ON THE CONNECTIVITY OF COMPLEX

AFFINE HYPERSURFACES

by

Alexandru Dimca

[^0]
ON THE CONNECTIVITY OF COMPLEX AFFINE HYPERSURFFACES

Alexandru Dimca

Let $\mathrm{X}: \mathrm{f}=0$ be a (reduced, algebraic) hypersurface in $\mathbb{C}^{\mathrm{n}+1}$, with $\mathrm{n} \geq 1$. It is well-known that X has the homotopy type of a CW-complex of dimension n , see [5] , [8].

General results on the connectivity of affine varieties were obtained by M. Kato [9], extending previous results due to A. Howard [7].

Let $\overline{\mathrm{X}}$ be the closure of X in $\mathbb{P}^{\mathrm{n}+1}, \mathrm{H}_{\infty}$ be the hyperplane at the infinity in $\mathbb{P}^{\mathrm{n}+1}$ and set $\mathrm{X}_{\infty}=\overline{\mathrm{X}} \cap \mathrm{H}_{\infty}$. For any algebraic variety Z we let $\mathrm{S}(\mathrm{Z})$ denote its singular part and use the convention $\operatorname{dim} \phi=-1$. With these preliminaries, Kato's result can be stated in the hypersurface case as follows.

Theorem (M. Kato [9])

X is $\left(n-2-\operatorname{dim}\left(S(\bar{X}) \cup S\left(X_{\infty}\right)\right)\right)$ - connected.
We prove here the next better (usually by one!) estimation on the connectivity of X.

Theorem 1

X is $\left(n-2-\operatorname{dim}\left(S(\bar{X}) \cap H_{\Phi}\right)\right)-$ connected.

Let $f=f_{0}+f_{1}+\ldots+f_{d}$ be the decomposition of the polynomial f into homogeneous components, with $f_{d} \neq 0$.

Note that the set $\Sigma(f)=S(\bar{X}) \cap H_{\infty}$ is given in $H_{\infty} \simeq \mathbb{P}^{n}$ by the equations

$$
\Sigma(f): \partial f_{d}=0, f_{d-1}=0
$$

where for any polynomial g we denote by $\partial \mathrm{g}$ its gradient, i.e.

$$
\partial \mathrm{g}=\left[\frac{\partial \mathrm{g}}{\partial \mathrm{x}_{0}}, \ldots, \frac{\partial \mathrm{~g}}{\partial \mathrm{x}_{\mathrm{n}}}\right]
$$

Forget for a moment the hypersurface X and consider the polynomial $\mathrm{f} \in \mathbb{C}\left[\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ as a basic object. It may happen that $\mathrm{f}_{\mathrm{d}-1}=0$ and so let e be the greatest integer such that $f_{e} \neq 0$ and $e<d$.

Define the subset $S(f) \subset \mathbb{P}^{\mathrm{n}}$ by the next similar equations

$$
\mathrm{S}(\mathrm{f}): \partial \mathrm{f}_{\mathrm{d}}=0, \mathrm{f}_{\mathrm{e}}=0
$$

We prove in fact the next stronger version of Theorem 1.

Theorem 2

Assume that $e>0$. Then any fiber of the polynomial function $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ is

$$
(\mathrm{n}-2-\operatorname{dim} S(\mathrm{f}))-\text { connected } .
$$

Corollary 3

(i) (Angermüller [1]) If the degree form f_{d} of f is square free, then all the fibers of f are connected.
(ii) If $e>0$ and if there is no polynomial g such that g^{2} divides f_{d} and g divides f_{e}, then all the fibers of f are connected.

Using the setting of Angermüller [1], we get also a new result on the connectivity of the diagonal $\Delta f=\left\{(x, y) \in \mathbb{C}^{\mathrm{n}+1} \times \mathbb{C}^{\mathrm{n}+1} ; \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{y})\right\}$. Consider the set in $\mathbb{P}^{2 \mathrm{n}+1}=\mathbb{P}\left(\mathbb{C}^{\mathrm{n}+1} \times \mathbb{C}^{\mathrm{n}+1}\right)$

$$
\delta \mathrm{f}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{P}^{2 \mathrm{n}+1} ; \partial \mathrm{f}_{\mathrm{d}}(\mathrm{x})=0, \partial \mathrm{f}_{\mathrm{d}}(\mathrm{y})=0, \mathrm{f}_{\mathrm{e}}(\mathrm{x})=\mathrm{f}_{\mathrm{e}}(\mathrm{y})\right\}
$$

Corollary 4

If $\mathrm{e}>0$, then the diagonal $\Delta \mathrm{f}$ is

$$
(2 \mathrm{n}-1-\operatorname{dim} \delta \mathrm{f})-\text { connected }
$$

In a recent paper [3], Broughton has considered polynomial functions $f: \mathbb{C}^{\mathrm{n}+1} \longrightarrow \mathbb{C}$ such that
(a) f has only isolated singularities;
(b) the set $\Sigma(\mathrm{f})$ is finite.

For such polynomials f, he has shown that the generic fiber $F_{c}=f^{-1}$ (c) has the homology of a bouquet of spheres of dimension n, see Theorem 5.2. in [3]. This statement can be improved as follows (compare with Proposition 8 below).

Corollary 5

For $\mathrm{n} \neq 2$, the generic fiber F_{c} in the above conditions has the homotopy type of a bouquet of spheres of dimension n.

Proof

For $\mathrm{n} \geq 3$, it follows from Theorem 1 that all the fibers of f are 1-connected. Combining this with the homological information we get the result in the usual way, e.g. see [10], p. 58. The case $n=1$ is obviously also true, since any connected affine curve has the homotopy type of a bouquet of circles.

To prove our results, we recall first the definition and some basic properties of tame and quasitame polynomials.

Definition 6 (Broughton [2], [3])

A polynomial f is called tame if there is no sequence of points $z^{k} \in \mathbb{C}^{\mathrm{n}+1}$ such that $\left|\mathrm{z}^{\mathrm{k}}\right| \longrightarrow \infty$ and $\partial \mathrm{f}\left(\mathrm{z}^{\mathrm{k}}\right) \longrightarrow 0$ for $\mathrm{k} \longrightarrow \infty$.

Definition 7 (Némethi [11], [12])

A polynomial f is called quasitame if there is no sequence of points $z^{k} \in \mathbb{C}^{n+1}$ such
that $\left|z^{k}\right| \longrightarrow \infty, \partial f\left(z^{k}\right) \longrightarrow 0$ and the sequence $c^{k}=f\left(z^{k}\right)-\sum_{j=0, n} \frac{\partial f}{\partial x_{j}}\left(z^{k}\right) \cdot z_{j}^{k}$ has a finite limit for $k \longrightarrow \infty$.

The main properties of the tame polynomials and of the (more general) quasitame polynomials are the same, see [2], [3], [11], [12]. We need only the next

Proposition 8 (Némethi [11], [12]).

If f is a quasitame polynomial, then any of its fibers has the homotopy type of a bouquet of spheres of dimension n.

Our simple but key remark is the next.

Lemma 9

If either $\Sigma(f)=\phi$ or $S(f)=\phi$ and $e>0$, then f is a quasitame polynomial.

Proof

We give the proof only in the case $\Sigma(\mathrm{f})=\phi$, the other case being completely similar. Let z^{k} be a sequence in \mathbb{C}^{n+1} such that $\left|z^{k}\right| \longrightarrow \infty$ and $\partial f\left(z^{k}\right) \longrightarrow 0$ for $k \longrightarrow \infty$. We can and do assume that the sequence $\bar{z}^{k}=z^{k} /\left|z^{k}\right|$ has a limit z^{∞} on the unit sphere in $\mathbb{C}^{\mathbf{n + 1}}$.

Note that $\partial \mathrm{f}\left(\mathrm{z}^{\mathrm{k}}\right) \longrightarrow 0$ implies $\partial \mathrm{f}\left(\mathrm{z}^{\infty}\right)=0$ and also (via the Euler formula)

$$
\frac{1}{\left|z^{k}\right|} \sum_{j=1, d} j f_{j}\left(z^{k}\right) \longrightarrow 0
$$

Since $\Sigma(f)=\phi$, it follows that $f_{d-1}\left(z^{\infty}\right) \neq 0$. The assumption that the sequence c^{k} in Def. 7 has a finite limit (and Euler formula again!) gives

$$
\frac{1}{\left|z^{k}\right|} \sum_{j=1, d}(j-1) f_{j}\left(z^{k}\right) \longrightarrow 0
$$

By linearity we get

$$
\frac{1}{\left|z^{k}\right|} \sum_{j=1, d}(d-j) f_{j}\left(z^{k}\right)=\left|z^{k}\right|^{d-2} f_{d-1}\left(\bar{z}^{k}\right)+\ldots \longrightarrow 0
$$

where the dots ... stand for lower order terms.
This is clearly in contradiction with $\mathrm{f}_{\mathrm{d}-1}\left(\mathrm{z}^{\infty}\right) \neq 0$ and hence a sequence $\left\{\mathrm{z}^{\mathrm{k}}\right\}$ with the above properties does not exist.

Proof of Theorem 1

By induction on $s=\operatorname{dim} \Sigma(f)=\operatorname{dim} \mathrm{S}(\overline{\mathrm{X}}) \cap \mathrm{H}_{\infty}$. When $\Sigma(\mathrm{f})=\phi$, it follows by Lemma 9 that f is a quasitame polynomial and then by Proposition 8 it follows that X is ($\mathrm{n}-1$)-connected. Hence Theorem 1 is true in this case.

Assume now $s \geq 0$ and that the Theorem is true for $s-1$. It is clear that for a generic hyperplane H in \mathbb{P}^{n+1} one has

$$
\operatorname{dim}\left(S(\bar{X} \cap H) \cap H_{\Phi}\right)=s-1
$$

Then by the induction hypothesis it follows that the hypersurface $\mathrm{X} \cap \mathrm{H}$ is ($\mathrm{n}-2 \rightarrow$) - connected.

On the other hand, using Theorem 2 in Hamm [6] (more precisely the version described in the remark following it) or using Lefschetz Theorem in Goresky-MacPherson book [4], p. 153 it follows that the pair ($\mathrm{X}, \mathrm{X} \cap \mathrm{H}$) is ($\mathrm{n}-1$) - connected. These two facts together imply that X is also at least ($\mathrm{n}-\mathrm{s}-2$) - connected and hence Theorem 1 is proved.

Proof of Theorem 2

Exactly as the proof of Theorem 1, only more care should be taken in the choice of the generic hyperplane H in $\mathbb{C}^{\mathbf{n + 1}}$.

In order to apply induction, we should consider only hyperplanes H which pass through the origin of $\mathbb{C}^{\mathbf{n + 1}}$. The relation

$$
S(f \mid H)=S(f) \cap \bar{H}
$$

where \bar{H} is the hyperplane in $\mathbb{P}^{\boldsymbol{n}}$ associated with H, clearly holds for a generic H through 0 .

Moreover, the connectivity of the pair $(X, X \cap H)$ is $(n-1)$ as soon as H is transversal to the strata of a regular stratification of X_{∞}, see Hamm's remark mentioned above or [4], p.. 154. (Here of course $X=f^{-1}$ (c) is an arbitrary fiber of f). Hence it is enough to take H such that $\overline{\mathrm{H}}$ is transversal to the given stratification of X_{m} 。

Acknowledgement

Since the last part of work on this paper was done in Max-Planck-Institut, it is my pleasure to thank Professor F. Hirzebruch and the Institute for their warm hospitality.

REFERENCES

1. G. Angermüller: Connectedness properties of polynomial maps between affine spaces, Manuscripta Math. 54 (1986), 349-359.
2. S.A. Broughton: On the topology of polynomial hypersurfaces, Proc. Symp. Pure Math. 40, Part I (Arcata Singularities Conference), Amer. Math. Soc. 1983, 167-178.
3. S.A. Broughton: Milnor numbers and the topology of polynomial hypersurfaces, Invent. math. 92 (1988), 217-241.
4. M. Goresky and R. MacPherson: Stratified Morse Theory, Springer Verlag, Berlin Heidelberg 1988.
5. H. Hamm: Zum Homotopietyp Steinscher Räume, J. Reine Angw. Math. 338 (1983), 121-135.
6. H. Hamm: Lefschetz theorems for singular varieties, Proc. Symp. Pure Math. 40, Part I (Arcata Singularities Conference), Amer. Math. Soc. 1983, 547-557.
7. A. Howard: On the homotopy groups of an affine algebraic hypersurface, Ann. Math. 84 (1966), 197-216.
8. K. Karchyauskas: A generalized Lefschetz theorem, Funct. Anal. Appl. 11 (1977), 312-313.
9. M. Kato: Partial Poincaré duality for k-regular spaces and complex algebraic sets, Topology 16 (1977), 33-50.
10. J. Milnor: Singular points of complex hypersurfaces, Ann. of Math.. Studies 61, Princeton University Press, Princeton 1968.
11. A. Némethi: Théorie de Lefschetz pour les variétés algebriques affines, C.R. Acad. Sc. Paris, t. 303, Serie I, $\mathrm{n}^{0} 12$ (1986), 567-570.
12. A. Némethi: Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl. 33 (1988), 233-250.

[^0]: Max-Planck-Institut
 für Mathematik
 Gottfried-Claren-Str. 26
 5300 Bonn 3
 Federal Republic of Germany

