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ON THE CONNECTIVITY OF COMPLEX AFFINE HYPERSURFFACES

Alexandru Dimca

Let X: f = 0 be a (reduced, algebraic) hypersurface in (n+1, with n ~ 1 . It is

well-known that X has the homotopy type of a CW--eomplex of dimension n, see

[5], [8].

General results on the connectivity of affine varieties were obtained by M. Kato

[9] ) extending previous results due to A. Howard [7].

Let X be the closure of X in IP n+1, H be the hyperplane at the infinity inm

IP n+1 and set X = X nH . For any algebraic variety Z we let S(Z) denote itsm m

singular part and use the convention dim rP = -1 . With these preliminaries, Kato's

result can be stated in the hypersurface case as folIows.

Theorem (M. Kato [9J)

X ia (n - 2 - dim (S(X) US(Xm))) - connected.

We prove here the next better (usually by one!) estimation on the connectivity of

X.

Theorem 1

X is (n - 2 - dim(S(X) nHm)) - connected.
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Let f = fO+ f1 + ... + fd be the decomposition of the polynomial f into

homogeneous components, with fd f 0 .

Note that the set E(f) = S(X) nH is given in H ~ IP n by the equationsm CD

where for any polynomial g we denote by 8 g its gradient, i.e.

Forget for a moment the hypersurface x and consider the polynomial

fE. (: [xO' ... ,xn] as a basic object. It may happen that fd- 1 = 0 and so let e be the

greatest integer such that fe f 0 and e <' d .

Define the subset S(f) ( f n by the next similar equations

S(f) : 8 fd = 0 I fe = 0 .

We prove in fact the next stronger version of Theorem 1.

Theorem 2

Assume ihat e > 0 . Then any fiber of the polynomial function f: (: n+1 -----J ( is

(n - 2 - dim S(f)) - connected .
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Corollary 3

(i) (Angermüller [1]) If the degree form fd of f is square free, then al1 the

fibers of f are connected.

(ii) If e > 0 and if there is no po1ynomial g such that g2 divides fd and g

divides fe , then all the fibers of f are connected.

Using the setting of Angermüller [1], we get also a new result on the connectivity

of the diagonal /i f = {(x,y) E ( 0+1 )( (0+1 j f(x) = f(y)} . Consider the set in

IP 20+1 = lP(( n+1 )( ( n+1)

Corollary 4

If e > 0 , then the diagonal !J. f is

(20 -1 - dim 6 f) - connected .

In arecent paper [3], Broughton has considered polynomial functions f: a: 0+1
---+ (

such that

(a) f has oo1y isolated singularitiesj

(b) the set E(f) is finite.
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For such polynomials f I he has shown that the generic fiber Fe = r 1(c) has the

homology of a bouquet of spheres of dimension n, see Theorem 5.2. in [3]. Trus

statement can be improved as follows (compare with Proposition 8 below).

Corollary 5

For n t 2 , the generle fiber Fein the above conditions has the homotopy type of a

bouquet of spheres of dimension n.

For n ~ 3 , it follows !rom Theorem 1 that an the fibers of f are 1-eonnected.

Combining tbis with the homological information we get the result in the usua! way, e.g.

see [10], p. 58. The case n = 1 is obviously also true, since any connected affine curve

has the homotopy type of a bouquet of circles.

To prove our results, we recall first the definition and some basic properties of

tarne and quasitame polynomials.

Definition 6 (Broughton [2], [3])

A polynomial f is called~ if there is no sequence oI points zk €. (n+1 such that

k kIz I --+ Q) and 8 f(z ) --+ 0 for k --+ m .

Definition 7 (Nemethi [11], [12])

A polynomial f is called guasitame if there is no sequence of points zk E. (n+1 such
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has a finite limit for k ---+ m .

The main properties of the ta.me polynomials and of the (more general) quasitame

polynomials are the same, see [2], [3], [11], [12]. We need only the next

Proposition 8 (Nemethi [11], [12]).

H f ia a quasitame polynomial, then any of its fibers has the homotopy type of a

bouquet of spheres cf dimension n.

Our simple but key remark is the next.

Lemma 9

H either E(f) = t/J or S(f) = tP and e > 0 ,then f ia a quasitame polynomial.

We give the proof only in the case E(f) = tP , the other case being completely similar.

Let zk be a sequence in (n+1 such that Izk I ---+ m and 8 f(zk) ---+ 0 for

k ---+ CD • We can and do assume that the sequence zk = zk/ Izk I has a limit ZOO on

the unit sphere in (n+1.

Note that 8 f(zk) ---+ 0 implies 8 f(zm) = 0 and also (via the Euler formula)
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Since :E(f) = tP , it follows that fd- 1(ZCD) f 0 . The assumption that the sequence ck

in Def. 7 has a finite limit (and Euler formula again!) gives

-At:- l (j -1) f.(zk) ---+ 0 .
Iz I j=1,d J

By linearity we get

where the dots ... stand for lower order terms.

This is clearly in contradiction with fd- 1(zoo) f 0 and hence a sequence {zk}

with the above properties does not exist.

ProoI oi Theorem 1

By induction on s = dim :E(f) = dim S(X) nH . When :E(f) = tP , it follows by
00

Lemma 9 that f is a quasitame polynomial and then by Proposition 8 it follows that X

ia (n -1) - connected. Hence Theorem 1 ia true in this case.

Assurne now 8 ~ 0 and that the Theorem ia true for s - 1 . It ia clear that for a

generic hyperplane H in IP n+l one haa

dim(S(X nH) nH ) = s - 1 .CD
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Then by the induction hypothesis it follows that the hypersurface X nH is

(n - 2 -s) - connecied.

On the other band, using Theorem 2 in Hamm [6J (more precisely the version

described in ihe remark following it) or using Lefschetz Theorem in

Goresky-MacPherson book [4], p. 153 ii follows that the pair (X,X nH) is

(n -1) - connected. These two facts iogether imply thai X ia also at least

(n - s -2) - connected and hence Theorem 1 ia proved.

Proof of Theorem 2

Exactly as the proof of Theorem 1, only more care should be taken in the choice of the

generic hyperplane H in (: n+1 .

In order io apply induciion, we should consider only hyperplanes H which pass

through the origin of (: n+1 . The relation

S(fl H) = S(f) nH

where H is the hyperplane in IP n associated with H, clearly holds for a generic H

through o.
Moreover, the connectivity of the pair (X,X nH) is (n - 1) as soon as H is

transversal to the strata of a regular stratification of X , see Hamm's remarkm

mentioned above or [4J, p.. 154. (Here of course X = r 1(c) is an arbitrary fiber of f) .

Hence it is enough to take H such that H ia transversal to the given stratification of

x.
(D
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