ON THE CONNECTIVITY OF COMPLEX AFFINE HYPERSURFACES

ŧ

.

÷

ł,

) | |

Ì

1

.

by

Alexandru Dimca

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

MPI/88 - 64

ON THE CONNECTIVITY OF COMPLEX AFFINE HYPERSURFFACES

Alexandru Dimca

Let X : f = 0 be a (reduced, algebraic) hypersurface in \mathbb{C}^{n+1} , with $n \ge 1$. It is well-known that X has the homotopy type of a CW-complex of dimension n, see [5], [8].

General results on the connectivity of affine varieties were obtained by M. Kato [9], extending previous results due to A. Howard [7].

Let \overline{X} be the closure of X in \mathbb{P}^{n+1} , H_{∞} be the hyperplane at the infinity in \mathbb{P}^{n+1} and set $X_{\infty} = \overline{X} \cap H_{\infty}$. For any algebraic variety Z we let S(Z) denote its singular part and use the convention dim $\phi = -1$. With these preliminaries, Kato's result can be stated in the hypersurface case as follows.

Theorem (M. Kato [9])

X is $(n-2-\dim (S(X) \cup S(X_{\omega}))) - \text{connected}$.

We prove here the next better (usually by one!) estimation on the connectivity of X.

Theorem 1

X is $(n-2-\dim(S(X)\cap H_m))$ - connected.

Let $f = f_0 + f_1 + ... + f_d$ be the decomposition of the polynomial f into homogeneous components, with $f_d \neq 0$.

Note that the set $\Sigma(f) = S(\overline{X}) \cap H_{\varpi}$ is given in $H_{\varpi} \simeq \mathbb{P}^n$ by the equations

$$\Sigma(\mathbf{f}): \partial \mathbf{f}_{\mathbf{d}} = 0 , \ \mathbf{f}_{\mathbf{d}-1} = 0$$

where for any polynomial g we denote by ∂ g its gradient, i.e.

$$\vartheta \ \mathbf{g} = \left[\frac{\partial \mathbf{g}}{\partial \mathbf{x}_0}, \dots, \frac{\partial \mathbf{g}}{\partial \mathbf{x}_n} \right].$$

Forget for a moment the hypersurface X and consider the polynomial $f \in \mathbb{C} [x_0, ..., x_n]$ as a basic object. It may happen that $f_{d-1} = 0$ and so let e be the greatest integer such that $f_e \neq 0$ and e < d.

Define the subset $S(f) \subset \mathbb{P}^{n}$ by the next similar equations

$$S(f): \partial f_d = 0, f_e = 0.$$

We prove in fact the next stronger version of Theorem 1.

Theorem 2

Assume that e > 0. Then any fiber of the polynomial function $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ is

$$(n-2-\dim S(f))-connected$$
.

Corollary 3

- (i) (Angermüller [1]) If the degree form f_d of f is square free, then all the fibers of f are connected.
- (ii) If e > 0 and if there is no polynomial g such that g^2 divides f_d and g divides f_e , then all the fibers of f are connected.

Using the setting of Angermüller [1], we get also a new result on the connectivity of the diagonal $\Delta f = \{(x,y) \in \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} ; f(x) = f(y)\}$. Consider the set in $\mathbb{P}^{2n+1} = \mathbb{P}(\mathbb{C}^{n+1} \times \mathbb{C}^{n+1})$

$$\delta f = \{(x,y) \in \mathbb{P}^{2n+1}; \ \partial f_d(x) = 0, \ \partial f_d(y) = 0, \ f_e(x) = f_e(y)\}.$$

Corollary 4

If e > 0, then the diagonal Δf is

$$(2n-1-\dim \delta f)$$
 - connected.

In a recent paper [3], Broughton has considered polynomial functions $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ such that

- (a) f has only isolated singularities;
- (b) the set $\Sigma(f)$ is finite.

For such polynomials f, he has shown that the generic fiber $F_c = f^{-1}(c)$ has the homology of a bouquet of spheres of dimension n, see Theorem 5.2. in [3]. This statement can be improved as follows (compare with Proposition 8 below).

Corollary 5

For $n \neq 2$, the generic fiber F_c in the above conditions has the homotopy type of a bouquet of spheres of dimension n.

Proof

For $n \ge 3$, it follows from Theorem 1 that all the fibers of f are 1-connected. Combining this with the homological information we get the result in the usual way, e.g. see [10], p. 58. The case n = 1 is obviously also true, since any connected affine curve has the homotopy type of a bouquet of circles.

To prove our results, we recall first the definition and some basic properties of tame and quasitame polynomials.

Definition 6 (Broughton [2], [3])

A polynomial f is called <u>tame</u> if there is no sequence of points $z^k \in \mathbb{C}^{n+1}$ such that $|z^k| \longrightarrow \infty$ and $\partial f(z^k) \longrightarrow 0$ for $k \longrightarrow \infty$.

Definition 7 (Némethi [11], [12])

A polynomial f is called <u>quasitame</u> if there is no sequence of points $z^k \in \mathbb{C}^{n+1}$ such

that $|z^{k}| \longrightarrow \infty$, $\partial f(z^{k}) \longrightarrow 0$ and the sequence $c^{k} = f(z^{k}) - \sum_{j=0,n} \frac{\partial f}{\partial x_{j}}(z^{k}) \cdot z_{j}^{k}$ has a finite limit for $k \longrightarrow \infty$.

The main properties of the tame polynomials and of the (more general) quasitame polynomials are the same, see [2], [3], [11], [12]. We need only the next

Proposition 8 (Némethi [11], [12]).

If f is a quasitame polynomial, then any of its fibers has the homotopy type of a bouquet of spheres of dimension n.

Our simple but key remark is the next.

Lemma 9

If either $\Sigma(f) = \phi$ or $S(f) = \phi$ and e > 0, then f is a quasitame polynomial.

Proof

We give the proof only in the case $\Sigma(f) = \phi$, the other case being completely similar.

Let z^k be a sequence in \mathbb{C}^{n+1} such that $|z^k| \longrightarrow \infty$ and $\partial f(z^k) \longrightarrow 0$ for $k \longrightarrow \infty$. We can and do assume that the sequence $\overline{z}^k = z^k / |z^k|$ has a limit z^{∞} on the unit sphere in \mathbb{C}^{n+1} .

Note that $\partial f(z^k) \longrightarrow 0$ implies $\partial f(z^{\infty}) = 0$ and also (via the Euler formula)

$$\frac{1}{|\mathbf{z}^k|} \sum_{j=1,d} j f_j(\mathbf{z}^k) \longrightarrow 0 \ .$$

Since $\Sigma(f) = \phi$, it follows that $f_{d-1}(z^{\infty}) \neq 0$. The assumption that the sequence c^k in Def. 7 has a finite limit (and Euler formula again!) gives

$$\frac{1}{|\mathbf{z}^{\mathbf{k}}|} \sum_{\mathbf{j}=1,\mathbf{d}} (\mathbf{j}-1) \mathbf{f}_{\mathbf{j}}(\mathbf{z}^{\mathbf{k}}) \longrightarrow 0 .$$

By linearity we get

$$\frac{1}{|\mathbf{z}^{k}|} \sum_{j=1,d} (d-j) f_{j}(\mathbf{z}^{k}) = |\mathbf{z}^{k}|^{d-2} f_{d-1}(\overline{\mathbf{z}}^{k}) + \dots \longrightarrow 0$$

where the dots ... stand for lower order terms.

This is clearly in contradiction with $f_{d-1}(z^{\omega}) \neq 0$ and hence a sequence $\{z^k\}$ with the above properties does not exist.

Proof of Theorem 1

By induction on $s = \dim \Sigma(f) = \dim S(X) \cap H_{\omega}$. When $\Sigma(f) = \phi$, it follows by Lemma 9 that f is a quasitame polynomial and then by Proposition 8 it follows that X is (n-1) - connected. Hence Theorem 1 is true in this case.

Assume now $s \ge 0$ and that the Theorem is true for s-1. It is clear that for a generic hyperplane H in \mathbb{P}^{n+1} one has

$$\dim(S(X \cap H) \cap H_{\varpi}) = s - 1.$$

Then by the induction hypothesis it follows that the hypersurface $X \cap H$ is (n-2-s) - connected.

On the other hand, using Theorem 2 in Hamm [6] (more precisely the version described in the remark following it) or using Lefschetz Theorem in Goresky-MacPherson book [4], p. 153 it follows that the pair $(X, X \cap H)$ is (n-1)-connected. These two facts together imply that X is also at least (n-s-2)-connected and hence Theorem 1 is proved.

Proof of Theorem 2

Exactly as the proof of Theorem 1, only more care should be taken in the choice of the generic hyperplane H in \mathbb{C}^{n+1} .

In order to apply induction, we should consider only hyperplanes H which pass through the origin of \mathbb{C}^{n+1} . The relation

$$S(f \mid H) = S(f) \cap H$$

where H is the hyperplane in \mathbb{P}^n associated with H, clearly holds for a generic H through 0.

Moreover, the connectivity of the pair $(X, X \cap H)$ is (n-1) as soon as H is transversal to the strata of a regular stratification of X_{∞} , see Hamm's remark mentioned above or [4], p. 154. (Here of course $X = f^{-1}(c)$ is an arbitrary fiber of f). Hence it is enough to take H such that \overline{H} is transversal to the given stratification of X_{∞} .

Acknowledgement

Since the last part of work on this paper was done in Max-Planck-Institut, it is my pleasure to thank Professor F. Hirzebruch and the Institute for their warm hospitality.

REFERENCES

- 1. G. Angermüller: Connectedness properties of polynomial maps between affine spaces, Manuscripta Math. 54 (1986), 349-359.
- S.A. Broughton: On the topology of polynomial hypersurfaces, Proc. Symp. Pure Math. 40, Part I (Arcata Singularities Conference), Amer. Math. Soc. 1983, 167-178.
- 3. S.A. Broughton: Milnor numbers and the topology of polynomial hypersurfaces, Invent. math. 92 (1988), 217-241.
- 4. M. Goresky and R. MacPherson: Stratified Morse Theory, Springer Verlag, Berlin Heidelberg 1988.
- 5. H. Hamm: Zum Homotopietyp Steinscher Räume, J. Reine Angw. Math. 338 (1983), 121-135.
- 6. H. Hamm: Lefschetz theorems for singular varieties, Proc. Symp. Pure Math. 40, Part I (Arcata Singularities Conference), Amer. Math. Soc. 1983, 547-557.
- A. Howard: On the homotopy groups of an affine algebraic hypersurface, Ann. Math. 84 (1966), 197-216.
- K. Karchyauskas: A generalized Lefschetz theorem, Funct. Anal. Appl. 11 (1977), 312-313.
- 9. M. Kato: Partial Poincaré duality for k-regular spaces and complex algebraic sets, Topology 16 (1977), 33-50.
- 10. J. Milnor: Singular points of complex hypersurfaces, Ann. of Math.. Studies 61, Princeton University Press, Princeton 1968.

- A. Némethi: Théorie de Lefschetz pour les variétés algebriques affines, C.R. Acad. Sc. Paris, t. 303, Serie I, nº 12 (1986), 567-570.
- 12. A. Némethi: Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl. 33 (1988), 233-250.