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§O. Introduction.

Let (X, Y) be a smooth projective eompactification of C3 , namely, X is a smooth
projective threefold and Y an analytic subvariety of X such that X - Y is biholo­
morphic to C3

. By the theorem of Hartogs, Y is of pure dimension two, namely, Y
is a divisor on X.

Two smooth eompactifications (X, Y) and (X', Y') are said to be isomorphie
,we write simply as (X, Y) ::: (X', Y'), if there exists a biholomorphic mapping
cp : X ---+ X' such that cp(Y) = Y' .

We shall 8Ssume that the seeond Betti number ~(X) = 1. Then Y is an irre­
qucible ample divisor on X and PicX ~ Z· Ox(Y), in particular, the canonieal
divisor K x ean be written as K x "'oJ -rY (r E Z,O < r ~ 4) (cf.[H-M]). Thus X is
a Fano threefold of the first kind (ef.(Istl). The integer r is called the "index" of
X. Then we have the two eases:

(i) Y is normal, or
(ii) Y is non-normal irreducible.

In the case where Y is normal, we have proved the following

Theorem A ([Futl, [Fu2] , [F-N1], [F-N2 ], [p..S]). Let (X, Y) be a smooth
projective compactmcation of C3

. Assume tbat Y is normal. Then we bave tbe
second Betti number ~(X) = 1 and tbe index r ~ 2. Moreover,

(1) r = 4 => (X, Y) :::: (pa, P2),

(2) r = 3~ (X, Y) '"-J (Q3, Q~),

(3) r = 2~ (X, Y) :: (V~, Hg).

In particular, such a (X, Y) exists uniquely up tO'isomorphism,
wbere

• Q3 : a smooth byperquardric in p4,

• Q~ : is a quardric cone in p3,

• V5 : a linear section Gr(2, 5) n p6 of tbe Grassmann variety Gr(2, 5) ~ p9
of lines in rp4 by three hyperplanes in p9, whicb is tbe Fano threefold of
tlle index two aIld degree 5 in p6,

• Hg : ci nonnal hyperplane section of Vs with exactly one rational double point
of A4 -type, wbicb is adegenerated deI Pezzo surface of degree 5 in p5 .

In the case where Y is non-normal irreducible, we have also proved the following

Theorem B ([P-8], [F-Nd). Let (X, Y) be a smooth projective compactiiication
of C3

. Assume that Y is non-normal irreducible. Then we bave the index r ~ 2.
Moreover, if tbe index r = 2, then (...Y, Y) ~ (Vs , H5 ), wbere H~ is a non-normal
byperplane section ofV5 wbose singular locus is a line E ~ pl in Vs witb tbe normal
bundle NElx '"-J OL'(-l) ffi OE(l). In particular, Hf' is a ruled surface swept out
by lines on Vs intersecting witb tbe line E. Moreover such a (X, Y) exists unique1y
up to isomorphism.
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By Theorem A and Theorem B, we have only to consider the case of r = 1. In this
case, one sees X is a Fano threefold of the index r = 1 with PicX ~ Z· Ox(-Kx).
Here we call the number 9 = ~(-KX)3 + 1 the "genus" of X (see [Istl).

Recently, the author constructed two examples of the compactification (X, Y) of
C3 with a non-normal irreducible divisor Y from the Mukai-Umemura's example
[M-U] of the Fano threefold U22 e.......t p13 ,which is a special one among the Fano
threefolds of tbe index r = 1 and the genus 9 = 12(see also [M], [Pr]), namely,

Theorem C ([Fu2 ] , [Fu3], [Fu4], [MD. Let U22 be tbe Mukai-Umemura's ex­
ample of the Fano tbreefold. Then tbere exist non-normal hyperplane sections Hg2
and H2i ol U22 such tbat U22 - Hg2 ~ C3

f'V U22 - H~. Tbe singular locus oE Hg2

(resp. H2'2) is the line l in U22 witb tbe normal bundle N l lu'42 :::::: Ol( -2) EB V l (1),
and multlHg2 = 2 (resp. multl H/f2 = 3). In particular, H2'2 is a ruled surface
swept out by the conics which intersect tbe line l.

Remark 1. Mukai [M] and Prokhrov [Pr] proved that there is a 4-dimensional
family (V2

t
2 , H~2 ) of compactifications of C3 containing (U22 ,H2'1.) such that

(V2
t
2 , H~2) ~ (V2"2' H22) if t i= 's, where V2

t
2 is a Fano threefold of the index r = 1 and

the genus 9 = 12, which has the degree 22 in p13 by the anti-canonical embedding,
and H~2 is the non-normal hyperplane seetion of V2

t
2 whose singular locus is the

line Et with the normal bun~e Nldv:, :::::: Ol, (-2) EB Olt (1). In particular, H~2 is
a ruled surface swept out by comes intersecting the line Pt. Therefore one can see
that the compactification (X, Y) is not Wlique up to isomorphism in tbe case of
r=1.

On the other hand, Peternell asserts the following:

Theorem D «(P], (P-S2 ]). Let (X, Y) be a smootb projective compactification
olC3 witb b-.z(X) = 1. Assume that Y is non-nonnal and tbe index r = 1. Tben,

(I) X is a Fano tbreefold oE tbe index r = 1 and tbe genus 9 = 12.

(II) Let E be tbe non-norma11ocus oE Y equipped witb tbe complex structure
given by tbe conductor ideal sbeaf. Let Y be tbe normalization oE Y and let E be
tbe preimage of E. Then

(1) E and E are reduced,

(2) Y is weakly normal, and

(3) E is a smooth rational curve and E consists oE two
smooth rational curves meeting at one point of order 2.

Unfortunately, Theorem D-(II) is not true. Indeed, the compactification
(U22 , H2'2) in Theorem C does not satisfy the assertions (11)-(1) and (11)-(3) in
Theorem D at all. In this example, E and E are both "non-reduced", and E con­
sists of "three" smooth rational curves meeting at one point (see [Fu3 ]). Moreover,
Theorem D-(II) plays a key role in the proof of Theorem D-(I) (for example, see
tbe proof of Proposition (3.8) in [PD. Nevertheless, Theorem D-(I) is still true as
we will prove in §2.

Our main result is the following:
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Main Theorem. Let (X, Y) be a smooth projeetive eompactmcation of C3 with
the seeond Betti number ~(X) = 1. Assume that the index r = 1. Then

(1) (X, Y) ~ (V22' H n,) or (V221 H~2)' where V22 is a Fano tbreefold of tbe
index r = 1 witb tbe genus 9 = 12, degree 22 in p13 by the anti-canomeal
embedding, and HIT (resp. Hg2 ) is a non-normal hyperplane section OfV22 ,

(2) Let E be the non-norma11ocus oE H!f2 (or H82) equipped with the complex
structure given by the conductor ideal sheaf. Tben Z := Ered is a line on
V22 witb tbe normal bundle N Z/V:z:r ~ Oz( -2) EB Oz(l),

(3) multE Hf2 = 3 and multzHg2 = 2, in partjcular, HIT is 8 ruled surface
swept out by the comes intersecting with the line Z.

Combining Theorem A and Theorem B with the main theorem above, we have

finally

Theorem (cf. [Problem 27; Hi] ). Let (X, Y) be a smooth projective eompact­
ifjeation of C3 with the second Betti number ~(X) = 1. Then

(X,Y) f'V (p'l,p2), (Q3,Q~), (Vs,H~), (Vs,H,r), (V22 ,Hg2 ) or(V22 ,H2'2).

Remark 2. In [Fu4 ], it is shown how the compactifications (V22,H~) and
(V22 ,H~2) are constructed from the well-known compactification (pa, P2) of C3

•

This paper consists of three sections. First, in §1, we shall study the general
properties of non-normal polarized sunaees of K3-type. Next, in §2, by applying
the results obtained in §1, we shall give a new proof of Theorem D-(I). Finally, in
§3, we shall give a proof of the Main Theorem.

Notation

· wV : dualizing sheaf of V
· hi(Ov) = dimHi(V, Ov)
· End : reduction of E
· N ZI V : normal bundle of Z in V
· multzY : multiplicity of Y at a general point of Z
· Ballr : base loeus of the linear system j.cl defined by the line bundle r,
· bi(V):- dimHi(V; R) : the i-th Betti number
· p(V) : Picard number of V
· X(.c) := Ei(-1)ihi(.c)

f'V : linear equivalence·=:numerical equivalence

Acknowlegement. The author would like to express his hearty thanks to Professor
Nohoru Nakayama for his invaluable advices and helpful discussions. This paper
was written during his stay in SFB 170 "Geometrie und Analysis" in Göttingen and
the Max-Planck-Institut für Mathematik in Bonn. He would like to thank Professor
Dr. H. Flenner and Professor Dr. F. Hirzebruch for their helpful discussions and
encouragement.
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§1. Non-normal polarize~ surfaces of K3-type.

1. Let S be a non-normal irreducible reduced projective Gorenstein surface over
C. Let u : S ---+ S be the normalization, and I C Os be the conductor of q

defining closed subschemes E := Vs(I) in S and E := Vs(I) in S. Let Jl : S ---+ 8
be the minimal resolution and B = Ui=l Bi be the exceptionaI set for Jl. We put
7r := (j 0 J..L : S ---+ S. Then we have the following:

(1.1) Lemma ([pp.165-pp.167 ; Mo]). (i) WS ~ (j·W$ ® I ,

(ii) WE I'J (j·ws ®~ ,

(iii) 0 --+ Os ---+ (j.0s ---+ wS1 0 WE ---+ 0 ,

(iv) 0 --+ (j.f.J..JS --+ Ws ---+ Ws @ OE ---+ 0 ,

(v) 0 ---+ WS ---+ U·Ws ---+ (j·ws 0 Os ---+ 0,

(vi) 0 ---+ OE ---+ (j.Oe ---+ Ws] 0 WE ---+ 0 .

(1.2) Definition. Let ,C be a very ample line bundle on S. The pair (8,'c) is
called a non-normal polarized surface of K3-type if

(1) S is a non-normal irreducible reduced projective Gorenstein surface ,

(2) ws I'J Os ,

(3) h1(Os) = 0 , and

(4) ,C is very ample on S.

Applying (1.1), one can easily obtain the following:

(1.3) Lemma (cf. [Proposition 3.3, 3.5 ; P]). Let (5,.c) be a non-normal
polarized sunace of K3-type. Then,

(i) fJJS ~ I <==} Ks """ -E as a Weil divisor,

(ii)~ ~ "E ,
(iii) h1(OE) = 0, namely, each irreducible component Ei of E red is a smooth

ratiQnal curve ,

(iv) h1(0s) = hO(OE) - 1 .

(1.4) Corollary. (a) K s I'J -E - E kiBi(ki E Z ,ki 2: 0), where E is the proper

transform of EinS.

(b) S is a rational or a ruled surface.

Proof. Since Ws = J..L·WS00( - L: niBd for some ni E Z (ni 2: 0) and since Ws ~ I,
we have the assertion (a). By (a), we can easily see that HO(S; O(mKs»= 0 for

m > 0, mEZ. Thus, Crom the classification of surfaces, we conclude that S is a
rational or a ruled surface. This proves the assertion (b). 0
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(1.5) Proposition. Let (S,.c) be as in (1.3). Then,

(a) H i ( S, l,) = 0 for i > 0 ,

(b) (u·['· E)s = 2(.c . E)s = 28, where 8 := (.c . E)s > 0 , in particular, if E is
irreducible and reduced, then ~(E) :::; 2,

(c) There exists a smooth member C E lu·.cl with the genus g(C) = td(l,) -
8 + 1,

(d) hO(u* [,) = hO([,) +6 - hO(OE) ,

(e) hO(.c) = td(.c) + 2, in particular, d(.c) := ([,2)5 > 0 is even.

(f) ß(S, u·.c) = 2 +d(.c) + hO(OE) - hO(.c) - o.

Proof. (a): Take a general (irreducible) member C E 1[,1. Since H 1 (S; Os) = 0, we
have Hl(S; O( -C)) = 0 , that is, Hl(S; .c-1 ) = O. Since Ws ~ Os, by the Serre
duality theorem, we obtain Hi(S;.c) ~ HZ-i(S; .c-1). This proves the assertion
(a).

(b): In (1.1)-(iii),(v) and (vi), we put ws ~ Os, then we obtain the following
exact sequences:

(1.5.1 )

(1.5.2)

(1.5.3)

By (1.5.3), we have:

o ---+ Os ---+ u.Os ---+ WE ---+ 0,

o ---+ WS ---+ Os ---+ Oe ---+ o.

o ---+ OE ---+ u.Oe ---+ WE --.. 0,

(1.5.4) x(u*O]; ®.c) = X(OE ®.c) +X(WE ®.c)

== 2(.c . E)s + X(OE) + X(WE)

= 2(.c . E)s

= 20.

(1.5.5)

On the other hand, since X(O];) == X{Os) - X(WS) == 0 by (1.5.2), we get

X{u.~0.c) == X(0e0 u·.c)

== (u·.c . E}-g + X("E)

== {u·.c· E)s.

By (1.5.4) and (1.5.5), we conclude that {u* l, . E'ß == 2{.c . E)s == 26. In
particular, if E is irreducible and reduced, then we have ~(E) :::; 2.



7

(c): Since B sia· l I = 0 , by the theorem of Bertini, there exists a smooth member
C E la-li· By the adjunction fonnula, 2g(C) - 2 = C(C + WS). Since (C· WS) =

(u· l·WS) = -26 and since (C
2
}s = (l2)S = d(l), we obtain 2g(C)-2 = d(l)-26.

This proves the assertion (c).

(d): By operating fl;! on (1.5.1), we obtain an exact sequence

Since H 1(S; r.) = 0 by (a), we obtain

(1.5.6)

Since Eis Cohen-Macaulay, hO(WE fl;l) = h1(OE fl;!-l). For a general member
C E /.cl, we have an exact sequence

0--+ OE(-C) --+ OE --+ (JEne --+ O.

Since h1(OE) = 0 and since hO(OEnc) = (.c . E)s = E, we get

(1.5.7) hO(WE fl;.c) = hI(VE fl; l-l)

= h1(OE(-C»

= hO(OEnc) - hO(C?E)

= 6 - hO(OE).

On the C?ther hand, since

hO(u.Os fl;!) = hO(a_Os(a* l) = hO(u·!),

by (1.5.6) and (1.5.7), we have finally

hO(u·!) = hO(.c) + E- hO(OE).

(e): We can see that

for any m, where a is constant. Since ws ~ Os, X(.c®m) = X(.c-®m). Hence
a = 0, namely, X(.c®m) = t(l2)m2 + X(Os) for any m. Since X(Os) = 2 and
X(!) = hO(!), we have the assertion (d).

(f): By (e), one has easily

ß(S, a·.c) := dimS +deg u-! - hO(u-.c)

= 2+ d(.c) - hOC!) - E+ hO(OE).

The proof is completed. 0



(1.6.2)

8

(1.6) Proposition. Let (S,.c) be as in (1.3). Assume that ~(S) = O. Tben,

(a) S is a rational surface,

(b) S has at warst rational singularities,

(e) h1 (0s) = h2(0s) = 0, bl(S) = b3 (S) = 0,

(d) Ered is eonneeted and bas DO eyc1e.

Proof. We have an exact sequence (cf. [B-K)):

(1.6.1) HI(S; Z)~ H 1(8; Z) EB H 1(E; Z) --+ H 1(E; Z)

--+ H 2 (8; Z) --+ H 2(S; Z) 61 H 2 (E; Z) --+ H 2 (E; Z)

--+ H 3 (8; Z) --+ H 3(8; Z) --+ 0

Since b3 (S) = 0 , we have b3 (S) = 0 . It is known that b3 (S) = b3 (S) (cf. [B)).
So we obtain b1(B) = b3 (S) = O. Thus S is a rational surface by (1.4) :- (b). Trus
proves (a). From the Leray spectral sequence we have:

o--+ Hl(S;~) --+ H 1(S; Os) --+ HO(5; R1J-l.Os)
2-

--+ H (5; Os) --+ .

Since S is rational and since

H 2 (5; Os) ~ HO(5;WS) ~ HO(S;I) = 0,

we obtain H 1 (S; Os) = 0 = hO(S; R1J-l.Os). Trus proves (b) and (e). Finally,
since 0 = h1(0s) = hO(OE) - 1, we have hO(VE) = 1, thus E red is eonneeted. By
(1.3) - (iii), h1(VE) = 0, so we have h1(OE"ac) = 0 (cf. [(3.3); P)). Therefore
End has no eyde. We complete the proof of the proposition. 0

2. Next', we shall consider the adjoint line bundle K S + 7r.1:, on S, where

rr : S~ 8 ~ S. Since.c is very ample on 5, rr· l, is nef and big on S. By
Kawamata vanishing theorem, we obtain

(1.7) Lemma. Hi(~; 0(1(5 + 7r* l,» = 0 far i > 0 .

(1.8) Cor.ollary. hO(1{s + 7r. f.2) = td(f.2) - 8 + 1 - h1(05) .

Proof. We have easily

hOCKS + 7r* l.) = X(Ks + 11"* l,)
1= 2"11". l,(7r• .c + Ks) +X(Os)

1
= 2"(d(.c) - 28) +1 - h1(Os)

1
= 2"d(l,) - 8 + 1 - h1(VS )'

o
Here we also make use of the same notations as in the paragraph 1.
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(1.9) Theorem. Let (S,!) be a non-normal polarized surface oE K3-type. Tben,

(I). H K s + 1r*! is not nef, tben we bave eitber

(a) (8,!') ~ (Q4, 0(1» , where Q4 t-+ p3 is a non-nonnal irreducible quartic
surface witb 6 := (! . E)s = 3 , and (S, 1r*!) ~ (5, (j*!) ~ (P2, 0(2», or

(b) 8 is a (ruled) surface swept out by lines in p1d(C)+I . S is a pI-bundle

4> : S ---+ r over a smooth curve r of tbe genus ger) = td(!) - 6 + 1 ,
and (1r* ! . I) = 1 far a fiber 1 of tP . In particular, 5 is a cone over tbe
curve r jf 5 ~ s.

(II). H K 5 + 1r*! is nef, then we have eitber

(e) (8,!) ~ (54 ,0(1», (S6, 0(1», or (58, 0(1» , where Sd(C) C-.+ p,d(C)+I is a

non-nonnal irredueible surface af degree d(!) , and 6 := (L, . E)s = td(!)
with d(!) = 4,6,8. In partieular, (S,u*l:.) ~ (S,wi I

) and S C-.+ pd(C) is
a (normal) deI pezzo surface oE degree d(.c) = 4,6,8 ,

(d) 8 is a (ruled) surface swept out by comes in pi d(C)+l. Tbere is a pI_

libration t/> : S~ T over a smootb curve T , which has possibly singular
fjbers, such tbat (1r*.c . I) = 2 and K S + 1r*! =(td(l:.) - 6)1 for a
general fiber 1 of 4> , or

(e) K s + 1r*.c is big.

Proof. (I). Since K s+ 1r*{, is not nef, by Mori [Mo] (cf.[KMMD, there exist an

extremal ray R and the contraction rP R : S~ W of the ray R such that

(i) W is smooth of dirn W ::; 2 ,

(ii) (Ks+7r*.c). R < 0,

(iii) For any curve C, tP R(C) is a point <=> CER,

(iv) peS) = p(W) +1 l

(v) t/> R has connected fibers .

(1.9.1) Claim. dirn W ::; l.

. In fact, we assurne that dirn IV = 2. Then 4>R is birational. Take a curve CER.
Since (KS"+ rr*r.) . C < 0 , one can easily see that C is the (-1 )-curve on S and

(1T* (,. C) = O. Thus the curve C is contained in the exceptional set of J.l : S --+ S.
This is a contradiction, since J.l : S~ S is the minimal resolution. Therefore
dirn W ~ 1. 0

First, in the case of dirn W = 0, since peS) = 1, we have S f"V p2 ,hence,
S""" S f"V p2. On the other hand, since -(Ks+u* 1:.) ia ample and d{!) is even, we
obtain d(!) = 4, that is, u* r. ,...., 0~2(2) . By (1.3).(iv) and (1.5), we have hO(.c) = 4
,6 = 3. This proves (a).

Next, in the case of dirn W = 1, since peS) = 2, 4>R : S --+ r is a pI-bundle
over a smooth curve r := W. For a fiber f of 4>R, we have (K§ + 1r*{,). 1 < 0,

hence (rr*r.. f) = 1. Take a general smooth member CE 11r*!I. Since (1r*!' I) = 1,
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C is a section of ,pR. Thus we have g(r) = g(8) = !d(.L:) - 6 + 1 by Proposition

(1.5)-(c). If S '1- 5, then S is obtained from Sby blowing down the negative section
af S. This proves (b).

(11): Since K s+1r·r, is nef, by the base point freeness theorem due to Kawamata
(cf.[KMMJ), we obtain Bslm(Ks + 7r·.c)1 = 0 for m » O. By the contraction

theorem (see [KMM]), there is a surjective morphism r/> : S---+ T anto anormal
variety T of dirn T ~ 2 with connected fibers such that Ks + rr* [, '" <,6. A for an
ample line bundle A E Pie T.

In the case of dirn T = 0, we have KS = -1r. {,. Suppose that S ~ S , then,

for each irreducible component Bi of the exceptional divisor B of JL : 5 ---+- S, we
_have (KS . Bd = 0, since (1r* [, . Bi) = O. This shows that Bi is the (-2)-curve

on S. Thus S has at most rational double points, in particular, S is Gorenstein
and - K5 = u·.c is ample on S. Therefore S ia a Donna! deI Pezzo surfaee of
degree d({') (1 S; d(.c.) ~ 9) in l?d(~) (cf. [B2],(H...W]). Since d(t.) is eveD, we have
d(l.) = 2,4,6, or 8.

(1.9.2) Claim. d(.c) i= 2.

In fact, if d(L:) = 2, then the linear system 10'·.c1 defines a two to one surjective
morphism tP/u-.c\ : S --+ p2. Thus ~ can not be very ample. This contradicts the
assumption. Therefore d(r.) -:F 2. 0

By (1.3)·(iv) and (1.5), one can easily get

(h°(.C),d(.c),<5) = (4,4,2), (5,6,3), (6,8,4).

This proves (c).

In the case of dirn T = 1, since (Ks+ 'Ir. J:,). f =0 for a general fiber f of tjJ, we
have f ~ pI and (1T. 1: . f) = 2. Since (1r(f) . .c) = 2, 'fr(f) is aconie in ftd(~)+l.

This proves (d).

In the case of dirn T = 2, since (KS + 1r.t.? > 0, we obtain (e).
Thus we complete the proof. 0

(1.10) Proposition. Let (S,.c) be as in (1.9)·(11), namely, Ks + 1r.r, is nei. As­
sume that (1) der,) > 4 and (2) h1

( Os) = O. Tnen BslKs +rr*.cl = 0.

Proposition (1.10) follows easily from the following:

(1.11) Proposition (cf. [8], [Rl). Let M be a non·singular projective surface
and L a line bundle on M with BslLI = 0 and (L2) > 4. Asswne that

(1) KM + L is nei,

(2)h1(OM)=O,

(3) The singularities obtained by blowing down a11 the curves B with

(L . B)M = 0 are at worst rational.
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Tben BslKM + LI = 0.

Proof of Propo"ition (1.10).

By assumption (2) and the exact sequence (1.6.2), we obtain HO(S; R1/l.Og) =
O. Thus S has at worst rational singularities. Take any curve B with (7r.r.. B) = O.
Then B must be contained in the exceptional set of jJ, because (1.r. is ample on S.
Therefore, by (1.11), we complete the proof. 0

Proof 0/ Propo"ition (1.11).

Assume that there exists a base point x E M of the linear system IKM + LI.
Then, by Theorem 1-(i) and its proof in Reider [R), there exist an effective divisor
E on M passing through x, a vector bundle E of rank 2 on M, and exact sequences:

(LILa)

(LIlob)

o--+ OM(L - E) ---t E --+ OM(E) ---t 0,

o --+ OM .........-+ E --+.:Tz ® OM(L) --+ 0

such that

(i) the composition map OM(L - E) --+ E --+ .:Tz ® OM(L) is injective, where
.:Tr is the ideal sheaf of x,

(ii) L - 2E is big,

(iii) (L . E) = 1, (E2
) = 0 or (L . E) = 0, (E2

) = -1 .

(1.11.1) Claim. hO(OM(E» = 1

In fact, suppose that hO(OM(E» 2: 2. We set lEI = ICI +F, where ICI (resp.F)
is the movable (resp. fixed) part of lEI. By (iii) above, we have 1 ~ (L . E) =
(L . C) + (L . F). Since ICI is movable, we have (L . C) > 0, hence, (L . C) =
1, (L· F) = 0, (L .E) = 1, in particular, (E2) = 0 by (ii i). Taking ioto consideration
that BslLI = 0 and (L· G) = 1, we can see that <I>ILI(C) is a line in pdimlLI for a
general member G, where <I>]LI : M --+ pdimlLI is a morphism defined by the linear
system ILf. Thus we obtain C ~ pI and Oc(L) 'V Opl(I). On the other hand,
since KM + L is nef by assumption, we have

that is, (C2
) ~ -1. This is a contradiction, since IGI is movable. Therefore

hO(OM(E» = 1. 0

From (LILa), (LIlob), (1.11.1), we obtain
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In fact, the composition map OM ---+ E ---+ OM(E) induces an isomorphism

HO(M; OM) O:! HO(Mi OM(E)) f"V C.

This yields a surjection

in (1.11.2) and an isomorphism

(1.11.4)

Now, from an exact sequence

we obtain

(1.11.5)
o---+ HO(M; Jz; 0 OM(L)) ---+ HO(Mj OM(L)) ---+ C

---+ H1(M;Jz; 0 OM(L)) ---+ H1(M;OM(L) ---+ O.

Since BslLI = 0, we have an isomorphism

(1.11.6)

From (l.l1.a), since h1(OM) = 0, we obtain an injection

(1.11.7)

From (LILa), (1.11.2), we also have an injection

(1.11.8)

By (1.11.7), (1.11.8), we obtain an injection

(1.11.9)

Next, from an exact sequence

we have
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(1.11.10)
o ---t HO(M; OM(L - E)) ---t HO(M; OM(L))

---t HO(E; OE(L)) -t H1(M; OM(L - E)) ~ H1(M; OM(L»

By (1.11.4), (1.11.5), (1.11.9), we conclude HO(E; OE(L» ~ C. Since BslLI = 0,
we obtain OE(L) '" OE, Thus (L· E) = 0, in particular (E2 ) = -1 by (iii).

Let r.p : M ~ S be the contraction of all curves B with (L . B) = o. By an
exact sequence

we have
0= R1<p.OM ---t H1(E; OE) -t R2r.p.OM( -E) = 0 ,

that is, BI (Ej CJ E) = O. Therefore

1 ::; hO(OE) = X(CJE)
1

= X(OM) - {"2(-E)( -E - KM) + X(OM)}

1
= --(KM +E)·E

2

Thus we obtain -(KM +E) . E 2:: 2, that is, -(E'J) 2:: (KM· E) + 2 2:: 2, since
KM + L is nef and (L . E) = O. This contradicts the fact that (E2 ) = -1 above.
The proof is completed 0
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§2. A Fano threefold of index one as a compactiftcation of C3 •

1. Let us recall some facts on Fano threefolds of index r = 1 obtained by
Iskovskih ([Isd , [182]) and Takeuchi [T].

Let V := V2g - 2 '-+ pg+l be an anti-canonically embedded Fano threefold of
index r = 1 with Pie V ~ Z· Ox(H), where H '" -Kv is a hyperplane seetion and
9 = t(-K~) + 1 is the genus of V. Then,

(2.1) Lemma. (l)([Corollary 1 ; Is2 ]). V contains a one dimensional family of
liDes, and V does not eontain eones jf9 ~ 4.

(2)([Proposition 3-{iv) ; 182])' Tbe line Z on V intersects at most finite many
otber lines on V if 9 ;:: 7.

(3)([Proposition 2 ; 152 ]), V contains a two dimensional family of comes such
tbat a generic point v E V is contained in a finite number of comes !rom tbis family
jf 9 2: 5.

(4)([Theorem 4.4-(iii) ; Is1 ]). Tbere is only a finite number of comes passing
througb each point v E V jf 9 ~ 10.

We assume below that the genus 9 2: 7. Let Z c Y be a line on V. Then we
have the normal bundle either

{
(a)) NZ Iv "J Opl (-1) EB OPI or

(ß)) NzlV ~ Opl (-2) EB Ojpl(I).

Let T : V' --+ V be the blowing-up of V along Z and let Z' := T-)(Z) be the
exceptional ruled surface. Now, the line Z intersects at most finitely many lines
Z), Z2,'" ,Zm (m 2: 0) if 9 ~ 5 by (2.1)-(2), let Zi, Z~,,,· 1 Z:,. be the proper
images of Zi'S on V' and Z~ be the negative section of Z' if N z1v has the type (ßl)
above. We put H' := r* H - Z'. Then, .

(2.2) Lemma ([Lemma 2 ; Is2 ]). Tbere is a birational map, ealled a flop
X : V' ... > V+ with tbe following properties:

(2.2.1) Y+ is a non-singular projective tbreefold.

(2.2.2) X : V' - U~O Zi '" V+ - U~O Z; (isomorphie), where Z; is the proper
image of Z: witb respect to X for 0 ~ i ~ m.

(2.2.3) H k+ and Z+ are proper images oE H' and Z' witb respect to X, then we
have -Kv+ '" H+ , (H+ . Zr) = 0 and (H+ - z+)· zr = 1.

Let D be a generic conic intersecting the line Z and let Q be the ruled surface
swept out by conics intersecting the line Z. Let D+ and Q+ be the proper images
of D and Q in V+. Then,

(2.3) Lemma ([Proposition 1 ; Is2]). Tbere exists a surjective morphism
r.p : V+ --+ W '-+ pg-6 (g ;::: 7) onto a smootb projective variety W of
1~ dirn W ~3 such tbat

(2.3.1) r.p has connected f1bers,
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(2.3.2) cp( D+) is a pomt oE W for a generic come D+ ,and dim cp(Q+) ::; 1

(2.3.3) Ov+(H+ - Z+) - cp·Ow(l).
In partieular, R = ~[D+] is an extremal ray and cp is tbe eontraetion morpmsm

oE tbe ray R. Moreover,

(2.3.4) H g = 7, tben W = pI and I.p : v+ --. pI is a bundle whose iibers are
irredueible dei Pezzo surface oE degree 5.

(2.3.5) H g = 8, tben W = p2 and ep : V+ --+ p2 is a standard come bundle with
diseriminant curve ß ~ p2 oE degree 5.

(2.3.6) Hg = 9, tben W = p3 and ep : V+ --+ pa is tbe blowing-up oE p3 along
a smootb curve ß oE genus g(ß) = 3, deg ß = 7 lying on a unique cubic
surface F3 = ep(Z+), and Q+ - 3H+ - 4Z+.

(2.3.7) H g = 10, tben W = Q3 ~ uM is a non-singular byper-quardric and I.p :

V+ --. Q3 is tbe blowing-up oE Q3 along a smooth eurve ß oE genus
g(6.) = 2, deg 6. = 7 lying on a unique surface F4 = cp(Z+) ~ Q3 cut out
by a quardric in pi, and Q+ - 2H+ - 3Z+ .

(2.3.8) H 9 = 12, then W = Vs ~ p6 is the Fano tbreefold Vs oE degree 5 in
pB (tbe seetion oE tbe Plüeker embedding oE tbe Grassmann variety Gr{2, 5)
oE lines in If" by tbree hyperplanes) and I.p : V+ --. V5 is tbe blowiIig-up oE
a smooth rational curve ß of degree 5 lying on a umque byperplane section
Fs = ep{Z+) ofVs, and Q+ - H+ - 2Z+.

Remark 3. The composition 7l"2Z := ep 0 X 0 r- 1 : V··· > W ~ pg-6 is the
double projection from the line Z.

2. Let D be a smooth conie on V := V2g - 2 (g ~ 10). Then we have the normal
bundle either

{
(Q2) NDlv ~ Opl EI) Onn or

(ß2) N Dlv ~ Opt (-1) EI) Opt (1).

Let ,\ : V" --+ V be the blowing-up of V along the conic D and let D" := ,\-1 (D)
be the exceptional ruled surface. The conie D interseets at most finitely many lines
ZI, ... ,Zn (n ~ 1). Let Z;','" ,Z~ be the proper images of Z:' on V". We put
H" := ,\.H - D". Then,

(2.4) Lemma ([K]). There exists a fIop X' : V"··· > Vb witb tbe Eollowing
properties:

(2.4.1)

(2.4.2)

(2.4.3)

V~ is a non-singular projective threefold.

x, . V" - u? Z!':::: V~ - u? Z~ (isomorphie) where Z.~ is tbe proper. 1=1 • 1=1 I ,

image oE Z!' with respeet to X' for 1 ::; i ::; n.

H H b and Db are proper images of H" and D" witb respect to X', then we
bave -Kv~ - H~ ,(Hb • Zr) = 0 and (Hb - D b) • zr = 1.

Let; be a generic conie interseeting the conic D and let F be a ruled surface
swept out by conies interseeting the conic D. Let i~ and F b be the proper images
of i and F in Vb respectively. Then,
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(2.5) Lemma ([(2.8.1)-(B); Tl). Assume tbat 9 ~ 9. Tben there exists a sur­
jective morpbism 1/J : Vb --+ U e.......t pg~8 onto a smootb projective variety U of
l~ dirn U ~3 such that

(2.5.1) tP has connected Ebers,

(2.5.2) tP(-yP) is a point oE U for a generic conic ,b, and dirn 1/>(F P) ::; 1

(2.5.3) Ov~ (HP - D b ) ~ tjJ-Ou(l).

In particular, R = !4[....,.bl is an extremal ray and,p is the contraction morpbism oE
the ray R. Moreover,

(2.5.4) If 9 = 9, then U ~ pI and 1/J : Vb ----. pt is a bundle whose Ebers are
irreducible dei Pezzo surface oI degree 6.

(2.5.5) Hg = 10, tben U ~ p2 and 1/J : Vb ---+ jp2 is a conic bundle witb discriminant
curve .6 oE degree 4.

(2.5.6) If 9 = 12, tben U ::: Q3 '-+ pot and tP : Vb ---+ Q3 is the blowing-up oI Q3
along a smooth rational curve A oE degree 6. In particular, F b

f"'oJ 2Hb - 3Db•

Remark 4. In (2.5.5), let e be a generic quartic curve intersecting the came D
at two points and let ab be a proper image of e in Vb. Then ab is a generic fiber
of the come bundle TjJ : Vb --+ p1. In particular, we have (eb • D b) = (Hb • Sb) = 2.

3. Let (X, Y) be a smooth projective compactification of C3 with the second
Betti number b;z(X) = 1 and the index r = 1 , namely, -Kx '"""J Y. Then X is a
Fano threefold of index oue and Y is a non-normal irreducible ample divisor on X
with PicX ~ Z· Ox(Y) (cf.[Fu2]). Moreover we have

(2.6) Lemma (cf.[B-M), (Ist]). (1) Hi(..y; Ox) = 0 ,Hi(X; Ox(Y)) = 0 [ar

i > 0,

(2) Hi(X; Z) ::: Hi(y; Z) for i > 0,

(3) Hl(X; Z) = 0, H2(X; Z) ~ Z,

(4) Wy ::: Oy,

(5) Hl([j Oy) = O.

It is proved by Shokulov [Sh] that there exists a smooth, member HEl - Kx I,
which is a K3-surlace. We may assume that C := H n Y ia irreducible. By the
adjunction formula, we have

The integer 9 := t(-K})x + 1 is called the genus of X. Then we have
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(2.7) Lemma ([IsI]). X ~ V2g - 2 (2 :5 9 :5 10 or 9 = 12), and (g, h1 t 'J) is as
follows:

9 2 3 4 5 6 7 8 9 10 12
h1 ,2 52 30 20 14 10 5 5 3 2 0

Table 1

We put r, := Oy(-Kx) ~ Oy(Y). Then r, is very ample if 9 ~ 3 and Bslr,J = 0
if 9 = 2. Thus (Y, r,) is a non-normal polarized surface of K3-type if 9 ~ 3

(2.8) Lemma (cf. Proposition (1.5)). (i) Hi(y;r,) = 0 for i > 0,

(ii) d(.c) := (.(2) = (-Ki )x. = 2g - 2,

Let u : Y ---t Y be the normalization and I the conductor of u. Let E := Vy(I)
(resp. E = Vy(I)) be the closed subscheme defined by I in Y (resp. Y). Let

J-l : Y~ Y be the minimal resolution and B = Ui=l Bi the exceptional set of J-l.
...... _............ IJ-rr

Let E be the proper transform of E in Y. We set 11'" : Y ~ Y ---t Y.
By (1.4), (1.5), we obtain

(2.9) Lemma. (i). -Ky "'-I E as a Weil divisor, -Ky "'-I E+ 'Ei kiBi (k i ~ 0, ki E
Z), in particular Y is a rational or a rule~ surface,

(ii). g(C) = 9 - 6 for ageneral smootb member CE lu*r,I, where 6 := (r,. E)y,

(iii). (u*.c· E)y = 26,

(iv). HE is irreducible reduced, then b2(E) :5 2,

(v). Let Eo be an irreducible component of End, Suppose tbat tbe number
# {u -1 (Eo)} of irreducible componen ts of u -1 (Eo) (analytic inverse image) is more
than tbree. Tben multEoY ~ 3

Proof. We have onIy to prove the aBsertion (v). Since Eo is a non-normallocus of
Y, we have multEoY ~ 2. Assurne that multEoY = 2. Then a general hyperplane
section C 'OE j.cl has multiplicity two at a generic intersection point p. Thus the
pull-back C of C in Y intersects u-1(Eo) at two points (with multiplicity) over p.
This is absurd since the number #{u-1(Eo)} ~ 3. 0

Now, we shall consider an exact sequence ([B-K]):

(2.10)

Then,

o---t Z C:.! H 2 (y; Z) -. H 2 (Yj Z) EB H 2 (Ej Z)

-. H 2(E;Z) -. H 3(y;Z) ---t H 3(YjZ) ~ O.
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(2.11) Lemma. (a) b:J(X) +~(Y) +~(E) = 2h1
( 09) +~(E) + l,in particular,

~(E) ~ ~(X) +~(Y) - 2h1
( 09),

(b) t~(X) + t $ h1(Oy) +6.

Proof. Since ~(E) = ~(E), by (2.10), we abtain

~(Y)+ ~(Y) + ~(E) = b3 (Y) +~(E) + 1.

Sinee b3 (Y) = ~(X) by (2.6)-(2) and since

~(Y) = ~(Y) = b1(Y) = 2hl (09)

(cf. [B I])' we ~ave the assertion (a). Next, by (2.9)-(iü), one obtain that b:z (E) $ 26.
On the other hand, sinee

~(X) + 2 $ ~(X) +~(Y) +b:z(E),

we have ~(X) ::; 2h1(09) +26 - 1. This proves (b). 0

(2.12) Proposition. K y +1r. J:. is nei, in particu1ar, (K9 + 11'. J:.)'J ~ O.

Proof. Assume that Kr + 1r.r, is not nef. Then by (1.10)-(1) we have either

(1) y=y~p'J

or
(2) Y is a pl-bundle 4> : Y --+ r over a smooth eurve r of ger) = 9 - 6.

(1.12.1). Tbe case (1) cannot oecur.

In fact, since d(.c) = 2g - 2 (2 $ 9 :5 12, 9 'I 11), one can easily see that
u·.c ~ Op2(2) and 9 = 3. Let C E 1(7·.c1 be a smooth member. Then C is a smooth
conic in p2, hence 0 = g(C) = 9 - 6 = 3 - 6, that is, 6 = 3. From the Table 1, we
have b3(X) = 60 since 9 = 3. Thus by (2.11)-(b) we obtain 30 = tb3(X) < 6 = 3.
This is a contradietion. 0

ThuB we have the case (2). Then since hl(Oy) = ger) = 9 - 6, by (2.11)-(b),
we have b3 (X) < 2g. From the Table 1, we obtain 9 ~ 7. We put i c := ,p-I(t) for
t E r. Sinee (1r. J:.. ",-I(t)) = 1 for al1 t E r, i c is a line on X, and thus Y ia a roled
surface swept out by the family {it } of lines. H Y 1= Y, then Y is obtained from
Y by blowing down the negative section of Y. Thus Y ia a cone. But this cannot
happen because of (2.1)-(2). Therefore we have Y = Y.

(2.12.2) Claim. Any line i t ean not be 8 singular locus o[Y.

In fact, assume that some line lt =: Z is a singular loeus of Y. Then we have
multzY = 2. otherwise, we have multzY ~ 3. Hence any conie intersecting the
line Z is always contained in Y. Thus Y is a ruled surface swept out by conics
intersecting the line Z by (2.1)-(3). This shows that the pl-bundle Y contains
infinitely many rational curves , with {(7 •.c ") = 2. Since the rational cwve, ean
not be a fiber, we have Y ~ Fd (the Hirzebruch surface of degree d) , in particular,
g(r) = 9 - 6 = O. Let So be the section of Y with s~ = -d :$ O. Then the curve
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f can be written as f "J aso +bf , where f is a fiber and a, b E Z. Taking into
consideration that f ~ pI and (17·[" ,) = 2t we obtain a = b = 1, (17·[" so) = 1 and
-s5 = n :5 1. On tbe other hand, since (17·[,,/) = 1, we can write as u·[' "J So +kf
for some k E Z. Since 1 = (17· r. . so) = -n + k and 2g - 2 = -n + 2k, we bave
9 = 2. This contradicts the fact 9 2:: 7. Thus we must have multzY = 2 if the line
Z ia a singular locua of Y.

Now, we put V := X( = V2g - 2 , 9 2:: 7). In order to avoid the confuaion, we use
the same notations as in (2.2) and (2.3). Since multzY = 2, the lines Z},· .. ,Zm
intersecting the line Z is always contained in Y. By (2.1)-(1), we can see that
f t n (Zo U ZI U .. · U Zm) = 0 for almost all t E r. Let H+,Z+,Zt,oo. ,z~ .. ·
be as in (2.2) and (2.3), and let Y+, et be the proper images of Y, lt respectively.
Then we have (lt n Z+) = 0 for almost all t E r and y+ "J H+ - Z+. Since
(H+ - z+ . f t ) = 1 for almost all t E r and since y+ "J H+ - Z+ "J cp·G for
G E IOw(l)1 , one can easily see that 9 2:: 9. Since <p(lt) is a line on W , we have
Fi n cp(lt) =F 0 for i = 3,4,5, where Fi := cp(Z+). This is impossible becuase the
blowing·up center 6. is not a hyperplane section for 9 2:: 9. Therefore any line lt
cannot be a singular locus of Y. The claim is proved. 0

We shall continue the proof of the proposition. By (2.9), we have -KV "J

E. Since auy lt cannot be a singular locus, E contain no fiber as its irreducible
component. For a fiber f, we obtain 2 = (-KV' f) = (E . f). This shows that
either

(a) E = 2Eo with (Eo . f) = 1,

(ß) E = EI + E 2 with (Ei' f) = 1 for i = 1,2, or

(,) E is irreducible reduced.

In the cases (a), (1), we have ~(E) = ~(E) = 1. Since ~(Y) = 2, by (2.11)-(a),
we obtain b3(X) = 2h I (Oy) - 1. This cannot happen, since b3 (X) ia even. In the
case (ß), since ~(E) = 2 2:: ~(E) and since ~(X) = 2h I (Oy) + ~(E) - 1 is even,
we have ~ (E) = 1 and b3 (X) = 2(9 - 15). Since - K y "J EI +E 2 , by tbc adjunction
formula, we obtain g(Ed = 1- t(EI ·E2 ) :5 1, hence b3 (X) :5 2. By the Table 1, we

- -2-2 --
have 9 = 12 and ~(X) = 0, hence we obtain Ei "J pI, EI + E 2 = 4, (Et • E 2 ) = 2
and ((7.r.. Ed = 15 = 12 for i = 1,2, in partieular, Y f'V IFd (d ~ 0). Moreover one
can easily show that Y "J pI X pI or F2 . In the ease where Y ,-v F2 , Ei'S are sections

with E~ ::::s 2 for i = 1,2. Thus Y - E contains a smooth rational curve with the
self-interseetion number -2. This cannot occur sinee Pie Y f'V Z . [,. Therefore we
obtain Y ~ pI X PI. Moreover, since Ht(E; Z) = 0 and since (EI' E 2 ) = 2, EI ia
tangent to E 2 • On the other hand, we consider an exaet sequence over Z or R :

0= HI(E) -. H;(Y,E) -. H 2(y) -. H 2 (E)----.

-. H: (Y, E) ---. H 3 (Y) --. O.

Sinee ~(Y) = ~(E) = 1, we have
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H 3 (Y;lR) ~ H;(Y,EjIR) ~ H;(Y,E;R)

~ HI(Y - E; IR)
1 1 - -

f'V HI (i' X Ir - (EI U E 2 ); IR)

#0.

This contradicts the fact H 3 (y; R) = H 3 (X; R) = O. Therefore Ky +7l'''' [, is nef.
By (1.10)-(11), we have (Ky + 7l'''' [,)2 2:: O. The proof is completed. 0

Remark 4. Let X := U22 C-....+ pI3 be the Mukai-Umemura's example of the Fano
threefold of the index r = 1 and the genus 9 = 12 ( [M-U]). Then there exists
a non-normal hyperplane seetion Y such that (i) Y f'V pI X pI l (ii) K9 + 'Ir'" [, is
"not" oef, (iii) E = 2Eo (Eo is a diagonal) is non-reduced, here we use the same
notations as above. In our proof of (2.12), we use the conditions ~(Y) = 1 and
H3 (y; Z) f'V H 3 (X; Z) effectively.

(2.13) Lemma. (1). 8 + 2h1(09) ~ t(g +3) jf (Ky + 7l'''' [,)2 = O.

(2). 8 + 3h1(09) ~ t(g + 8) jf (Ky + 11"'" [,)2 > O.

Proof. (1). Since 8 - 8h 1(Oy) 2:: K9= 48 - 29 +2, we have the claim (1).

(2). Since (Ky + 7l'''' [,)2 > 0, by the Kawamata vanisning theorem, we obtain

Hiey; 09(2K9 + 1r'"[,)) = 0 for i > O. Thus we have

hO(2Ky + 'Ir'" [,) = X (2Ky + 71""'1:-)

=~(2Ky + 11"' .c)(Ky + 1I"'.c) + X( Oy)

= Kr - 38 + 9 - h1(Oy)

2:: O.

Since 8 - 8h1(Oy) 2:: K p,aue can get easily (2). 0

(2.14) Corollary. 9 ~ 9.

Proof. We.,put q := hl(Oy). Then, combining (2.11)-(b) with (2.13), we have

1 9+3
2(b3(.X) + 1) ~ D+ q ~ 8 + 2q ~ -2- if (K9 + 'Ir-[,)2 = O.

(2.14.2) ~(b3(X) + 1) ~ S + q ~ S + 3q ~ g; 8 ij (Ky + 1I"'.c? > O.

From the Table 1, one can easily see that 9 ~ 9. 0

4. Next, we shall prove that 9 = 12. This cao be done by proving that 9 =f 9,10.
For the proof, we need the following:
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(2.15) Lemma. (a). Assume that 9 ;::: 9 and that there is a line Z L...+ Y with
multzY ~ 2. If Y is a mied surface swept out by comes intersecting the line Z,
then 9 = 12. In particular, if multzY ~ 3, tben 9 = 12.

(b). Assume that 9 ~ 10. Then there exists DO comc D C-..+ Y such that
multDY;::: 3.

Proof. Consider the bouble projeetion from the line Z. In order to avoid the eon­
fusion, we use the same notations as in (2.2) and (2.3).

(a): By (2.3.6),(2.3.7) and (2.3.8), we obtain Q+ := Y+ I">J 3H+ - 4Z+,2H+ ­
3Z+ and H+ - 2Z+ if 9 = 9,10 and 12 respeetively. Sinee Y is a hyperplane
seetion, we have y+ I">J H+ - 2Z+, that is, 9 = 12. If multz Y ~ 3, then any cooic
interseeting the line Z is always contained in Y. Thus by (2.1)-(3), one ean see
that Y is a ruled surface swept out by comes intersecting the lioe Z. The assertion
(a) is proved.

(b). Similarly, since multDY ~ 3, Y is a ruled surface swept out by eonics
intersecting the conie D. H 9 = 12, then 'by (2.5.6) we have pP := YP I">J ~HP ­

3DP.Thus Y cannot be a hyperplane section. H 9 = 10, then, by (2.5.5), t/J(?) =
t/J(YP) coincides with the discriminant loeus ~ of the conic bundle t/J : VP ---+ p2.
Since deg ~ = 4 and since Y is a hyperplane section, this cannot occur. The proof
is completed. 0

Noe, since 9 2: 9 by (2.14), we obtain d(.c) := 2g - 2 2: 16. Aceording to
(1.10)-{11), we have the following two cases:

(2.16.A) There is a surjeetive morphism t/J : Y ---+ T over a smooth curve T whose
generic fiber 1 is a smooth rational curve with (."..*.c . I) = 2, in particular,
there is a numerical equivalence K9 +."..*.c =(g - 8 - 1)1 (where, 9 ~ 9).

(2.16.B) (Kp +."..* 1:,)2 > 0 .

(2.17) Lemma. 9 ~ 9.

Proof. Assume that 9 = 9. Then we have b3 {X) = 6 by the Table 1. We shall
derive a contradiction.

First, i~ the case (2,16.A), by (2.14.1), we obtain

4 ~ 0 +q ~ 0 +2q ~ 6 •

Since 0 ~ 1, we have q ~ 2. Moreover I we obtain

(i) q = 2 and 8 = 2,

(ii) q = 1 and 3 ~ 8 ~ 4,

(iii) q = 0 and 4 ~ 0 ~ 6.

We put E := E Ei (Ei: irreducible subscheme, not necessarily reduced).
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The case (i) : Since q = 2, we have Kr = -8, that ia, Y -!!..... T ia a pl-bundle

over T. Since ~(E) ~ 3 by (2.11)-(a) and since 6 = 2, applying (2.9)-(iii), we
obtain

3

4 = (1r* r.. B) ~ I)7r*.c· Ei)'
i=1

Thus there exists a component Eio ~ pI such that (1r*.c . Eio ) = 1. Thia Bio roust
be a section. This is absurd since the genus of the base curve T is equal to two.

The case (ii) : Since q = 1, we have b2(E) ~ 5 by (2.11).(a). First, in the case

of 8 = 4, we have Kr = 0, that is, Y~ T is a ]PI-bundle over T. Since

5

8 = (7r*.c. E) ~ L(7r*.c . Ed,
i=1

there is a component Bio such that (7r*.c . Bio) = 1. By the same reason as in the
case (i) above, we can derive a contradiction. Siroilarly, in the case of 6 = 3, then
we obtain

5

6 = (~*L' E) ~ L(7r*.c . Ei)'
, i=1

Thus there is a component Bio such that (7r* L·Eio ) = 1. If ~(E) = 5, then ~(E) =
1 by (2.11)-(a). Thus 7r(Eio ) = E is a line, and the number #{u-I(E)} = 5. By
(2.9)-(v), we have ffiultEY ~ 3. By (2.15)-(a), we obtain 9 = 12. This contradicts
the assumption. If ~ (E) = 6, ~ (E) :::; 2. Moreover, we have (1r*.c . Ed = 1 for
all i (1 :::; i :::; 6). By the same reason as above, ~(E) ':F 1. In case of ~(E) = 2,

E eonsists of two lines EI and E2 • Since ~(E) = 6, we obtain # {q-I(Ei )} ~ 3
for i = 1 or 2. This implies multiEi Y ~ 3, hence 9 = 12. Therefore we have a
eootradiction.

The case (iii) : We have ~(E) ~ 7 by(2.11)-(a). In the case of 6 = 6, we have

1(9- = 8, that is, Y -!!..... T is a pl-bundle over T ~ PI. Moreover we obtain

7

12 = (7r.~ . E) ~ L(7r*.c . Ei) .
., i=1

Thus we have a componeot Eio "J pI such that (7r*.c . Eio ) = 1,which is also a

section of tjJ. Then 71"(Eio ) =: E io is a line. Sinee Et n E io ':F 0 for any t E T, where
" := 7t"(4J-l(t» is aconie. Thus Y is a ruled surface swept out by conies {;t}
intersecting the lioe Eio. Hy (2.15)-(a), we have 9 = 12. Thia ia a contraWction. In
the case of 6 = 5, we have

7

10 = (7r* 12 . E) ~ L(1r*.c . Ei)'
i=1
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Since ~(E) = 1,:S; 2,:S; 3,:S; 4 if ~(E) = 7,8,9,10 respectively, one can easily
see that there is a line Eo C E such that the number #{cr-1(Eo)} ~ 3. Thus we
have multEoY ~ 3. By (2.15)-(a), we abtain 9 = 12, which ia a contradiction. In
case of 8 = 4, by a similar argument, we cau also derive the same contradiction as
above. Therefore 9 :I 9 in the case (2.16.A).

Next, in the case (2.16.B), by (2.14.2), we obtain

7 17
- < 8 + q < 8 + 3q < -.2 - - - 3

Since 8 ~ 1, we have q :s; 1. If q = 1, then by the inequality above we obtain
~ :s; 8 :s; l, hence 0 fj. Z. Thus we have q = 0 aod 4 :s; 8 :s; 5. In particular,

~(E) ~ 7 by (2.11)-(a). If 8 = 5, then we have

7

10 = (7T* [, . E) ~ L(7T*L.. Ei)'
i=l

Since ~(E) = 1,:S; 2,:S; 3,:S; 4 if ~(E) = 7,8,9, 10 respectively. By an argument
similar to the case (2.16.A) above, one cau show that there is a line Eo C E such
that multEoY ~ 3. Thus we;,:have 9 = 12 by (2.15). This is a contradiction.
Similarly, in the case of 6 = 4; one can derive a contradiction. Therefore 9 :I 9.
The proof of (2.17) is complete? 0

(2.18) Lemma. g:l 10.

Proof. Assuming 9 = 10, we shall derive a contradiction. From the Table 1, one
sees b3 (X) = 4.

First, in the case (2.16.A), we have the following

(2.18.1). (1) Let B = Ui Bi be tbe exceptional set of tbe minimal resolution

y ~ Y. Then each irreducible component Bi is contained in a singular Bber of

y ~ T, in particular, Y has at most rational double points.

(2) Tbere exists an irreducible component Bo c B such that the restrietioD
4>I Eo : Eo ---+ T is surjective.

In fact, assume that same Bi i.s not contained in auy singular fiber. Then the
restriction 4>/8, : Bi ---. T is surjective. We put Yi := 7f'(Bd E Y (a point on Y).
Then for generic t E T, it = 7r(q,:"l(t» C Y '-+ X is a cooic passing through the
point Yi. This is a contradiction because of (2.1)-(vi). Thus the exceptional set B
is contained in singular fibers. Let Ai be any irreducible component of a singular
fiber. Then we have (1(9 + 7T*J.:). Ai = (g - fJ - 1)(1· Ai) = O. Thus we obtain
either (-Ky . Ai) = (7r* [,. Ai) = 1 or (-Ky . Ai) = (7r* [,. A j ) = O. This shows
that Ai is a (-1)-curve or a (-2)4curve, and hence any irreducible component of
B is a (-2)-curve. Therefore Y has at most rational double points. The assertion
(1) is proved. Next, since -1(1' ,..... E+Ei Bi and since (-Ky . f) = 2 for a general

fiber f, we obtain (E . f) = 2. This proves the assertion (2). 0
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(2.18.2). (1) ~(Y) ~ 2. (2) ~(E) ~ 5 - 2q +~(E).

In fact, let 11," . ,fN be singular fibers, 1 + Gi the number of irreducible com­
ponents of fi and ßi the number of irreducible components of fi other than the
exceptional set B. By (2.18.1), 'we have ~(B) = L:Z:l(1 + ai - ßi)' Since

b:l(Y) = ~(Y) +b:l(B), we have

N N

~(Y) = 2 +L Gi = L(1 + Gi - ßd +~(Y).
i=1 i=1

This yields b:l(Y) - 2 = L:~1 (ßi - 1) ~ O. In particular, ~(Y) = 2 iff there
exists unique (-l)-curve in each singular fiber. This proves the assertion (1). By
(2.11)-(a), we obtain the assertion (2). 0

Now, by (2.14.1), we have

5 13
- < 6 + q < eS + 2q < -.2-, - -2

This implies that

(i)' q = 2 and 1 :::; 6 :::; 2,
i=:

(H)' q = 1 and 2 :::; 6 ~ 4 or ~

(iii)' q = 0 and 3 ~ eS ~ 6.

The case (i)' : Since eS ~ 2, we have b.z(E) ~ 2 and 2 ~ ~(E) ~ 4 by (2.18.2)-(2).
In the case of 8 = 2, we have

2

4 = (7r•.c. E) ~ L(7r*.c . Ed.
i=1

If ~(E) = 2, then b2 (E) = 1. This shows that E is a line or aconie) and
(7r*.c . Ed ~ 2 for i = 1,2. Thus Ei ~ pI far i = 1,2. Similarly, one can also show
that (7r*.c . Ei) :::; 2 for all i for the case of b:l (E) ~ 3. Thus E "J pI for al1 i. By
(2.18.1)-(2), we have a contradiction because the genus of the base curve T is equal
to 2. In the case of 8 = 1, we have (7r•.c. Ed = 1 for i = 1,2. By the same reason
as above, we have a contradiction~ Therefore q =I 2.

The ease (ii)' : By (2.18.2)-(2);' we obtain ~(E) ~ 4. In the case of 8 = 4, we
have

4

4 = (7r. (,. E) ~ L(7r*.c . Ei).
i=I

If ~ (E) :5 5, then ~ (E) :5 2, and there is a line (or aconie) Eu c E such that
the number #{u-I(Eo)} ~ 3. Hence multEoY ~ 3 by (2.9)-(v). By (2.15), this
cannot happen in aur case. If b2(E) = 6, then b2(E) :5 3 and (7r*.c . Ed :5 2 for all
i. Thus Ei rv pI for all i. Since q = 1, this cannot happen. For the eases ~(E) ~ 6,
one can easily show that either (7r•.c . Ei) ~ 2 for all i or there is a line (or an



25

irreducible conic) Eo C E such that the number #{u-1(Eo)} ;::: 3. Thus we also
have a contradiction. Similarly, in the case of 0 ~ 3, one can derive a contradiction.
Therefore q f:. 1..

The case (iii)' : By (2.18.2)-(2), we have ~(.E) ;::: 6, and

6

12 = (1T.!' E) ;::: L(7r·!· Ei).
i=l

In the case of 8 = 6, if ~(E) :5 9, then, taking an aceount of b2(E) 5 4, one
can easily show that there is a line (or aconie) Eo C E such that the number
#{a-1(Eo)} ;::: 3. So we have multEoY ;::: 3. This eannot occur in our case by
(2.15).

If ~(E) ~ 10, then one can see that the number #{Ei ; (1T* L, . Ei) = I} 2:: 8. For
each Ei with (7r. [, . E;) = 1, since (Ky . Ei) + 1 2:: 0, we have the self-intersection

num~er El ::; -1. On the other hand, since K~ = 48 - 18 = 6, Y can be obtained
from the relatively minimal model f n (n ;::: 0) (Hirzebruch surface) by bolwing up
two times. Thus one can see that Y cannot contain so much E;'s with the negative
intersection number. In the case of 8 = 5, we have

i:- 6

10 = ('ir. [, . E) ~ L(1r· (,. E;).
i=l

If b2(E) ~ 9, then there is a line (or aconie) Eo such that the number
#{a- 1(Eo)} ;::: 3. This cannot happen in our case as we have seen. H ~(E) = 10,
then we have (7r.[, . Ei) = 1 for al1 i. Thus there is a line Bio C E such that
;t n Eio f:. 0 for a generic t E T. Thus Y is a ruled swface swept out by comes {;t}
intersecting the line Eio' This cannot happen in our case by (2.15). For the cases
o:5 4, by a similar argument, one can get easily a contradiction. Consequently, we
have 9 f:. 10 in the ease (2.16.A).

Next, in the case (2.16.B), since b3 ( ..\"") = 4, by (2.14.2), we obtain

5
"2 :5 8 +q :5 8 +3q :5 6.

Henee we have either

(i)" q = 1 and 2 $ 8 :5 3 or

(ii)" q = 0 and 3 :5 6 :5 6.

The case (i)" : First, in the case of 6 = 3, by (2.13)-(2), we obtain °:5 K 9:5
36 - 9 = 0, that is, Kf; = O. Thus Y is a pl-bundle v : Y ---+ T over an elliptic

curve T ,...., Tl. 11oreover since e := ~(E) ~ 3 by (2.11), we obtain

e 3

6 = L(1r·(,. E.-) ;::: L(1r·[,. E.-).
;=1 i=1



26

If ~(E) = 3, then ~(E) = 1 and there exists a component Ei C E such that
(1r. C. . E) ~ 2. Thus E = 1r(Ei) is a line or aconie and we have the number
#{u-I(E)} = 3. This cannot happen as we have seen before. H ~(E) ;::: 4, then
there exists a component Ei C E such that (Tr· [. . Ei) = 1. This Ei /"OoJ pI must be
a fiber of v : Y --+ T, hence we have (Ky . Ed = -2. Since K y + 1r.[. is nef, this
eannot oeeur.

Next, in the ease of 8 = 2, we have

e 3

4 = L(1r·[.. Ed ~ L(7r·[.. Ed·
i=I i=I

By the same reason as above, we may assume ~(E) ;::: 4. Then we obtain (1r. [. .
Ei) = 1 for all i (1 ~ i ~ 4), henee Ei ~ pI is irreducible and reduced for all i.
Since q = 1 and sinee K y + 1r.[. is nef, we have El < 0 for all i. Let J/ : Y --+ T

be the ruling over an elliptie eurve T. Then Ei's are all contained in singular fibers
of v, hence (Ei' Ei) ~ 1 for i f j. \Ve claim that (Ei' Ei) = 0 for i f j. In fact, if
(Ei' Ei) = 1 for some i f j, then, since

4 N

-Ky /"OoJ ~.·.Ei + L kiBi (k i E Z ,ki > 0),
i=1 : i=1

by the adjunction formula, we ha~e Bi ~ pI and ki = 1 for all i. Since (-K9' f) = 2

and (Ei' /) = 0 (1 ~ i ~ 4) for a general fiber / of v, there exists a component
Bi ~ PI. This is a contradiction. Therefore we have (Ei' Ei) = 0 for i f j.
Let Yo := Y/E be anormal projective surface obtained by contracting the disjoint
rational curves Ei (1 ~ i S; 4). Then Yo has at most rational singularities. Let
10 C Yo be the image of a general fiber 1 of v. Then 10 does not pass through
the singularities of Yo and the self-interseetion number IJ = O. Thus we have
b2(YO) ~ 2. On ·the other hand, since 2 :::; ~(Yo) = ~(Y) - ~(E) = ~(Y) - 4, we
obtain b2 (Y) ~ 6, henee K~ ~ -4. This is a contradiction since K~ ~ 38 - 9 = -3.

The case (ii)" : By (2.11) and (2.13)-(2), we have ~(E) ~ 5. First, in the
case of 8 = 6, since K:p ~ 38 -.JO = 8, one can see that Y /"OoJ Fn (Hirzebruch

surface of degree n). Let ~ := ~fKY+1f• .c1 : Y --+ p3 be a morphis.ID defined by
the linear system IKp + 1r•.cl, wh~ch is free from the base point by (1.10). Since

(1(y + 1r•.c)2 = 2, we obtain Y ~ pI X pI, or 1F2 . Let So (resp. S2) and f be
the minimal section and a ßber of pI X pI (resp. IF2 ). Then oue can easily

show 7r•.c /"OoJ 380 + 3/ (resp. 382 + 6/). Thus we have no irreducible curve f with
1 ::; (7r• .c ·l) :::; 2. On the other hand, since

e 5

12 = L(7r· L· Ei) ~ L(1r·C.· Ei),
i=1 i=l

there exists a component Ei such that (tr·! . Ei) S; 2. This is a contradiction.
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Next, in the ease of a= 5, we have

e 5

10 = L(1I"*.c . Ed ~ L(1I"*.c . Ed,
i=l i=l

If e = ~(E) :::; 7, then one can easily see that there exists a line or a conie
E o C E such that the number #{11-1(Eo)} ~ 3. This eannot happen as we have

seen before. So we mayassume that e = ~(E) ~ 8. Then there exist irreducible
eomponents EI,' .. ,Eeo (eo ~ 6) with (1I"*.c . Ei) = 1 for 1 :::; i :::; eo. Thus Ei's
(1 :::; i :::; eo) are redueed. Since K y + 1I"*.c is nef, we have (Ky . Ei) + 1 ~ 0,

Jhat is, E1 < 0 for all i (1 :::; i :::; eo). Sinee q = 0, Y is rational, hence E is
eonnected and Ered has 00 eyc1e by an argument similar to (1.6).Thus, applying
the adjunetion formular to the eurves Ei (1 :::; i :::; eo), one ean show (Ei .Ej) = 0

for i i j ,(1 :::; i, j :::; eo). Let 90 := Y/Ba, where Ba := U~~l Ei, be the contraction
of the disjoint exceptional eurves Eo. Then Yo has at most rational singularities,
and we have ~(Y) = ~(Yo) + ~(Eo) ~ 1 + eo ~ 7. On the other hand, sinceKr ~ 3<5 - 10 = 5, we have ~(Y) :::; 5. This is a contradiction.

Similarly, in the case of <5 = 4, we may assume eo = ~(E) ~ 8. Then one can
find irreducible components Ei C Ewith (1I"*.c. Ed = 1 (1 :::; i ~ eo). In partieular,
we have (Ei .Ej) = 0 for i i j (1 :::; i, j ~ co) and ~ (9) ~ eo + 1 ~ 9 by the
same arguments as above. On the other hand, since Kir ~ 36 - 10 = 2, ~e obtain

b2 (Y) :::; 8. This is a contradiction.
Finally, in the ease of<5 = 3, one can easily show that there exists a line Eo C E

such that the number #{O"-l(Eo)} ~ 3. This cannot happen in our ease. Therefore
we have 9 i:- 10 in the case (2.16.B). This completes the proof of (2.18). 0

By (2.17) and (2.18), we conc1ude the following:

(2.19) Theorem (cf.[P],[p.S2],[Fu2]). Let (X, Y) be a smooth projective com­
pactification of C3 witb tbe second Betti number b2(X) = 1 and tbe index r = 1.
Tben X is a Fano tbreefold of index one and tbe genus 9 = 12, which is anti­
canonically embedded into p13 witb tbe degree 22, and Y is a non-normal hyper­
plane section of X, in particular, Y is rational.
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§3. The structure of V22 as a compactiftcation of C3 •

1. Let (X, Y) be a smooth projective compactification of C3 with ~(X) = 1 and
the index r = 1. Then by (2.19) X .~ V22 C-..+ pl3 and Y is a non-normal hyperplane
section of X. We use the notations of §2.

By (1.6) and (2.11) , we have

(3.1) Lemma. (1) Y is a rational surface,

(2) Y has at most rational singularities,

(3) hI(Oy) = h2 (Oy) = 0 = bl(Y),

(4) E red is connected and has no cyc1e,

(5) ~(Y) + b2 (E) = ~(E) + 1.

Accormng to (2.16.A) and (2.16.B), we have two cases :

(A) There is a surjective morphism cP : Y --+ T ,...., pI such that (1r*.c . f) = 2
for a generic fiber f""" pI~·'in particular, K 9 + 'Fr-!,...., (11- 6)/.

(B) (1(9 + 7r-.c? > o.
,

* The structure of (X,Y) ,in the case (A).

In (2.18.1),(2.18.2), we have proved

(3.2) Lemma. (1) Let B = Ui Bi be tbe exceptional set of the minimal resolution

Y~ Y. Then eacb irreducible component Bi is contained in a singular fiber of

Y~ T I"V pI, in particular, Y has at most rational double points.

(2) There exists an irreducible component Bo c B such that the restrietioD
4>l eo :Bo -Jo T ,...., pI is surjective.

(3) Let A j be an irreducible component of a singular fiber of 4>. Then A j is either
the (-1 )-curve witb (1r* l . A j ) = 1 or tbe (-2)-curve witb (11"* l . A j ) = O.

(4) ~(Y) ;::: 2, in particular the equality holds jf and only if there exists exactly
one (-1)-curve Aj witb (1l'* (, . Aj~. = 1 in each singular fiber of 4>.

(5) b-z{B) = ~(Y) +~(E) - 1 ;:: 2.

(6) 6 ~ 7.

2. Let Eio C E be an irreducible component with (EiD' f) 1:- 0 for a generic
fiber f of cP. Since (-1(9 . f) = (E . f) = 2 by (3.2)-(1), the number of such a Eio

is at most two.

(3.3) Lemma. Eo := 1r(Eio ) ~ Y C-+ .1( is a line on X.

Prao/. The proof will be divided inta several steps.



29

(3.3.1). Let A be an irreducible curve with (1I'" •.c .A) ~ 2 and (A . f) t:- 0, where
1 is a generic fiber of t/J. Then A := 1T(A) is a line on X with ACE. In particular,
Eo cannot be aconie.

In fact, by assumption, A is a line Of aconie on X. HAis aconie, then Y is a
ruled surface swept out by conies {"Yd, where it := 1T(eP-I(t» for a generic t E T.
According to (2.5.6), Y cannot be a hyperplane section. This is a contradiction.
Thus Ais a line on X. Since K 9 +1T. f., ""J (11-6)/, we obtain (Ky .A) ~ (9-6) > 0
by (3.2)-(7). On the other hand, since -Ky is effective, we obtain (Ky . A) ~ 0
unless ACE. This implies ACE. 0

(3.3.2). There exists an irreducible component Ei C E such that t/J(Ei ) is a point
ofT ~ pI.

In fact, assuming the contrary, then we have (Ei' f) 1:- 0 for each irreducible
component Ei C E. Since ~(E) 2:: 2 by (3.2)-(5) and since (E . f) = 2, we
obtain E = EI + E2 , where (EI' f) = (E2 • I) = 1. By (3.2)-(6), we have
1<9 = 48 - 22 ~ 6, that is , ~(Y) 2:: 4. Thus q, : Y -+ T has at least a singular

fiber qS-I(O) =: 10 ""J l:~o AiBi ,,(.Ai E Z, Ai > 0). By (3.2)-(3), we mayassume
that B5 = -1, (1T.f.,. B o) = 1 and Br = -2, (1I'" • .c. B;) = 0 (1 ~ i ~ m). Since
H 1(E; Z) = 0, we have H l (E ~ B; Z) = 0 , namely, E U B has 00 cycle. Hence,
applying the adjunction formU;1a, we obtain (EI' E2 ) = 0 or 2. In the case of
(EI' E2 ) = 2, by the adjunction formula, we have easily En B = 0. Hence we have

2 = (-K9 . f) = (E. I)

=(E·h)=(El ·h)+(E2 ·h)

= (EI' Bo) +(E2 • Bo).

This implies (-1<9 ·Bo) = 2. This is a contradiction since Bo is a (-l)-curve. In the

case of (EI' E2 ) = 0, applying the adjunction formula, one sees that the number of
the singular fibers is equal to one. 1tforeover since the singular fiber contains exactly
one (-1 )-curve and since the other components are al1 (-2)-curves, we obtain a
linear equivalence

where

(EI' B4 ) = (E2 • Bs) == 1,

(B4 • Bs ) = O,(B3 • B;) = 1 (i = 2,4,5),

(Bi+1 • B;) = 1 (i ~ 2).

In particular, the number of irreducible components of the singular fiber 10 is equal
to 6. This yields ~(Y) = 7, that is, 1\r. = 3. Since K p= 48-22, we get 6 = 2.5 tt Z.
This is a contradiction. This proves (3.3.2). 0
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We shall prove (3.3) below. Assume that Eo C E is not a line. Since the
hyperplane section Y is a ruled surface swept out by the conics {,t} intersecting
Eo, Eo cannot be a conic by (2.5.6), that is, deg Eo = (-Kx .Eo)x ;::: 3. According
to (3.3.2), there is an irreducible component EI of E such that 4>(EI ) is a point.
We putEI := 1r(Ed ~PI. Then since (7[* [, . EI) :5 2 (the equality holels only if
EI is a regular fiber of tP), EI c E is a line or a conic. Since deg Eo ;::: 3, we have
EI :/: Eo. Let A be a line or aconie intersecting the curve EI and let .4 be it's
proper transform in Y. In the case of A fI. E, taking into account that (K9 . .4) < 0

and K y + 7r* [, = (11 - 8)f, Ais contained in a fiber of 4>, hence we have lt nA = 0
for a generic t E T. In the case of ACE. By (3.3.1), if (.4 . f) =F 0, then A is
a line and Y is a ruled surface swept out by the conies lt intersecting the line A.
Taking Ainstead of Eo, the lemma is proved. So we have only to consider the case
of (A . f) = 0, that is, 4>(A) is a point. In this case, we also have lt nA = 0 for a
generic t E T.

Now we put EI =: Z (resp. =: D) if E l is a line (resp. a conic) and consider the
double projection from the line Z (resp. conic D). In order to avoid the confusion,
we use the same notations as in (2.2),(2.3),(2.4),(2.5), where A is considered as a
flopping curve Zi. By the observation above, we have Z+ n li = 0, Q+ n "'It = 0
(resp. D~ n "'I; = 0, F~ n "'I; --:. 0), where li (resp. In is the proper image of
a generic conic " in V+ (resp!·~ V~). Thus we obtain cp(Z+) n cp(,i) = 0 (resp.
'ljJ(D~) n 1/J(,;) = 0). This is a contradiction because <,o(Z+) and cp(D~) are ample
(see (2.3.8),(2.5.6». Therefore Eo C E is a lioe 00 X. This completes the proof of
(3.3). 0

3. Let Z := Eo C E be the line in (3.3), aod we put V := X. Then Q := Y is a
ruled surface swept out by conics meeting Z. Let us consider the double projection
7r2Z from the line Z. Then we have

, x +V --->-V

r 1

""2Z
V -- -}-Vs::::::W.

Since
.,

C3 ~ X - Y -.: V - Q ~ V' - (Q' U Z')

~ v+ - (Q+ U Z+)

~W-Fs

~Vs-Fs,

one sees that (Vs , Fs ) is a smooth compactification of C3
, where we use the

notations of (2.2),(2.3). By Theorem B (see Introduction), we obtain Fs ~ Hgo
or Hg. Moreover, 6. := 1,"(Q+) C Fs is a smooth rational curve of degree 5 and
Li := cp(zt) c Fs (0 ~ i ~ m) is a line on Vs which is a 2-chord for ß
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(3.4) Lemma. The non-nonnallocus E of Hgo is unique 2-chord for ß, in par­
ticular, ß n E = {2p} (double points).

Proof. Let u : Jf;: ~ Hs be the nonnalization and E be the analytic inverse
image of E. Then it is known that 1f; e!! Fa. Let 8a be the negative section of
Fa. Then there is a fiber 10 such that E = 8a + 10 and u·ß = 8r + 10, where
8~ f'V 8a +3/a ia an infinite section of Fa (cf.[Fud, [F-N2], [P-Sd). Let It (t =F 0)
be a general fiber of Fa . Since (u'" ß . It) = 1, the line u(lt) cannot be a 2-chord
for ß. On the other hand, since (u· ß· E) = 2, the line E ia a (unique) 2-chord for
ß. We put p := u(/o). Then we have easily ~ n E = {2p} (double points). D

(3.5) Lemma([Fu1D. Hg contains exactly one line Eo passing through tbe ratio­
nal double point Po of A4 -type.

Under the notations above, we have the following:

(3.6) Proposition. (1). Tbe normal bundle N ZIX has the type OPI (-2) ffiOpt (1).

(2). There exists no other line intersecting the line Z.

(3). Ered = Z, tbat is, the reduction Ered of tbe non-nonna1locus of Y is a line
onX.

(4). Fs ~ Ht:.
Proof. (1): Assurne that N ZjX f'V Oin (-1) ffi Opt, and let zt, .. · ,Z~ be as in
(2.2). Then we have Z' f'V F1 , and Li's are all 2-chords for~. Let I: be a general
fiber, which are not intersecting the eurves Z~ (1 ~ i ~ m). Let li be it's proper
image in V+. In the ease where Fs ~ Hgo, by (3.4), we have m = 1, in particular,
<p(li) is a conie with ",(li) n LI = 0, where LI = E ia the non-normallocus of
H~. This cannot oecur since H~ - E f'V C2 . In the case where Fs f'V Hg, ",(li) ia
a conie not passing through the singularity of Hg. Since Pie Hg f'V Z· (-KHO), by

~

an easy argument, one gets a contradiction.

(2): This follows directly from (3.4) and (3.5).

(3): Assume that E has an irreducible component other than Eo = Z. By (2),
we have the degree deg E 2::: 2. Since Y+ := Q+ ~ ~ is a pI ~bundle, it is smooth.
Sinee Vi - Z~ f'V V+ - Z:, Y' = Q' is smooth outside Z~. This eontradiets the
assumption.

(4): Assume that Fs f'V Hg. Let J.L : iig ~ Hg be the minimal resolution and
let B = U1=IBi := J.L-I(pO) be the exceptional set of j.i, where Po = Sing Hg. Then
it is known that B is a linear tree of the (-2)-curves, and we have the following
relation:

(Bi' B i+1 ) = 1 (1 ~ i ~ 3), (Bi' B j ) = 0 if li - i! > 1,
(Eo . Ba) = 1, (Eo ' Bd = 0 if i :f 3

, where 150 is the proper transform of the line Eo in iig (see [Fu I ]).

......... 4 """ ,.... ..........
Sinee H2 (Hgj Z) f'V ffii=I Z[Bil E9 Z[~ol, the proper transform ~ of ~ in Hg is

writ ten as folIows:
4

~ f'V L kiBi +5Eo,
i=I
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for some ki E Z.
If Po fI. .60, then since (-K Hg . ß) = 5, we have ß 2 = 3, hence we obtain

(6.. Eo) = t rt Z. Thus we have Po E ß. Since ß is a smooth curve passing through
the rational double point Po of A,,-type, there exists exactly one component Bj such
that (~ . B j ) = 1, (~. Bi) = 0 (i # j). Applying the adjunction fonnula, one
gets k1 = j~5 f/. Z (1 ~ j ~ 4). This is a contradiction. Therefore F5 ~ H5 . The
proof is completed. D

(3.7) Proposition (Cf.[IS2]). Let E and ~ be as above. Tbe inverse birational
map 1r;-i :V5 - -- >- V = V22 is given by tbe linear system IOv6 (3) @ .11-1, wbere
1r;-i = T 0 X-I 0 <p-l and J"E is the ideal sbeaf oE E.

We put H2'2 := 1r;i(ß). Then we ha.ve just proved that V:n -Hn ~ Ca and R2'2
is a ruled surface swept out by conics intersecting the line Z := Ered = 1r;-i (H~).
Consequently, under the notations above, we have :

(3.8) Proposition. Let (X, Y) be a smooth projective compactification olCa witb
~(X) = 1 and the index r = 1. Let 1r :Y ....!!..... Y ~ Y be tbe minimal resolution
and put L := CJy(-Kx). Then ,o.

(1). K y + 1i" • .c js nef, and :

(2). (X,Y) ~ (V22 ,H2'2) jE(Ky + 7r*.c? = O.

Remark 5(Fua]). In the case of ~ n E = {2p} (double points), one has fJ = 4
and r/J : Y ---t T ~ IF I has exactly one singular fiber

13

/0 := UBi U EI U E2 •

i=1

Moreover, we abtain an linear equvalence

7 6

-Ky "J 2Eo+3E1 +3B2 +2:(3 +i)Bi +2:(3 + i)B14 - i ,

i=1 i=1

where

(Bo . B7) = (EI' BI) = (E2 • B13) = 1, (Ei' Ej) = 0 (i "I j),

(Bi' B i+I ) = 1, (Bi' B j ) = 0 (li - jl > 1),

and (Bo . f) = 1 for a general fiber:'f of l/J.
The singularity of Y' can be obtained from Y by blowing down the linear tree

of (-2)-curves U::I Bi, hence, Y has a rational double point of A l3 -type as a

singularity. Since E = 2Eo + 3E1 + 3E2 , E = Vy{I) is non-reduced (cf. Theorem
D-(II». Moreover, we have H/22 - E ~ C2

.

* The structure of (X,Y) in the case (B).

4. Let Eo C Ered be any irreducible component of the non-normallocus Ered of
Y. By assumption, 1(9 + rr·.c is oef and big. Then
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(3.9) Proposition. d:= deg Eo = (H ·Eo)x = 1, where H is a hyperplane section
oE X = V22 •

The praof is given in several steps.

(3.9.1). multEo Y = 2.

Proof. Assume that multEoY ~ 3. Then auy conic intersecting Eo is always con­
tained in Y. Hence Y is a ruled surface swept out by conies intersecting Eo (see
(2.1)-(iv)). Take a generic conic f C Y with 'Y n Eo ~ 0, and let 9 be the proper
transform of'Y in Y. Since Kr> + 7f- t:. is nef and since -Kr> = E+ B ia effective,
we obtain 0 > (Ky .:::;) 2:: -(7f*.c . 9) = -2, that ia, (Ky ·9) = -1 or -2 for a
generic conic 'Y C Y. Since the (-I)-curves cannot make a continuous family, we
conclude that (Ky . 9) = -2, that is, (Ky +7f*.c. 9) = 0 for a generic conic f C Y.
This shows that (Ky + tr- [,)2 = 0, since BslKy + 7f* [,1 = 0. This contradicts the
assumption. Therefore we have multEoY = 2. 0

(3.9.2). d $ 4.

Proof. We shall first show that D;:= (H· E) $ 6. In fact, sioce K y + 7T-[, is oef and
big, by the Kawamata vanishin~ theorem, we have hi(2Ks> + 7T*.c) = 0 for i > O.
By the lliemann-Roch theoreQ)", we obtain 0 $ hO(2K9 + 1I"*.c) = K~ - 3D + 12,
hence, we have 8 ~ K:p ~ 3D -12. This yields D~ 6.

Let r : X' ---+ X be the blowing up of X along Eo and let E~ := r-1(Eo) be
the exceptional ruled surface. Let Y' be the proper transfo,rm of Y in X'. Then we
have Y' r-J r-H - 2Eb by (3.9.1) and (E~)3 = -cl(NEo1x ) = 2 - d (Cf.[ISl])' Let
us consider an exact sequence

Since hi(OX,(E~)) = 0 far i > 0 by the Kawamata vanishing theorem, we obtain
the surjection

c13 - d
f'V HO(Ox,(r* H - E~) ---+ HO(Oy,(r* H - E~)) r-J C12 - d ---+ O.

Since BsIOx,(r*H -Eh)[ = 0, we.also have BsIOy,(r*H -Eh)1 = 0. Let?jJ : X' --+

p12-d be a morphism defined by the camplete linear system IOx'(r* H - Eb)! on
X' and let t/J' : Y' --+ pll-d be the restrietion on Y'. Then we obtain 18 - 3d =
(r- H - Eh)2( r* H - 2Eh) ~ deg tk'(y') ~ codim ?jJ'(Y') + 1 = 10 - d. This yields
d ~4. 0

(3.9.3). d::; 3 if E = Eo is irreducible and reduced.

Proof. By (3.9.2), we have d ::; 4. We assume that d = 4. Under the notations
in (3.9.2), we have a (birational) morphism t/J : Y' --+ M := ?jJ(Y') C-....+ pT, where
degM = codimM+1 = 6. Is is well-known that M is a rational seroll or a cone over
a rational curve of degree 6 in p6. Take a smooth hyperplane section H containing
Eo. Since (H . Eo) = 4 and since (Eo . EO)H = -2, we obtain an exact sequence
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This yields NEol x ~ Onn(a)E90pl(b), where (a,b) = (-2,4), (-1,3), (0,2), (1,1),
hence E~ ::: Ft (t = 0,2,4,6). We also have OE~(Y') = OE~(-KE~) = OEo(2s t +
(t +2)I), where S t (resp. I) is the negative section (resp. a fiber) of the Hirzebruch
surface 1Ft • We put A := E~ n Y'.

(3.9.3.1). Y' i5 nonnal.

In fact, asswne that Y' is non-normal. Then the non-normallocus is contained
in A = E~ n y' since Eo is irreducible. Take a general hyperplane section H of X.
Let Ao be an irreducible component of A with T* H·An i= 0, here Ao is not a fiber of
E~ :::: IFt . Since muItEoY = 2, y' is smooth at a general point of An. Thus Y' is
non-normal along a fiber 1o C E~. On the other hand, since (T· H - E~) . 1o = 1, M
has a singularity along the line tjJ(fo) on M. This is absurd since M is normal. 0

(3.9.3.2). y' has at most rational double points, in particular, tbe normalization
Y 15 Gorenstein.

In fact, let 9 : Y' --+ y' be the minimal resolution. Consider the following exact
sequence of cohomology:

0-+ H1(OYI) --+ H1(OYI) --+ HO(R1g*Oy,) --+ H 2(Oy,) -+ .

Since Y' is rational and si.oce H2(OYI) = HO(Oy,(-E~» = 0, we get
HO (R1g.09') = 0, hence Y' haB at most rational singularities. Since Y' is Goren­
stein, we have the claim. 0

(3.9.3.3). y ~ Y'.
We have only to prove that A = E~ n y' contains no fiber of E~ ~ F t • In fact,

assume the contrary and let 10 c A be a fiber of Eb. Then there is abirational

morphism h : Y' --+ Y such that h(fo) is a smooth point of M, where 10 is the
proper transform of 10 in Y'. Hence h is a (-1)-curve on Y'. We put.c' := T· Hly'
and E' := g* {,'. Since K Y' +L' = (r* H - Eh)IYI is nef and big, so is K Y1 +E' =
g*(/{Y' + L'). Hence we have

o ~ (Ky' + E') .10 = -1 +(l' ·10) = -1.

This is a contradiction. Therefore A contains 00 fiber of E~. This implies y' ::::
Y. 0

(3.9.3.4). ~(M) = 1, that is, M .is a cone.

In fact, since ffiultEoY = 2, we obtain ~(A) ~ 2. Taking inta consideratian that
X' - (y' U E~) ~ C3

, one sees bz(Y') = ~(Y' n E~) = ~(A) ~ 2. On the ather
hand, there is a line Zl on X meeting Eo by (2.1). Then the proper transform Z~

of Z1 in Y' is blown down to a point of M since (T· H - E~) . Z~ = 0. This implies
that ~(Y') = 2 and b2(1\1) = 1. 0

(3.9.3.5). Y is a ruled surface swept out by rational curves oE degree three meeting
Eo.

According to (3.9.3.3), we have

(3.9.3.5-a)
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and

Let L he a generie line on the cone M C p7 and let L' (resp. L) he the
proper transfonn of L in Y' = Y (resp. Y). Sinee (T- H - E~) . L' = 1, we get
(Ky +1t'-l,). L = 1. One ean easily see that the self-intersection numher (L2)y = 0,

hence (Ky . L) = -2. This yields (tr-l,. L) = 3, that is, (H . 1t'(L))x = 3. This
proves (3.9.3.5). D

(3.9.3.6). 2Ky + 1t'- r.. is not nef.

There is a line Zt meeting Eo by (2.1). Let ZI be it 's proper transform in

Y. Since ZI :f Eo, we obtain (Ky . Zd < O. This implies (2Ky + 1t'-{,. Zt) =

2(Ky . ZI) + 1 < O. Thus we have the claim. 0
By (3.9.3.6) and the Cone theorem [KMM], one has three cases:

(i) y~p2,

(ii) Y ~ IFn or
(Hi) There is a (-l)-curve ec ,Y such that (1t'-l, . i) = 1.

By an easy argument, one ean exclude the first two cases, namely, Y ~ p2, Fn .

Thus we have the last case (iii)~;,:

Now, let <p' : Y ~ Yt be'; the blowing-bown of the (-l)-curve f. If there

is a (-l)-curve (t C }Tl with (lI' (1) = 1, then blow down it, where !I :=
4>~( iT- .c). Repeating this process finitely many times, one has abirational morphism
4> : y~ Y onto a smooth projective surface Y satisfying

(a) K y +7T*l, = 4>·(Ky +!), where !) := 4>-( iT·l,).

(h) 21(y + l is not nef.

(e) (K9 )2 = (Ky )2 + k, (-Ky .l) = 8 + k, (l)2 = 22 + k, for some positive
integer k.

In fact, (a) and (e) are clear. To prove (b), take a generalline L on M. Let L be
the proper image of L in Y. Since (2Ky +Z) .L = (Ky . L) + 1 < 0, we have (b).

By coostruction, there is no (-l)-curve ewith (l·i) = 1. Thus we have Y e! p:Z or

IFm by the Cone theorem. In the case of Y ~ r 2
, -(2Ky +l) is ample 00 Y = p:Z.

This yields deg l =5 and k = 3. By (cl, we obtain 15 =(-Ky .l) =8 + 3 = 11.

This is a contradiction. Thus we liave Y ~ Fm. Indeed, we have easily- - .
(1) Y:: lF:z and l, l"oJ 3s2 + 8/ or
(2) Y~ pI X pt and ll"oJ 3so +5f .

From this, one sees !{y +l is ample on Y. This shows that 4J : Y ----t Y is given by

the linear system IKy + iT*l,I, in particular, we have Ye:! M by (3.9.3.5-a and -b).
This is absurd since b2(AI) = 1 by (3.9.3.4). The proof of (3.9.3) is completed. D

(3.9.4). Ered contains DO irreducible component E o oE d = degEo = 3.

Proof. In fact, assume that there is such an irreducible component E o. Let us
consider the double projection iT2Eo : V ... >- p2 from the cubic curve Eo. By an
argument similar to (2.3)-(2.7) in Takeuchi [Tl, we obtain a diagram:
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, X +V--->-V

"'
2E

OV - - - >- p2 ,
where (7 : V' ---+ V is the blowing up along Eo with the exeeptional ruled surface

Eb := (7-1(Eo), X : V' - - >- V+ is a flop, and 'P : V+ ---+ p2 is aconie bundle
over p2.

Let Y' ....... (7* H - 2Eb be the proper transform of Y' in V', and let Y+, Et, H+
be the proper transforms of Y', Eb, H' := (7. H - Eb in V+ respectively. Then
Et is normal Gorenstein surface with at most rational double points. Moreover,
we have y+ = 'P. L for same line L on p2. For a generie fiber e+ of 'P, we obtain
(H+ . .e+) = (Et .p+) = 2. Since -KE+ = (H+ - Et)I E + and (KE+)2 = (H+ -

o 0 0

Et)2 . Et = 2, -KE+ is nef big aod Bs1 - K E+ I = 0. This implies that the
o 0

restrietion 'P IE+ : Et ---+ p2 , which is defined by the linear system I - K E+ 1, is
o 0

a double covering over p2. Thus the intersection A+ := y+ n Et = 'P-1(L) n Et
consists of at most two irreducible components, that is, b2(A+) ::; 2.

Now, since

we obtain

hence,

(3.9.4.a)

Let zt c y+ be the proper transform of the line Zl C Y intersecting the eubie
Eo• The flop X : V' - - >- V+ yields a oew rational curve Z: which is contained in
Et. This shows that ~(Et) ~ 3, hence we have b2(Y+) = 1 by (3.9.4.a). This is
impossible because the restrietion 'P : Y+ --+ L is a conical fibering. This proves
(3.9.4). 0

(3.9.5). Ered contains DO irreducible component D oE d = deg D = 2.

Proof. Assurne the contrary and take a comc D c E red . Then we consider the
double projeetion 1r2D : X ---+ Q3 ~ pt from the comc D. In order to avoid the
confusion, we use the same notations as in (2.5) and (2.6). We put V := X, and
consider the following diagram:

V" - .:. - >- Vb

>. !
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Then we have (cf. [Tl):
(1) The number n of lines meeting the conic D ia equal to four (counted with

multiplicity) (see [(2.8.2); Tl).
(2) Nzilv" ~ Opl(-1) ffi Opl( -1), or Olt'l(-2) EB OUtl for 1 < i ~ n ~ 4.
(3) NDlv ~ OD E9 OD, or OD(-l) EB OD(l), that ia, D" := A-I(D) rv ~I X pI

or IF2 (see [(1.5)-(1.7); Tl).
(4) yb := X~(y") rv H b - Db, where y" - A* H - 2D" ia the proper transform

of Y in V".
(5) pb := X~(F") - 2Hb-3Db, where F" - 2A-H-5D" is the proper transform

of the mIed surface P swept out by conies intersectiong the conic D.
(6) F b • Zr = 3 for 1 ~ i ~ n ~ 4.
(7) Ov~ (Hb

- Db
) = t/J*Ou(l).

(8) (Hb)3 = 16, (Hb? Db = 4, H b • (Db)2 = -2, (Db)3 = -4.

Moreover we put S := t/J(D~), A:= 1/J(Fb) C S, Q:= t/J(YP), E:= t/J(yb n
Db) c Q n S. Then,

(9) Q C-....+ U is a hyperplane section of U = Q3 and S - 2Q is a normal dei
pezzo surface of degree (wS l )2 = 4. In particular, the minimal resolution
fJb of D b is obtained from p2 by the blowing-up of 5 points in (almost)
general position, hence b2(Db) ::; 6. A is a smooth rational curve of degree
(A· Q) = 6. Moreover, 'degE = (H~ - D~). yb . Db = 4.

(10) (Hb . tjt-l(t) = (Db . t/J-l(t)) = 1 for t E A.
(11) b2(yb nD b) = b2(Y~) + ~(Db) - 2 and ~(y") = ~(yll n D"). This follows

from the fact that V" - (y" UD") ~ C3 ~ Vb - (yb U Db ), b:2(y") =
b2 (D") = b2(V b) = 2. In particular, since Zr c Db, we have ~(Db) = 2+n.

(a) The case of D"~ pI X pI.

Let So and 10 be the section and a fiber of D" . Let s~ and /8 be the proper
transforms of So and /0 in Vb respectively. Since H b • st = 2, the image tjt(st) is
not a point by (10). We put A" := F" n D" - 5so + 4/0 in D". Then we obtain
the virtual genus Pa(A") = 12. One can show that A" is an irreducible curve with
at most four singular points (infinitely near points allowed) (see [Pagoda; Re)).

This implies that

by (11). On the other hand, since ·deg E = 4, we obtain b:2(E) ~ 4. Thus we have
n ::; 2.

In case of n = 2, we have easily ~(E) = 4, and ~(yb) = 2. Thus E consists of
four lines in Q rv Q~. One can also show that the intersection A n Q consists of at
least two points. Hence we have ~(yb) ~ 3. This is a contradiction.

In case of n = 1, since 4 ~ b2 (E) = ~(yb) + 1, we have b-.l(yb) = 2 or 3 ,
in particular, we have Q ~ Q~. On the other hand, it can be shown that the
intersection ~ n Q consists of at leaSt two points (resp. three points) if ~(yb) = 2
(resp. ~(yb) = 3). This is a contradiction because ~(yb) = ~(Q) + #IQ n 6.1,
where # IQ n AI is the nwnber of points of the intersection Q n A.
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(b) The case of D"~ F2 •

In this case, one can also show F" n D" = 6," U 82, where 82 (resp. 12) is the
negative seetion (resp. a fiber) of D" ~ IF2 and 6." ,...., 4s2 + 912 is an irreducible
eurve with Pa(.6,") = 12. Then the proper transform s; C nb of 82 in Vb is a
fiber of the ruled surface F b = t/J-I (6.). Since -KD~ = ""-QID~ is nef and big, the
minimal resolution ßb of nb has no rational curve with the self-intersection number
-k (k 2: 3).This shows that Zr n 82 = 0 (cf. [Pagoda; Re]).

Byan arguement similar to the case (80), one obtains ~(yb) = 2 and # IQn6.1 2: 2
. This yields 2 = ~(yb) 2: ~(Q) + 2, which is a contradiction. Therefore Ered
contains no conie D in V := X. 0

Proo/ 0/ (9.9).

Since 6 = (E . H) ::; 6 (see the proof of (3.9.2)), Ered eonsists of at most six
irreducible components. If Ered contains a line Eo, then the other component
of E red is at most of degree three. In fact, taking the double projection 1r2Eo :

V - -- ~ W = V5 t......+ p6, we can see that the image 1r2Eo(Y) ia a non-normal
hyperplane SectiOD of V~, whose non-normallocus is a line on Vs (cf. [F-N2], [F­
T], [P",Sd). This implies that tlie degree of the other component of E red ia equal
to three if it is neither a line nor aconie. The proof of (3.9) follows from this fact
and (3.9.2)-(3.9.5). 0 (:

5. By (3.9), we know that the; non-normallocus Ered of Y contains a line Z := Eo
in V = X := V22 L...+ p13. It is also known by [Isd that the normal bundle is either

(a) N Ziv ~ Oz( -1) 61 Oz
or
(h) N Zlv ~ Oz( -2) ffi Oz(l).

Now, let us consider the double projection 1r2Z : V - -- ~ W = V~ L...+ p6. In
order to avoid the confusion, we use the same notations as in (2.2), (2.3).

Then we have:

, x +
V---~V

r !

Let y' f"OooJ T· H - 2Z' be the proper transform of Y in V' and Q' ,...., T- H - 3Z'
the proper transform of the ruled surface Q swept out by comes meeting the line
Z. We put Y+ := X.(Y') f"OooJ H+ - Z+ and Q+ := X.(F') f"OooJ H+ - 2Z+. Then
t.p : V+ --+ lV = Vs is a blowing-up along the smooth rational curve ß of degree
5 lying a unique hyperplane section Fs := t.p( Z+) of Vs. Hence Q+ = t.p-I (6.) is a
fll-bundle over 6, f"OooJ pI. \Ve put F~ := cp(Y+), which is a hyperplane section of Vs
(see (2.3.8) and paragraph 3).
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(3.10) Proposition. Each irreducible component Z oE the non-normallocus Eretl

oEY has tbe normal bundle NZlv :::: Oz( -2) ffi Oz(l).

Proof. Assume the contrary. Let Z c E retl be a line with the normal bundle
N z1v '" Oz{-l) EB Oz. Then we obtain zr := r-I{Z) ~ 'I' Let 81 and I1 be the
negative section and a fiber of Z' ::: ~\ respectively. Then we have:

(3.10.1). Z+ is normal.

In fact, if Z+ is non-normal, then so is Fs = e,?(Z+). Then the singular locus of
Fs ia a line on Vs and the normalization F s oi is isomorphie to flor F3 (cf. [F-N 2],
[F-T]). Since Z+ has singularities at most along zt, there is exact1y one line ZI
meeting the line Z and hence e,?(zt) is the singular locus of Fs . In particular, Fs
is a ruled surface swept out by lines meeting the line cp(zt). Let ti be the proper
image of a general fiber II in Z+. Since (H+ - Z+) .ft = 2, cp(ft) c F~ ia a eonie

on Vs . Let e,?{fi) be the proper transform of cp(li) in F s. One ean easily show

that there is no such family of comes {1.p(li)} in F~. This proves (3.10.1). 0

(3.10.2). Y' n Z' =: ,ä,' is irreducible, in particular, tbere are three lines Zi (1 ~

i ~ 3) meeting Z. '

In fact, Fs = <p(Z+) is a nonniJ deI Pezzo surface of degree 5 with at most ratio­
nal double points. Such a deI P~zo surfaee is completely classified in [(8.4),(8.5);
C-T]. Then, using the relations',

~(Y') = ~(Y' n Z'),

~(y+ n z+) = ~(y+) + ~(Z+) - 2,

one can show that Y' n Z' contains neither the section SI nor a fiber 11' Moreover,
since Y' . Z' '" 3s1 + 4/1, one sees that ,ä,' '" 3s1 + 4/1 is irreducible. Since
ß = e,?(Q+) is a smooth rational curve and since Po(ß') = 3, one can easily see
that ß' has exactly three double points. This implies that there are three ßopping
lines Z; (1 ~ i ~ 3) passing through these double points. This proves (3.10.2). 0

Now, by (3.10.2), we have

On the other hand, since Y' n Z' == ß' is irreducible, we obtain ~(y+ n Z+) :5 4.
This is a contradiction. This completes the proof of (3.10). 0

6. Take an irreducible component Z C End. Then Z is a line on V := X = V22

with the normal bundle Nziv ~ Oz( -2) E9 Oz(l) by (3.10), hence Z' ~Fa. Let
83, 13 be the negative section and a general fiber of Z' '" F3 · Let si, It be their
proper transforms in Z+. Then we obtain (Z' . 83) = 1 = -(Z+ . s3)~ (H'· 33) =
(H+ . sj) = 0 and (H+ . li) = 1, in particular, st c Z+. Since Q' . z' '" 333 +7/3 ,

the negative section ,53 must be an irreducible component of Q' n Z'.
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(3.11) Lemma. Q' n z' contains a fiber.

Proof. Assume the contrary. Take an infinite section Soo ""-J 83 + 3/3 of Z' and
let 8~ be its proper transfonn on Z+. We may &Ssume that s;t does not pass
through the singular points of Z+. ·Since (H+ . st,) =4 and (stJ2 =3, we obtain
(Z+ . st,) = -1. This yie1ds (H+ - Z+) . s~ = 5. Thus cp(s~) c Fs is a smooth
rational eurve of degree 5 with Sing Fs n cp(s~J = 0. Sinee (Wi,,1 . cp(s~)) = 5, we
obtain Pa (<pe st,) = 1 by the adjunetion formula. This is absurd because 'P(8tJ is
a smooth rational curve. 0

Let .6.+ C Q+ n Z+ be the irreducible component such that <p(.6.+) = .6. c Fs =
cp(Z+) and .6.' c Q' n Z' the proper image of ß+ in Z'. Since Q' n z' contains the
negative seetion S3 and some fiber, we obtain either ß' ""-J 2s3 +a/3 or 8a +b/3 for
some positive integers a, b. In the ease of ß' ""-J 2s3 + a13, sinee (ß' . /a) = 2 for a
general fiber /3, we obtain

which is absurd. Hence we obtain ß' ""-J S3 + bfa (3 ~ b ~ 6) and (Q+ . It) = l.
Taking into eonsideration that Q+ ""-J H+ - 2Z+, one has (Z+ . Jt) = 0, and
(H+ - Z+) . fi = 1 for a gent:tal It. This shows that <p(/i) c Fs is a line on
Vs and thus Fs is a mIed surf~e swept out by lines {<p(/t)} which intersect the
line E := <pest) c Fs. Henee ;.Fs is a non-normal hyperplane section of Vs. It
is proved that the nonnalization F s is isomorphie to Fa or Fl (ef.[Fu I ], [F-N2],

(F-TJ). Moreover, we have the following:

Proposition (3.12). (1). Q' n z' = ß' UAl UB., wbere ß', AI, BI are smootb
rational curves witb ß' ""-J 83 +4/3 , AI ""-J 2s3, BI ""-J 3/3 (as c10sed subseb.emes oE
Z' ~ F3 ).

(2). Fs = <p(Z+) is a non-normal deI Pezzo surface oE degree 5 wbose non-normal
locus is the line E = <p(At) with tbe normal bundle N L'IV" ~ OL'(-1) EB OL'(l),
where At is the proper transEorm oE Al in Z+. In particular, Fs is a ruled surface
swept out by lines on W = Vs meeting tbe line E.

(3). Tbe image <p(Bt) =: p is a point on ß C Fs and ß n E = {p}, wbere Bt
is tbe proper transfonn oE BI in z.+.

(4). Fs is obtained from the normalization F s ""-J f 3 by identifying tbe negative
section with a fiber oE ~"a. -"

7. Next, we shall consider the surface Fso = <p(Y+). Since Y' . Z' ""-J 283 +5/a,
the negative section 53 must be contained in Y' n Z'. This implies st C Y+,
namely, the line E = cp(st) = <p(At) is contained in ~. Since p = 'P(Bi) =
.6. n E E 11, we obtain Bi C Y+. This shows that Y ' n Z' also contains a fiber
/a of Z' ~Fa. Thus one sees that Y' n Z' = A2 U B2 , where A2 , B 2 are smooth
rational curves with A2 ""-J 2s3 , B 2 ""-J 5/3 (as closed subschemes of Z'). Let At
and Bi be the proper transforms of A2 and B2 in Z+ respectively. Then we have
E = <p(At) = <p(At) and p = <p(Bi) = <p(Bt). Taking into consideration that
b2(Y+ nZ+) = ~(Y+) + ~(Z+) - 2, we obtain ~(Y+) = 2. This yields ~(~) = 1
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smee ß n~ '10. On the other hand, the singular loeus of Ff is at most eontained
in the line E. Sinee Fs is a unique hyperplane section of V5 which h88 the line E
as a non-normalloeus, Fg wust be normal. In partieular, since b2(~) = 1, it has
exactly one rational double point p of A4-type (cf.[Fu1 ], see also Case (A)).

- 0 0

It is known that VS-Fs ""-J C3 ~ V;-~ (cf. [Fud). We put V5 := Vs-F1\ ß:=
o 0 0 0 0 0

Vs n ß, Fs := Vs n Fs . Then we have easily V5 :J Fs :J ß.
From the defining equation of Vs in p6 (cf. [M-U)), one can construct a poly-

o

nomial automorphism Q : Vs ~ C3 --+ C3 (x, y, z) such that
o

o(Fs ) = {x = O}
o

o(ß) = {x = y = O},

where x, y, z are coordinate functions of Ca (see [Fus)). This yields
o 0

ep-I(VS ) - Fs• ""-J Ca,
000

where Fs• is the proper transform of Fs in ep-I(VS )'

On the other hand, since

X-:Y=V-y
'"r

""-J V' - (y' U Z')

::: V+ - (y+ U Z+)
o 0

""-J r.p-l(Vs ) - Fs•

~C3- ,
one sees that the compactification (X, Y) really exists in the case (B).
Conversely, take two compactifications (Vs,H?) and (Vs,Hg) of C3 with the

index r = 2 satisfying:

(1) H? n Hg = E := Sing Hf\ (E is a line with the normal bundle NElva ~

OE( -1) ffi OE(!).

(2) Sing Hg =: p E E, (the point p is the rational double point of At-type)
(cf.[Fu I ], [F-N2], [Fus]).

One eau easily see that there 'exists a smooth rational curve ß of degree 5
eontained in H? such, that ß n E .~ ß n Hg = {p}.

Then the linear system IOvs(3) 0 :rf2j on Vs defines an inverse birational map­
ping 7r2"1 : Vs - -- >- V22 C-....+ }p13 (see (3.7».

Now, we put H82 := 7r2"1(Ff). Then (V22 ,H82) is a compactification of C3

and H~2 is a Don-normal hyperplane section of V22 with the non-normal locus
E = 7r2"i (Hf'). Moreover, Z := E red is a line with the normal bundle N zi V22 ""-J

Oz( -2) ffi Oz(l). By construction, we have multzH82 = 2.
Therefore we conclude:

(3.13) Proposition. (X, Y) ""-J (V22l Hg2) if {Ky + 7r•.c)2 > O.

By (3.8) and (3.13), the proof of main theorem is completed. 0
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