polyhedra, n > 1, are the objects
in the homotopy categories of the sequence

k

= . X 2
SPCLCCSk — Sp(l.CeSk — ...38paGaces” — Sp(ICBSL —
1 2 n n+1
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which by Freudenthal’s theorem above ‘stabilizes’ for n > k + 2. Hence there are
only k + 2 different categories in this sequence. This also shows that the stable
homotopy types of A¥ -polyhedra (n > 0) can be identified with the homotopy
types in the category spaces®, n > k + 1. We say that 4% -polyhedra are stable if

n>k+1. "

Each homotopy type of an A* -polyhedron can be represented by a (reduced) CW-
complex X with X*~! = % and dim(X) =n + k. Hence X — {} has only cells in
dimension n, n +1,... ,n + k. For k = 0 the CW-complex X is thus a one point
union of n-spheres. This also shows that one has equivalences of categories

spaces? = category of free groups
(10.5) spaces® =  category of free abelian groups

. where ¥ coincides with the abelianization functor for groups. For & > 0 the alge-
braic models of the categories in (10.4) get more complicated. J.H.C. Whitehead
[CE], [HT], [CHII] studied the case k = 2 and we study the case & = 3 in Baues

[CH], [HT], see (10.8) and (10.11) below. Moreover Unsold [AP] considers for
k = 4, n > 3 the subcategory of spaces* consisting of CW-complexes with finitely

generated torsion free homology. We do not think that it is reasonable to inves-

tigate the case, say k = 10, completely. It will, however, increase our knowledge
on the nature of homotopy types considerably if we are able to discuss in detail
homotopy types of 4% -polyhedra for small k, say & < 5. This for example includes,
for n = 2, simply connected 7-dimensional homotopy types.

(10.6) Remark. M.J. Hopkins [GM] discusses new global methods to study stable
homotopy types. For this a fundamental filtration of the stable homotopy category
of ‘p-local finite spectra’

%
gngl D'”Dgnjgn-l-lD“'

is considered where C, contains all objects which are acyclic with respect to the
Morawa K-theory K(n — 1).

The classical dimension filtration of the stable homotopy category, coming from
the sequence (10.4), is more related to problems like the classification of manifolds
in a particular dimension. J.H.C. Whitehead [CE] obtained the following algebraic
models of stable A% -polyhedra, n > 3.

(10.7) Definition. An A? -system

S = (H01H217T1$b21n)

is a tuple consisting of abelian groups Hp, H;, 7, and elements

by € Hom(Hq,Hy @ Z/2)
n€ Hom(Ho ©@Z/2, m)
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such that the sequence

Hy 22 HyQZ)2 -1 m

is exact. A morphism

(SOO,(P?,(Ppi) : (H01 H21 F],bz, T’) — (H(’JaHés Triab“?a rfl)
is given by homomorphisms ¢, : H; = H! for 1 = 0,2 and ¢, : m; = 7] such that
the diagram :

Hy —2 3 H®Z/2 —1 m

w:l J'soo®2/2 J'ap,r

Hy —*5 H}®Z/2 —"— =

commutes. The A% -system S is free, resp. injective, if H; is free abelian resp. by
is injective. Let A? — Systems, resp. A% — systems be the categories of free, resp.

injective A% -systems with morphisms as above. We have a forgetful functor
¢ : A? — Systems — A? — systems

which carries (Hy, Hg, m1,b2,7) to (Ho, Hy,m1,b5,1) where Hj is the image of by
and b7 is the inclusion of this image.

Let types* be the full homotopy category of (n — 1) -connected (n + &) -types and
let "

P¥ . spaces® — types*™!
n "

be the restriction of the Postnikov functor.

(10.8) Classification of J.H.C. Whitehead. For n > 3 there exist detecting
functors A, A for which the following diagram of functors commutes up to natural
isomorphism.

‘ A
spaces? ——— A% — Systems
n _—

] 2

types! —2— A% — systems

1
n

This result is an easy application of (9.4), compare (9.9) and (6.12). The functor
A carries a space X to part of the I' -sequence of .X,

- b n -
Hﬂ+2)t g Fn+1X — 7Tﬂ_+.1_\

where [', 11 X = H,X @ Z/2. Here 1 can be identified with the Postnikov invariant
n= kn+1X.
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Next we describe algebraic models of stable A3 -polyhedra, n > 4. For this let Z/2
be the cyclic group of two elements and let

Hom(®Z/[2,-): Ab° x Ab — Ab
be the functor which carries H,L to Hom(H @ Z/2, L). Moreover let

(10.9) Gro(Hom(®Z/2,~))

" be the Grothendieck construction of this functor. Objects in the category (10.9) are
triple n = (H,L,n) with n € Hom(H @ Z/2,L) and morphisms (¢1,¢0) : 7 = 7'
are homomorphisms ¢y : L — L', 3o : H = H' with 11 = n'(vo @®Z/2). We point
out that there is an obvious equivalence of categories

Gro(Hom(®Z/2,-)) S A% - systems (1)

For each abelian group A we have the short exact sequence

AQZ/25 GA) S AxT)2 (2)

associated to the natural homomorphisms

TA:A*Z[2={c €A, 2c=0}CA—> 4/24=AQZ/2
The abelian extension (2) is determined up to equivalence by A™'(2u~(z)) = ra(z)
forzr € AxZ/2. Let
G C G CGro(Hom(®Z/2,-)) (3)
be the following subcategories. Objects in G are the triple 4 = (4,G(A4),A)

given by (2) and morphisms are pairs (¢, @) which are compatible with (2), that is
pp = (@ * Z/2)u. There is a full forgetful functor

G- 4b (4)
which carries (4, G(A4), A) to A and there is an equivalence G = M", n > 3, where

M " is the homotopy category of Moore spaces in degree n; see (6.9). Moreover
G' in (3) is the full subcategory consisting of objects = (H, L. n) for which there

exists a factorization n : H ® Z/2  G(H) — L. We shall need the group G(n)
defined by the puh out diagram

LRZ/2 —2 G(n) —2— H+Z/)2

I R 0

H®Z/2 —— G(H) — H+Z/2

Moreover we shall use a canonical bifunctor
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G: G x G ~ Ab (6)

which carries the pair of objects (4,7) to an abelian group G(A,n). We here only
define this group if A or H is finitely generated; for a complete definition of G see
IIIV.1.3 (B) in Baues [HT]|. Using (2) we have the dual extension

Ezt(A,Z/2) >"— Hom(G(A),Z/4) —Es». Hom(4,Z/2)

ll | | g

Hom(A+2Z/2,Z/4) —— Hom(G(A),Z/4) —— Hom(AQZ/2,Z/4)

which we use in the following push out diagram for the definition of G(4, 7).

Ezt(A,L) >2— G(A,n) — % s Hom{A, H®Z/?)
n.T '
Ect(A,H®Z/2)  push - ®

|

Ext(A,Z/2)@ H —— Hom(G(A),Z/4)@ H —» Hom(4.Z/2)® H

The bottom row is obtained by applying the functor — @ H to (7). The top row is
short exact. Induced homomorphisms for the functor G are defined by

(¢,)" = Bat(p, L) & Hom(3,Z/4)® H
(¥1,9)s = Ext(A, 1) & Hom(G(A),Z/4) ® o (9)
Using these constructions of G() and G(4,n) we are now ready to define the
following algebraic models of stable A3 -polyhedra.
(10.10) Definition. An A® -system

S = (Ho, H2, H3, m1,b2,7., 03, 0) (1)

is a tuple consisting of abelian groups Hyp, Ha, H3, 71 and elements

by € Hom(Hy, Hy @ Z./2),
n€ Hom(Ho @ Z/2,m)

by € Hom(H3,G(n)), i
8 € G(Hz,my)-

o
e

Here ny = qA(n ® 1) is the composition
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n Ho®Z/2™3 11 @ 2/2 25 Gly) S cok (bs) (3)

where ¢ is the quotient map for the cokernel of b3. These elements satisfy the
following conditions (4) and (5). The sequence

H2 Ho@Z/2-~+TI‘1 ) (4)

is exact and 3 satisfies

H(B) = b | (5)
where y is the operator on G in (10.9) (8). A morphism

(v0, 2,3, @mr) : § = S (6)
between A% -systems is a tuple of homomorphisms
i+ H; — H| (1=0,2,3)

PHER S
wr : G(n) = G(n')

such that the following diagrams (7), (8), (9) commute and such that the equation
(10) holds.

H, —22 HyQZ/2 —— m

ln}’z J.%@ lw« (7)

Hy —— Hy®Z[2 —— m
b, n'

m®ZL/2 —= G(n) —4— Hy«Z/2

J,“”'@l l%r it.ao*l (8)

T QZL[2 — G(7') —> Hy+xZ[2

Hy —2— G(n)
lva er (9)

H; —) G(n")

Hence or induces ¢r : cok(bs) — cok(b3) such that (@, ¢r) : ¢A(nO1) = ¢A(7'®1)
is a morphism in G’ which induces (¢o,¢r). as in (10.9) (9). We have

(?0,1)+(8) = (2, 52)"(8") (10)

in G(Ha2,qA(n' ®1)). In (10) we choose @, for ,. The right hand side of (10) does
not depend on the choice of @s.
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An A® -system S as above is free if H; is free abelian, and $ is injective if b3 :
H3 — G(n) is injective. Let A® — Systems (resp. A% — systems be the full category

of free, resp. injective, A® -systems. We have the canonical forgetful functor
¢ : A’ — Systems = A% — systems (11)

which replaces b3 : H3 — G(n) by the inclusion b3(H;3) C G(n) of the image of
b3. One readily checks that this forgetful functor ¢ is full and representative. We
associate with an A3 -system S the exact I — sequence

Hy 2 Gn) = m—oHB3H0Z/25 mn - H =0 (12)

Here H; = cok (n) is the cokernel of n and the extension

cok (63) — Ty ~» ker (bz)
is obtained by the element 3, that is, the group 7, is given by the extension element
Bt € Ext(ker (by),cok (b3)) defined by
Bt =A07"(,7)7(B).
Here j : ker (by) C Hy is the inclusion.

(10.11) Classification theorem. For n > 4 there exist detecting functors A’, N’
for which the following diagram of functors commutes up to natural isomorphism

AI
spaces? ———— A% — Systems

n

P E

types 2 43 systems

(=]

n

Moreover for S = A'(X), X € spaces®, the T -sequence of S describes part of the
I’ -sequence of X, that is Hy = H, X and

Hi—» Gn)= m—~ Hy=» Hy@Z/257n >  H
| | | [ | I I

Hn+3X —)Fn.q.g.)( —)7Tn+2X —)Hn+2X —}Fn+1.-Y - TT',,.H.Y ““Hn-f-l-Y

In addition G(A,n) = Tas1(4, X).

In Baues [HT] we prove similar theorems also for n = 2, 3. We point out that the
functor A’ classifies all homotopy types Y for which at most the homotopy groups

Y, Tnyp1Y, TpaaY are non trivial, i.e. Y € types?. The functor A’ carries X to the
p———}]

A3 -system (HpnX, Hpi2X, Hops X, map1 X, but2 X, 7 = kg1t XL bugs X, BngaX)
given by the [’ -sequence of X and the boundary invariant 8,42.X. In fact, the
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classification theorem (10.11) is an application of (8.9); see VIIL.1.6 in Baues [HT]
and (4.10) in Baues-Hennes [HC].

" (10.12) Ezample. Let RP; be the real projective space of dimension 4. Then the
iterated suspension Z" 1R P, is an object in spaces® which satisfies

n

A(Z*'RP) = (Z2/2;Z/2,0,Z/2,0,1,0, A(1)).
Therefore G(n) = Z/4 and the extension

Gn)=Z/4— mg - Hy =7Z/2

is non trivial so that m; = Z /8. This yields a new proof that 7,4, 5" 'RP, = Z/8;
see for example G.W. Whitehead [RA].

The classification theorem (10.11) shows exactly what homology homomorphisms
are realizable by maps between stable A2 -polyhedra. Hence (10.11) vields a partial
solution of Whitehead’s realization problem described in (3.7).

(10.18) Remark. One of the deepest problems of homotopy theory is the computa-
tion of homotopy groups of spheres 7p,4x(S™). Ravenel [LP] writes

“The study of the homotopy groups of spheres can be compared with astronomy.
The groups themselves are like distant stars waiting to be discovered by the deter-
mined observer, who is constantly building better telescopes to see further into the
distant sky. The telescopes are spectral sequences and other algebraic constructions
of various sorts. Each time a better instrument is built new discoveries are made
and our perspective changes. The more we find the more we see how complicated
the problem really is.”

For us elements of homotopy groups of spheres, o € m,41-1(S"), vield very special
elementary AX -polyhedra

X = 5"y, enth

obtained by attaching via a an (n + k) -cell to the sphere S". Such A* -polyhedra
with k > 2 are determined by the homological condition

Hi(X)=0 for 1#n,n+k
H(X)=%Z for i=nn+k

and the homotopy type of X essentially can be identified with the homotopy class
. Hence the ‘telescopes’ above are directed to only a very small but distinguished
section of the universe of homotopy types. In view of ‘Freyd’s generating hypothesis’
[SH] one might speculate that the classification of finite stable homotopy types is
of similar complexity as the computation of all stable homotopy groups of spheres.
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§ 11 Decomposition of stable hoh‘notogx types

Given a class of objects with certain properties one would like to furnish a
complete list of isomorphism types of such objects. This is an ultimate objective
of classification. In mathematics indeed many classification problems arise but
complete solutions are extremely rare. We here describe a complete list of homotopy
types of (n—1) -connected (n+k) -dimensional polyhedra which are finite and stable
with £ < 3. This also yields a list of all (n — 1) -connected (n + k) -types with
finitely generated homotopy groups and k <2, n > k + 2. '

Let C be a category with an initial object * and assume sums or products,
denoted by AV B, exist in C. An object X in C is decomposable if there exists an
isomorphism X = AV B in { where A and B are not isomorphic to *. Hence an
object X is indecomposableif X = AV B implies 4 = % or B = %, A decomposition
of X is an isomorphism ‘

XA V...VA,, n< oo, (11.1)

in ¢ where 4; is indecomposable for all ¢ € {1,... ,n}. The decomposition of X
is unique up_to permutation if By V...V B, = X = 4, V...V 4, implies that
m = n and that there is a permutation ¢ with B,, = 4, for all ;. A morphism f
in C' is indecomposable if the object f is indecomposable in the catgeory Pair(().

The objects of Pair(C) are the morphisms of C' and the morphisms of ' and

the morphisms f — g in Pair(C) are the pairs (o, ) of morphism in C with
ga = Bf. The sum of f and g is the morphism fV g = (t1f,129). Below we
consider decompositions of CW-spaces in the homotopy category ' = Top®™/ ~
where the operation V is either the one point union or the product of spaces. The
main (and perhaps hopeless) purpose of representation theorv is the determination
of indecomposable objects in the category of R-modules satisfying some finiteness

restraint.

(11.2) Theorem. Let k < 3 andn > k+ 1 and let X be an (n — 1) -connected
(n + k) -dimensional finite CW-complex. Then there exists a decomposition

X~X;V..VX,, r<oo,

where the one point union of CW-complexes X; on the right hand side is unique
up to permutation.

Hence homotopy types in the theorem admit a unique prime factorization with re-
spect to the operation of ‘one point union’. The prime factors are called indecomposable
A* _polyhedra, k < 3. Fork > 4 a uniqug prime factorization as in the theorem
does not exist. For this we describe the following example. Let « be the generator
of the cyclic group m,43S™ = Z/24 where n > 5. Then the spaces

"Ytﬂ = Sn Uta 6n+4

are indecomposable for 0 < ¢ < 24 but there is a homotopy equivalence
XZQ V X3Q ~ STI- V Sn+4 V .\.’50
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which shows that in this case the decomposition is not unique. The homotopy
equivalence is obtained in 4.25 of Cohen [SH]. In the presence of only one prime
such decompositions are unique; see (12.12). Below we give a complete list of all
indecomposable stable AX -polyhedra, k < 3, which are the prime factors in (11.1).

General aspects on stable indecomposable polyhedra can be found in chapter 4

of Cohen [SH].

(11.3) Theorem. Letk < 2andn > k+2 and let Y be an (n—1) -connected (n+k)
-type with finitely generated homotopy groups. Then there exists a decomposition

Y>~K)  x...x K., r<oo,

where the product of CW-spaces K; on the right hand side is unique up to permu-
tation.

Thus homotopy types in this theorem admit a unique prime factorization with
respect to the product operation. We call the prime factors indecomposable a®
-types, k < 2. For k > 3 a unique prime factorization as in the theorem does not
exist. The next result shows that the prime factors in (11.2) correspond exactly to
the prime factors in (11.3); this is a consequence of (4.4).

(11.4) Theorem. Let k <3 andn > k + 1. Then the Postnikov functor Ppyi—y
yields a bijection

Ind(A¥) — {S™*} ~ Ind(a ")

where the left hand side is the set of all indecomposable A* -homotopy types differ-
ent from the sphere S™t* and the right hand side is the set of all indecomposable
ak=! _homotopy types.

These results are proved in chapter X of Baues [HT].

The elementary Moore spaces are the spheres 5™ and the Moore spaces M(Z/ p',m)
where p' is a power of a prime p. The elementary Filenberg-Mac Lane spaces are
K(Z,m) and K(Z/p'.m). The following result is easy to prove.

(11.5) Proposition. For k = 0, n > 1 there is only one indecomposable A} -
polyhedron namely the sphere S™. For k = 1,n > 2 the indecomposable A},
-polyhedra are exactly the elementary Moore spaces. For k = 0, n > 2 the inde-
composable a% -types are the elementary Eilenberg-Mac Lane spaces.

The first non trivial case is described in the next result due to J.H.C. Whitehead
[CE] and Chang [AS]. For this we define the

(11.6) Elementary Chang complezes. Let n, be the Hopf map in 7,4, 5™ and let p
and g be powers of 2. The elementary Chang complex X in the list below is the

mapping cone of the corresponding attaching map where i1,y denote the inclusion
of S, §*tlin S™ v §+L
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X attaching map

X(n)=8"U o2 M : SPFL = §7
X(ng) = 5" v SmHU et qi1 +iann : S™H o5 STy g
X(p’?) — §n | et gnt2 (NnyP) : gn+ly gn _, Gn

X(pnq) = S"V S*H Ut U | (gir + g, pia) : STV S 5 S7FLY S

These complexes are also discussed in the books of Hilton [IH], [HT]. Our notation
* of the elementary Chang complexes above in terms of the “words” n, ngq, ,7, pnq
is compatible with the notation on elementary A3 -complexes below. These words
can also be visualized by the following graphs where vertical edges are associated
with numbers p, q and where the edge, connecting level 0 and 2, is denoted by 7.

A4 R4 q
AT VA 74

- Hence the elementary Chang complexes correspond to all subgraphs (or sub-
words) of ,nq which contain 7. We shall describe the elementary A3, -polyhedra by
subgraphs (or subwords) of more complicated graphs.

(11.7) Theorem. Let n > 3. The elementary Moore spaces and the elementary
Chang complexes furnish a complete list of all indecomposable A% -polyhedra.

(11.8) Elementary Chang types. Let p,q be powersof 2 andletn:Z = Z/2 = Z/q
and ' : Z/p — Z/2 — Z/q be the unique non trivial homomorphisms. The
elementary Chang types K(Z,Z/q,n)and K(Z/p,Z/q,n) are the (n—1) -connected
(n + 1) -types with k-invariant n and 1’ respectively.

Using (11.4) we get the following application of Chang’s theorem.

(11.9) Corollary. Let n > 3. The elementary Eilenberg-Mac Lane spaces and
the elementary Chang types furnish a complete list of indecomposable a}, -types.
Moreover the bijection in (11.4) is given by the following list.

X Py X
s K(Z,Z/2,n)
Sn+l K(Z,n+1)
M(Z/p,n) K(Z/p,Z/2,n)
M(Z/q,n+1) K(Z/q,n+1)
X(n) K(Z,n)
X(pn) K(Z/p,n)
X(nq) K(Z,Z/2q,n)
X(pn9) K(Z/p,Z/2q,n)
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Moreover P4, carries an elementary Moore space of odd primes in Ai to the
corresponding elementary Eilenberg-Mac Lane space.

We say that a CW-space X is finite if there is a finite CW-complex homotopy
equivalent to X. Let spaces* (finite) be the full homotopy catgeory of finite (n —1)

n

-connected (n + k) -dimensional CW-spaces X. Then Spanier-Whitehead duality
[DH] is an endofunctor D of this category with n > k + 2 satisfying DD = identity.
We say that the space X is self-dual if there is a homotopy equivalence DX ~ X

(11.9) Ezample. Let X = M — x be obtained by deleting a point in an (n — 1) -
connected closed differential manifold M of dimension 2n + k& with n > &£+ 2. Then
X is self dual. Compare Baues [GH] and Stécker [TP]. Hence self-dual CW-spaces
play an important role in the classification of highly connected manifolds.

Spanier-Whitehead duality carries a one point union to a one point union, i.e.
D(XVY)=D(X)vD(Y), and hence D carries indecomposable polyhedra to inde-
composable polyhedra. In particular we have the following properties of elementary
Chang complexes.

(11.10) Proposition. The Spanier-Whitehead duality functor D : éi = éi sat-
isfies DX (n) = X(n), DX(nq) = X(gn), DX(pn) = X(np), DX(,nq) = X(¢np).
Hence the Spanier-Whitehead duality turns the graphs in (11.6) around by 180
degrees. For example X(,np), X(n) and X (,n)V X(np) are self-dual. While clearly
X(pn) is not self-dual.

For the description of the indecomposable objects in éi, n > 4, we use certain
words. Let L be a set, the elements of which are called “letters”. A word with
letters in L is an element in the free monoid generated by L. Such a word a is
written @ = aya;...a, with ¢; € L, n > 0; for n = 0 this is the empty word
¢. Let b = b;...b; be a word. We write w = ...b if there is a word a with
w = ab, similarly we write w = b... if there is a word ¢ with w = bc and we
write w = ...b... if there exists words a and ¢ with w = abc. A subword of
an infinite sequence ...a_2a-1a0a16; ... with a; € L, 7 € Z, is a finite connected
subsequence a,an+ - .- anyk, n € Z. For the word ¢ = «a; ... ¢, we define the word
—a = apQn-1 ...4a; by reversing the order in a.

(11.11) Definition. We define a collection of finite words w = wyws ... wg. The
letters w; of w are symbols £,7n,€e or natural numbers ¢.s;,r;,i € Z, which are
powers of 2. We write the letters s; as upper indices, the letters r; as lower indices,
and the letter ¢ in the middle of the line since we have to distinguish between these
numbers. For example n4€2ng is such a word with ¢t = 4.r; = 8,s5; = 2. A basic
sequence is defined by

(1) £ e %20y .

This is the infinite product a(1)a(2)... of words a(i) = £*'n,,, { > 1. A basic word
is any subword of (1). A central sequence is defined by
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(2) R AP R T 0 I S

A central word w is any subword of (2) containing the number t. Hence a central
word w is of the form w = atb where —a and b are basic words. An € -sequence is

defined by

(3) DO T € E

An ¢ -word w is any subword of (3) containing the letter ¢; again we can write
w = aeb where —a and b are basic words.

A general word is a basic word, a central word or an ¢ -word.

A general word w is called special if w contains at least one of the letters £,7 or €
and if the following conditions (i), D(i), (ii) and D(ii) are satisfied in case w = aeb
is an € -word. We associate with b the tuple

(81, 18m,00,1,1,...) if b=...¢
s(b) = (sb,s5,...) ={

(81,-.+,8m,1,1,1,...) otherwise

r(b) = (rt,78,...) =

(r1,...,r¢,00,1,1,...) if b=...n
(r1y--.,re,1,1,1,...) otherwise

where 8y ...3, and 7 ...7¢ are the words of upper indices and lower indices re-
spectively given by b. In the same way we get s(—a) = (s7%.5,%....) and r(—a) =
(ri% g%, ) withs7® € {s-4,00,1} and r7® € {r_;, 00,1}, ¢ € N. The conditions

in question on the ¢ -word w = aeb are:

(D) a=d=sb# Yy

Moreover if a # ¢ and b # ¢ we have:

(il) 31 = 2=r_ 24 and

b b b 5 b —-a -4 . —a —a . —a = —a
(27'?1_32)7'2,—53;’"3,---:_Siaria'--)<(r1 y =81 Ty TSy Ty TSy e, T
(D(it)) roy=2=35; >4 and
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bbb b b b b b 6 —a _ - -a _ - -
(—31,7'1,—32,1'2,—83,7‘3,...,-8,',1”'-,...)<(—.2-31 1Ty 3 —Sg 3Tz =83, ..., "

The index ¢ runs through ¢ = 2,3,... as indicated. In (ii) and D(ii) we use the
lexicographical ordering from the left, that is (ny,n2,...) < (m1,ma,...) if and
only if there is t > 1 with nj = m; for j < t and n, < m,.

Finally we define a cyclic word by a pair (w, ) where w is a basic word of the form
(p21)

(4) w = f’"’?rl 532771'2 Tt f”’fir,,

.and where ¢ is an automorphism of a finite dimensional Z/2 -vector space V =
V(g). Two cyclic words (w,¢) and (w’,¢’) are equivalent if w’ is a cyclic permu-
tation of w, that is

w' =%, ... 68"771',,631777'1 Y S/

and if there is an isomorphism ¥ : V(p) = V(') with ¢ = U~1p'¥. A cyclic word
(w, ) is a special cyclic word if ¢ is an indecomposable automorphism and if w is
not of the form w = w'w’...w’ where the right hand side is a j-fold power of a
word w!PTime with j > 1.

The sequences (1), (2), (3) can be visualized by the infinite graphs sketched below.
The letters s;, resp. r;, correspond to vertical edges connecting the levels 2 and 3,
resp. the levels 0;1. The letters 7, resp. €, correspond to diagonal edges connecting
the levels 0 and 2, resp. the levels 1 and 3. Moreover ¢ connects the levels 0 and
3 and ? the levels 1 and 2. We identify a general word with the connected finite
" subgraph of the infinite graphs below. Therefore the vertices of level ¢ of a general
word are defined by the vertices of level ¢ of the corresponding graph, i € {0,1,2, 3}.
We also write |z| =1 if z is a vertex of level 1.

) A4 4 T4 TR

N TN TN 7N 7SN

: NN N NN
basic sequence

3

: T

RN / N /L N AL N LN

0 .--;'/ r_,l/ re1 \J \J
central sequence

3

; A TRVAT

e LN LN LN LN

0 r-;l/ r-;l/ et \I \l

£-sequence

L1



Remark. There is a simple rule which creates exactly all graphs corresponding to
general words. Draw in the plane R? a connected finite graph of total height
at most 3 that alternatingly consists of vertical edges of height one and diagonal
edges of height 2 or 3. Moreover endow each, vertical edge with a power of 2. An
equivalence relation on such graphs is generated by reflection at a vertical line. One
readily checks that the equivalence classes of such graphs are in 1—1 correspondence
to all general words.

(11.12) Definition. Let w be a basic word, a central word or an € -word. We
obtain the dual word D(w) by reflection of the graph w at a horizontal line and by
using the equivalence defined in (2.2). Then D(w) is again a basic word, a central
word, or an € -word respectively. Clearly the reflection replaces each letter £ in w
by the letter n and vice versa, moreover it turns a lower index into an upper index
and vice versa. We define the dual cyclic word D(w, ) as follows. For the cyclic
word (w, ) in (3.1) (4) let D(w,¢) = (v, (¢*)™?). Here we set

w' = ¢" N7 - napgrprisx

and we set ¢* = Hom(p,Z/2) with V(¢*) = Hom(V(p),Z/2). Up to cyclic
permutation w' is just D(w) defined above. We point out that the dual words
D(w) and D(w, ) are special if and only if w and (w, ¢) are special.

As an example we have the special words w = ,1n4€2ns€*n and D(w) = £4n¥&ande?
which are dual to each other, they correspond to the graphs

g /2 /l4

| AN N

|~ NN
w = 2n4€2ne€tn

3

AN N 2

S AN 4

0 Ny 2/

D(w) = £&4n°E2n4ag?

Hence the dual graph D(w) is obtained by turning around the graph of w.

We are going to construct certain A2 -polyhedra, n > 4, associated to the words
in (2.1). To this end we first define the homology of a word.
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(11.13) Definition. Let w be a general word and let ro...7g and s, ...3s, be the
words of lower indices and of upper indices respectively given by w. We define the
torsion groups of w by

(1) | To(w) =Z/ra®...© Z/rs,
(2) : Ti(w)=Z/t if w isa central word,
(3) To(w)=2Z/3,®...®Z/s,,

and we set T;(w) = 0 otherwise. We define the integral homology of w by

(4) Hi(w) = Z5™ g Ty(w) @ 2™,

Here Bi(w) = Li(w) + Ri(w) is the Betti number of w; this is the number of end
points of the graph w which are vertices of level ¢ and which are not vertices of
vertical edges; we call such vertices x gpherical vertices of w. Let L(w), resp.
R(w), be the left, resp. right, spherical vertex of w in case they occur. Now we
set L;(w) = 1if |L(w)| =1 and Ri(w) = 1 if |R(w)| = ¢, moreover L;(w) = 0 and
Ri(w) = 0 otherwise.

Using the equation (4) we have specified an ordered basis B; of H;(w). We point
out that

(5) Bo(w) + fr(w) + B2 (w) + fs(w) < 2.

For a cyclic word (w, ) we set

(6) Hi(w,9) = P Ti(w)

where v = dim V(¢) and where the right hand side is the v-fold direct sum of T;(w).
As an example we consider the special words

R(w)

AE / /|
L N/ N\
0L(:....')/ \Is \E \]16

w = e3¥ngf W' = 2g€tme

— D D
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r
S

The homology of these words is:

w = 2ngé w' = 2ngéine
Hj Z 0
H, Z./32 Z/4
H 0 z./2
Ho ‘ZOZ/8 Z/88Z/16

Here w has 2 spherical vertices while w’ has no spherical vertex. We point out that
the numbers 2* attached to vertical edges correspond to cyclic groups Z/2* in the
homology: We describe many further examples below.

For the construction of polyhedra X (w) associated to words w we use the following
generators.

(11.14) Generators of homotopy groups. Let r, s be powers of 2. We have the Hopf
maps

N=nn: 8" 5 8™ E=nupr 1 S™E 5 S e =i  SMFE 5 57
We use the compositions

n=inn: S" = M(Z/r,n), £ = npyr1q: M(Z/r,n+ 1) = S™H1
which are (2n + 1) -dual. Moreover we have the (2n + 2) -dual groups, n > 4

Zj4€& for r=2

[S"“,M(Z/r’n)]:{Z/2§r+Z/2er for r>4

Z/4n* for r=2

M(Z/s,n+1),5"] =
[M(Z/s,n+1),57) {Z/Zn’-’r-Z/?e’ for >4

where ¢, = in2 and €’ = n%q and &, = x2£; and n* = n? x§. Next we use

o

Z/2¢2@Z/2n3 for s=r=
Z/4EsDZ/2n; for s>4,r=2
Z/282@Z[4n? for s=2,r>4

Z/2 QL2 ®TL/2¢" otherwise

I
Il

[M(Z/syn+1), M(Z[r,n)] =

Here we have £2 = x% £2q, n? = in?x§ and €2 = inZq. We have the (2n+42) -dualities
D(&7) =n; and D(e7) = €5.

(11.15) Definition. Let n > 4 and let w be a general word. We define the 42,
-polyhedron X(w) = Cy by the mapping cone Cy of a map f = f(w) : 4 - B
where
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) {A:M(Ha,n+2)VM(H2,n+1)v5;‘+1

B = M(Hy,n)Vv S**1 v §+!

Here H; = H;(w) is the homology group above. We set S7*! = S7=! if w is a
central word and we set S™t! = x otherwise, moreover we set Spt! = S™H! if v is

a basic word of the form w = £... and we set ;™' = x otherwise. The attaching
map

(2) f=f(w): M(Hs,n+2)VM(Hyy,n+ 1)V St = M(Ho,n) v STy Sp+!
c b

is constructed exactly via the pattern defined by the word w or the associated graph
w. For this we subdivide the graph of w by a horizontal line between level 1 and 2;
all edges crossing this line are summands in the attaching map f(w). For example
consider the graphs €3?ng€, 2ngé*ns and 2n4€2nséin above. Then we get

M(Z/32,n+1) V S"+2

F(ene8) = l \_ L

M(Z/8,n)

§n+1 M(Z/4,n+1)

f(2ns&me) l \1’: E’

S™1 vV M(Z/8,n)V M(Z/16,n)

S v M(Z/2,n+1) V M(Z/4,n+1)

omenen= e NN LN,

M(Z/2,n) V S+ M(Z/8,n)V S™

Here &,n, € are the corresponding generators in (11.14). For a cyclic word (w, )
the construction of X (w,¢) is slightly different; see Baues-Hennes [HC|. Clearly
the homology of X (w) or X(w,¢) is the homology in (11.13).

(11.18) Theorem. Let n > 4. The elementary Moore spaces, the complexes
X(w) where w is a special word, and the complexes X(w, @) where (w,¢) is a
special cyclic word furnish a complete list of all indecomposable A% -polyhedra.
For two complexes X, X' in this list there is a homotopy equivalence X ~ X' if and
only if there are equivalent special cyclic words (w,p) ~ (w',¢') with X = X(w, p)
and X' = X(w',¢"). Moreover Spanier-Whitehead duality D satisfies

D(X(w)) = X(Dw)
D(X(w,p)) = X(D(w,¢))



where the right hand side is given by the dual words in (11.12).

The proof of this theorem relies on the classification by 4% -systems in (10.11).
The result is then obtained by classifying the indecomposable A% -systems with
finitely generated homology; this being a purely algebraic question can be consid-
ered as a problem of representation theory. For a complete proof see Baues-Hennes

[HC].
(11.17) Ezample. Let P32 = RP,3/RP,_ be the truncated real projective space.
Then one has stable equivalences, n > 1,
X(26%) for n=1(4)
p3 X(n26) for n=2(4)
" X(®ng) for n=3(4)
S*"Vv SV M(Z/2,n+1) for n=0(4)
Hence the graphs of these stable spaces are (k 2 0)

where P}, with £ > 1 is a one point union of Moore spaces.

We now give an application of the classification theorem (11.16). We describe
explicitely all indecomposable (n — 1) -connected (n + 3) -dimensional homotopy
types X, n > 4, for which all homology groups H; X are cyclic, : > 0.

Let H, = (Ho, H1, Hz2, H3) be a tuple of finitely generated abelian groups with Hj
free abelian and let N(H,) be the number of all indecomposable homotopy types
X as above with homology groups Hn1;(X) = H; for : € {0,1,2,3}.

(11.18) Corollary. Let n > 4. The indcomposable (n — 1) -connected (n + 3)
-dimensional homotopy types X, for which all homology groups H;(X) are cyclic,
are exactly the elementary Moore spaces, the elementary Chang complexes, and
the spaces X(w) where w is one of the words in the following list.

The list describes all w ordered by the homology H. = H.(X(w)). The attaching
map for X (w) is obtained by (11.15). Let (r,t,s) be powers of 2.
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H, = (Hp H, H, Hj) N(H,) w with H,X(w)= H,
Zir 1)t 1)s 1 3 € mHES, 100 €, *E, ik
Z/r Z/t Z/s 0 3 rt€%, 10y, et
Z/r Z/t 0 z 2, nté, Eent
Z/r 4 1/s z 1 e
Z/r z /s 0 1 £
Z/r 0 /s /4 {2, r=s=2 €, *bre and

3, rs>8 &e? for rs 28,
Z/r 0 1/s 0 {3, r=s=2 | &, *n, n°¢,1), and
4, rs>8 €8 for rs>8
Z/r 0 V4 Z 1 nré
Z/r 0 0 z 2 £, €
z Z/t L/s 0 2 nté*, téq
z 7/t 0 Z 1 nté
Z Z 1/s 0 1 £'n
Z 0 L/s 0 2 n, e
z 0 0 Z 1 3

All words in the list are special words, except the word (7°¢,, 1) which is a special
cyclic word associated to the automorphism 1 of Z/2.

Ezample. Let n > 4 and let H, = (Ho, H1, Ha, H3) be a tuple of cyclic groups with
H; € Z,0. Then it is easy to describe (by use of (11.18)) all simply connected
homotopy types X with Hp41(X) = H; for 0 <7 < 3 and: > n+3. Infact all such
homotopy types are in a canonical way one point unions of the indecomposable
homotopy types in the list above. For example for H, = (Z/6,Z/2,7Z/2,0) there
exist exactly 9 such homotopy types X which are:
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M(Z/6,n)VM(Z/2,n+1)VM(Z/2,n+2)
M(Z/6,n)V X(26%)
M(Z/3,7)V X(272) V M(Z/2,n +2)

M(Z/3,n)V X(26%) vV M(Z/2,n + 1)
M(Z/3,n)V X(®n2) vV M(Z/2,n +1)
M(Z/3,n)V X (n%&2,1) V M(Z/2,n + 1)

M(Z/3,n) Vv X (272€%)
M(Z/3,n)V X (26 n)
M(Z/3,n)V X (*&n2)

Similarly we see that there are 24 homotopy types X for H, = (Z/2,Z/2,Z/2,Z);
we leave this as an exercise.

Next we describe explicit] y all indecomposable (n — 1) -connected (n + 2) -types
X, n 2 4, for which all homotopy groups are cyclic. For this we use the bijection
(11.4) and the computation of 742X, mp41 X, m, X in (10.11). Let 7, = (mo, m1, m2)
be a tuple of finitely generated abelian groups and let N(wg) be the number of
all indecomposable homotopy types X with homotopy groups 7, 4i(X) = m; for
1 =0,1,2 and 7;(X) = 0 otherwise, n > 4.

(11.19) Corollary. Let n > 4. The indecomposable (n — 1) -connected (n + 2)
-types X for which all homotopy groups m;(X) are cyclic are exactly the elementary
Eilenberg-Mac Lane spaces, the elementary Chang types, and the spaces P, 43X (w)
where w is one of the words in the following list.

The list describes all w of the theorem ordered by the homotopy groups m, =
X (w). Let r,£,5 > 2 be powers of 2 and for ¢,s > 4 let 2t' =t and 2s' = s.
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7, = (m ™ m) | N(m) w with mX(w) =

V4 0 Z 1 7
Z/r 0 4 1 neé
4 0 1/s 1 2
Z/r 0 Z/s 3 { 2p fors=2, 2 fors=2s >4
Baet, (n°6,1)
Z z Z/s 1 &'n
Z/r z Z/s 1 &'nré
Z Z/t Z/s 1 P28t t=s5=2

ot t=2t'>4 s=2"
e, t=2 s=2¢ >4
e t=202>4 s=2¢ >4

Z/r Z/t Z/‘g 2 { 5rnt'€", "'frnt'f
t>4 524 witht = 2t', s =25

Z/r 1/t Z/2 1 £ty t =2t
t>4

Z/r /2 /s 2 s, and
r24 s24 &gt s =25

/2 Z/2 Z/s 2 PoyaM(Z/2,n) for s = 4 and

s> 4 s't1e for s = 25' > 4, and
26 fors=4s">8

Z/r Z/2 Z/2 2 r€ and

r>4 ré

Z/2 Z/2 Z/2 1 2€

For all tuple of cyclic groups m. = (mo,m1,72), ®o # 0, m2 % 0 which are not in
the list we have N(r,) = 0. All words in the list are special words, except the word
(n°¢r, 1) which is a special cyclic word associated to the identity automorphism 1

of Z/2.

Ezample. Let n > 4 and let m, = (mo,m,m2) be a tuple of cyclic groups. Then
it is easy to describe all homotopy types X with mp4i(X) & m; for: =0,1,2 and
m;X = 0for j < nand j > n+2. In fact all such homotopy types are in a canonical
way products of the indecomposable homotopy types in (11.19). For example for
7. = (Z/6,Z/2,Z/2) there exist exactly 7 such homotopy types X which are
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Z/2,n+1) x K(Z/2,n +2)
K 2/6 n 2/2,2/2,n +1)

K(Z/6,n) x K(
(Z/6,n) x K(

K(Z/3,n) x K(2/2,2/2,n) x K(Z/2,n + 1)
(Z/3,n) x K(
( (

K
K

K(Z/3,n) x K(Z/2,n +1) X Paya X (*n2)
K(Z/3,n) x K(Z/2,n+1) X P2 X (*126)

K(Z/3,n) x K(Z/2,n +1) x Pas2 X (n*&2,1)
K(Z/3,n) x Py X(26)

It is clear how to compute the homology H,, Hn4; and H, 42 of these spaces and,
in fact, we can easily describe the A% -system of these spaces. We leave it to the
reader to consider other cases, for example for 7. = (Z4,Z10,Z) there exist exactly
3 homotopy types X with n, 2 r, X.

Finally we have the following applications of the classification theorem (11.16)
which single out spaces which are highly desuspendable.

(11.20) Theorem. The stable homotopy types of connected compact 4-dimensional
polyhedra coincide with finite one point unions X; V...V X, where the X; are ele-
mentary Moore spaces in A2 or the spaces X (1£?), X (t£), X(£*), X(€), and X (-¢°).
Here r,s,t are powers of 2 and r > s. .

For. this compare V Appendix A in Baues [HT]. The theorem shows that only
a few spaces arise as prime factors in the stabilization of 4-dimensional polyhedra.
This, for example, has the practical effect that the computation of generalized
homology and cohomology groups of 4-dimensional polyhedra can be easily achieved
by computing these groups only for the elementary spaces in (11.20).

(11.21) Theorem. The stable homotopy types of simply connected compact 5-
dimensional polyhedra coincide with finite one point unions X; V...V X, where the
X, are elementary Moore spaces in A3 or the elementary spaces X (w), X (w,®).
Here the special words satisfy the following conditions (1), (2),

() w#n*... andw # ... °n

(2) for each subword of the form .n® or °n, of w (that isw = ... .n°... or

w=...%)...) we haver > 3.

See X.7.3 in Baues [HT).

70



§ 12 Localization

A generalized homology theory k. (as for example defined in Gray [HT]) can be
used to define equivalence classes of spaces which are called ¢ k, -local homotopy
types’. We assume that k. satisfies the limit axiom, namely that for all CW-
complexes X the map lim k.(X4) — k. X is an isomorphism where the X, run over

all finite subcomplexes of X. We consider mainly the classical homology theory

(12.1) ki(X) = H.(X,R) = H.(SX ®z R)

given by the homology of X with coefficients in a ring R; compare (3.4).

(12.2) Deﬂnition. Let spaces be the full subcategory of Top consisting of CW-
spaces. A CW-pair (X, A) is a cofibration 4 — X in Top for which A and X

are CW-spaces. For example a CW-complex X together with a subcomplex A4 is a
CW-pair. A map f: X — Y between CW-spaces is a k, -equivalence if f induces
an isomorphism

Fo k(X)) 2 (Y)

A CW-space A is k, -local if each CW-pair (X, A) for which A — X is an k.
-equivalence admits a retraction A - X. A map g : Y — A is called a k.
-localization if A is k. -local and g is a k, -equivalence.

Recall that we introduced the localized catgeory Ho(C) in (3.12). The next
result is due to Bousfield [LS].

(12.3) Theorem. For all CW-spaces there exist k. -localizations. Moreover there
is an equivalence of categories

Hoy, (spaces) — spaces / v

where the left hand side is the localization with respect to k., -equivalences and
the right hand side in the full homotopy category in Top/ ~ consisting of k. -local

CW-complexes. The equivalence carries a CW-space to its k, -localization.

We refer the reader also to 1.5.10 in Baues [AH] where we consider k. -equivalences
as weak equivalences in a ‘cofibration category’. The &, -equivalences generate an
equivalence relation for CW-spaces as follows. We say that CW-spaces X, Y are k,
-equivalent if there exist finitely many CW-spaces X, = 1,...,n together with
k. -equivalences a;,

X=X & X, 3 X, & .. X, =Y,

where «; and a;4+; have opposite directions. The theorem shows that the corre-
sponding k. -equivalence classes can be identified with the homotopy types of k,
-local CW-spaces which are called k, -local homotopy types. The &, -local homo-
topy type of a CW-space X singles out the k. -specific properties of X. This turned
out to be a very successful technique of homotopy theory.
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(12.4) Theorem. Let R be a subring of Q and let X be a simply connected CW-
space. Then X is H,(—, R) -local if and only if (a) or equivalently (b) is satisfied:

(a) The homotopy groups 7, X are R-modules.
(b) The homology groups H,X are R-modules.

Moreover an H,(—, R) -localization £ : X — Xpg induces isomorphisms

Wn(x) Rz R Wn(XR)
Ha(X) @2 k = Ha(Xn)

which carries £ @ 1 to £,(&).

A proof can be found for example in Hilton-Mislin-Roitberg [LN]. Spaces as
in the theorem are also called R -local, these are the rational spaces if R = Q.
Moreover for a prime p these are the p -local spaces if R = Z, is the subring of Q
generated by 1/q where ¢ runs over all primes different from p. The classification
theorems in §9 are actually compatible with R-localization, R C Q. For this we
define for the category C in (9.1) the full subcategory

(12.5) C, C(n—1)—types
consisting of R-localizations Xg of objects X in g . Let

eR:g_’gR

be the localization functor. A € -kype Xgr = (Xg,mk,H,b) is R -local if = and
H are R-modules, and Xp is R -free if H is a free R-module. Similarly a gR -bype
Y = (Ygr, Ho, H1,b,3) in R -local if Hy, H; are R-modules, and Yy is R -free if H,
18 a free R-module. Let

1
.Spaces’;:' (CRr)

be the full homotopy category of R-local CW-spaces X with P,_1 X € C ; and with
H{(Xp)=0for:>n+1and Hyy1(XRr) a free R-module.

(12.8) Classification theorem. There are detecting functors Agr, A’y for which
the following diagrams of functors commute up to natural isomorphism.

.<>'p‘a,ce.s',""'1 (C) LN Kypes(C)

o e

sEaces;H(gR) LU KypesR(gR)

Here Kypesr(C R) is the category of free R-kypes and lp denotes the obvious

localization functors.
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spaces™1(C) A, Bypes(C)

| [o

.spaces;"'l(gR)

A
— Bypes (Cp)

Here BypesR(gR) is the category of free R-bypes and {p denotes again the local-
i1zation functors.

For the definition of Ag, A’z we use the I" -sequence of X which coincides with
( T -sequence of X) @R. The theorem shows:

(12.7) Corollary. The Postnikov invariants of the localization Xg are obtained
by R-localizing the Postnikov invariants of X. The boundary invariants of the
localization X g are obtained by R-localizing the boundary invariants of X .

If R = Q is the ring of rational numbers the theory of Postnikov invariants
and boundary invariants is completely understood. In fact Postnikov invariants
correspond to the differential in the ‘minimal model of Sullivan’ and boundary
invariants correspond to the differential in the ‘Quillen minimal model’ constructed
in Baues-Lemaire [MM)]. Compare Quillen [RH], Sullivan [IC] and chapter I in Baues
[AH].

(12.8) Definition. Let V be a graded Q -vector space with V; =0 for ¢ < 0. Let
T(V) = ®{V®", n > 0} be the tensor algebra of V which is a Lie algebra by

[z,y] = 2y — (-1)F¥lys.

The free Lie algebra L(V) is the Lie subalgebra of (T(V),[ , ) generated by V.
Let [L(V),L(V)] C L(V) be the subset of all brackets [z,y] with z,y € L(V) and
let

d: L(V) = [L(V),L(V)] C L(V)

be a Q -linear map of degree —1 satisfying dd = 0 and d[z, y] = [dz, y]+(=1)I*![z, dy].
Then (L(V),d) is called a Quillen minimal model with differential d. A morphism
between such models in a Q -linear map of degree 0 compatible with brackets and
differentials.

(12.9) Theorem. Homotopy types of 1-connected rational spaces X arein1l—1

correspondence with isomorphism types of Quillen minimal models (L(V'), d) where
‘/i = H,’.i.l(X,Q) and H,(L(V),d) = 7T,'+1X f‘OI"t. 2 1.

(12.10) Definition. Let V be a graded Q -vector space such that V' is finitely
generated and V? = 0 for 1 < 1. Let A(V) be the free graded-commutative algebra
generated by V| that is

A(V) = Exterior algebra.(V"dd) ® Symmetric algebra (Veven)

Let A(V) - A(V) be the subset of products z -y with z,y € A(V), |z|,]y] > 1 and
let
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d:A(V) = A(V)-A(V) C A(V)

be a Q -linear map of dgree +1 satisfying dd = 0 and d(zy) = (dz)y + (~1)I*lz(dy).
Then (A(V),d) is called a Sullivan minimal model with differential d. A morphism

between such models is a QQ -linear map of degree 0 compatible with multiplications

and differentials.

(12.11) Theorem. Homotopy types of 1-connected rational spaces X for which
H,X is a finitely generated Q -vector space, n € Z, are in 1 — 1 correspon-
dence with isomorphism types of Sullivan minimal models (A(V),d) where V; =
Hom(mi(X),Q) and H(A(V),d) = Hom(H;(X),Q fori > 1.

These minimal models yield solutions of Whitehead’s realization problem for ra-
tional spaces, see (3.7). They illustrate again that homology groups and homotopy
groups respectively both ‘generate’ a homotopy type in a mutually = -dual way.
The Baues-Lemaire conjecture [MM)] (recently proved by Majewski [BL]) describes
the algebraic nature of this A7 -duality. The minimal models allow a deep analysis
of the rational properties of a simply connected space. For example we refer the
reader to the wonderful torsion gap result of Halperin [TG] or to the alternative
‘hyperbolic-elliptic’ for rational spaces in Felix [DE].

There are p-local analogues of A* -polyhedra as follows. We say that a p-local
CW-space X is a pA* polyhedron if X is (n — 1) -connected, n > 2, and the
homology H;X 1is trivial for ¢ > n + k and is a free Z, -module for ¢ = n + k.
Moreover X is a finite pA¥ -polyhedron if in addition all H; X are finitely generated
Z, -modules. In the stable range we have by 3.6 (2) in Wilkerson [GC] unique
decompositions as follows.

(12.12) Theorem. Let p be a prime and n > k + 1 > 2. Then each finite pA*
-polyhedron X admits a homotopy equivalence

X~X3v...vX,

where the one point union of p-local indecomposable CW-spaces on the right hand
side is unique up to permutation.

(12.18) Remark. Generalizing the result of Chang (11.7) Henn [CL] furnished a
complete list of indecomposable pA* -polyhedra for £ = 4p — 5 and p odd. Such
spaces are detected by primary cohomology operations while the A -polyhedra in
(11.16) are not detected by primary cohomology operations. The classifications of
Henn uses implicitely the boundary invariants of X.

(12.14) Remark. For the ring R = Z/p where p is a prime the H,(—,Z/p) -
localization X, of a simply connected space X is the p -completion of Bousfield-Kan
[HL]. If in addition X has finite type then X, is the p-profinite completion for which
m,Xp is given by the p-profinite completion of 7,X; compare Sullivan [GT] and
Quillen [AS]. Recently Goerss [SC] considers simplicial coalgebras as models of
H.(—,F) -local spaces where F is an algebraicly closed fleld; see also Kriz [AH].
Moreover Bousfield [HT]} and Franke [UT] consider algebraic models of k. -local
spaces with k., = K -theory; they restrict, however, to the stable range.
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