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ON THE CONNECTIVITY OF COMPLEX AFFINE HYPERSURFFACES

Alexandru Dimca

Let X:1=0 be a (reduced, algebraic) hypersurface in € n+1 ,with n>1.1Itis
well-known that X has the homotopy type of a CW—omplex of dimension n , see

[5], [8]-
General results on the connectivity of affine varieties were obtained by M. Kato

[9], extending previous results due to A. Howard [7].
Let X be the closureof X in P n+1 , Hm be the hyperplane at the infinity in

P2+l and set X,=X n H_ . For any algebraic variety Z we let S(Z) denote its
singular part and use the convention dim ¢ = —1 . With these preliminaries, Kato’s

result can be stated in the hypersurface case as follows.

Theorem (M. Kato [9])

X is (n—2-dim (S(X) US(X_))) — connected.
We prove here the next better (usually by one!) estimation on the connectivity of

X.

Theorem 1

Xis (n—-2- dim(S(E) N H_)) — connected.
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Let = fO + fl +..+f d be the decomposition of the polynomial { into

homogeneous components, with f 0.

Note that the set I(f) = S(X) N H_isgivenin H_ =P % by the equations

where for any polynomial g we denote by &g its gradient, i.e.
_[2 d
6 g= [Fgayg_] .
n

Forget for a moment the hypersurface @ X  and consider the polynomial
feC [xo, ,xn] as a basic object. It may happen that fd—l =0 and solet e be the
greatest integer such that f, #0 and e<d.

Define the subset S(f) CP " by the next similar equations

5(f):8fy=0, 1, =0.

We prove in fact the next stronger version of Theorem 1.
Theorem 2

Assume that e > 0. Then any fiber of the polynomial function f: € o+l | C is

(n — 2 — dim S(f)) — connected .



Corollary 3

(1) (Angermiiller {1]) If the degree form f; of f is square free, then all the

fibers of { are connected.

(ii) If e >0 and if there is no polynomial g such that g2 divides fd and g
divides fe , then all the fibers of f are connected.

Using the setting of Angermiiller [1], we get also a new result on the connectivity

of the diagonal Af={(xy)e C2F1x €21 . f(x)=1(y)} . Consider the set in
P 2n+1 = P(C n+1 C n+1)

61={(xy) P 91, =0, 914(y) =0, 1) =1}
Corollary 4
If e > 0, then the diagonal A f is
(2n — 1 — dim § f) — connected .

In a recent paper [3], Broughton has considered polynomial functions f: € i+l ¢
such that

(a) f has only isolated singularities;

(b) theset X(f) is finite.



—4 -

For such polynomials f, he has shown that the generic fiber F e = T 1(c) has the
homology of a bouquet of spheres of dimension n , see Theorem 5.2. in [3]. This

statement can be improved as follows (compare with Proposition 8 below).

Corollary 5

For n# 2, the generic fiber Fc in the above conditions has the homotopy type of a

bouquet of spheres of dimension n .
Proof

For n>3 , it follows from Theorem 1 that all the fibers of f are 1—connected.
Combining this with the homological information we get the result in the usual way, e.g.
see [10], p. 58. The case n =1 is obviously also true, since any connected affine curve

has the homotopy type of a bouquet of circles.

To prove our results, we recall first the definition and some basic properties of

tame and quasitame polynomials.

Definition 6 (Broughton [2], [3])

n+1

A polynomial { is called tame if there is no sequence of points zk eC such that

|zk| — o and & f(zk)——+0 for k—o.
Definition 7 (Némethi [11], [12])

A polynomial f is called guasitame if there is no sequence of points zk e ¢ guch
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k k k_ .k 9f ,ky k
that |z | — o, @f(z') — 0 and the sequence c —f(z)-—z 7 (@) z;

j=0,n
has a finite limit for k — o .

The main properties of the tame polynomials and of the (more general) quasitame

polynomials are the same, see [2], [3], [11], [12]. We need only the next
Proposition 8 (Némethi [11], [12]).

If f isa quasitanie polynomial, then any of its fibers has the homotopy type of a

bouquet of spheres of dimension n .
Our simple but key remark is the next.

Lemma 9
If either £(f) =¢ or S(f)=¢ and e > 0, then f is a quasitame polynomial.
Proof

We give the proof only in the case X(f) = ¢, the other case being completely similar.
Let zX be asequencein €2F1 suchthat [z5| — o and 91(2¥) —0 for

k=zk/|zk| has a limit z° on

k — o . We can and do assume that the sequence z
the unit sphere in € %F1.

Note that 8 (z5) — 0 implies & f(z®) = 0 and also (via the Euler formula)



Since X(f) = ¢ , it follows that f d_1(zm) # 0 . The assumption that the sequence ck

in Def. 7 has a finite limit {(and Euler formula again!) gives

I Y G-niEH—o
|z IJ"ld

By linearity we get

1 ¥ @ —J)f(z)—|z £192 EH+.. —o0
|2 |j=1,d

where the dots ... stand for lower order terms.
This is clearly in contradiction with fd__l(zm) # 0 and hence a sequence {zk}

with the above properties does not exist.

Proof of Theorem 1

By induction on s = dim E(f) = dim S(X) NH_ . When Z(f)=¢ , it follows by
Lemma 9 that f is a quasitame polynomial and then by Proposition 8 it follows that X
is (n— 1) — connected. Hence Theorem 1 is true in thig case.

Assume now 8 2> 0 and that the Theorem is true for s —1 . It is clear that for a

P n+1

generic hyperplane H in one has

dim(S(X NE)NH )=s—1.
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Then by the induction hypothesis it follows that the hypersurface XNH is
(n — 2 —8) — connected.

On the other hand, using Theorem 2 in Hamm [6] (more precisely the version
described in the remark following it) or wusing Lefschetz Theorem in
Goresky—MacPherson book [4], p. 153 it follows that the pair (X, XNH) is
(n—1) —connected. These two facts together imply that X is also at least

(n — 8 —2) — connected and hence Theorem 1 is proved.

Proof of Theorem 2

Exactly as the proof of Theorem 1, only more care should be taken in the choice of the
generic hyperplane H in € o+l

In order to apply induction, we should consider only hyperplanes H which pass
through the origin of € 241 The relation

S(f|H) = S(f) N K

where E is the hyperplane in P D associated with H , clearly holds for a generic H
through 0.

Moreover, the connectivity of the pair (X,XNH) is (n—1) assoon as H is
transversal to the strata of a regular stratification of X, » see Hamm’s remark

mentioned above or [4], p.. 154. (Here of course X =1 1(c) is an arbitrary fiber of f) .

Hence it is enough to take H such that H is transversal to the given stratification of

X .
o
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