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§0. Introduction.

Let (X,Y) be a smooth projective compactification of C*, namely, X is a smooth
projective threefold and Y an analytic subvariety of X such that X — Y is biholo-
morphic to C*. By the theorem of Hartogs, Y is of pure dimension two, namely, Y
is a divisor on X.

Two smooth compactifications (X,Y) and (X',Y’) are said to be isomorphic
,we write simply as (X,Y) = (X', Y'), if there exists a biholomorphic mapping
@: X — X' such that o(Y)=Y".

We shall assume that the second Betti number b3(X) = 1. Then Y is an irre-
ducible ample divisor on X and PicX & Z. Ox(Y), in particular, the canonical
divisor Kx can be written as Kx ~ —rY (r € Z,0 < r < 4) (cf.[B-M]). Thus X is
a Fano threefold of the first kind (cf.[Is;]). The integer r is called the "index” of
X. Then we have the two cases:

(i) Y is normal, or
(ii) Y is non-normal irreducible.

In the case where Y is normal, we have proved the following
Theorem A ([Fu,], [Fu;], [F-N,], [F-N;], [P-S]). Let (X,Y) be a smooth

projective compactification of C}. Assume that Y is normal. Then we have the
second Betti number by(X) = 1 and the index r > 2. Moreover,

(1)r=4= (X,Y) = (P, P?),

(2)r=3=(X,Y)=(Q",Q)),

(3)r=2= (X,Y) = (Vs,H?).

In particular, such a (X,Y) exists uniquely up to'isomorphism,

where

e Q® : a smooth hyperquardric in P*,

e Q2 : is a quardric cone in P?,

o Vs : a linear section Gr(2,5) N P® of the Grassmann variety Gr(2,5) — P°

of lines in P* by three hyperplanes in P°, which is the Fano threefold of
the index two and degree 5 in P?,

e H? : a normal hyperplane section of Vs with exactly one rational double point
of A4-type, which is a degenerated del Pezzo surface of degree 5 in P®.

In the case where Y is non-normal irreducible, we have also proved the following

Theorem B ([P-S], [F-N;]). Let (X,Y') be a smooth projective compactification
of C3. Assume that Y is non-normal irreducible. Then we have the index r < 2.
Moreover, if the index r = 2, then (X,Y") = (V;5, H®), where HS® is a non-normal
hyperplane section of Vs whose singular locus is a line £ = P! in Vs with the normal
bundle Ng|x = Og(-1) ® Og(1). In particular, H§® is a ruled surface swept out
by lines on Vs intersecting with the line . Moreover such a (X,Y") exists uniquely
up to isomorphism.
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By Theorem A and Theorem B, we have only to consider the case of r = 1. In this
case, one sees X is a Fano threefold of the index r = 1 with PicX = Z-Ox(—Kx).
Here we call the number g = 1(—Kx)® + 1 the "genus” of X (see [Is, ]).

Recently, the author constructed two examples of the compactification (X,Y") of
C? with a non-normal irreducible divisor ¥ from the Mukai-Umemura’s example
[M-U] of the Fano threefold Uz; — P'3 ,which is a special one among the Fano
threefolds of the index r = 1 and the genus g = 12(see also [M], [Pr]), namely,

Theorem C ([Fu;], [Fu;], [Fug], [M]). Let Uy, be the Mukai-Umemura’s ex-
ample of the Fano threefold. Then there exist non-normal hyperplane sections H3,
and HSS of Uap such that Uzy — HY, = C* = Uy — HSS. The singular locus of HY,
(resp. H33 ) is the line £ in Uzy with the normal bundle Nyjy,, = O(—2) ® O(1),
and mult,H?, = 2 (resp. mult H$} = 3). In particular, HS3 is a ruled surface
swept out by the conics which intersect the line £.

Remark 1. Mukai [M] and Prokhrov [Pr] proved that there is a 4-dimensional
family (Vy, Hf,) of compactifications of C® containing (U,z, HSy) such that
(Vi HEp) # (Vah, HE,) if t # s, where VY, is a Fano threefold of the index r = 1 and
the genus g = 12, which has the degree 22 in P!® by the anti-canonical embedding,
and H}, is the non-normal hyperplane section of V3, whose singular locus is the
line €, with the normal bundle Ny vy, & Of,(—2) ® O, (1). In particular, Hj, is
a ruled surface swept out by conics intersecting the line £;. Therefore one can see
that the compactification (X,Y’) is not unique up to isomorphism in the case of
r=1,

On the other hand, Peternell asserts the following:

Theorem D ([P}, [P-S:]). Let (X,Y) be a smooth projective compactification
of C3 with by(X) = 1. Assume that Y is non-normal and the index r = 1. Then,

(I) X is a Fano threefold of the index r = 1 and the genus g = 12.

(II) Let E be the non-normal locus of Y equipped with the complex structure
given by the conductor ideal sheaf. Let Y be the normalization of Y and let E be
the preimage of E. Then

(1) E and E are reduced,
(2) Y is weakly normal, and

(3) E is a smooth rational curve and E consists of two
smooth rational curves meeting at one point of order 2.

Unfortunately, Theorem D-(II) is not true. Indeed, the compactification
(U22,H33) in Theorem C does not satisfy the assertions (II)-(1) and (II)-(3) in
Theorem D at all. In this example, E and E are both "non-reduced”, and E con-
sists of "three” smooth rational curves meeting at one point (see [Fus]). Moreover,
Theorem D-(II) plays a key role in the proof of Theorem D-(I) (for example, see
the proof of Proposition (3.8) in [P}). Nevertheless, Theorem D-(I) is still true as
we will prove in §2.

Our main result is the following:
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Main Theorem. Let (X,Y) be a smooth projective compactification of C* with
the second Betti number by(X) = 1. Assume that the index r = 1. Then

(1) (X,Y) = (Vao, H53) or (Vaz, H3,), where Vi, is a Fano threefold of the
index r = 1 with the genus g = 12, degree 22 in P!® by the anti-canonical
embedding, and H33 (resp. HJ,) is a non-normal hyperplane section of V33,

(2) Let E be the non-normal locus of HYS (or H},) equipped with the complex
structure given by the conductor ideal sheaf. Then Z := E,.q is a line on
V2, with the normal bundle NZIV:: =1 02(-2) ] Oz(l),

(3) multgHg; = 3 and multzH), = 2, in particular, H$S is a ruled surface
swept out by the conics intersecting with the line Z.

Combining Theorem A and Theorem B with the main theorem above, we have

finally

Theorem (cf. [Problem 27; Hi] ). Let (X,Y) be a smooth projective compact-
ification of C? with the second Betti number by(X) = 1. Then

(X,Y) = (B, P2), (@, Q)), (Vs, Hg), (Vs, H5®), (Vaz, Hpy) or (Vaz, HE3).

Remark 2. In [Fu,], it is shown how the compactifications (V32, Hf5) and
(Vaz, HS,) are constructed from the well-known compactification (P*, P?) of C°.

This paper consists of three sections. First, in §1, we shall study the general
properties of non-normal polarized surfaces of K3-type. Next, in §2, by applying
the results obtained in §1, we shall give a new proof of Theorem D-(I). Finally, in
§3, we shall give a proof of the Main Theorem.

Notation

- wy ¢ dualizing sheaf of V

hH(Oy) = dimH'(V,0v)

. E,.q : reduction of E

Nz : normal bundle of Z in V

- multzY : multiplicity of ¥ at a general point of Z
. Bs|L| : base locus of the linear system |£| defined by the line bundle £
- (V) *= dimH*'(V;R) : the i-th Betti number

- p(V) : Picard number of V

X(£) = T~ R(E)

.~ : linear equivalence

. = : numerical equivalence

Acknowlegement. The author would like to express his hearty thanks to Professor
Noboru Nakayama for his invaluable advices and helpful discussions. This paper
was written during his stay in SFB 170 ”Geometrie und Analysis” in Gottingen and
the Max-Planck-Institut fiir Mathematik in Bonn. He would like to thank Professor
Dr. H. Flenner and Professor Dr. F. Hirzebruch for their helpful discussions and

encouragement.



§1. Non-normal polarized surfaces of K3-type.

1. Let Sbea non-normal irreducible reduced projective Gorenstein surface over
C. Let 0 : S — S be the normalization, and T C Og be the conductor of ¢
defining closed subschemes E := V5(Z) in S and E := Vi(Z) in 5. Let u: o
be the minimal resolution and B = |J;_, B; be the exceptional set for u. We put
m:=cou:S — §. Then we have the following:

(1.1) Lemma ([pp.165-pp.167 ; Mo]). (i)wsg X oc*ws® 7T,

() wp = o'ws @ OF,

(111) 0 — Os — 0,05 — w3 Qug — 0,

(iv)0 — ouwg —ws — ws®O0p — 0,

(v)0 — wg — 0'wg — d'ws @ O — 0,

(vi)O—»OE—ra.OE-*-—#wE]@wE-—»O.

(1.2) Definition. Let £ be a very ample line bundle on S. The pair (S,L) is
called a non-normal polarized surface of K3-type if

(1) S is a non-normal irreducible reduced projective Gorenstein surface ,
(2)ws =0s,

(3) A'(Os) =10, and

(4) £ is very ample on S.

Applying (1.1), one can easily obtain the following:
(1.3) Lemma (cf. [Proposition 3.3, 3.5 ; P]). Let (S,£) be a non-normal
polarized surface of K3-type. Then,
(i) wg = T <=> Kz ~ —E as a Weil divisor ,
() wp = OF,
(112) A}(Og) = 0, namely, each irreducible component E; of E,.4 is a smooth
ratignal curve

(iv) R}(Og) = h%(OE) ~ 1.

(1.4) Corollary. (a) Kg~—E - kiBi(k; € Z ,k; > 0), where E is the proper
transform of E in S.

(b) S is a rational or a ruled surface.

Proof. Sincewg = p*ws®0(— 2 niB;) for some n; € Z (n; > 0) and since ws = 7,
we have the assertion (a). By (a), we can easily see that H? (§, O(mK3)) = 0 for

m > 0,m € Z. Thus, from the classification of surfaces, we conclude that S is a
rational or a ruled surface. This proves the assertion (b). O
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(1.5) Proposition. Let (S, L) be as in (1.3). Then,
(a) H(S,L)=0fori >0,
(b) (¢"L-E)g = 2(L- E)s = 26, where § := (L E)s > 0, in particular, if E is
irreducible and reduced, then by(E) < 2,
(c) There exists a smooth member C € |o*L| with the genus ¢(C) = 1d(L) —
§+1,
(d) h%(o*L) = h%(L) + 6 - R°(OE) ,
(e) (L) = 1d(L) + 2, in particular, d(L) := (£?)s > 0 is even.
() A(S,0*L) =2+ d(L) + h*(OE) — h°(L) - 6.
Proof. (a): Take a general (irreducible) member C € |£|. Since H'(S;0s) =0, we
have H'(S;0(=C)) = 0, that is, H'(S;£~") = 0. Since ws = Os, by the Serre
duality theorem, we obtain H'(S;L) & H?7*(S;L~!). This proves the assertion
(a).
(b): In (1.1)-(iii),(v) and (vi), we put wg = Og, then we obtain the following
exact sequences:

(1.5.1) 0 — 0Os — 0,05 wg —0,
(1.5.2) 0 —wg — O3 — O — 0.
(1.5.3) 0 — O — 0.0 — wg — 0,

By (1.5.3), we have:

(1.5.4) (0,05 L)=x(Oe QL)+ x(wg ® L)
=2(L- E)s + x(Og) + x(wg)
=2(L-E)s
= 24.

On the other hand, since x(Og) = x{(O3) — x{wg) = 0 by (1.5.2), we get

(1.5.5) x(e.OF® L) = x(Og® L)
= ("L E)5+ x(OF)
= ("L E)g

By (1.5.4) and (1.5.5), we conclude that (¢*L - E)y = 2(L - E)s = 26. In
particular, if E is irreducible and reduced, then we have 4 (E) < 2.
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(c): Since Bs|o*L| = @, by the theorem of Bertini, there exists a smooth member
C € |o*L|. By the adjunction formula, 2¢(C) — 2 = C(C + wg). Since (C - wg) =
(¢* L wg) = ~26 and since (_C'-z)-s- = (£*)s = d(L), we obtain 2¢(C)—2 = d(L)—26.

This proves the assertion (c).

(d): By operating ®L on (1.5.1), we obtain an e#mt sequence
0 —L-—0050L —wg®L—0.
Since H(S; L) = 0 by (a), we obtain
(1.5.6) h%(0,05® L) = h°(L) + h'(wg ® L).

Since E is Cohen-Macaulay, h®(wg ® £) = h!(Og ® £~1). For a general member
C € |L|, we have an exact sequence

0— 05’(—-0) I OE 4 OEnC — 0.
Since h!(Og) = 0 and since h°(Opnc) = (L - E)s = 6, we get

(1.5.7) Rwe®L)=h (O L")
= h'(OE(-C))
= h°(Opnc) - h°(OF)
=6 - k%(Op).

On the other hand, since
h%(0.05® L) = h°(0.05(0* L)) = h%(a* L),
by (1.5.6) and (1.5.7), we have finally
h%(a* L) = R°(L) + & — R°(OE).

(e): We can see that
1
X(L™) = 2(L%)m? + am + x(Os)

for any m, where a is constant. Since wg & Og, x(L®™) = x(L~®™). Hence
a = 0, namely, x(£L®™) = 1(L*)m? + x(Os) for any m. Since x(Os) = 2 and
x(L) = h°%(L), we have the assertion (d).

(f): By (c), one has easily

A(S,0*L) = dimS + deg o* L — h°(0* L)
= 24 d(L) ~ K(L) — 6 + K(O).

The proof is completed. O
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(1.6) Proposition. Let (S, L) be as in (1.3). Assume that b3(S) = 0. Then,
(a) § is a rational surface,
(b) S has at worst rational singularities,
(c) h}(Oz) = h*(O35) =0, b;(S) = b3(S) =0,
(d) Eyeq is connected and has no cycle.
Proof. We have an exact sequence (cf. [B-K]):

(1.6.1) HY(S;Z) — H'(S;Z)® H'(E;Z) — HY(E;Z)
— H*(S;Z) — H*(S;Z)® H*(E;Z) — H*(E;Z)
— H¥(S;Z) — H¥(S,Z) — 0
Since b3(S) = 0, we have b(S)=0 . It is known that b3(8S) = b3(5) (f. [B]).
So we obtain ,(S) = b3(S) = 0. Thus S is a rational surface by (1.4) — (b). This

proves (a). From the Leray spectral sequence we have:

(1.6.2) 0 — H'(S;05) — H'(5;05) — H(S; R' 4. 05)
— HY(5;05) — .
Since § is rational and since
H*(S;03) = H'(S;ws) = H(5;1) =0,
we obtain H'(S;05) = 0 = h%(S;R'4.0z). This proves (b) and (c). Finally,
since 0 = h}(Og) = h*(Og) — 1, we have h®(Og) = 1, thus E,.q is connected. By

(1.3) — (121), h'(Og) = 0, so we have h}(Og,,,) = 0 (cf. [(3.3); P]). Therefore
E,.4 has no cycle. We complete the proof of the proposition. O

2. Next, we shall consider the adjoint line bundle Kz + 7*£ on §, where
r:8 45 -2 S. Since L is very ample on S, 7*L is nef and big on S. By
Kawamata vanishing theorem, we obtain

(1.7) Lemma. H¥(S;0(K5+*L))=0fori>0.

(1.8) Corollary. h*(Kg+n"L)=3d(L) -6 +1—hr'(O3) .
Proof. We have easily
RO (Kg+7*L) = x(K5 + 7*L)
1 * *
=37 L(m* L+ Kg)+ x(O3)
1
= §(d(ﬁ) ~-26)+1-hr'Y(03)
1
= Ed’(ﬁ) -6+1-hY(03).
a

Here we also make use of the same notations as in the paragraph 1.
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(1.9) Theorem. Let (S,L) be a non-normal polarized surface of K3-type. Then,
(I). If Kg + m* L is not nef, then we have either

(a) (S,£) = (Q4,0(1)) , where Q4 — P? is a non-normal irreducible quartic
surface with § := (L - E)s =3, and (§,7*L) = (5,0°L) = (P?,0(2)), or

(b) S is a (ruled) surface swept out by lines in P¥4(©)+1 | § is a P!-bundle
¢ : S — T over a smooth curve I' of the genus g(T') = 7d(L)—6+1,
and (7*L - f) = 1 for a fiber f of ¢ . In particular, S is a cone over the
curve P if S S.

(II). If Kz + n*L is nef, then we have either

(c) (S,L) = (85:,0(1)),(S56,0(1)), or (Ss,0(1)} , where Sy(cy — PO+ 5 5
non-normal irreducible surface of degree d(L) , and § := (L - E)s = 3d(L)
with d(L) = 4,6,8. In particular, (5,0*L) 2 (S,wz') and § — PHE) is
a (normal) del Pezzo surface of degree d(L) = 4,6,8 ,

(d) S is a (ruled) surface swept out by conics in P¥4(£)+1, There is a P!-
fibration ¢ : S — T over a smooth curve T , which has possibly singular
fibers, such that (v*L - f) =2 and Kg + n*L = (3d(L) - 6)f fora
general fiber f of ¢ , or

(e) Kg+ n*L is big.

Proof. (I). Since Kz + n*L is not nef, by Mori [Mo] (cf.[KMM)]), there exist an
extremal ray R and the contraction ¢g : S — W of the ray R such that

() W is smooth of dim W < 2,

(1) (Kg+7n*L)-R<0,

(#12) For any curve C, ¢r(C) is a point <= C € R,
(iv) p(5) =p(W) +1,

(v) ¢r has connected fibers .

(1.9.1) Claim. dim W < 1.

- In fact, we assume that dim W = 2. Then ¢ is birational. Take a curve C € R.
Since (Kg + n*L) - C < 0, one can easily see that C is the (—1)-curve on S and
(r*L - C) = 0. Thus the curve C is contained in the exceptional set of y: § — 5.
This is a contradiction, since g : S — S is the minimal resolution. Therefore
dmW <1 0O

First, in the case of dim W = 0, since p(5) = 1, we have S = P?  hence,
§ =T = P2 On the other hand, since —(Kg+o0*L) is ample and d(L) is even, we
obtain d(£) = 4, that is, 0* £ 2 Opa(2) . By (1.3)-(iv) and (1.5), we have hA%(L) =4
,6 = 3. This proves (a).

Next, in the case of dim W = 1, since p(§) =2, ¢p: S — T'is a P'-bundle
over a smooth curve I' :== W. For a fiber f of ¢g, we have (Kg+ 7°L) - f < 0,
hence (7*£- f) = 1. Take a general smooth member € € |r*L|. Since (x*L-f) = 1,
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C is a section of ¢r. Thus we have g(I') = g(a) = %d([.) — &+ 1 by Proposition
(1.5)-(c). £S 2 S, then S is obtained from § by blowing down the negative section
of S. This proves (b).

(IT): Since K5+ 7" L is nef, by the base point freeness theorem due to Kawamata
(cf.[KMM]), we obtain Bs|m(Kz+ n*L)| = @ for m >> 0. By the contraction

theorem (see [KMM]), there is a surjective morphism ¢ : § — T onto a normal
variety T of dim T < 2 with connected fibers such that Kg + 7*L ~ ¢*A for an
ample line bundle A € PicT.

In the case of dim T = 0, we have Kz = —n*L. Suppose that 5 2 S | then,

for each irreducible component B; of the exceptional divisor B of u : S — S, we
_have (Kz - B;) = 0, since (7*L - B;) = 0. This shows that B is the (=2)-curve
on 5. Thus § has at most rational double points, in particular, S is Gorenstein
and —K¢ = ¢*L is ample on 5. Therefore S is a normal del Pezzo surface of

degree d(£) (1 € d(£) < 9) in PU©) (cf. [B,],[H-W]). Since d(L) is even, we have
d(L) = 2,4,6, or 8.

(1.9.2) Claim. d(C) # 2.

In fact, if d(£) = 2, then the linear system |o* L] defines a two to one surjective
morphism ®jyeg): § — P2. Thus £ can not be very ample. This contradicts the
assumption. Therefore d(£) #2. O

By (1.3)-(iv) and (1.5), one can easily get
(R°(L),d(L), 8) = (4,4,2), (5,6,3), (6,8,4) .

This proves (c).

In the case of dirn T = 1, since (Kg+ 7*L) - f = 0 for a general fiber f of ¢, we
have f = P! and (7*L - f) = 2. Since (7(f) - £) = 2, n(f) is a conic in pd)+1
This proves (d).

In the case of dim T = 2, since (Kz + 7*£)? > 0, we obtain (e).
Thus we complete the proof. O

(1.10) Proposition. Let (S, L) be as in (1.9)-(I), namely, Kz + n*L is nef. As-
sume that (1) d(£) > 4 and (2) h'(Og) = 0. Then Bs|Kz + n*L]| = 0.

Proposition (1.10) follows easily from the following:

(1.11) Proposition (cf. [S], [R]). Let M be a non-singular projective surface
and L a line bundle on M with Bs|L| = @ and (L?) > 4. Assume that
(1) Kp + L is nef
(2) R (Ou) =0,
(8) The singularities obtained by blowing down all the curves B with
(L - B)y = 0 are at worst rational.
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Then Bs|Kpy + L| = 0.

Proof of Proposition (1.10).

By assumption (2) and the exact sequence (1.6.2), we obtain H°(S; R'u,0z) =
0. Thus S has at worst rational singularities. Take any curve B with (z*£-B) = 0.
Then B must be contained in the exceptional set of s, because ¢*£ is ample on S.
Therefore, by (1.11), we complete the proof. O

Proof of Proposition (1.11).

Assume that there exists a base point z € M of the linear system |Kp + L|.
Then, by Theorem 1-(i) and its proof in Reider [R], there exist an effective divisor
E on M passing through z, a vector bundle £ of rank 2 on M, and exact sequences:

(1.11.a) 0 — Ouq(L—-E) — & — Omq(E) — 0,
(1.11.b) 0 — Ov — &€—T:00u(L)—0
such that

() the composition map Op(L — E) — € — T, ® Op(L) is injective, where
J: is the ideal sheaf of z,

(it) L — 2F is big,
(i) (L-E)=1, (E)=0o0r (L-E)=0, (E?)=-1.

(1.11.1) Claim. R°(Om(E)) =1

In fact, suppose that h°(Op(E)) > 2. We set |E| = |C| + F, where |C| (resp.F)
is the movable (resp. fixed) part of |E|. By (iif) above, we have 1 > (L - E) =
(L-C)+ (L~ F). Since |C| is movable, we have (L-C) > 0, hence, (L-C) =
1,(L-F)=0,(L-E) =1, in particular, (E?) = 0 by (4i¢). Taking into consideration
that Bs|L| = § and (L - C) = 1, we can see that &;)(C) is a line in P4™I% for a
general member C, where @) : M — P4™ILl is a morphism defined by the linear
system |L]. Thus we obtain C = P! and Og(L) = Opi(1). On the other hand,
since Ky + L is nef by assumption, we have

05(KM+.L)~C=(KM-C)+1=—1—(Cz),

that is, (C?) < —1. This is a contradiction, since |C| is movable. Therefore

R(Ou(E)=1. O
From (1.11.a),(1.11.5),(1.11.1), we obtain

(1.11.2) 0 — HY(M;Op(L — E)) — H(M; ) — H(M; Op(E)) — 0.



12

(1.11.3) 0 — HY(M;0pnm) — HYM;E) — H*(M; T, ® Op(L)) — 0.

In fact, the composition map Oy — &€ — Opy(FE) induces an isomorphism
H°(M;Opm) = H(M; Om(E)) = C.

This yields a surjection
HY(M;&) — HY(M;Ou(E))=C

in (1.11.2) and an isomorphism

(1.11.4) HY(M; On(L - E)) = H(M; J. ® Ope(L))

Now, from an exact sequence

0 — J: ®@O0m(L) — Opm(L) — C(z) — 0
we obtain

(1.11.5)
0 — H(M;J; ® Om(L)) — H(M;Om(L)) — C
— HY(M; T, ® Op(L)) — HY(M;Op(L)) — 0.

Since Bs|L| = @, we have an isomorphism
(1.11.6) H'(M;J. ® Om(L)) = H'(M; Opm(L)) .

From (1.11.a), since h'(Op) = 0, we obtain an injection

(1.11.7) HY(M;€) — H\(M; T, ® Op(L)).

From (1.11.a),(1.11.2), we also have an injection

(1.11.8) HY(M;Om(L — E)) — HNM;E).
By (1.11.7),(1.11.8), we obtain an injection

(1.11.9) HY(M;Opm(L — E)) — HY(M;Op(L)).
Next, from an exact sequence

0 — Om(L—-E) — Om(L) — Og(L) — 0,

we have
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(1.11.10)
0 — H°(M;OMm(L — E)) — H'(M;Opm(L))
— H*(E;Op(L)) — H'(M;Om(L - E)) — H'(M;Opm(L))
By (1.11.4),(1.11.5),(1.11.9), we conclude H°(E; Og(L)) & C. Since Bs|L| = @,
we obtain Og(L) & Og, Thus (L - E) =0, in particular (E?) = —1 by ().
Let ¢ : M — S be the contraction of all curves B with (L - B) = 0. By an

exact sequence
0 — Opy(=E) — Opy — O — 0,

we have

0=R'¢.0y — H'(E;0g) — R*p,04(-E) =0,
that is, H(E; Og) = 0. Therefore
1 < h%(Og) = x(Ok)
= X(Om) = {(3(~E)(~E ~ Ku) + x(Op))
= —-21-(KM + E)-E
Thus we obtain —(Kpy + E) - E > 2, that is, —(E?) > (Kum - E) + 2 > 2, since

Ky + L is nef and (L - E) = 0. This contradicts the fact that (E?) = —1 above.
The proof is completed O
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§2. A Fano threefold of index one as a compactification of C3.

1. Let us recall some facts on Fano threefolds of index r = 1 obtained by
Iskovskih ([Is,] , [Is;]) and Takeuchi [T}].

Let V := Viy—2 « P9*! be an anti-canonically embedded Fano threefold of
index r = 1 with PicV 2 Z.-Ox(H), where H ~ — Ky is a hyperplane section and
g = 3(—K}) + 1 is the genus of V. Then,

(2.1) Lemma. (1)([Corollary 1 ; Isz]). V contains a one dimensional family of
lines, and V' does not contain cones if g 2> 4.

(2)([Proposition 3-(iv) ; Is3]). The line Z on V intersects at most finite many
other linesonV if g 2 7.

(3)([Proposition 2 ; Is3]). V contains a two dimensional family of conics such
that a generic point v € V is contained in a finite number of conics from this family
if g 2 5.

(4)([Theorem 4.4-(iii) ; Is,]). There s only a finite number of conics passing
through each point v € V if g > 10.

We assume below that the genus ¢ > 7. Let Z C V be a line on V. Then we
have the normal bundle either

{ (O.’]) Nz|v = Opl (—1) 4% Op! or
(B1) Nzjv = Opi (—2) @ O (1).

Let 7 : V! — V be the blowing-up of V along Z and let 2’ := 7=!(Z) be the
exceptional ruled surface. Now, the line Z intersects at most finitely many lines
21,23, ,Zm (m 2 0) if g > 5 by (2.1)-(2), let Z],2},--- ,Z}, be the proper
images of Z;’s on V' and Z; be the negative section of Z' if Nzjy has the type (51)
above. We put H' := 7*H — Z'. Then,

(2.2) Lemma ([Lemma 2 ; Is3]). There is a birational map, called a flop

x : V'--. > V* with the following properties:

(2.2.1) V* is a non-singular projective threefold.

(2.2.2) x: V' —U, 2! =2 VY -~ UL, Z} (isomorphic), where Z] is the proper
image of Z! with respect to x for 0 <i < m.

(2.2.3) If H* and Z* are proper images of H' and Z' with respect to x, then we
have -Ky+ ~HY ,(H* - ZF)=0and (H* -2%).-Z} = 1.

Let D be a generic conic intersecting the line Z and let @ be the ruled surface
swept out by conics intersecting the line Z. Let D* and Q% be the proper images
of D and Q in V*. Then,

(2.3) Lemma ([Proposition 1 ; Isz]). There exists a surjective morphism
¢ : V¥ — W <« P97% (g > 7) onto a smooth projective variety W of
1< dim W <3 such that

(2.3.1) ¢ has connected fibers,
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(2.3.2) @(D™) is a point of W for a generic conic D% ,and dim o(Q%) <1
(2.3.3) Op+(HY = Z%) = 0*Ow(1). '

In particular, R = Ry [D%)] is an extremal ray and y is the contraction morphism
of the ray R. Moreover,

(2.34) If g = 7, then W = P! and ¢ : V* — P! is a bundle whose fibers are
irreducible del Pezzo surface of degree 5.

(2.3.5) If g = 8, then W = P? and ¢ : V* — P? is a standard conic bundle with
discriminant curve A — P? of degree 5.

(2.3.6) fg =9, then W = P® and ¢ : V* — P3 is the blowing-up of P* along
a smooth curve A of genus g(A) = 3, deg A = 7 lying on a unique cubic
surface F3 = ¢(Z%1), and Q% ~3H* —4Z%.

(2.3.7) If g = 10, then W = Q3 « P* is a non-singular hyper-quardric and ¢ :
Vt — Q3 is the blowing-up of Q® along a smooth curve A of genus
g(A) =2, deg A = 7 lying on a unique surface Fy = p(Z%) — Q?® cut out
by a quardric in P*, and Qt ~2H* —3Z.

(2.3.8) If g = 12, then W = V5 — P® is the Fano threefold Vs of degree 5 in
P° (the section of the Pliicker embedding of the Grassmann variety Gr(2,5)
of lines in P* by three hyperplanes) and ¢ : V¥ — Vj is the blowing-up of
a smooth rational curve A of degree § lying on a unique hyperplane section
Fs=¢(Z%) of Vs, and Q* ~ HY =227,

Remark 3. The composition m3z ;= poxor 1 : V... > W — P96 ig the
double projection from the line Z.

2. Let D be a smooth conic on V := V,4_3 (g > 10). Then we have the normal

bundle either

{ (a2) Npjy 2 Op ®Op1 or

(B2) ND|V 2 Opi(—1) @ Op(1).

Let A: V" — V be the blowing-up of V along the conic D and let D" := A~1(D)
be the exceptional ruled surface. The conic D intersects at most finitely many lines
ZyyoryZn (n21). Let Z{,---,Z] be the proper images of Z! on V". We put
H" := ) H - D". Then,
(2.4) Lemama ([K]). There exists a flop x' : V"--- > V® with the following
properties:

(2.4.1) V' is a non-singular projective threefold.
(2.4.2) x' : V" = UL, 2! = V* — |, Z! (isomorphic), where Z! is the proper
image of Z!' with respect to x' for 1 <i < n.

(2.4.3) If H® and D are proper images of H" and D" with respect to x', then we
have -Kyv ~ H* |(H*-2?) =0 and (H* — D*)- Z! = 1.

Let « be a generic conic intersecting the conic D and let F' be a ruled surface
swept out by conics intersecting the conic D. Let 4* and F* be the proper images
of v and F in V? respectively. Then,
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(2.5) Lemma ({(2.8.1)-(B); T]). Assume that ¢ > 9. Then there exists a sur-
jective morphism ¢ : V¥ — U — P978 onto a smooth projective variety U of
1< dim U <3 such that :

(2.5.1) ¢ has connected fibers,

(2.5.2) ¥(+") is a point of U for a generic conic v°, and dim ¢(F*) < 1

(2.5.3) Oy (H® — D*) = 4*0y(1).

In particular, R = R.[y"] is an extremal ray and 1 is the contraction morphism of
the ray R. Moreover,

(2.5.4) f g = 9, then U = P! and ¢ : V* — P! is a bundle whose fibers are
irreducible del Pezzo surface of degree 6.

(2.5.5) Ifg =10, then U = P? and 3 : V* — P? isa conic bundle with discriminant
curve A of degree 4.

(2.5.6) If g = 12, then U = Q* — P* and ¢ : V* — QP is the blowing-up of Q°
along a smooth rational curve A of degree 6. In particular, F* ~ 2H® -3D".

Remark 4. In {(2.5.5), let © be a generic quartic curve intersecting the conic D
at two points and let ©" be a proper image of @ in V*. Then ©" is a generic fiber
of the conic bundle % : V* — P?. In particular, we have (©°- D*) = (H* . ") = 2.

3. Let (X,Y) be a smooth projective compactification of C* with the second
Betti number b(X) = 1 and the index r = 1 , namely, —Kx ~ Y. Then X isa
Fano threefold of index one and Y is a non-normal irreducible ample divisor on X
with PicX 2 Z - Ox(Y') (cf.[Fuz]). Moreover we have

(2.6) Lemma (cf.[B-M], [Is;]). (1) H'(X;0x) = 0 ,H'(X;0x(Y)) = 0 for
1 >0, ‘

(2) H(X;Z) = H(Y;Z) for i > 0,

(3) H'(X;Z) =0, H*(X;Z)=2Z,

(4) wy = Oy,

(5) HIQ"; Oy)=0.

1t is proved by Shokulov [Sh] that there exists a smooth member H € | — Kx|,

which is a K3-surface. We may assume that C := H NY is irreducible. By the
adjunction formula, we have

pa(C) = 5(CHu +1

1
= s(-Kx)x +1

The integer ¢ := 7(—K%)x + 1 is called the genus of X. Then we have
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(2.7) Lemma ([Is1]). X = Vzy2 (2 <9< 10o0rg = 12), and (9,h'?) is as
follows:

©©
—
L]
[,
3]

g | 2]3]|4]|5]6|7]8
R 0521302014 11015151312 ]0

Table 1
,where h'? = 15;(X).

We put £ := Oy(—Kx) = Oy(Y). Then L is very ample if ¢ > 3 and Bs|L| =0
if g = 2. Thus (Y, £) is a non-normal polarized surface of K3-type if g > 3
(2.8) Lemma (cf. Proposition (1.5)). (:) H*(Y;£) =0 fori > 0,

(i) d(L) == (L?) = (-K%)x =29 -2,

Let ¢ : Y — Y be the normalization and Z the conductor of 0. Let E := Vy(Z)
(resp E = V3{(T)) be the closed subscheme defined by T in Y (resp. Y). Let

p#: ¥ — Y be the minimal resolution and B = U’_l B; the exceptxonal set of u.
Let E be the proper transform of E in V. Weset m: ¥ 27 - Y.

By (1.4), (1.5), we obtain
(2.9) Lemma. (1) ~Ky ~ E as a Weil divisor, -Kg ~ E'*‘Z.’ kiB; (ki > 0,k; €
Z), in particular Y is a rational or a ruled surface,
(ii). g(C) = g — 6 for a general smooth member C € |o*L|, where § := (L - E)y,
(#3). (o°L - E)y = 26,
(iv). If E is irreducible reduced, then b,(E) < 2,

(v). Let Ey be an irreducible component of E,.y. Suppose that the number
#{0~1(E,)} of irreducible components of c~'(Ey) (analytic inverse image) is more
than three. Then multg Y > 3

Proof. We have only to prove the assertion (v). Since Ej is a non-normal locus of
Y, we have multg,Y > 2. Assume that multg,Y = 2. Then a general hyperplane
section C € |£| has multiplicity two at a generic intersection point p. Thus the
pull-back C of C in Y intersects 0~!(Ep) at two points (with multiplicity) over p.
This is absurd since the number #{c~1(Ey)} > 3. O

Now, we shall consider an exact sequence ([B-K]):

(2.10) 0 — Zx HY;Z) — H*(Y;Z)® H*(E;Z)
— H¥(E;Z) — H¥Y;Z) — H3Y;Z) — 0.

Then,
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(2.11) Lemma. (a) bs(X) + 5(Y) + b (E) = 2h1(09) + by(E) + 1,in particular,
b2(E) > b3(X) + b2 (Y) — 2h}(Op),
(b) 3b3(X) + 1 < h}(Op) +6.

Proof. Since by(E) = by(E), by (2.10), we obtain
by (V) + ba(¥) + ba( E) = ba(F) + ba(E) + 1.
Since b3(Y) = b3(X) by (2.6)-(2) and since

53(¥) = ba(Y) = by (¥) = 201(Op)

(cf.[B1]), we have the assertion (a). Next, by (2.9)-(iii), one obtain that b;(E) < 2.
Qn the other hand, since

b3(X) +2 < 53(X) + b(Y) + by(E),

we have b3(X) < 2h'(Ogp) + 26 — 1. This proves (b). O
(2.12) Proposition. Ky + n*L is nef, in particular, (Ko + n*L)? > 0.
Proof. Assume that Ko + 7*L is not nef. Then by (1.10)-(I) we have either

(1) Y= Y = P?
or R
(2) Y isaPl-bundle ¢:Y — T over a smooth curve I of g(T) =

(1.12.1). The case (1) cannot occur.

In fact, since d(L) = 29— 2 (2 £ ¢ £ 12, g # 11), one can easily see that
o*L = Ops(2) and g = 3. Let C € |0*L| be a smooth member, Then C is a smooth
conic in P2, hence 0 = ¢(C) = g — 6§ = 3 — 4, that is, § = 3. From the Table 1, we
have b3(X) = 60 since ¢ = 3. Thus by (2.11)-(b) we obtain 30 = 153(X) < § = 3.
This is a contradiction. O

Thus we have the case (2). Then since h!(Oy) = ¢(T) = g — §, by (2.11)-(b),
we have b3(X) < 2g. From the Table 1, we obtain ¢ > 7. We put & := ¢~(t) for
teT. Since (7*L-¢~1(t)) =1forallt €T, £ is aline on X, and thus Y is a ruled
surface swept out by the family {£;} of lines. If Y # Y, then Y is obtained from
g by blowing down the negative section of Y. Thus Y is a cone. But this cannot
happen because of (2.1)-(2). Therefore we have ¥ = Y.

(2.12.2) Claim. Any line ¢, can not be a singular locus of Y.

In fact, assume that some line ¢, =: Z is a singular locus of Y. Then we have
multzY = 2. Otherwise, we have multzY > 3. Hence any conic intersecting the
line Z is always contained in Y. Thus Y is a ruled surface swept out by conics
intersecting the line Z by (2.1)-(3). This shows that the P'-bundle ¥ contains
infinitely many rational curves v with (¢*L - v4) = 2. Since the rational curve v can
not be a fiber, we have Y = F; (the Hirzebruch surface of degree d) , in particular,
g(I') = g — 6§ = 0. Let 34 be the section of ¥ with 32 = —d £ 0. Then the curve
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v can be written as ¥ ~ asg + bf , where f is a fiber and a,b € Z. Taking into
consideration that v & P! and (¢*L-v) = 2, weobtaina = b= 1, (¢*L-3,) = 1 and
—s2 = n < 1. On the other hand, since (¢*L- f) = 1, we can write as 0*L ~ sy +k f
for some k € Z. Since 1 = (¢*L :39) = —n + k and 2g — 2 = —n + 2k, we have
g = 2. This contradicts the fact ¢ > 7. Thus we must have multzY = 2 if the line
Z is a singular locus of Y.

Now, we put V := X(= V4_2, ¢ 2 7). In order to avoid the confusion, we use
the same notations as in (2.2) and (2.3). Since multzY = 2, the lines Z;,--- ,Z,
intersecting the line Z is always contained in Y. By (2.1)-(1), we can see that
6N (ZoUZU---UZy) = B for almost all t € T. Let HY,Z2+,2Z¢,... ,ZF ...
be as in (2.2) and (2.3), and let Y+, £} be the proper images of Y, £ respectively.
Then we have (£, N Zt) = @ for almost all t € ' and Y+ ~ HY — Z+. Since
(H* — Z% .£,) = 1 for almost all t € T and since Y* ~ HY — Z% ~ ©*G for
G € |Ow(1)| , one can easily see that ¢ > 9. Since (¢;) is a line on W | we have
Fine(¢) # 0 for i = 3,4,5, where F; := ¢(Z%). This is impossible becuase the
blowing-up center A is not a hyperplane section for ¢ > 9. Therefore any line ¢;
cannot be a singular locus of Y. The claim is proved. O

We shall continue the proof of the proposition. By (2.9), we have ~Ky ~
E. Since any ¢; cannot be a singular locus, E contain no fiber as its irreducible
component. For a fiber f, we obtain 2 = (~Ky -+ f) = (£ - f). This shows that
either

(B)E =, + E; with (Ei - f)=1fori = 1,2, 0r
() E is irreducible reduced.

In the cases (a), (), we have b;(E) = b,(E) = 1. Since b,(Y) = 2, by (2.11)-(a),
we obtain b3(X) = 2h'(Oy) — 1. This cannot happen, since b3(X) is even. In the
case (), since by(E) = 2 > by(E) and since b3(X) = 2h}(Oy) + by(E) — 1 is even,
we have b;(E) = 1 and b3(X) = 2(g —§). Since —Ky ~ E; + E3, by the adjunction
formula, we obtain g(E;) = 1~1(E;-E;) < 1, hence b3(X) < 2. By the Table 1, we
have g = 12 and b3(X) = 0, hence we obtain E; = P! Ef +-E: =4, (E, - E;)=2
and (¢*L - E;) = § = 12 for ¢ = 1,2, in particular, ¥ = F4 (d > 0). Moreover one
can ea.sﬂy show that Y = P! x P! or F;. In the case where Y = ¥, E;’s are sections
with E,. = 2 for ¢t = 1,2. Thus Y — E contains a smooth rational curve with the
self-intersection number —2. This cannot occur since Pic Y 2 Z - L. Therefore we
obtain ¥ 2 P! x P!. Moreover, since H,(E;Z) = 0 and since (E, - E;) =2, E, is
tangent to E,. On the other hand, we consider an exact sequence over Z or R :

0= HYE) — HYY,E) — HYY) — H*(E) —
— HYY,E) — H*}(Y) — 0.

Since b;(Y) = by(E) = 1, we have
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H3Y;R)= H)(Y,E;R) = H)(Y,E;R)

= Hl(?—E—; R)
= H(P' x P! - (E, UE;);R)
#0.

This contradicts the fact H*(Y;R) = H*(X;R) = 0. Therefore K'p + 7*L is nef.
By (1.10)-(II), we have (K¢ + 7*£)* > 0. The proof is completed. O

Remark 4. Let X := Uy — P*3 be the Mukai-Umemura’s example of the Fano
threefold of the index » = 1 and the genus ¢ = 12 ( [M-U]). Then there exists
a non-normal hyperplane section Y such that (i) ¥ = P! x P! , (ii) Kp + #n*L is
"not” nef, (iii) E = 2E, (E, is a diagonal) is non-reduced, here we use the same
notations as above. In our proof of (2.12), we use the conditions b;(Y) = 1 and
H3Y;Z) = H3(X; Z) effectively.

(2.13) Lemma. (1). § +2h'(0p) < 3(g+3) if (Kp+7*L)?=0.
(2). 6 +3h(0p) < Mg +8) if (Kp+n"L)? >0,
Proof. (1). Since 8 — 8h'(0p) > K§ = 46 —2g + 2, we have the claim (1).

(2). Since (Kg + 7*L)? > 0, by the Kawamata vanisning theorem, we obtain
Hi(l?; Op(2K¢ + 7*L)) = 0 for £ > 0. Thus we have

R°(2Ky +7*L) = x (2K3 + 7°L)
1
= 5(2K1p + W*ﬂ)(K? + 7" L) + X(Oy)

= K% - 36+ g —h'(Op)
> 0.

Since 8 — 8h1(Og) > K2, one can get easily (2). O
(2.14) Corollary. ¢ > 9.
Proof. We put ¢ := h'(Op). Then, combining (2.11)-(b) with (2.13), we have

(2.14.2) %(bg(X) +1)<8§4+¢<6§+3¢< i—;—s— if (Kyp+ L) > 0.
From the Table 1, one can easily see that ¢ > 9. O

4. Next, we shall prove that g = 12. This can be done by proving that g # 9, 10.
For the proof, we need the following:
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(2.15) Lemma. (a). Assume that g > 9 and that there is a line Z — Y with
multzY > 2. If'Y is a ruled surface swept out by conics intersecting the line Z,
then ¢ = 12. In particular, if multzY > 3, then ¢ = 12.

(b). Assume that g > 10. Then there exists no conic D — Y such that
multpY > 3.

Proof. Consider the bouble projection from the line Z. In order to avoid the con-
fusion, we use the same notations as in (2.2) and (2.3).

(a): By (2.3.6),(2.3.7) and (2.3.8), we obtain @t := Y+ ~ 3H* - 4Z% 2H*
3Z% and H* — 2Z%1 if g = 9,10 and 12 respectively. Since Y is a hyperplane
section, we have Y* ~ H* — 227 that is, g = 12. If multzY > 3, then any conic
intersecting the line Z is always contained in Y. Thus by (2.1)-(3), one can see
that Y is a ruled surface swept out by conics intersecting the line Z. The assertion
(a) is proved.

(b). Similarly, since multpY > 3, Y is a ruled surface swept out by conics
intersecting the conic D. If ¢ = 12, then by (2.5.6) we have F* := Y* ~ 2H" —
3D".Thus Y cannot be a hyperplane section. If g = 10, then, by (2.5.5), %(F*) =
(Y"®) coincides with the discriminant locus A of the conic bundle 3 : V¥ — P2,
Since deg A = 4 and since Y is a hyperplane section, this cannot occur. The proof
is completed. O

Noe, since ¢ > 9 by (2.14), we obtain d(L) := 2¢ — 2 > 16. According to
(1.10)-(II), we have the following two cases:

(2.16.A) There is a surjective morphism ¢ : Y — T over a smooth curve T whose
generic fiber f is a smooth rational curve with (7*£ - f) = 2, in particular,
there is a numerical equivalence K¢ + 7*L = (¢ — é — 1)f (where, g 2 9).

(2.16.B) (Kp +7°L)?>0.

(2.17) Lemma. g # 9.
Proof. Assume that ¢ = 9. Then we have b3(X) = 6 by the Table 1. We shall

derive a cqntradiction.
First, in the case (2,16.A), by (2.14.1), we obtain

4<é+q<bé+2¢<6’

Since 6 > 1, we have ¢ < 2. Moreover, we obtain
(i) ¢g=2and § =2,

(i) g=1and 3 < § <4,

(i) g=0and4 < § <6.

We put E:= % E; (E; : irreducible subscheme, not necessarily reduced).
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The case (i) : Since ¢ = 2, we have K% = —8, that is, ¥ -*, T is a P-bundle
over T. Since by(E) > 3 by (2.11)-(a) and since § = 2, applying (2.9)-(iii), we
obtain

3
4= ("L -E)2) (=L E)).

i=1

Thus there exists a component E;, 2 P! such that (7*LC - E,'o) = 1. This E;, must
be a section. This is absurd since the genus of the base curve T is equal to two.

The case (ii) : Since ¢ = 1, we have by(E) > 5 by (2.11)-(a). First, in the case
of 6 = 4, we have K3 =0, that is, ¥ - T is a P'-bundle over T. Since

8= ("L -E)> i(w‘ﬁ -E)),

=1

there is a component E.-o such that (7" L - E’,‘D) = 1. By the same reason as in the
case (i) above, we can derive a contradiction. Similarly, in the case of § = 3, then
we obtain

: 5
6=(r"L-E)>) (=L E)).

' =1
Thus there is a component E’;o such that (TI'*[:-E.'O) =1.1If bg(E) = 5, then b;(E) =
1 by (2.11)-(a). Thus n(E;,) = E is a line, and the number #{o~1(E)} = 5. By
(2.9)-(v), we have multgY > 3. By (2.15)-(a), we obtain g = 12. This contradicts
the assumption. If bz(ﬁ) = 6, b(E) < 2. Moreover, we have (7*( - E,) = 1 for
all : (1 £ 17 £6). By the same reason as above, b(EF) # 1. In case of by(E) = 2,
E consists of two lines E; and E,. Since by(E) = 6, we obtain #{s~1(E;)} > 3
for : = 1 or 2. This implies multig,Y > 3, hence ¢ = 12. Therefore we have a
contradiction.

The case (iii) : We have b,(E) > 7 by(2.11)-(a). In the case of § = 6, we have

I’;‘;-, — 8, that is, ¥ %, T is a P'-bundle over T = P!, Moreover we obtain

7
12=(s"C-E) > (="L- E)).
R i=1

Thus we have a component E;, = P! such that (z*L - E,-o) = 1,which is also a
section of ¢. Then ‘rr(E;o) =: E;, is a line. Since £, N E;, # 0 for any ¢t € T, where
v = w(¢~(t)) is a conic. Thus Y is a ruled surface swept out by conics {+}
intersecting the line E;,. By (2.15)-(a), we have ¢ = 12. This is a contradiction. In
the case of 6 = 5, we have

10=(r"L-E)>) (v*L-Ey).

i=1
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Since b,(E) =1, 2, 3,<4if bg(E) = 7,8,9,10 respectively, one can easily
see that there is a line Ey C E such that the number #{¢~!(E;)} > 3. Thus we
have multg Y > 3. By (2.15)-(a), we obtain ¢ = 12, which is a contradiction. In
case of § = 4, by a similar argument, we can also derive the same contradiction as
above. Therefore ¢ # 9 in the case (2.16.A).

Next, in the case (2.16.B), by (2.14.2), we obtain

7 17
-<§ <643 < —.
5 SO0tesot+dgs 3

Since § > 1, we have ¢ < 1. If ¢ = 1, then by the inequality above we obtain
%565 3, hence6¢z Thus we have ¢ = 0 and 4 < § < 5. In particular,
by(E) > 7 by (2.11)-(a). If § = 5, then we have

7
10=(r"L-E)> > (=L Ey).

=1

Since bo(F) =1,<2,<3,<4if bg(ﬁ) =17,8,9,10 respectively. By an argument
similar to the case (2.16.A) above, one can show that there is a line Ey C E such
that multg,Y > 3. Thus we'have ¢ = 12 by (2.15). This is a contradiction.
Similarly, in the case of § = 4 one can derive a contradiction. Therefore g # 9.
The proof of (2.17) is completed a

(2.18) Lemma. g # 10.

Proof. Assuming g = 10, we shall derive a contradiction. From the Table 1, one
sees b3(X) = 4.
First, in the case (2.16.A), we have the following

(2 18 1). (1) Let B = |J; B; be the exceptional set of the minimal resolution

Y 4 Y. Then each irreducible component B; is contained in a singular fiber of

) N T, in particular, Y has at most rational double points.

(2) There exists an irreducible component Ey C E such that the restriction
¢lg, : Eo — T is surjective.

In fact, assume that some B; is not contained in any singular fiber. Then the
restriction ¢|g, : B; — T is surjective. We put y; := 7(B;) € Y (a point on Y).
Then for generict € T, v, = n(¢~1t)) C Y — X is a conic passing through the
point y;. This is a contradiction because of (2.1)-(vi). Thus the exceptional set B
is contained in singular fibers. Let 4; be any irreducible component of a singular
fiber. Then we have (Kp +7°L)- A; = (g -6 —1)(f- A;) = 0. Thus we obtain
either (—K? . AJ') = (‘n“ﬁ . AJ‘) =1or (—K,}'; ' AJ') = (7!"[: . AJ') = 0. This shows
that A; is a (—1)-curve or a (—2)-curve, and hence any irreducible component of
B is a (—2)-curve. Therefore Y has at most rational double points. The assertion
(1) is proved. Next, since —Kg ~ E+ 3, Bi and since (—Ky - f) = 2 for a general
fiber f, we obtain (E - f) = 2. This proves the assertion (2). O
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(2.18.2). (1) ba(T) 2 2. (2) ba(E) > 5 — 2 + ba(E).

In fact, let fi,---, fy be singular fibers, 1 + ¢; the number of irreducible com-
ponents of f; and §; the number of irreducible components of f; other than the
exceptional set B. By (2.18.1), we have b(B) = Efil(l + a; — f;). Since

bo(¥) = by(¥) + ba(B), we have
-~ N N
b(Y)=2+) ai=) (1+ai=f)+b(Y)
i=1 =1

This yields b,(Y) -2 = Zfil(ﬁ.- —~1) > 0. In particular, 5(Y) = 2 iff there
exists unique (—1)-curve in each singular fiber. This proves the assertion (1). By
(2.11)-(a), we obtain the assertion (2). O

Now, by (2.14.1), we have

55+q55+24512§_

| o

This implies that
(iyg=2and1<6<2, .
(ii)’q=1a.nd2§6$4or.t
(iii)) g=0and 3 L § L 6.

The case (i)’ : Since § £ 2, we have bp(F) < 2and2 £ bq(ﬁ) < 4 by (2.18.2)-(2).
In the case of § = 2, we have

4= ("L -E)2) (x'L-E)).
=1

If bg(E) = 2, then b;(F) = 1. This shows that E is a line or a conic) and
(7*LC - E’,) < 2fori=1,2. Thus E; =P fori=12 Similarly, one can also show
that (7*£ - E;) < 2 for all  for the case of by(E) > 3. Thus E = P! for all i. By
(2.18.1)-(2), we have a contradiction because the genus of the base curve T is equal
to 2. In the case of 6 = 1, we have (7*C - E;) =1for i = 1,2. By the same reason
as above, we have a contradiction. Therefore ¢ # 2.

The case (ii)’ : By (2.18.2)-(2); we obtain bg(E’) > 4. In the case of § = 4, we
have ' )
4=(n"L-E)> Y (n"L-E)).

i=1

If by(E) < 5, then by(E) < 2, and there is a line (or a conic) Ey C E such that
the number #{o~'(Ep)} > 3. Hence multg,Y > 3 by (2.9)-(v). By (2.15), this
cannot happen in our case. If by(E) = 6, then b,(E) < 3 and (x*L - E;) < 2 for all
i. Thus E; = P? for all i. Since g = 1, this cannot happen. For the cases by(E) > 6,
one can easily show that either (r*L - E;) < 2 for all ¢ or there is a line (or an
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irreducible conic) Ey C E such that the number #{0~1(E,)} > 3. Thus we also
have a contradiction. Similarly, in the case of § < 3, one can derive a contradiction.

Therefore g # 1.
The case (iii)’ : By (2.18.2)-(2), we have by(E) > 6, and

6
12 = (n°L - E)zz L E).

In the case of § = 6, if bg(E) < 9, then, taking an account of b;(E) < 4, one
can easily show that there is a line (or a conic) Ey C E such that the number
#{o~1(Ey)} > 3. So we have multg,Y > 3. This cannot occur in our case by
(2.15). N

If b‘z(E) > 10, then one can see that the number #{E; (r*L-E;) =1} > 8. For
each E; with (7*L - E;) = 1, since (Kyp . E;) +1 > 0, we have the self-intersection
number E? < —1. On the other hand, since KY =46 —18 =6, ¥ can be obtained
from the relatively minimal model F,, (n > 0) (Hirzebruch surface) by bolwing up
two times. Thus one can see that ¥ cannot contain so much E;’s with the negative
intersection number. In the case of § = 5, we have

10—(«*5 E)>Z(1r*£ E)).

i=1

If b,(E) < 9, then there is a line (or a conic) Ey such that the number
#{o=1(E,)} > 3. This cannot happen in our case as we have seen. If b,(E) = 10,
then we have (7*L - E) = 1 for all i. Thus there is a line E;, C E such that
v:NE;, # B for a generict € T. Thus Y is a ruled surface swept out by conics {~¢}
intersecting the line E;,. This cannot happen in our case by (2.15). For the cases

§ <4, by a similar argument, one can get easily a contradiction. Consequently, we
have g # 10 in the case (2.16.A).

Next, in the case (2.16.B), since b3(X) = 4, by (2.14.2), we obtain
5 < <§+9g<8§+3¢<6.

Hence we have either

(i)’¢g=1land2<é§<3or

(i) ¢g=0and 3 < § <6.

The case (i)” : First, in the case of § = 3, by (2.13)-(2), we obtain 0 < K% <
36 — 9 = 0, that is, K% =0. Thus ¥ is a P'-bundle v : ¥ — T over an elliptic
curve T = T!. Moreover since e := b,(E) > 3 by (2.11), we obtain

6= i:(w'ﬁ E) 2 Y (=L Ey).
i=1 =1
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If bg(E') = 3, then b(E) = 1 and there exists a component E,' C E such that
(n*L-E) <2 Thus E = W(E ;) is a line or a conic and we have the number
#{o~1(E)} = 3. This cannot happen as we have seen before. If bg(E) > 4, then
there exists a component E; C E such that (n°L - E;) = 1. This E; = P' must be
a fiber of v : ¥ — T, hence we have (Kyp . E; i) = —2. Since Kp + 7*L is nef, this

cannot occur.
Next, in the case of § = 2, we have

4= Z(«'z E)>Z(1r‘£ E).

=1

By the same reason as above, we may assume by(E E) > 4. Then we obtain (7°L -
E) =1 for all : (1 < i < 4), hence E; & P! is irreducible and reduced for all 1.
Since ¢ = 1 and since Ky + 7L is nef, we have Ef <Oforali.Letv:Y — T
be the ruling over an elliptic curve T. Then E;’s are all contained in singular fibers
of v, hence (E, . EJ) <1 for i # j. We claim that (E, . E,) =0 for : # j. In fact, if
(E; - EJ) =1 for some i # j, then, since

4 N
~Kp~ /Ei+Y kiBi(ki € Z ki >0),

i=1. i=1
by the adjunction formula, we have B; = P! and k; = 1for all i. Since (—Kgp-f) = 2
and (E', - f) =0(1 <1 < 4) for a general fiber f of v, there exists a component
B; ¢ P!. This is a contradiction. Therefore we have (E. . E’,) = 0 for t # ;.
Let Yp := ?/ E be a normal projective surface obtained by contracting the disjoint
rational curves E; (1 <i<4). Then ¥, has at most rational singularities. Let
fo C ¥, be the i image of a general fiber f of v. Then fo does not pass through
the singularities of Y, and the self-intersection number f& = 0. Thus we have
by(¥s) > 2. On the other hand, since 2 < by(¥p) = by (V) — by(E) = by(¥) — 4, we
obtain 62(?) > 6, hence K% < —4. This is a contradiction since K% >36—-9=-3.

The case (ii)” : By (2.11) and (2.13)-(2), we have b;(E) > 5. First, in the
case of § = 6, since K%, > 36 —10 = 8, one can see that Y = F, (Hirzebruch
surface of degree n). Let ¢ := QIK?+W'C| Y —Pbea morphism defined by
the linear system |Kp + 7*L|, which is free from the base point by (1.10). Since
(Ky + 7*L)? = 2, we obtain Y = P! x P!, or F,. Let s (resp. s;) and f be

the minimal section and a fiber of P! x P! (resp. F;). Then one can easily

show 7*L ~ 3sg + 3f (resp. 3s; 4+ 6f). Thus we have no irreducible curve £ with
1< (n*L-€) £2. On the other hand, since

12—2(#[: E) >Z (*L - E)

1=1

there exists a component E,- such that (7*L - E',) < 2. This is a contradiction.
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Next, in the case of § = 5, we have
e . 5 .
10=3 (L E)2 ) (=L By,
=1 =1

Ife= b«z(f?) < 7, then one can easily see that there exists a line or a conic
Ey C E such that the number #{o~!(Ey)} > 3. This cannot happen as we have
seen before. So we may assume that e = bg(E) > 8. Then there exist irreducible
components El,--- ,Eco (eo 2 6) with (z*L - E.) =1forl1 <i< ey Thus E.-’s
(1 €1 < eg) are reduced. Since Ky + 7*L is nef, we have (Kyp ‘E)+13>0,
that is, B2 < 0 for all i (1 < i < ). Since ¢ = 0, Y is rational , hence E is
connected and E,.q4 has no cycle by an argument similar to (1.6).Thus, applying
the adjunction formular to the curves B, (1 <1< ep), one can show (E. . E_,) =0
fori #j5,(1<1i,7 <ep). Let Yo := ?/E’o, where Eg 1= Uz, E.-, be the contraction
of the disjoint exceptional curves Eo. Then ¥, has at most rational singularities,
and we have bg(?) = bz(f:)) + b-z(Eo) > 1+ e > 7. On the other hand, since
K?? > 36 — 10 = 5, we have bg(?) < 5. This is a contradiction.

Similarly, in the case of § = 4, we may assume ey = b-z(E) > 8. Then one can
find irreducible components E; C E with (w*L- E,) =1(1 <1 < ep). In particular,
wehave(ﬁ.--ﬁj)=0fori#j (1 <14, <e) andbz(?) > e+ 12> 9 by the
same arguments as above. On the other hand, since K%, > 36 — 10 = 2, we obtain
bz(?) < 8. This is a contradiction.

Finally, in the case of § = 3, one can easily show that there exists a line By C E

such that the number #{¢~1(E,)} > 3. This cannot happen in our case. Therefore
we have ¢ # 10 in the case (2.16.B). This completes the proof of (2.18). O

By (2.17) and (2.18), we conclude the following:

(2.19) Theorem (cf.[P],[P-S;]),[Fu;]). Let (X,Y) be a smooth projective com-
pactification of C*® with the second Betti number by(X) = 1 and the index r = 1.
Then X is a Fano threefold of index one and the genus ¢ = 12, which is anti-
canonically embedded into P'® with the degree 22, and Y is a non-normal hyper-

plane section of X, in particular, Y is rational. '

-
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§3. The structure of V,; as a compactification of C3.

1. Let (X,Y’) be a smooth projective compactification of C* with b;(X) =1 and
the index r = 1. Then by (2.19) X = V,; < P!? and Y is a non-normal hyperplane
section of X. We use the notations of §2.

By (1.6) and (2.11) , we have
(3.1) Lemma. (1) Y is a rational surface,

(2) Y has at most rational singularities,

(3) 1(Op) = k*(Og) = 0=by(Y),

(4) E,.q is connected and has no cycle,

(5) b2(Y) + b(E) = bo(E) + 1.

According to (2.16.A) and (2.16.B), we have two cases :

(A) There is a surjective morphism ¢ : Y — T = P! such that (7*L - f) = 2
for a generic fiber f = P!, in particular, K¢ + 7*L ~ (11 — 6)f.

(B) (Kg +7*£)*>0

13

+ The structure of (X,Y) viin the case (A).

In (2.18.1),(2.18.2), we have proved

(3.2) Lemma. (1) Let B = |J; Bi be the exceptional set of the minimal resolution
Y £ Y. Then each irreducible component B; is contained in a singular fiber of
) gaNg B P!, in particular, Y has at most rational double points.

(2) There exists an irreducible component Eq C E such that the restriction
$lg, i Bo— T P! is surjective.

(3) Let A; be an irreducible component of a singular fiber of . Then A; is either
the (—1)-curve with (7*L - A;) =1 or the (—2)-curve with (7*L - A;) = 0.

(4) b5(Y) > 2, in particular the equality holds if and only if there exists exactly
one (—1)-curve A; with (r*L - A;) =1 in each singular fiber of §.

(5) bo(E) = bo(V) + by(E) - 1 > 2.
(6)§ <.

2. Let E;, C E be an irreducible component with (E;, - f) # 0 for a generic
fiber f of @. Smce (-Kg-f) = (E f) = 2 by (3.2)-(1), the number of such a E.o
is at most two.

(3.3) Lemma. E,:=n(E;)) = Y — X is a line on X.

Proof. The proof will be divided into several steps.
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(3.3.1). Let A be an irreducible curve with (r*£ - A) < 2 and (A - f) # 0, where
f is a generic fiber of . Then A := n(A) is a line on X with A C E. In particular,

Ey cannot be a conic.

In fact, by assumption, A is a line or a conic on X. If 4 is a conic, then YV is a
ruled surface swept out by conics {7;}, where v, := 7(¢~1(t)) for a generic t € T.
According to (2.5.6), ¥ cannot be a hyperplane section. This is a contradiction.
Thus A is a lineon X. Since K¢ +7°L ~ (11-6)f, we obtain (Ko LA) > (9-6)>0
by (3.2)-(7). On the other hand, since —K is effective, we obtain (Kp - A) > 0
unless A C E. Thisimpliess A C E. O

(3.3.2). There exists an irreducible component E; ¢ E such that ¢(E;) is a point
of T = PL.

In fact, assuming the contrary, then we have (ff:‘, - f) # 0 for each irreducible
component E; C E. Since bg(E') > 2 by (3.2)-(5) and since (E - f) = 2, we
obtain E = E, + E,, where (E, - f) = (E;- f) = 1. By (3.2)-(6), we have
K% = 46 — 22 < 6, that is , bz(?) > 4. Thus ¢ : Y — T has at least a singular
fiber ¢71(0) =: fo ~ oino MiBi - (A € Z, A; > 0). By (3.2)-(3), we may assume
that B = -1, (#*L-By) =1 and B? = -2, (v*L - B;) =0 (1 <t < m). Since
H,(E;Z) = 0, we have Hl(ﬁ U B;Z) = 0 , namely, E U B has no cycle. Hence,
applying the adjunction formula, we obtain (E; - E;) = 0 or 2. In the case of
(El . E’g) = 2, by the adjunction formula, we have easily ENB = 0. Hence we have

2= (~Kg-f)=(E-f)
=(E- fo)=(E: fo) +(Ex- fo)
= (E, - By) + (E, - By).

This implies (— K¢ Bg) = 2. This is a contradiction since By is a (—1)-curve. In the
case of (f:':'l - E;) = 0, applying the adjunction formula, one sees that the number of
the singular fibers is equal to one. Moreover since the singular fiber contains exactly
one (—1)-curve and since the other components are all (—2)-curves, we obtain a
linear equivalence

—K? ~ El + Eg + B +2Bg + 3B3 + 2B4 + 2B5,
where

(El - By) = (Ez Bs) =1,
(Ba-Bs)=0,(Bs - Bi) =1(i = 2,4,5),
(Bips-B)=1(i<2).

A

In particular, the number of irreducible components of the singular ﬁbe;‘ fo i3 equal
to 6. This yields 5,(Y) = 7, that is, K3 = 3. Since K% =46-22, weget § = L ¢ Z.
This is a contradiction. This proves (3.3.2). O
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We shall prove (3.3) below. Assume that E; C E is not a line. Since the
hyperplane section Y is a ruled surface swept out by the conics {7;} intersecting
Ey, E, cannot be a conic by (2.5.6), that is, deg Eg = (=K x - Ey)x 2 3. According
to (3.3.2), there is an irreducible component E; of E such that ¢(E,) is a point.
We put E; := m(E,) & P!. Then since (r*L - E;) < 2 (the equality holds only if
El is a regular fiber of ¢}, Ey C E is a line or a conic. Since deg Ey 2> 3, we have
E, # Ey. Let A be a line or a conic intersecting the curve E; and let A be it’s
proper transform in ¥. In the case of A ¢ E, taking into account that (K o ‘E) <0
and K¢ +7*L = (11 -4)f, A is contained in a fiber of ¢, hence we have vwNA=0
for a generic t € T. In the case of A C E. By (3.3.1), if (A f) # 0, then A is
a line and Y is a ruled surface swept out by the conics 4; intersecting the line A.
Taking A instead of Ey, the lemma is proved. So we have only to consider the case
of (2 f) =0, that is, qb(;f) is a point. In this case, we also have yN A =@ for a
generic t € T.

Now we put E| =: Z (resp. =: D) if E; is a line (resp. a conic) and consider the
double projection from the line Z (resp. conic D). In order to avoid the confusion,
we use the same notations as in (2.2),(2.3),(2.4),(2.5), where A is considered as a
flopping curve Z;. By the observation above, we have Z* N~ =8, Qt N+ =0
(resp. D' N+’ =8, F* N~} = @), where ;7 (resp. 7!) is the proper image of
a generic conic v; in V¥ (respi* V?). Thus we obtain ¢(Z%) N ¢(v;}) = @ (resp.
P(D*) N p(4) = B). This is a contradiction because ¢(Z*) and (D) are ample
(see (2.3.8),(2.5.6)). Therefore Ey C E is a line on X. This completes the proof of
(3.3). O

3. Let Z := E; C E be the line in (3.3), and we put V:= X. Then @:=Y isa
ruled surface swept out by conics meeting Z. Let us consider the double projection
moz from the line Z. Then we have

V- vt

L 1oy

Vv - Zlevi2w.

Since

CxX-Y=V-Q=V —(QUZ)
~ y+ _(Qt U ZH)
~ W - Fy
= Vs — Fs,

one sees that (Vs, F5) is a smooth compactification of C?, where we use the
notations of (2.2),(2.3). By Theorem B (see Introduction), we obtain Fy = Hg®
or H?. Moreover, A := ¢(Q*) C Fs is a smooth rational curve of degree 5 and
L;:= (,o(Z,T") C F5 (0 €1 <m)is aline on V; which is a 2-chord for A



31

(3.4) Lemma. The non-normal locus X' of Hg® is unique 2-chord for A, in par-
ticular, AN X = {2p} (double points).

Proof. Let 0 : Hy, — HS® be the normalization and X be the analytic inverse
image of X. Then it is known that H, 2 Fy. Let s3 be the negative section of
F3. Then there is a fiber f; such that £ = s3 + fy and 0*A = s3° + f,, where
83° ~ 33+ 3f3 is an infinite section of Fy (cf.[Fu,], [F-N2], [P-S;]). Let f, (¢t # 0)
be a general fiber of F3 . Since (6*A - f;) = 1, the line o(f;) cannot be a 2-chord
for A. On the other hand, since (6*A - X) = 2, the line X is a (unique) 2-chord for
A. We put p:= o(fp). Then we have easily AN X = {2p} (double points). O

(3.5) Lemma([Fu;]). HY contains exactly one line Xy passing through the ratio-
nal double point py of A4-type.

Under the notations above, we have the following:
(3.6) Pl‘OpOSitiOD. (1) The normal bundle Nle has the type 0]?1(—2)@0[)1 (1)

(2). There exists no other line intersecting the line Z.

(3). Ereqa = Z, that is, the reduction E,.q of the non-normal locus of Y is a line
on X.

(4). Fs = H®.
Proof. (1): Assume that Nzx = Opi(—1) @ Op:, and let Zi",--- ,Z} be as in
(2.2). Then we have Z' = Fy, and L,’s are all 2-chords for A. Let f; be a general
fiber, which are not intersecting the curves Z; (1 <i < m). Let f;' beit’s proper
image in V*. In the case where F5 = HZ°, by (3.4), we have m = 1, in particular,
@(ft) is a conic with ¢(f)N L; = @, where L, = X is the non-normal locus of
Hg. This cannot occur since H{® — £ = C2. In the case where F5 = H?, o(f;) is
a conic not passing through the singularity of Hy. Since Pic H} = Z- (—Kpp), by
an easy argument, one gets a contradiction.

(2): This follows directly from (3.4) and (3.5).

(3): Assume that E has an irreducible component other than Eq = Z. By (2),
we have the degree deg E > 2. Since Yt := Q% i AisaP! -bundle, it is smooth.
Since V' = Z, X V* — zr, Y = Q' is smooth outside Z;. This contradicts the
assumption.

(4): Assume that F5 & H?. Let u: H® — H? be the minimal resolution and
let B = Ui, B; := p~(po) be the exceptional set of u, where py = Sing H?. Then
it is known that B is a linear tree of the (—2)-curves, and we have the following
relation:

(Bi - Bit1)=1(1<1<3), (Bi-B;)=0if |:—j|>1,
(5o-By)=1, (5o -B;)=0ifi#3

, where X is the proper transform of the line Xy in HY (see [Fu,]).

Since H2(H?;Z) = @'_, Z[B;| @ Z[S,], the proper transform A of A in HY is
written as follows: .

A~ kiBi+ 55,

=1
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for some k; € Z.
If pp € A, then since (~Kpg - A) = 5, we have A? = 3, hence we obtain

(A- Do) = 3 ¢ Z. Thus we have pg € A. Since A is a smooth curve passing through
the rational double point py of A4-type, there exists exactly one component B; such

that (A-B;) =1, (A-B;) =0 (i # j). Applying the adjunction formula, one
gets k) = J? ¢ Z (1 < j £4). This is a contradiction. Therefore F5 = HS°. The
proof is completed. O

(3.7) Proposition (cf.[Is;]). Let £ and A be as above. The inverse birational
map w5, : Vs — —— =V = Vi, is given by the linear system |Ov,(3) ® JZ|, where
w57 =Tox ' op™! and Jg is the ideal sheaf of T.

We put HgS := m;;(A). Then we have just proved that Va; — Hg§ = C* and HS
is a ruled surface swept out by conics intersecting the line Z := E,.q = 7, Zl(H ).
Consequently, under the notations above, we have :

(3.8) Proposition. Let(X,Y) be a smooth projective compactification of C* with
by(X) =1 and the index r = 1. Let 7 : ¥ 55 Y 54 Y be the minimal resolution
and put £ := Oy(—~Kx). Then

(1). Ky + n*L is nef, and
(2). (X,Y) = (Va2, H33 xf(K? +7*L)? = 0.

Remark 5(Fu;]). In the case of AN X = {2p} (double points), one has § = 4
and ¢: Y — T = P! has exactly one singular fiber

13
for=|JBiUE UE),.
1=1

Moreover, we obtain an linear equvalence

—Kg ~2E +3E, +3E; + 2(3 +1)B; + 2(3 +1)Byazi,
=1 =1
where

(Ey-B;)=(E,-B))=(E; - Bis) =1, (Bi- E;)=0(i # ),
(Bi- Biy1) =1, (B.--B;) =0(li-j]>1),

and (Eq - f) = 1 for a general ﬁbert.f of ¢.
The singula.rity of ¥ can be obtained from ¥ by blowing down the linear tree
of (—2)-curves U  Bi, hence, Y has a rational double point of A;3-type as a

singularity. Since E 2Ey + 3B, + 35, E = V5A(T) is non-reduced (cf. Theorem
D-(II)). Moreover, we have Hgy — E = C? .

* The structure of (X,Y) in the case (B).

4. Let Ey C E,.4 be any irreducible component of the non-normal locus E,.4 of
Y. By assumption, Ky + 7* £ is nef and big. Then



33

(3.9) Proposition. d:=degEg = (H-Ey)x = 1, where H is a hyperplane section
of X = ‘/22.

The proof is given in several steps.
(3.9.1). multg,Y =2.

Proof. Assume that multg Y > 3. Then any conic intersecting Ey is always con-
tained in Y. Hence Y is a ruled surface swept out by conics intersecting Ey (see
(2.1)-(iv)). Take a L generic conic ¥ C Y with v N Ey # @, and let ¥ be the proper
transform of v in Y. Since K ¢ + 7*L is nef and since —Kp = E+Bis effective,
we obtain 0 > (Ky - %) > —(7*L - 7) = -2, that is, (K? ¥) =-lor —2fora
generic conic ¥ C Y. Since the (—1)-curves cannot make a continuous family, we
conclude that (K -5) = -2, that is, (K¢ +7*L-%) = 0 for a generic conicy C Y.
This shows that (Ky + 7*L)? = 0, since Bs|Kp + n*L| = 0. This contradicts the
assumption. Therefore we have multg Y =2. O

(3.9.2). d<4.

Proof. We shall first show that § := (H - E) < 6. In fact, since Ky +7*L is nef and
big, by the Kawamata vanishing theorem, we have h'(2Kp + ‘rr‘E) = 0 for: > 0.
By the Riemann-Roch theorem, we obtain 0 < h%(2Kp + 7*L) = K9 - 36+ 12,
hence, we have 8 > K% > 36 —:12. This yields § < 6.

Let 7 : X' — X be the blowing up of X along E, and let Ej := 771(E,) be
the exceptional ruled surface. Let Y’ be the proper transform of Y in X’. Then we
have Y' ~ r*H — 2E{ by (3.9.1) and (E})® = —c1(Ng,x) = 2 — d (cf.[Is;]). Let
us consider an exact sequence

0—— OX'(E{']) —_— OXI(T‘H - E(',) — Oyl(T'H - E{',) — 0.

Since h*(Ox/(E})) = 0 for 1 > 0 by the Kawamata vanishing theorem, we obtain
the surjection

C~4 = HY(Ox/(r"H — Eg) — H°(Oy/(r*H — E)) 2 C'*~¢ — 0.

Since Bs|Ox:(r*H—Ey)| = 8, we also have Bs|Oy/(7*H—Ep)| = 0. Let ¢ : X' —
P!2-4 he a morphism defined by the complete linear system |Ox:(7*H — E{)| on
X' and let ¢' : Y' — P!''—9 be the restriction on Y’. Then we obtain 18 — 3d =
(r*H — E)*(v*H — 2E}) > deg'(Y') > codim ¢'(Y') + 1 = 10 — d. This yields
d<4. O

(3.9.3). d <3 if E = E, is irreducible and reduced.

Proof. By (3.9.2), we have d < 4. We assume that d = 4. Under the notations
in (3.9.2), we have a (birational) morphism ¢ : Y/ — M := ¢(Y"') — P7, where
degM = codimM +1 = 6. Isis well-known that M is a rational scroll or a cone over
a rational curve of degree 6 in P®. Take a smooth hyperplane section H containing
E,. Since (H - Eg) = 4 and since (Ep - Eg)y = —2, we obtain an exact sequence

0 — 011)1(—2) — NEolx — Op1(4) — 0.
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This yields Ng,|x 2 Op (a) ® Opi(b), where (a,b) = (=2,4), (~1,3), (0,2), (1,1),
hence Ey 2 F, (t = 0,2,4,6). We also have Og;(Y') = Ogy(—=Kg;) = Og,(23¢ +
(t+2)f), where s; (resp. f) is the negative section (resp. a fiber) of the Hirzebruch
surface Fy. We put A:= EgNY'.

(3.9.3.1). Y’ is normal.

In fact, assume that Y is non-normal. Then the non-normal locus is contained
in A = E{NY' since E, is irreducible. Take a general hyperplane section H of X.
Let Ag be an irreducible component of A with 7*H- Ay # 0, here Ag is not a fiber of
Ej = F;. Since multg,Y =2, Y'issmooth at a general point of Ag. Thus Y is
non-normal along a fiber fy C Ej. On the other hand, since (7*H - E})-fo =1, M
has a singularity along the line ¥(f3) on M. This is absurd since M is normal. O

(3.9.3.2). Y' has at most rational double points, in particular, the normalization
Y is Gorenstein.

In fact, let ¢ : ¥' — Y be the minimal resolution. Consider the following exact
sequence of cohomology:

0 — HY(Oy)) — H'(0;,) — H(R'g,05,) — HX(Oy') — .

Since Y’ is rational and since HX(Oy:) = H%Oy:(-E.) = 0, we get
H(R'g., Ogp,) =0, hence Y’ has at most rational singularities. Since Y' is Goren-
stein, we have the claim. O
(3.9.3.3). Y =2V

We have only to prove that A = E; NY’ contains no fiber of Ej = F,. In fact,
assume the contrary and let fy C A be a fiber of Ej. Then there is a birational
morphism h : ¥ — ¥ such that h(ﬁ]) is a smooth point of M, where ﬁ) is the
proper transform of f; in ¥'. Hence fyisa (—1)-curve on Y'. Weput £' ;= r*Hly
and L' := g*L'. Since Ky + L' = (r*H — E})|y- is nef and big, so is Ko, + L=
g*(Ky+ + L'). Hence we have ‘

0< (Ko, + L) fo= =14+ (L"- fo) = -1.
This is a contradiction. Therefore A contains no fiber of Ej. This implies Y’ =
Y. O |
(3.9.3.4). (M) =1, that is, M is a cone.

In fact, since multg, Y = 2, we obtain b( A) < 2. Taking into consideration that
X' —(Y'UE!) = C? one sees by(Y') = by(Y' N E}) = by(A) < 2. On the other
hand, there is a line Z; on X meeting Ey by (2.1). Then the proper transform Z;
of Z; in Y’ is blown down to a point of M since (7*H — Ej) - Z; = 0. This implies
that b(Y') =2 and b(M)=1. O
(3.9.3.5). Y is a ruled surface swept out by rational curves of degree three meeting
Ey.

According to (3.9.3.3), we have
(3.9.3.5-a) Ky+0'L =Ky +L' = (r*H - Ep)ly
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and
(3.9.3.5-b) Ko + 7L =p*(Kyv+ 0*L).

Let L be a generic line on the cone M C P7 and let L' (resp. E) be the
proper transform of L in Y’ = Y (resp. Y). Since (r*H — E})- L' = 1, we get
(Kg+m*L)- L = 1. One can easily see that the self-intersection number (i2)9 =0,
hence (K¢ . L) = —2. This yields (z*L - L) = 3, that is, (H - m(L))x = 3. This
proves (3.9.3.5). O

(3.9.3.6). 2Ky + w*L is not nef.

There is a line Z; meeting Ey by (2.1). Let Z, be it's proper transform in
Y. Since Z; # Eo, we obtain (Kp - Z;) < 0. This implies (2Kp + 7L - Z) =
2(Kp - Z1) + 1 < 0. Thus we have the claim. O

By (3.9.3.6) and the Cone theorem {KMM)], one has three cases:

() ¥ = P2,

(i1) V= F, or

(iii) There is a (—1)-curve £ C.¥ such that (7*L-£) =1.

By an easy argument, one can exclude the first two cases, namely, Y 2P F,.
Thus we have the last case (iii),

Now, let ¢' : ¥ —+ ¥; be.the blowing-bown of the (=1)-curve £. If there
is a (=1)-curve &, C Y; with (Cl €,) = 1, then blow down it, where £; :=
#'.(7*L). Repeating this process finitely many times, one hasa birationa.l morphism
¢: ¥ — ¥ onto a smooth projective surface Y satisfying

() Kp + 7°L = ¢*(Kg + L), where L) := ¢.(r*L).

(b) 2Ky + L is not nef.

(c) (Kg)? = (Kg)* +k, (~Kg-L) =84k, (£)* = 22 + k, for some positive
integer k.
In fact, (a) and (c) are clear. To prove (b), take a general line L on M. Let L be
the proper image of L in ¥. Since (2K + L) L= (K- L)+ 1 < 0, we have (b).

By construction, there is no (—1)-curve £ with (£-£) = 1. Thus we have ¥ & P? or
F,, by the Cone theorem. In the case of ¥ 2 P2, -(2K3 +L)is a.mple on¥ = P2,
This yields deg £ = 5 and k = 3. By (c) we obtain 15 = (- Ky - L)=8+3=11
This is a contradiction. Thus we have Y F... Indeed, we have easily

(1) YNIFz &ndﬁ~352+8f or

(2) Y > P! x P! and £ ~ 3sp + 5f.

From this, one sees Ky + Lis ample on Y. This shows that ¢ : ¥ — ¥ is given by
the linear system |Kp + #* L], in particular, we have YM by (3.9.3.5-a and -b).
This is absurd since b3(M) = 1 by (3.9.3.4). The proof of (3.9.3) is completed. O
(3.9.4). E,.4 contains no irreducible component Ey of d = degE, = 3.

Proof. In fact, assume that there is such an irreducible component F,. Let us
consider the double projection myg, : V --- > P? from the cubic curve Ep. By an
argument similar to (2.3)-(2.7) in Takeuchi [T], we obtain a diagram:
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vi_X syt
ol le
T
v - -2 P2,
where ¢ : V! — V is the blowing up along Fy with the exceptional ruled surface
E} := 07 Y(Ep), x: V' — — > V*is aflop, and ¢ : V¥ — P? is a conic bundle

over PZ.

Let Y' ~ 0*H — 2E}, be the proper transform of Y' in V', and let Y+, Ef, H*
be the proper transforms of Y', E}, H' := ¢*H — E) in V* respectively. Then
E} is normal Gorenstein surface with at most rational double points. Moreover,
we have Y+ = *L for some line L on P2. For a generic fiber £+ of ¢, we obtain
(Ht . ¢¥) = (Ef - £+) = 2. Since —Kg+ = (HY - E&*’)]E; and (KEJ')Z =(Ht -
EfY .- Ef =2, _KE;," is nef big and Bs| — KE:I = @. This implies that the
restriction | B} E} — P? | which is defined by the linear system | — K Ea’-l, is

a double covering over P2. Thus the intersection A* := Yt NE} = o~ (L)N Ef
consists of at most two irreducible components, that is, bp(A1) < 2.
Now, since

VI—(YYUE) =Vt - (YTUE}) =C?,

we obtain

2=bo(VF) = bao(Y* UES) = ba(Y) + ba(EG) — b2(47),
hence,
(3.9.4.a) ba(YH) + bo(EF) = 2 + by(ATY) < 4.

Let Z+ C Y+ be the proper transform of the line Z; C Y intersecting the cubic
E,. Theflop x : V' — — » V¥ yields a new rational curve Z3 which is contained in
EF. This shows that b(E]) > 3, hence we have b;(Y1) = 1 by (3.9.4.a). This is
impossible because the restriction ¢ : Y+ — L is a conical fibering. This proves

(3.9.4). 0O
(3.9.5). E,.q contains no irreducible component D of d = deg D = 2.

Proof. Assume the contrary and take a conic D C E,.y. Then we consider the
double projection myp : X — Q? — P* from the conic D. In order to avoid the
confusion, we use the same notations as in (2.5) and (2.6). We put V := X, and
consider the following diagram:

X

Vi—Z vt

Al 19

1D

V - ——>U=Q0*< P
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Then we have (cf.[T]):

(1) The number n of lines meeting the conic D is equal to four (counted with
multiplicity) (see [(2.8.2); T]).

(2) NZ'.|VH = Opl(—l) & Opl(—l), or Oﬁn(—z) 48] Opl for 1 S 1 S n _<_ 4,

(3) Npyv = Op @ Op, or Op(—1) ® Op(1), that is, D" := A~}(D) = P! x P!
or Fy (see [{1.5)-(1.7); T)).

(4) Y* :=x.(Y") ~ H® — D", where Y" ~ A*H — 2D" is the proper transform
of Y in V",

(5) F* := x.(F") ~ 2H"~3D", where F" ~ 2\*H—5D" is the proper transform
of the ruled surface F' swept out by conics intersectiong the conic D.

(6) F*- Z! =3for1<i<n <4

(7) Oy (H" — D°) = $*Oy(1),

(8) (Hb)a = 16, (Hb)g -D? =4, Hb ) (l)h)2 = -2, (Db)a = —4.

Moreover we put S := ¢(D*), A:=%(F*)C S, Q:=¢{"), ¥ :=¢{¥"n
D) c QN S. Then,
(9) @ — U is a hyperplane section of U = Q? and § ~ 2Q is a normal del
Pezzo surface of degree (wg')? = 4. In particular, the minimal resolution
D* of D" is obtained from P? by the blowing-up of 5 points in (almost)
general position, hence 5(D°) < 6. A is a smooth rational curve of degree
(A - Q) = 6. Moreover, degX = (H® - D*)-Y* . D' = 4.
(10) (H® - %~'(t)) = (D* -4~ (t)) =1 for t € A.
(11) b2(Y? N D®) = bp(Y*) + by(D*) — 2 and by(Y"") = bo(Y" N D"). This follows
from the fact that V" — (Y" U D") = C* = V® — (YP U D"), b(Y") =
bo(D") = by(V?) = 2. In particular, since Z! C D, we have by(D") = 2+ n.

(a) The case of D" = P! x P!

Let so and fo be the section and a fiber of D" . Let s} and f2 be the proper
transforms of sp and fo in V* respectively. Since H® - s} = 2, the image ¢(s}) is
not a point by (10). We put A" := F'' N D" ~ 539 + 4f; in D". Then we obtain
the virtual genus p,(A") = 12. One can show that A" is an irreducible curve with
at most four singular points (infinitely near points allowed) (see [Pagoda; Re]).

This implies that

ba(Z) = bp(YP N D°) = bp(Y*) + bp(D*) = 2= bo(Y*) +n 2 n + 2

by (11). On the other hand, since :;ieg 2 = 4, we obtain b,(X) < 4. Thus we have
n <2

In case of n = 2, we have easily by(X) = 4, and b(Y*) = 2. Thus ¥ consists of
four lines in @ = Q2. One can also show that the intersection A N Q consists of at
least two points. Hence we have bg(Yb) > 3. This is a contradiction.

In case of n = 1, since 4 > b (X) = bg(}’b) + 1, we have bz(Yb) =2o0r 3,
in particular, we have @ & Q2. On the other hand, it can be shown that the
intersection A N @ consists of at least two points (resp. three points) if by(Y*) = 2
(resp. b(Y") = 3). This is a contradiction because b (Y?) = 52(Q) + #|Q N 4|,
where #|Q N A is the number of points of the intersection @ N A.
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(b) The case of D" = F,.

In this case, one can also show F"' N D" = A" U 32, where s; (resp. f;) is the
negative section (resp. a fiber) of D' = F, and A" ~ 4s; + 9f, is an irreducible
curve with po(A") = 12. Then the proper transform s} C D’ of s; in V* is a
fiber of the ruled surface F* = ~1(A). Since =K = ¥*Q|ps is nef and big, the
minimal resolution D* of D has no rational curve with the self-intersection number
—k (k > 3).This shows that Z!'N s, = @ (cf. [Pagoda; Re]).

By an arguement similar to the case (a), one obtains b;(Y") = 2 and #|QnA| > 2
. This yields 2 = by(Y") > 5(Q) + 2, which is a contradiction. Therefore E,.q
containsno conic DinV:=X. O

Proof of (3.9).

Since § = (E - H) < 6 (see the proof of (3.9.2)), E,.q consists of at most six
irreducible components. If E,.4 contains a line Ey, then the other component
of E,.q4 is at most of degree three. In fact, taking the double projection mg, :
V——— > W = Vs — P? we can see that the image m£,(Y’) is a non-normal
hyperplane section of Vs, whose non-normal locus is a line on V5 (cf. [F-N;], [F-
T], [P-S;]). This implies that the degree of the other component of E,.q4 is equal
to three if it is neither a line nor a conic. The proof of (3.9) follows from this fact
and (3.9.2)-(3.9.5). O A

5. By (3.9), we know that the non-normal locus E,.q of Y contains a line Z := E,
in V = X := Vp; — P, 1t is also known by [Is;] that the normal bundle is either

(8) Nzivy 2 0z(-1)® O3z

or

(b) Nzjv = 0z(-2) @ Oz(1).

Now, let us consider the double projection M3z : V——— > W = Vs = F5. In
order to avoid the confusion, we use the same notations as in (2.2), (2.3).

Then we have:

X

Vi-Z—-»Vvt
f{ 1l

- T2

1% —--—>-W=V5HP°

Let Y' ~ r*H — 2Z' be the proper transform of Y in V' and @' ~ r*H — 32’
the proper transform of the ruled surface @ swept out by conics meeting the line
Z. Weput Y* := x (Y") ~ Ht — Z% and Qt := x.(F') ~ Ht* —2Z%. Then
p:Vt — W = Vs is a blowing-up along the smooth rational curve A of degree
5 lying a unique hyperplane section Fs := ¢(Z%) of V5. Hence Q% = 9™ '(A) is a
Pl-bundle over A = P'. We put F? := (Y1), which is a hyperplane section of Vs
(see (2.3.8) and paragraph 3).



39

(3.10) Proposition. Each irreducible component Z of the non-normal locus E,.q
of Y has the normal bundle Nzjy = Oz(-2) @ Oz(1).

Proof. Assume the contrary. Let Z C FE,.4 be a line with the normal bundle
Nz = Oz(—1) ® Oz. Then we obtain Z' := 77!(Z) = F,. Let s, and f; be the
negative section and a fiber of Z' & I, respectively. Then we have:

(3.10.1). Z* is normal.

In fact, if Z% is non-normal, then so is Fs = ¢(Z*). Then the singular locus of
F is a line on Vs and the normalization Fs of is isomorphic to F, or Fy (cf. [F-N,],
[F-T]). Since Z* has singularities at most along Z;", there is exactly one line Z;
meeting the line Z and hence ¢(2;") is the singular locus of Fs. In particular, Fy
is a ruled surface swept out by lines meeting the line ¢(Z;). Let f;" be the proper
image of a general fiber f; in Z*. Since (H* —Z%)- f{ = 2, o(f;}) C Fs is a conic
on Vs. Let o(f]) be the proper transform of ¢(f;") in Fs. One can easily show
that there is no such family of conics {¢(f;7)} in Fs. This proves (3.10.1). O

(3.10.2). Y'NZ' =: A’ is irreducible, in particular, there are three lines Z; (1 <
it < 3) meeting Z. -

Infact, Fs = p(Z1)isa normal del Pezzo surface of degree 5 with at most ratio-
nal double points. Such a del Pezzo surface is completely classified in [(8.4),(8.5);
C-T]. Then, using the relations

by (Y') = by (Y' N 2Z'),
b(YTNZH) =b(YT)+b5(2%) -2,

one can show that Y’ N Z’ contains neither the section s, nor a fiber f;. Moreover,
since Y' - Z' ~ 3s; + 4f,, one sees that A’ ~ 3s; + 4f; is irreducible. Since
A = ¢(Q7) is a smooth rational curve and since p,(A’) = 3, one can easily see
that A’ has exactly three double points. This implies that there are three flopping
lines Z! (1 < i < 3) passing through these double points. This proves (3.10.2). O

Now, by (3.10.2), we have
b(Ytnzt) = bg(Yff) +b(Zt)-2=b(Y )+ 3> 5.

On the other hand, since Y' N 2’ = A'is irreducible, we obtain by(Y* N Z+) < 4.
This is a contradiction. This completes the proof of (3.10). O

6. Take an irreducible component Z C E,.q. Then Z isalineon V := X =V,
with the normal bundle Nzjv = Oz(—-2) @ Oz(1) by (3.10), hence Z' = F;. Let
s3, fs be the negative section and a general fiber of Z' = F3. Let s7, f; be their
proper transforms in Z*. Then we obtain (Z'-s3) =1= —(Z* -3}); (H' - 83) =
(H*.s7)=0and (H*-f}) =1, in particular, s C Z+. Since Q' - Z' ~ 333+ 73,
the negative section s3 must be an irreducible component of @' N Z'.
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(3.11) Lemma. Q' N Z' contains a fiber.

Proof. Assume the contrary. Take an infinite section 8o, ~ 83 + 3f3 of Z' and
let st be its proper transform on Z+¥. We may assume that s¥ does not pass
through the singular points of Z+. Since (Ht - st.) = 4 and (s}, )? = 3, we obtain
(Z*-st) = —1. This yields (H* — Z*) - s¥, = 5. Thus ¢(s¥)) C Fs is a smooth
rational curve of degree 5 with Sing Fs N ¢(sk) = 8. Since (w;: ~p(sE)) =5, we
obtain p.(¢(st,)) =1 by the adjunction formula. This is absurd because ¢(s¥)) is
a smooth rational curve. O

Let AY C Q* N Z™ be the irreducible component such that p(A*) = A C Fy =
¢(Z2%) and A’ C Q' N Z' the proper image of A* in Z'. Since @' N Z’ contains the
negative section s3 and some fiber, we obtain either A’ ~ 2s3 + af3 or s3 + bf; for
some positive integers a, b. In the case of A’ ~ 233 + afs, since (A’ f3) =2 for a
general fiber f;, we obtain

2=(Q* f)=H" f)-22% - ff)=1-22"% - £),

which is absurd. Hence we obtain A’ ~ s3 + bfs (3 < b < 6)and (Q*- ff) = 1.
Taking into consideration that Q* ~ H* — 2Z*, one has (Zt- f§) = 0, and
(Ht —Z%)- f¥ =1 for a general fif. This shows that ¢(f;f) C Fs is a line on
Vs and thus Fs is a ruled surface swept out by lines {((f;)} which intersect the
line X := ¢(s¥) C Fs. Hence F; is a non-normal hyperplane section of V. It
is proved that the normalization F5 is isomorphic to F3 or F, (cf.[Fu,], [F-N,],
[F-T]). Moreover, we have the following:

Proposition (3.12). (1). @'NZ' = A'UA,UB,, where A’', A,, B, are smooth
rational curves with A’ ~ s3 + 4f3, A; ~ 283, By ~ 3f3 (as closed subschemes of
Z' = TF;).

(2). Fs = ¢(Z7) is a non-normal del Pezzo surface of degree 5 whose non-normal
locus is the line £ = (A}) with the normal bundle Ngyy, = Og(—1) & Og(1),
where AT is the proper transform of A, in Z*. In particular, Fs is a ruled surface
swept out by lines on W = Vi meeting the line X.

(3). The image ¢(By) =: p is a point on A C Fs and AN X = {p}, where B}
is the proper transform of By in Z%.

(4). Fy is obtained from the normalization Fs = F; by identifying the negative
section with a fiber of F3. i

7. Next, we shall consider the surface Fy = ¢(Y*). Since Y’ - Z' ~ 235 + 5f;3,
the negative section s3 must be contained in Y’ N Z'. This implies sy C Y*,
namely, the line £ = ¢(s]) = ¢(A]) is contained in F?. Since p = ¢(By) =
AN L e F?, we obtain Bf C Y*. This shows that Y’ N Z’ also contains a fiber
fa of Z' = F3. Thus one sees that Y' N Z’' = A, U B,, where Az, B; are smooth
rational curves with A, ~ 2s3, B, ~ 5f; (as closed subschemes of Z'). Let A7
and B;" be the proper transforms of A; and B; in Z*1 respectively. Then we have
Y = @(A}) = ¢(A7) and p = ¢(BT) = ¢(BF). Taking into consideration that
by (YTNZH) = by(Y )+ 5(Z1)—2, we obtain b, (Y+) = 2. This yields b (F§) =1
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since AN Fy # 8. On the other hand, the singular locus of F? is at most contained
in the line X. Since Fy is a unique hyperplane section of Vs which has the line X
as a non-normal locus, F{ must be normal. In particular, since by(Fy) = 1, it has
exactly one rational double pomt p of Ay-type (cf.[Fuy], see a.lso Case (A)).

ItlsknownthatV,r, FeCx F? (cf. [Ful]) Weputh, = Vs~ Fy, A=

1}5 NA, F5 = V5 N Fs. Then we have easily V5 ) F5 D A
From the defining equation of V5 in P® (cf. [M-U]), one can construct a poly-

nomial automorphism o : 1;5 ~ C?® — C3¥(z,y,z) such that
o(Fs) = {z = 0}

a(A) = {z =y =0},
where z, y, z are coordinate functions of C* (see [Fus]). This yields

80-1(‘;:';) _ I?!S# o Ca,

where Fx* is the proper transform of Fy in ¢ ~}(Vs).
On the other hand, since

X-Y=V-Y
. =V —(Y'uZ)
=yt _(Ytuzt)
= o~H(Vs) - Fs*
«C,

one sees that the compactification (X, Y") really exists in the case (B).

Conversely, take two compactifications (Vs, H®) and (Vs, HY) of C* with the
index r = 2 satisfying:

(1) H® N HY = X := Sing Hg®, (L is a line with the normal bundle Ng)y, =

Oz(-1)® Ox(1).
(2) Sing H) =: p € T, (the point p is the rational double point of A4-type)
(ck.[Fuy], [F-Na], (Fus]).

One can easily see that there ‘exists a smooth rational curve A of degree 5
contained in H& such that AN .= AN HY = {p}.

Then the linear system |Ovys(3) QT §2| on Vs defines an inverse birational map-
ping 75y : Vs — —— > Vag — P13 (see (3.7)).

Now, we put HY := m;,;(F?). Then (Vi3,HY) is a compactification of C*
and H22 is a non-normal hyperplane section of V3 with the non-normal locus
E = Ty J(HS®). Moreover, Z := E,.q is a line with the normal bundle Nzjv,, =

0Oz(—2)® Oz(1). By construction, we have mult z H3, = 2.

Therefore we conclude:

(3.13) Proposition. (X,Y) = (Vy2, HY,) if (K¢ + 7*L£)? > 0.

By (3.8) and (3.13), the proof of main theorem is completed. O
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