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Abstract. Square groups are quadratic analogues of abelian groups. Many properties
of abelian groups are shown to hold for square groups. In particular, there is a symmetric
monoidal tensor product of square groups generalizing the classical tensor product.

There is a long-standing problem of algebra to extend the symmetric monoidal structure
of abelian groups, given by the tensor product, to a non abelian setting, see for exam-
ple [10]. In this paper we show the somewhat surprising fact that such an extension is
possible. Morover our non abelian tensor product remains even right exact and balanced.
We describe the new non-abelian tensor product in the context of quadratic algebra which
extends linear algebra.

“Linear algebra” is the algebra of rings and modules. A ring is a monoid in the symmetric
monoidal category of abelian groups

(Ab,⊗,Z).

The monoidal structure is given by the tensor product of abelian groups, with the group
of integers Z as the unit object. Moreover a module is an object in Ab together with an
action of such a monoid.

In “quadratic algebra” abelian groups are replaced by square groups. In fact, if one con-
siders endofunctors of the category of groups which preserve filtered colimits and reflexive
coequalizers, then abelian groups can be identified with linear endofunctors and square
groups can be identified with quadratic endofunctors, [7]. The abelian group Z corresponds
to the linear endofunctor which carries a group G to its abelization Gab = G/[G,G]. The
square group Znil corresponds to the quadratic endofunctor which carries G to the class
two nilpotent group Gnil = G/[G, [G,G]]. The category SG of square groups contains
the category Ab of abelian groups as a full subcategory since a linear endofunctor is also
quadratic. Therefore the question arises whether the symmetric monoidal structure of Ab

extends to a symmetric monoidal structure of SG. The main purpose of this paper is the
proof that this is, in fact, the case.

Let G and H be (additively written) groups. One can consider the group with generators
g ∗ h for g ∈ G and h ∈ H, subject to the following relations:

g ∗ (h1 + h2) = g ∗ h1 + g ∗ h2,

(g1 + g2) ∗ h = g1 ∗ h+ g2 ∗ h.

The second and third authors are grateful to the Max-Planck-Insitut für Mathematik, Bonn, where this
work was written, for hospitality.
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It is well known and easy to prove that this group is isomorphic to Gab ⊗Hab. Thus the
naive definition of the tensor product of nonabelian groups does not really provide a new
object. A more sophisticated tensor product was constructed by Brown and Loday [10].
However, their tensor product does not define a symmetric monoidal structure.

The definition of the tensor product of square groups relies on the structure (H,P ) of a
square group M . In M}N one has among others the relations

x}(y1 + y2) = x}y1 + x}y2,

(x1 + x2)}y = x1}y + x2}y + (x2 | x1)H ⊗̄H(y)

which replace the naive relations above. It is a somewhat surprising fact that these rela-
tions for M}N lead to a symmetric monoidal structure of the category of square groups
extending the tensor product of abelian groups. We show:

Theorem. There is a tensor product of square groups M , N denoted by M}N such

that

(SG,},Znil)

is a symmetric monoidal category. Moreover, if M and N are abelian groups then

M}N = M ⊗N.

A monoid R in (SG,},Znil) is termed a quadratic ring. An R-quadratic module is a
square group with an action of the monoid R. This leads to the wide area of quadratic
algebra generalizing classical linear algebra. For example we describe in this paper the Tor-
exact sequence for square groups. Also we study various special classes of square groups,
like abelian square groups, quadratic Z-modules and free square groups.

The category SG has another (very non-symmetric) monoidal category structure � in-
duced by composition of endofunctors (see [7] or Section 15.3). In Theorem 51 we describe,
by means of abelian groups with cosymmetry, a subcategory of SG on which the products
� and } coincide.

As we will see in sequel publications quadratic rings and related quadratic pair algebras
play an important rôle in secondary homotopy theory as well as in the theory of Mac
Lane cohomology of rings (see [14], [21], [9] and Chapter 13 of [18]). Namely, quadratic
pair algebras are natural objects representing classes in the third dimensional Mac Lane
cohomology. Moreover the secondary homotopy groups of each ring spectrum form a
quadratic pair algebra [6]. In particular, the sphere spectrum yields a quadratic pair
algebra encoding all its secondary homotopy structure like triple Toda brackets. Also in
order to study these examples it is necessary to develop the quadratic algebra of square
groups.

Concerning (symmetric) monoidal categories and (symmetric) monoidal functors we use
the terminology following [16]. In particular, a lax monoidal functor is a functor F together
with coherent morphisms φA,B : F (A) ⊗ F (B) → F (A ⊗ B). Moreover F is a monoidal
functor if φA,B are isomorphisms for all A and B.
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1. The monoidal category of square groups

In this section we recall the notion of square group (see also Section 15.3 below) and
we give an explicit construction of the tensor product of square groups. We formulate our
main results concerning symmetric monoidal structure and right exactness of this tensor
product.

Let G be an additively written group and A be an abelian group. We call a map
f : G→ A quadratic if for any x, y ∈ G the cross-effect

(x | y)f := f(x+ y) − f(x) − f(y)

is linear in x and y, that is (− | y)f and (x | −)f are homomorphisms G→ A.

Definition 1. A square group is a diagram

M = ( Me
H // Mee

P // Me )

where the ee-level Mee is an abelian group and the e-level Me is a group. Both groups are
written additively. Moreover P is a homomorphism and H is a quadratic map. In addition
the following identities

(Pa | y)H = 0 = (x | Pb)H ,

P (x | y)H = −x− y + x+ y,

PHP (a) = 2P (a)

are satisfied for all x, y ∈Me and a, b ∈Mee.

As an example we have the square group

Znil = ( Z
H // Z

P // Z )

with H(n) =
(

n

2

)

= n(n−1)
2

and P = 0. Let SG be the category of square groups.
In any square group M the image of P is a normal subgroup containing the commutator

subgroup (see [7], or Section 5.1), thus Coker(P ) is a well-defined abelian group. Let
x̄ ∈ Coker(P ) be the element represented by x ∈ Me. The cross effect of H induces a
homomorphism (see [7] or Corollary 15 below)

(− | −)H : Coker(P ) ⊗ Coker(P ) →Mee.

Moreover, there is a well-defined homomorphism

∆ : Coker(P ) →Mee

given by ∆(x̄) = HPH(x) + H(x + x) − 4H(x) (see [7], or Corollary 15). Furthermore,
the map

T = HP − Id : Mee →Mee

is an endomorphism of the abelian group Mee with T 2 = Id (see [7], or Proposition 14).
Sometimes we write PM , HM ,∆M , TM in order to make clear the rôle of M .

The aim of this work is to introduce a symmetric monoidal category structure } on the
category SG of square groups.
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Definition 2. For two square groups M , N we introduce the tensor product M}N which
is a square group defined as follows. The group (M}N)e is given by generators of the form
x}y for x ∈Me, y ∈ Ne, and a⊗̄b for a ∈Mee, b ∈ Nee, subject to the relations

(1) the symbol a⊗̄b is bilinear and central in (M}N)e;
(2) x}(y1 + y2) = x}y1 + x}y2;
(3) (x1 + x2)}y = x1}y + x2}y + (x2 | x1)H ⊗̄H(y);
(4) x}P (b) = (x | x)H ⊗̄b;
(5) P (a)}y = a⊗̄∆(y);
(6) T (a)⊗̄T (b) = −a⊗̄b.

Next the abelian group (M}N)ee is defined to be Mee ⊗Nee. The homomorphism

P : (M}N)ee → (M}N)e

is given by
P (a⊗ b) = a⊗̄b

In order to define H, we first observe that

Coker(PM}N) = Coker(PM) ⊗ Coker(PN).

Therefore we have the following homomorphism

ρ : Coker(PM}N ) ⊗ Coker(PM}N)

= Coker(PM) ⊗ Coker(PN) ⊗ Coker(PM) ⊗ Coker(PN) →Mee ⊗Nee

with ρ(ā⊗ b̄⊗ ā′ ⊗ b̄′) = (a | a′)H ⊗ (b | b′)H . Now

H : (M}N)e → (M}N)ee

is the unique quadratic map with the map ρ as its cross-effect satisfying

H(x}y) = (x | x)H ⊗H(y) +H(x) ⊗ ∆(y)

and
H(a⊗̄b) = a⊗ b− T (a) ⊗ T (b).

The following is the main result of the paper:

Theorem 3. The tensor product of square groups gives rise to a well-defined bifunctor

−}− : SG × SG → SG

which equips the category SG with a symmetric monoidal structure, with the unit object

Znil. The associativity and commutativity isomorphisms on the ee-level are the usual iso-

morphisms for the tensor product of abelian groups, while on the e-level the isomorphism

((M}N)}K)e
∼= (M}(N}K))e is given by

(x}y)}z 7→ x}(y}z)

(a⊗̄b)}z 7→ a⊗̄(b⊗ ∆(z))

(a⊗ b)⊗̄c 7→ a⊗̄(b⊗ c)
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and the isomorphism (M}N)e
∼= (N}M)e is given by

x}y 7→ y}x−H(y)⊗̄TH(x)

a⊗̄b 7→ b⊗̄a.

Under the associativity isomorphism the element x}(b⊗̄c) corresponds to (x|x)H⊗̄(b⊗ c).

Proof of this result occupies Section 6.
The category of square groups with Mee = 0 is equivalent to the category of abelian

groups. Thus we identify the category Ab with this subcategory of SG. Then the restriction
of } to Ab coincides with the usual tensor product of abelian groups. The following
generalizes some well-known properties of the tensor product of abelian groups.

Proposition 4. For any square group A the tensor product A}− : SG → SG preserves

filtered colimits, reflexive coequalizers and finite products. It is right exact and balanced,

that is for any short exact sequence of square groups

0 → B1
µ
−→ B

σ
−→ B2 → 0

the induced sequence

A}B1 → A}B → A}B2 → 0

is exact and the first arrow A}µ is a monomorphism provided A is a projective object in

the category SG.

The proof of this result is given in Section 9.
The functor A}− : SG → SG does not preserves coproducts. However the following

result is true. For an abelian group A we define the square group A⊗ by

(A⊗)e = A, (A⊗)ee = A⊕ A,

where P (a, b) = a+ b and H(a) = (a, a).

Proposition 5. Let A,B,M be square groups. Then one has the short exact sequence of

square groups

0 → (Mee ⊗ Coker(PA) ⊗ Coker(PB))⊗ →M}(A ∨ B) → (M}A) × (M}B) → 0.

Here ∨ denotes the coproduct in the category of square groups.

The proof of this result is given at the end of Section 11.

2. Symmetric definition of the tensor product

The tensor product M}N in Definition 2 is the right linear version. There is also a left

linear version M }N defined below. Moreover we introduce a symmetric version M �N
and we show that there are natural isomorphisms

M }N ∼= M �N ∼= M}N.

The different versions of the tensor product are identified in this way. The symmetry of
the tensor product is most apparent in M �N where, however, redundant generators are
needed. The non-symmetric versions M}N and M } N have the advantage of a smaller
set of generators. Most calculations in the paper are using the right linear version M}N .
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Definition 6. For square groups M , N let M }N be the square group with (M }N)ee =
Mee ⊗ Nee and (M } N)e given by generators x } y for x ∈ Me, y ∈ Ne, and a⊗̄b for
a ∈Mee, b ∈ Nee, subject to the relations

(1) the symbol a⊗̄b is bilinear and central in (M }N)e;
(2) x} (y1 + y2) = x} y1 + x} y2 +H(x)⊗̄ (y2 | y1)H ;
(3) (x1 + x2) } y = x1 } y + x2 } y;
(4) x} P (b) = ∆(x)⊗̄b;
(5) P (a) } y = a⊗̄ (y | y)H ;
(6) T (a)⊗̄T (b) = −a⊗̄b.

Here the homomorphism P is given as in Definition 2 and H is the quadratic map with
the cross effect ρ as in Definition 2 and

H(x} y) = ∆(x) ⊗H(y) +H(x) ⊗ (y | y)H ,

H(a⊗̄b) = a⊗ b− T (a) ⊗ T (b).

Next we introduce the symmetric version of the tensor product.

Definition 7. For two square groups A, B we define their tensor product A � B which
is again a square group defined as follows. The group (A � B)e is defined by generators
of the form x}y, x } y for x ∈ Ae, y ∈ Be and a⊗̄b for a ∈ Aee, b ∈ Bee, subject to the
relations

(1) the symbol a⊗̄b is bilinear and central in (A}B)e;
(2) x}(y1 + y2) = x}y1 + x}y2;
(3) (x1 + x2) } y = x1 } y + x2 } y;
(4) P (a)}y = a⊗̄∆(y);
(5) x} P (b) = ∆(x)⊗̄b;
(6) T (a)⊗̄T (b) = −a⊗̄b;
(7) x}y − x} y = H(x)⊗̄TH(y).

Next the abelian group (A�B)ee is defined to be Aee ⊗ Bee. The homomorphism

P : (A�B)ee → (A� B)e

is given by

P (a⊗ b) = a⊗̄b

and the map

H : (A�B)e → (A� B)ee

is the unique quadratic map with

H(x}y) = (x|x)H ⊗H(y) +H(x) ⊗ ∆(y),

H(x} y) = ∆(x) ⊗H(y) +H(x) ⊗ (y|y)H

and

H(a⊗̄b) = a⊗ b− T (a) ⊗ T (b)

such that its cross-effect coincides with the bilinear map ρ in Definition 2.
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Proposition 8. For any square groups A, B the above data define square groups A � B
and A}B and both of them are isomorphic to A}B.

The proof of this fact is given in Section 13.

Corollary 9. The symmetry isomorphism

τ(A,B) : A�B → B � A,

corresponding to the symmetry for A}B under the above isomorphism, is given by

x}y 7→ y } x,

x} y 7→ y}x.

a⊗̄b 7→ b⊗̄a.

Remark 10. The notation above is chosen to be compatible with the notation for exte-

rior cup products f#g and f#g in topology, see [1], [12]. Here f#g, being left linear,
corresponds to x } y and f#g, being right linear, corresponds to x}y, see [6]. In fact,
the construction of A � B above originates from properties of the exterior cup products.
Compare also the tensor product of “quadratic modules” in [2].

3. Preliminaries on Nil2-groups

Groups will be written additively. In particular, for elements a, b ∈ G of a group G their
commutator will be denoted by [a, b] = −a − b + a + b. For any group G we denote by
Z (G) the center of G.

A group G is of nilpotence class two, or is a nil2-group, if all triple commutators of G
vanish, [[G,G], G] = 0. The category of all such groups and their homomorphisms will be
denoted by Nil.

For any G ∈ Nil there is a well-defined homomorphism Λ2(Gab) → G given by â ∧ b̂ 7→
[a, b]. Here and elsewhere x̂ denotes the class of x ∈ G in Gab = G/[G,G]. Moreover, one
has the inclusion [G,G] ⊆ Z (G) and for any a, b ∈ G and any n ∈ Z one has

(1) na + nb = n(a+ b) +

(

n

2

)

[a, b].

The category Nil has all limits and colimits. For G1 and G2 in Nil let G1 ∨ G2 denote
their coproduct in Nil. Then one has the following central extension

(2) 0 → Gab
1 ⊗Gab

2
i
−→ G1 ∨G2 → G1 ×G2 → 0.

Here the homomorphism i is given by x̂ ⊗ ŷ 7→ [i1(x), i2(y)] for x ∈ G1, y ∈ G2, where
it : Gt → G1 ∨G2, t = 1, 2 is the canonical inclusion.

The inclusion functor Nil ⊂ Groups has a left adjoint, given by

G 7→ Gnil := G/[[G,G], G].

The forgetful functor Nil → Sets has a left adjoint, whose value on a set S is known as
the free nilpotent group of class two generated by S and is denoted by 〈S〉nil. One has

〈S〉nil = (FS)nil, where FS is the free group on S.
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The following is an easy consequence of the theorem of Witt on the lower central series
of a free group:

Lemma 11. For a free nil2-group G one has the central extension

0 → Λ2(Gab) → G→ Gab → 0.

It follows that there is a normal form of elements in 〈S〉nil for each linear ordering of the

set S. Namely, all elements of 〈S〉nil can be written in a unique way in the form

(3) n1x1 + ... + npxp +m1[y1, z1] + ...+mq[yq, zq]

with xi, yj, zj ∈ S and ni, mj ∈ Z\ {0} for all i, j and moreover x1 < ... < xp, y1 < z1, ...,
yq < zq with respect to the given ordering of S and (y1, z1) < ... < (yq, zq) with respect to
the induced (left) lexicographic ordering of S × S.

4. Preliminaries on quadratic maps

Let G and G′ be additively written groups of nilpotence class two. Recall that a map
f : G→ G′ is quadratic if for any a, b ∈ G the cross-effect

(a | b)f := −f(b) − f(a) + f(a+ b)

is a central element in G′ and is linear in a and b. Then f(0) = 0 and the cross-effect yields
a well-defined homomorphism (− | −)f : Gab ⊗ Gab → Z (G′). Moreover, the following

holds (see [15])

(4) f(na) = nf(a) +

(

n

2

)

(a | a)f , n ∈ Z,

(5) f([a, b]) = (a | b)f − (b | a)f .

Lemma 12. For any set S, any abelian group A, any map

f0 : S → A

and any homomorphism

Φ : Z[S]⊗2 → A

there exists a unique quadratic map

f : 〈S〉nil → A

satisfying

f(s) = f0(s)

for s ∈ S ⊂ 〈S〉nil
and

f(u+ v) = f(u) + f(v) + Φ(û⊗ v̂)

for u, v ∈ 〈S〉nil
. In particular there is a unique map

H : 〈S〉nil → Z[S] ⊗ Z[S]

satisfying

H(x) = 0
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for x ∈ S and

H(u+ v) = H(u) +H(v) + v̂ ⊗ û

for u, v ∈ 〈S〉nil
. Thus H is a quadratic map with

(u | v)H = v̂ ⊗ û,

H(−u) = −H(u) + û⊗ û,

H([u, v]) = v̂ ⊗ û− û⊗ v̂.

Proof. Uniqueness is clear from the hypothesis. For the existence, using the above normal
form (3), we can explicitly define

f(n1x1 + ... + npxp +m1[y1, z1] + ...+mq[yq, zq])

= n1H0(x1)+...+npH0(xp)+

(

n1

2

)

Φ(x1⊗x1)+...+

(

np

2

)

Φ(xp⊗xp)+
∑

16i<j6p

ninjΦ(xi⊗xj)

+m1Φ(y1 ⊗ z1 − z1 ⊗ y1) + ...+mqΦ(yq ⊗ zq − zq ⊗ yq).

It is easy to see that the so defined f satisfies the required equalities. �

The following key lemma is useful for constructing quadratic maps on groups given in
terms of generators and relations.

Lemma 13. Suppose a nil2-group G is given by a set S = {xi; i ∈ I} of generators subject

to the relations {rj; j ∈ J}. For any abelian group A, any I-tuple (ai)i∈I of elements in A
and any homomorphism

Φ : Gab ⊗Gab → A

there exists a unique quadratic map

f : 〈S〉nil → A

satisfying

f(xi) = ai, (xi|xi′)f = Φ(xi, xi′), i, i′ ∈ I.

Moreover this map factors through the quotient map q : 〈S〉nil
� G to yield a quadratic

map G→ A if and only if it satisfies

f(rj) = 0, j ∈ J.

Proof. Existence of f : 〈S〉nil → A is a direct consequence of Lemma 12. It is clear that if
f factors trough G then f(rj) = 0 for all j ∈ J . Conversely, assume this condition holds.
We have to show that f(x) = f(y) provided y = r+ x, where r lies in the smallest normal
subgroup B of 〈S〉 containing all rj, j ∈ J . Observe that Φ(r,−) = 0 for any r ∈ B,
so that restriction of f to B is a homomorphism and moreover f(y) = f(r) + f(x), so it
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remains to prove that f vanishes identically on B. For this, it suffices to show that for any
r ∈ B with f(r) = 0 one also has f(−z + r + z) = 0 for any z ∈ 〈S〉. Indeed

f(−z + r + z) = f(−z) + f(r + z) + Φ(−z, r + z)

= f(−z) + f(z) + Φ(−z, z)

= f(−z + z)

= 0.

�

5. Square groups and pre-square groups

In this section we list main properties of square groups and introduce various special
cases of square groups. Also quotients, coproducts, central extensions in the category
of square groups are described. We then outline the simplicial theory of square groups.
Finally we discuss pre-square groups needed in the proof of our main results.

5.1. Properties of square groups. Let

M = ( Me
H // Mee

P // Me )

be a square group as in Section 1. Then P (x | y)H = −x − y + x + y implies that
[Me,Me] ⊂ Im(P ), while (Pa | y)H = 0 = (x | Pb)H shows that Im(P ) ⊂ Z (Me). In
particular Me is a nil2-group and Coker(P ) is a well-defined abelian group.

Proposition 14.

i) One has

H(−x− y + x + y) = (x | y)H − (y | x)H .

Moreover, the function

T = HP − Id

is an involutive automorphism of Mee, i. e. T 2 = IdMee
. Furthermore one has

PT = P, T (x | y)H + (y | x)H = 0.

ii) The function ∆ : Me →Mee is linear, where

∆(x) = HPH(x) − 2H(x) + (x | x)H

= HPH(x) +H(2x) − 4H(x)

= {x | x}H −H(x) + TH(x)

= H(−x) + TH(x)

and furthermore one has

∆P = 0, P∆ = 0, ∆ + T∆ = 0.
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iii) For any integer n, the map n∗ : Me → Me defined by n∗(x) = nx +
(

n

2

)

PH(x) is a

homomorphism. Moreover one has

(nm)∗ = n∗m∗

and

P (n2a) = n∗(P (a)), (n∗x | n∗y)H = n2(x | y)H.

Proof. i) Since H is quadratic and Mee is abelian we can use identity (5) to get the first
identity. We have

(a | b)T = (a | b)HP = (Pa | Pb)H = 0.

Thus T is a homomorphism. Furthermore, one has

T 2 = (HP − Id)(HP − Id) = HPHP − 2HP + Id = H(P + P ) − 2HP + Id = Id.

Similarly
PT = P (HP − Id) = PHP − P = 2P − P = P

and
T (x | y)H = HP (x | y)H − (x | y)H = H([x, y]) − (x | y)H = − (y | x)H .

ii) Since H takes values in an abelian group, we have

∆(x + y) = HPH(x+ y) − 2H(x+ y) + (x + y | x + y)H

= HPH(x) +HPH(y) +H([x, y]) − 2H(x) − 2H(y)− 2 (x | y)H + (x+ y | x + y)H

= ∆(x) + ∆(y) +H([x, y]) − (x | y)H + (y | x)H = ∆(x) + ∆(y).

Hence ∆ is additive. To get the other expressions for ∆ observe that H(2x) = 2H(x) +
(x | x)H as well as TH = HPH −H and H(−x) = −H(x) + (x | x)H . Moreover, we have
∆P = HPHP − 2HP = 0 and P∆(x) = PHPH(x)− 2PH(x) + [x, x] = 0. Similarly

T∆(x) = THPH(x)− 2TH(x) + T ((x | x)H) =

= HPHPH(x)−HPH(x) − 2HPH(x) + 2H(x) − (x | x)H

= −HPH + 2H(x) − (x | x)H = −∆(x).

iii) We have

n∗(x+ y) = n(x+ y) +

(

n

2

)

PH(x+ y)

= nx + ny +

(

n

2

)

(−[x, y] + PH(x) + PH(y) + P (x | y)H)

= nx + ny +

(

n

2

)

(PH(x) + PH(y)) = n∗(x) + n∗(y).

Thus n∗ is indeed a homomorphism. We also have

n∗(m∗(x)) = n(mx +

(

m

2

)

PH(x)) +

(

n

2

)

PH(mx+

(

m

2

)

PH(x)).
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Since PH(x) is a central element, we obtain

n∗(m∗(x)) = nmx + (n

(

m

2

)

+

(

n

2

)

m + 2

(

n

2

)(

m

2

)

)PH(x)

= nmx +

(

nm

2

)

PH(x) = (mn)∗(x).

Furthermore, we have

n∗(Pa) = nP (a) +

(

n

2

)

PHP (a) = nP (a) + (n2 − n)P (a) = n2P (a)

and

(n∗(x) | n∗(y))H = (nx + P (

(

n

2

)

H(x)) | ny + P (

(

m

2

)

H(y)))H

= (nx | ny)H = n2(x | y)H .

�

Corollary 15. The cross-effect and ∆ yield homomorphisms

(−,−)H : Coker(PM) ⊗ Coker(PM) →Mee

and

∆ : Coker(PM) → Ker(PM) ⊂Mee.

Moreover ∆ yields the natural homomorphism

kM : Coker(PM) → Ker(
Mee

Id − T
P M

−−→Me)

One also has

kM(x̄) ≡ (x|x)H

in Ker( Mee

Id−T

P M

−−→Me) for any x ∈Me.

5.2. Abelian square groups and quadratic Z-modules. A square group M is called
abelian if H is a homomorphism, that is (x | y)H = 0 for all x, y ∈Me, equivalently abelian
square group consists of two abelian groups Me and Mee together two homomorphisms
P : Mee → Me, H : Me → Mee such that PHP = 2P . Abelian square groups correspond
to quadratic functors Groups → Ab preserving filtered colimits and reflexive coequalizers.
The category of abelian square groups is denoted by Ab(SG).

Let us recall that a quadratic Z-module (see [3], [7]) is a square group M for which
(− | −)H = 0 and ∆ = 0. Equivalently a quadratic Z-module is given by two abelian
groups Me and Mee together with two homomorphisms P : Mee →Me H : Me →Mee such
that PHP = 2P and HPH = 2H. Quadratic Z-modules correspond to quadratic functors
Ab → Ab preserving filtered colimits and reflexive coequalizers. The category of quadratic
Z-modules is denoted by QZ.
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Thus we have the following full embeddings:

Ab ⊂ QZ ⊂ Ab(SG) ⊂ SG.

Here abelian groups corresponds to square groups M with Mee = 0.
For any abelian group A, let A⊗ be the quadratic Z-module defined as in Proposition 5.

Lemma 16. For any square group M and for any abelian group A one has the isomorphism

HomSG(A⊗,M) ∼= Hom(A,Mee).

Proof. Take a homomorphism g : A → Mee. We define f = (fe, fee) : A⊗ → M by
fe(a) = Pg(a) and fee(a, b) = g(a)+Tg(b). Then f is a morphism of square groups and one
easily sees that in this way one gets all such maps. Indeed, one takes g(a) = fee(a, 0). �

Of special interest is the quadratic Z-module Z
⊗ since by Lemma 16

HomSQ(Z⊗,M) ∼= Mee.

We will need also the following construction. Let L be an abelian group and let τ be an
involution on L. Then E(L, τ) is the quadratic Z-module with

E(L, τ)e = Coker(L
Id+τ
−−→ L)

E(L, τ)e = L

where P is the natural projection onto quotient, while H is induced by the homomorphism
Id − τ .

5.3. Sets versus square groups. There is a functor

Znil[−] : Sets → SG

which is constructed as follows. For a set S one puts

Znil[S]ee = Z[S] ⊗ Z[S],

where Z[S] is the free abelian group generated by S. We take Znil[S]e to be 〈S〉nil, the free
nil2-group generated by S. The homomorphism P is given by P (s ⊗ t) = [t, s], s, t ∈ S,
while the quadratic map H is uniquely defined by

H(s) = 0, (s | t)H = t⊗ s s, t ∈ S.

If S is a singleton, we obtain Znil = Znil[S], see Definition 1.
For general S one has

Coker(P Znil[S]) = Z[S]

and the homomorphism

∆ : Z[S] = Coker(P Znil[S]) → Z[S] ⊗ Z[S] = Znil[S]ee

is given by ∆(s) = (s, s). Moreover, the homomorphism

T : Z[S] ⊗ Z[S] → Z[S] ⊗ Z[S]

is given by T (s⊗ t) = −t⊗ s.
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It turns out that the functor Znil[−] : Sets → SG is a left adjoint. Let M be a square
group. An element x ∈ Me is called linear if H(x) = 0. Let L(M) be the subset of linear
elements in Me so that we obtain a functor

L : SG → Sets.

Proposition 17. The functor Znil[−] : Sets → SG is left adjoint to the functor L.

Proof. Let S be a set and M be a square group. Given a morphism f : Znil[S] → M of
square groups, the composite S ⊂ Znil[S] →M is a map f0; moreover its image is contained
in L(M) since H(s) = 0 for s ∈ S and f is compatible with H.

Conversely we must show that any map f0 : S → L(M) ⊂ Me extends uniquely to a
square group morphism f : Znil[S] → M . First, there is clearly a unique group homo-
morphism fe : Znil[S]e → Me extending f0, as Znil[S]e is the free nil2-group on S and Me

is a nil2-group. Moreover, by compatibility of a morphism of square groups with H we
necessarily have

fee(s⊗ s′) = fee((s
′|s)H) = (f0(s

′)|f0(s))H

for any s, s′ ∈ S. Hence we also have a unique choice for fee : Z[M ] ⊗ Z[M ] → Mee and
one has

fee(x̄⊗ ȳ) = (fe(y)|fe(x))H

for any x, y ∈ Znil[M ]e.
It remains to show that the pair (fe, fee) yields a morphism of square groups

(fe, fee) : Znil[S] →M.

Indeed, compatibility with P is clear since

feP (s⊗ s′) = feP ((s′|s)H) = fe[s
′, s] = [f0(s

′), f0(s)] = P ((f0(s
′)|f0(s))H) = Pfee(s⊗ s′)

as fe, fee and P are group homomorphisms. Since image of f0 is in L(M), compatibility
with H holds on elements of S; moreover if it holds on x and y, one has

feeH(x+ y) = fee(H(x) +H(y) + ȳ ⊗ x̄) = Hfe(x) +Hfe(y) + (fe(x)|fe(y))H

= H(fe(x) + fe(y)) = Hfe(x + y).

This finishes the proof. �

5.4. Normal subobjects and quotients of square groups. Obviously for any mor-
phism f : M → N of square groups kernels of fe and fee determine a sub-square group
Ker(f) of M . Sub-square groups of this form can be characterized as those K � M for
which Ke is normal in Me and moreover one has

(Me|Ke)H , (Ke |Me)H ⊂ Kee,

i. e. for any x ∈ Me, k ∈ Ke one has (x|k)H ∈ Kee and (k|x)H ∈ Kee. Such sub-square
groups will be called normal. For any normal sub-square group K /M the quotient M/K
is defined, with (M/K)e = Me/Ke, (M/K)ee = Mee/Kee; here P : Mee/Kee → Me/Ke is
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the uniquely determined homomorphism whereas H : Me/Ke → Mee/Kee is the uniquely
determined map by virtue of

H(x+ k) −H(x) = H(k) + (x|k)H ∈ Kee

for any x ∈Me, k ∈ Ke.
Cokernels of morphisms in SG are defined as follows. For a morphism f : M → N of

square groups, let Coker(f) be the quotient of N by the smallest normal sub-square group
generated by Im(f). Thus one has

Coker(f)e = Coker(fe),

i. e. Coker(f)e is the quotient of Ne by the normal subgroup generated by the image of fe,
and

Coker(f)ee = Coker(fee)/(Im(fe)|N)H ,

that is, Coker(f)ee is the quotient of Nee by elements of the form fee(a) for a ∈ Mee and
(fe(x)|y)H for x ∈ Me, y ∈ Ne.

Lemma 18. Let f : M → N be a morphism in SG. Then the following conditions are

equivalent:

(1) fe and fee are surjective;

(2) for any morphism h : N → N ′ in SG with hf = 0 one has h = 0;
(3) Coker(f) = 0.

Proof. We show that (3) =⇒ (1). The rest is trivial. Assume (3) holds. It follows that
Coker(fe) = 0. Hence fe is surjective (see for example Exercise 5, Section 5, Chapter 1 in
[19]). Moreover (3) implies

Nee = fee(Mee) + (fe(Me) | Ne)H + (Ne | fe(Me))H .

Since Ne = fe(Me), we see that

Nee = fee(Mee) + (fe(Me) | fe(Me))H = fee(Mee) + fee((Me | Me)H)

and hence fee is surjective. �

A morphism f : M → N in the category SG is called an epimorphism provided it satisfies
the conditions of Lemma 18. One easily deduces from Lemma 18 that the class of effective
epimorphisms (Section 4, Chapter 2, [23]) in the category SG coincides with the class of
epimorphisms.

5.5. Central extensions of square groups. A sequence of square groups

0 → A→ B → C → 0

is called short exact if it is exact on the e-level and the ee-level. We will say that it is a
central extension if Ae is a central in Be and (x | y)H = 0 provided x ∈ Ae and y ∈ Be, or
x ∈ Be and y ∈ Ae. In particular A is a normal sub-square group of B and H is linear on
Ae.



16 H.-J. BAUES, M. JIBLADZE, AND T. PIRASHVILI

Lemma 19. Let

0 → A→ B → C → 0

be a short exact sequence in SG. Then there is a well-defined square group A′ defined by

A′
e := {x ∈ Ae | x + y = y + x & (x | y)H = 0 = (y | x)H , y ∈ Be},

A′
ee := {a ∈ Aee | P (a) ∈ A′

e},

and H and P being the restriction of PA and HA. Moreover the columns and the bottom

row of the commutative diagram

0

��

0

��
A′ Id //

��

A′

��
0 // A //

��

B //

��

C //

Id

��

0

0 // A/A′ //

��

B/A′ //

��

C // 0

0 0

are central extensions of square groups.

Proof. Take any element x from Ae. Then PH(x) ∈ A′
e. In particular H(A′

e) ⊂ A′
ee and

therefore A′ is well-defined. It is obvious that the columns are central extensions of square
groups. Take now any elements x ∈ Ae and y ∈ Be. Then the commutator [x, y] projects
to zero in C and therefore [x, y] ∈ Ae. Since Ne ∈ Nil and the cross-effect of H vanishes on
commutators it follows that [x, y] ∈ A′

e. Thus (A/A′)e is a central subgroup of (B/A′)e. It
remains to show that H(x, y) ∈ A′

ee. But this follows immediately from the facts that the
image of H(x, y) in Cee vanishes (thus H(x, y) ∈ Aee) and PH(x, y) ∈ A′

e. �

5.6. Coproduct of square groups. Let M and N be square groups. Then their coprod-
uct M ∨N in the category of square groups has the following form

M ∨N = ((M ∨N)e
H
−→ (M ∨N)ee

P
−→ (M ∨N)e)

where

(M ∨N)ee = Mee ⊕Nee ⊕ Coker(PM) ⊗ Coker(PN) ⊕ Coker(PN) ⊗ Coker(PM)

while (M∨N)e is the quotient of the coproduct Me∨Ne in the category Nil by the following
relations

PM(a) + y = y + PM(a), a ∈Mee, y ∈ Ne,

PN(b) + x = x + PN(b), b ∈ Nee, x ∈Me.
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Moreover, P and H of M ∨N are given by

P (a+ b+ x1 ⊗ y1 + y2 ⊗ x2) = PM(a) + PN(b) + [x1, y1] + [y2, x2],

H(x + y + [x1, y1]) = HM(x) +HN(y) + x⊗ y + x1 ⊗ y1 − y1 ⊗ x1

where x, x1, x2 ∈Me, y, y1, y2 ∈ Ne, a ∈Mee, b ∈ Nee.
Let us also observe that one has a central extension of the form

0 → Coker(PM) ⊗ Coker(PN) → (M ∨N)e →Me ×Ne → 0,

which implies the short exact sequence of square groups

(6) 0 → (Coker(PM) ⊗ Coker(PN))⊗
j
−→M ∨N →M ×N → 0.

Here je(x⊗ y) = [x, y] and jee(x1 ⊗ y1, x2 ⊗ y2) = x1 ⊗ y1 + y2 ⊗ x2.
Since the map PM is surjective for M = A⊗, we obtain that for any abelian group A

and any square group M one has

A⊗ ∨M ∼= A⊗ ×M.

In particular for abelian groups A and B one gets

A⊗ ∨B⊗ ∼= (A⊕B)⊗.

5.7. Free and projective square groups. We need the following square group Z
Q de-

fined by

(ZQ)e = Z ⊕ Z, (ZQ)ee = Z ⊕ Z ⊕ Z,

with the maps P and H given by P (a, b, c) = (0, a + 2b) and H(m,n) = (m,n,
(

m

2

)

). One
easily shows that for a square group M one has the natural isomorphism

HomSG(ZQ,M) ∼= Me.

For any set S we put

V (S) :=
∨

s∈S

Z
Q.

It follows that

HomSG(V (S),M) ∼= HomSets(S,Me).

Thus the functor V : Sets → SG is left adjoint to the functor

SG → Sets, M 7→Me.

Now we give the following explicate construction of V (S). We consider three further copies
of S, which are denoted respectively by HS, PHS and HPHS. For an element s ∈ S the
elements Hs, PHs, HPHs correspond to s in these copies. Then we take

V (S)e = 〈S〉nil × Z[PHS],

V (S)ee = Z[HS] ⊕ Z[S × S] ⊕ Z[HPHS].
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Moreover, H is the unique quadratic map with

H(s) = Hs,

H(PHs) = HPHs,

(s | t)H = (s, t),

(s | PHt)H = 0 = (PHs | t)H = (PHs | PHt)H .

Here s, t ∈ S. The homomorphism P is given by

P (Hs) = PHs, P (s, t) = [s, t], P (HPHs) = 2PHs.

The fact that this is really isomorphic to V (S) can be deduced either from Section 5.6 or
directly by the universal property.

Properties of the functor A 7→ A⊗ imply that the functor Sets × Sets → SG given by

(S, T ) 7→ V (S) × (Z[T ])⊗ ∼= V (S) ∨ (Z[T ])⊗

is left adjoint to the forgetful functor

SG → Sets × Sets, M 7→ (Me,Mee).

A square group is called free if it is isomorphic to V (S) × (Z[T ])⊗. A square group is
called projective provided it has the familiar lifting property with respect to epimorphisms
of square groups. Any free square group is projective and any projective square group is a
retract of a free square group.

Lemma 20. For any square group M there exists an epimorphism F � M , where F is

free.

Proof. One can take F = V (Me)×(Z[Mee])
⊗ with the morphism adjoint to (IdMe

, IdMee
). �

5.8. Simplicial objects in the category SG. Let Simpl(SG) be the category of simplicial
objects in the category SG of square groups. Any such simplicial object X defines two
simplicial groups Xe and Xee as well as a morphism P : Xee → Xe of simplicial groups.
The map H yields a morphism of simplicial sets H : Xe → Xee. If one passes to homotopy
groups, then one obtains groups πi(Xe) and πi(Xee) together with induced homomorphisms
P : πi(Xee) → πi(Xe), i > 0. The mapH yields a quadratic mapH : π0(Xe) → π0(Xee) and
homomorphisms H : πi(Xe) → πi(Xee) for i > 1. It is clear that the equation PHP = 2P
still holds for induced maps. It follows that for each i > 1 one obtains a well-defined
abelian square group

πiX ∈ Ab(SG), i > 1

with
(πiX)e = πi(Xe), (πiX)ee = πi(Xee).

We also have a well-defined square group

π0(X) ∈ SG,

since all equations defining a square group hold in X0, the zero component of X, and
therefore they remain true in the quotient π0(X).
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By 5.7 the category SG satisfies all conditions of Theorem 4 Section 4, Chapter 2 [23].
Hence the category Simpl(SG) of simplicial objects of SG possesses a closed model category
structure, where a morphism f is a weak equivalence (resp. fibration) provided fe and
fee are weak equivalences (resp. fibrations) of underlying simplicial sets. According to
[23] cofibrations are retracts of free maps as they are defined in [23]. Equivalently, a
map f : X → Y is weak equivalence if and only if the induced map of square groups
fi : πi(X) → πi(Y ) is an isomorphism for all i > 0.

5.9. Pre-square groups.

Definition 21. A pre-square group consists of a diagram

M =
(

Me ×Me
{−,−}
−−−→Mee

T
−→Mee

P
−→Me

)

.

Here Mee is an abelian group and T is a homomorphism with T 2 = Id and Me is a group
written additively, P is a homomorphism and {−,−} is a bilinear map, that is {x+y, z} =
{x, z}+ {y, z} and {x, y+ z} = {x, y}+ {x, z}, for all x, y, z ∈ Me. Moreover one requires
the following identities:

(a) PT = P ,
(b) T{x, y}+ {y, x} = 0, x, y ∈Me,
(c) P{x, y} = −x− y + x + y, x, y ∈Me,
(d) {x, Pa} = 0, x ∈Me, a ∈Mee.

It follows from (b) that one has {Pa, x} = 0. It follows from (c) and (d) that Pa lies
in the center of Me. Thus Coker(P ) is well-defined and by (c) it is an abelian group. It
follows that Me is a group of nilpotence class 2. Bilinearity of the bracket together with
(d) shows that there is a well-defined homomorphism

{−,−} : Coker(P ) ⊗ Coker(P ) →Mee.

We let PSG denote the category of pre-square groups. It is clear that the full subcategory
of PSG consisting of pre-square groups with trivial Mee = 0 is equivalent to the category
of abelian groups. In what follows we identify abelian groups with such pre-square groups.

Thanks to Proposition 14, for any square group the following object

℘(M) = (Me,Mee, T = HP − Id, (−,−)H , P )

is a pre-square group. Thus we obtain the forgetful functor

℘ : SG → PSG.

Comparing the definitions we immediately obtain the following easy, but useful result.

Lemma 22. Let M be a pre-square group and let H : Me → Mee be a map. Then

(Me,Mee, P,H) is a square group with ℘(Me,Mee, P,H) = M iff {x, y} = (x | y)H and

Id + T = HP .

The following Lemma is an immediate consequence of Proposition 14.
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Lemma 23. For any square group M and any integer n, there is a morphism of pre-square

groups

n∗ = (n∗)M : ℘(M) → ℘(M)

which on ee-level is the multiplication by n2, while on e-level it is given by

x 7→ nx+

(

n

2

)

PH(x).

6. The tensor product as a monoidal structure of SG

In this section we prove Theorem 3.

6.1. The tensor product of a pre-square group and a square group. Before con-
sidering the tensor product of square groups as a square group for technical reasons we
construct first the bifunctor

} : PSG × SG → PSG.

Definition 24. Let M be a pre-square group and N be a square group, then M}N is the
pre-square group, which on the ee-level is given by

(M}N)ee = Mee ⊗Nee.

Moreover (M}N)e is generated by elements of the form x}y for x ∈Me, y ∈ Ne and a⊗̄b
for a ∈Mee, b ∈ Nee, subject to the relations

(1) the symbol a⊗̄b is bilinear and central in (M}N)e,
(2) x}(y1 + y2) = x}y1 + x}y2,
(3) (x1 + x2)}y = x1}y + x2}y + {x2, x1}⊗̄H(y),
(4) x}P (b) = {x, x}⊗̄b,
(5) P (a)}y = a⊗̄∆(y),
(6) T (a)⊗̄T (b) = −a⊗̄b.

The homomorphism

P : (M}N)ee → (M}N)e

is given by

P (a⊗ b) = a⊗̄b.

The involution on (M}N)ee is given by

T (a⊗ b) = −T (a) ⊗ T (b),

while the bracket is given by

{x}y, x′}y′} = {x, x′} ⊗ (y | y′)H ,

{u, a⊗̄b} = 0 = {a⊗̄b, u},

where u ∈ (M}N)e.
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We now show that M}N is a well-defined pre-square group satisfying the identities in
Definition 21. Identity a) follows from the identity 6) of the definition of M}N , while d)
is a direct consequence of the description of P . Identity b) can be verified as follows

T{x}y, x′}y′} =T ({x, x′} ⊗ (y | y′)H)

= − T ({x, x′}) ⊗ T ((y | y′)H)

= − {x′, x} ⊗ (y′ | y)H

= − {x′ ⊗ y′, x⊗ y}.

It remains to check identity c). Since P{x}y, x′}y′} = {x, x′}⊗̄(y | y′)H , this must be
equal to −x}y − x′}y′ + x}y + x′}y′. Consider

(x′ + x)}(y + y′) =(x′ + x)}y + (x′ + x)}y′

=x′}y + x}y + {x, x′}⊗̄H(y) + x′}y′ + x}y′ + {x, x′}⊗̄H(y′)

=x′}y + x}y + x′}y′ + x}y′ + {x, x′}⊗̄(H(y) +H(y′))

=x′}y + x}y + x′}y′ + x}y′ + {x, x′}⊗̄(H(y + y′)) − {x, x′}⊗̄(y|y′)H .

On the other hand the same expression expands to

(x′ + x)}(y + y′) = x′}(y + y′) + x}(y + y′) + {x, x′}⊗̄H(y + y′)

= x′}y + x′}y′ + x}y + x}y′ + {x, x′}⊗̄H(y + y′).

Comparing these expressions gives

(7) −x}y − x′}y′ + x}y + x′}y′ = {x, x′}⊗̄(y|y′)H

which is the equality we need. Thus we have constructed a well-defined tensor product
PSG × SG → PSG.

Lemma 25. Let M be a pre-square group and N be a square group. Then one has the

following identities in M}N .

(1) {x2, x1}⊗̄b = {x1, x2}⊗̄Tb,
(2) (nx)}y = x}(ny +

(

n

2

)

PHy),
(3) [x1, x2]}y = {x1, x2}⊗̄(HPHy− 2Hy).

Here x, x1, x2 ∈Me, y ∈ Ne, b ∈ Mee and n ∈ Z.

Proof. We have

{x2, x1}⊗̄b = (−T{x1, x2})⊗̄TTb = {x1, x2}⊗̄Tb

and (1) is proved. For a given y ∈ Ne consider the map f : Me → Mee defined by
f(x) = x}y. Then f is quadratic, with cross-effect given by

(x1 | x2)f = {x2, x1}⊗̄H(y).

Thus by identity (4) in Section 4 we have

(nx)}y = f(nx) = nf(x) +

(

n

2

)

(x | x)f = n(x}y) +

(

n

2

)

({x, x})⊗̄H(y).
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Since } is linear with respect to the second variable, (2) follows. Next we use identity (5)
in section 4 to get

[x1, x2]}y = f([x1, x2]) = (x1 | x2)f − (x2 | x1)f = {x2, x1}⊗̄Hy − {x1, x2}⊗̄Hy.

By (1) in Lemma 25 we get

[x1, x2]}y = {x1, x2}⊗̄(THy −Hy).

But TH = HPH −H and the result follows. �

6.2. The tensor product of square groups. Assume now that M and N are square
groups. We have to show that HM}N is well-defined and M}N is in fact a square group.
To prove the first assertion we show that the conditions of Lemma 13 are indeed satisfied,
namely, that the quadratic map H (when considered as a quadratic map from a free nil2-
group to (M ⊗N)ee) respects the relations from the definition. First, bilinearity of a⊗̄b is
respected since H(a⊗̄b) = a⊗ b−T (a)⊗T (b) is bilinear and the cross-effect of H vanishes
on all elements of the form a⊗̄b. Centrality of a⊗̄b is trivially respected as the values are
taken in an abelian group. Next, the relation (2) in Definition 2 is respected since

H(x}y1 + x}y2 − x}(y1 + y2))

=H(x}y1 + x}y2) +H(−x}(y1 + y2)) + (x}y1 + x}y2| − x}(y1 + y2))H

=H(x}y1) +H(x}y2) + (x}y1|x}y2)H −H(x}(y1 + y2))

+ (x}(y1 + y2)|x}(y1 + y2))H + (x}y1 + x}y2| − x}(y1 + y2))H

=(x|x)H ⊗H(y1) +H(x) ⊗ ∆(y1) + (x|x)H ⊗H(y2) +H(x) ⊗ ∆(y2)

+ (x|x)H ⊗ (y1|y2)H − (x|x)H ⊗H(y1 + y2)

−H(x) ⊗ ∆(y1 + y2) + (x|x)H ⊗ (y1 + y2|y1 + y2)H

− (x}y1|x}(y1 + y2))H − (x}y2|x}(y1 + y2))H

=(x|x)H ⊗H(y1) + (x|x)H ⊗H(y2) + (x|x)H ⊗ (y1|y2)H

− (x|x)H ⊗ (H(y1) +H(y2) + (y1|y2)H)

+ (x|x)H ⊗ (y1|y1)H + (x|x)H ⊗ (y1|y2)H

+ (x|x)H ⊗ (y2|y1)H + (x|x)H ⊗ (y2|y2)H

− (x|x)H ⊗ (y1|y1 + y2)H − (x|x)H ⊗ (y2|y1 + y2)H

= 0.
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For the relation (3) Definition 2 we have

H(x1}y + x2}y + (x2|x1)H⊗̄H(y) − (x1 + x2)}y)

=H(x1}y + x2}y + (x2|x1)H⊗̄H(y)) +H(−(x1 + x2)}y)

+ (x1}y + x2}y + (x2|x1)H⊗̄H(y)| − (x1 + x2)}y)H

=H(x1}y + x2}y) +H((x2|x1)H⊗̄H(y))

−H((x1 + x2)}y) + ((x1 + x2)}y|(x1 + x2)}y)H

− (x1}y|(x1 + x2)}y)H − (x2}y|(x1 + x2)}y)H

=H(x1}y) +H(x2}y) + (x1}y|x2}y)H

+ (x2|x1)H ⊗H(y)− T ((x2|x1)H) ⊗ TH(y)

− (x1 + x2|x1 + x2)H ⊗H(y) −H(x1 + x2) ⊗ ∆(y)

+ (x1 + x2|x1 + x2)H ⊗ (y|y)H

− (x1|x1 + x2)H ⊗ (y|y)H − (x2|x1 + x2)H ⊗ (y|y)H

=(x1|x1)H ⊗H(y) +H(x1) ⊗ ∆(y) + (x2|x2)H ⊗H(y) +H(x2) ⊗ ∆(y)

+ (x1|x2)H ⊗ (y|y)H + (x2|x1)H ⊗H(y) + (x1|x2)H ⊗ TH(y)

− (x1 + x2|x1 + x2)H ⊗H(y) − (H(x1) +H(x2) + (x1|x2)H) ⊗ ∆(y)

=(x1|x2)H ⊗ (y|y)H + (x1|x2)H ⊗ TH(y)

− (x1|x2)H ⊗H(y) − (x1|x2)H ⊗ ∆(y)

=0.

Next for the relation (4) Definition 2 we check

H(x}P (b) − (x|x)H⊗̄b) = H(x}P (b)) −H((x|x)H⊗̄b)

= (x|x)H ⊗HP (b) +H(x) ⊗ ∆P (b) − (x|x)H ⊗ b + T ((x|x)H) ⊗ T (b)

= (x|x)H ⊗ (HP (b) − b− T (b)) = 0

and for (5)

H(P (a)}y − a⊗̄∆(y)) = H(P (a)}y) −H(a⊗̄∆(y))

= (P (a)|P (a))H ⊗H(y) +HP (a) ⊗ ∆(y) − a⊗ ∆(y) + T (a) ⊗ T∆(y)

= (HP (a) − a− T (a)) ⊗ ∆(y) = 0.

Finally the relation (6) Definition 2 is respected since

H(a⊗̄b + T (a)⊗̄T (b)) = H(a⊗̄b) +H(T (a)⊗̄T (b))

= a⊗ b− T (a) ⊗ T (b) + T (a) ⊗ T (b) − TT (a) ⊗ TT (b) = 0.

Moreover we have to show that identities of square groups hold for M}N . But we have
already proved that it is a pre-square group, thus by Lemma 22 we have only to check the
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identity Id + T = HP , which holds because

HP (a⊗ b) = H(a⊗̄b) = a⊗ b− T (a) ⊗ T (b)) = a⊗̄b+ T (a⊗ b).

Thus we get the well-defined tensor product −}− : SG × SG → SG.

Lemma 26. Let M and N be square groups. Then one has the following identity in M}N .

HPH(x)⊗̄b = H(x)⊗̄(b− Tb).

Here x ∈Me and b ∈ Mee.

Proof. We have

(HPHx)⊗̄b = (Hx+ THx)⊗̄b = (Hx)⊗̄b+ (THx)⊗̄b = (Hx)⊗̄b− (Hx)⊗̄Tb

and the result follows.
�

6.3. Associativity. Our next goal is to show that the tensor product in SG defines a
symmetric monoidal structure. To construct associativity isomorphisms we introduce the
triple tensor product A}B}C; we will then construct isomorphisms of this object to
(A}B)}C and A}(B}C).

We define (A}B}C)e by generators of the form x}y}z for x ∈ Ae, y ∈ Be, z ∈ Ce and
a⊗̄b⊗̄c for a ∈ A, b ∈ B, c ∈ C, subject to the relations

(1) a⊗̄b⊗̄c is central and trilinear;
(2) x}y}(z + z′) = x}y}z + x}y}z′;
(3) x}(y + y′)}z = x}y}z + x}y′}z + (x|x)H⊗̄(y′|y)H⊗̄H(z);
(4) (x+x′)}y}z = x}y}z+x′}y}z+(x′|x)H⊗̄(y|y)H⊗̄H(z)+(x′|x)H⊗̄H(y)⊗̄∆(z);
(5) P (a)}y}z = a⊗̄∆(y)⊗̄∆(z);
(6) x}P (b)}z = (x|x)H⊗̄b⊗̄∆(z);
(7) x}y}P (c) = (x|x)H⊗̄(y|y)H⊗̄c;
(8) T (a)⊗̄T (b)⊗̄T (c) = a⊗̄b⊗̄c.

Moreover we define (A}B}C)ee = A⊗ B ⊗ C and P (a⊗ b⊗ c) = a⊗̄b⊗̄c. Finally we let
H be the unique quadratic map satisfying

H(x}y}z) = (x|x)H⊗̄(y|y)H⊗̄H(z) + (x|x)H⊗̄H(y)⊗̄∆(z) +H(x)⊗̄∆(y)∆(z)

with cross-effect equal to

ρ : Coker(PA}B}C) ⊗ Coker(PA}B}C)
ρ
−→ Aee ⊗ Bee ⊗ Cee

given by ρ(ā1 ⊗ b̄1 ⊗ c̄1 ⊗ ā2 ⊗ b̄2 ⊗ c̄2) = (a1|a2)H ⊗ (b1|b2)H ⊗ (c1|c2)H . Here we use the
identification

Coker(PA}B}C) ⊗ Coker(PA}B}C)

= Coker(PA) ⊗ Coker(PB) ⊗ Coker(PC) ⊗ Coker(PA) ⊗ Coker(PB) ⊗ Coker(PC)
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Again by Lemma 13 such H exists and is unique and the same argument as in Section
6.2 shows that A}B}C is a well-defined square group. By the same methods one shows
that there is the unique morphism of square groups

α = αA,B,C : ((A}B)}C) → A}B}C

which is the canonical isomorphism (Aee ⊗ Bee) ⊗ Cee → Aee ⊗ Bee ⊗ Cee on the ee-level,
while on the e-level it satisfies the identities

α((x}y)}z) = x}y}z,

α((a⊗̄b)}z) = a⊗̄b⊗̄∆(z),

α((a⊗ b)⊗̄c) = a⊗̄b⊗̄c.

This is an isomorphism with inverse given by

α−1(x}y}z) = (x}y)}z,

α−1(a⊗̄b⊗̄c) = (a⊗ b)⊗̄c.

Similarly there exists a unique morphism of square groups

β = βA,B,C : A}(B}C) → A}B}C

which is the canonical isomorphism Aee ⊗ Bee ⊗ Cee → Aee ⊗ (Bee ⊗ Cee) on the ee-level
and on the e-level satisfies

β(x}(y}z)) = x}y}z,

β(x}(b⊗̄c)) = (x|x)H⊗̄b⊗̄c,

β(a⊗̄(b⊗ c)) = a⊗̄b⊗̄c.

This is an isomorphism with inverse given by

β−1(x}y}z) = x}(y}z),

β−1(a⊗̄b⊗̄c) = a⊗̄(b⊗ c).

From these isomorphisms one obtains that } is indeed associative with associativity
isomorphisms given as in Theorem 3. The last statement of Theorem 3 follows from the
fact that one has

x}(b⊗̄c) = x}P (b⊗ c) = (x|x)H⊗̄(b⊗ c)

and this corresponds to ((x|x)H ⊗ b)⊗̄c.

6.4. The pentagon axiom. The well-known pentagon axiom for monoidal categories
claims that two natural ways from ((A}B)}C)}D to A}(B}(C}D)) are equal. That is
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the following diagram commutes.

(A}B)}(C}D)
αA,B,C}D

**UUUUUUUUUUUUUUUUU

((A}B)}C)}D

αA}B,C,D
44iiiiiiiiiiiiiiiii

αA,B,C}D %%KKKKKKKKKK
A}(B}(C}D))

(A}(B}C))}D
αA,B}C,D

// A}((B}C)}D)

A}αB,C,D

99ssssssssss

To show this statement in our circumstances let us observe that (((A}B)}C)}D)e is
generated by elements of the form ((x}y)}z)}w, ((a⊗̄b)}z)}w, (((a ⊗ b)⊗̄c)}w and
(((a⊗ b) ⊗ c)⊗̄d. Then the statement is clear for elements of the form ((x}y)}z)}w and
(((a⊗ b) ⊗ c)⊗̄d. It is also straightforward to check that both ways carry (((a⊗ b)⊗̄c)}w
to a⊗̄(b ⊗ (c ⊗ ∆(w))). It remains to consider ((a⊗̄b)}z)}w. By one way it goes to
a⊗̄(b ⊗ (∆(z) ⊗ ∆(w)), while by the second way it goes to a⊗̄(b ⊗ ∆(z}w)). Thus the
pentagon axiom follows from the following Lemma.

Lemma 27. For the homomorphism

∆M}N : Coker(PM}N) = Coker(PM) ⊗ Coker(PN) → (M}N)ee = Mee ⊗Nee

one has

∆M}N = ∆M ⊗ ∆N .

Proof. Since a⊗̄b = P (a⊗ b) we have ∆(a⊗̄b) = 0. On the other hand

∆(x}y) =(x}y|x}y)H −H(x}y) + TH(x}y)

=(x|x)H ⊗ (y|y)H − (x|x)H ⊗H(y)−H(x) ⊗ ∆(y)

+ T ((x|x)H ⊗H(y) +H(x) ⊗ ∆(y))

=(x|x)H ⊗ (y|y)H − (x|x)H ⊗H(y)−H(x) ⊗ ((y|y)H −H(y) + TH(y))

− T ((x|x)H) ⊗ TH(y)− TH(x) ⊗ T∆(y)

=(x|x)H ⊗ (y|y)H − (x|x)H ⊗H(y)−H(x) ⊗ (y|y)H

+H(x) ⊗H(y) −H(x) ⊗ TH(y) + (x|x)H ⊗ TH(y) + TH(x) ⊗ ∆(y)

=(x|x)H ⊗ (y|y)H − (x|x)H ⊗H(y)−H(x) ⊗ (y|y)H

+H(x) ⊗H(y) −H(x) ⊗ TH(y)

+ (x|x)H ⊗ TH(y) + TH(x) ⊗ ((y|y)H −H(y) + TH(y))

and

∆(x) ⊗ ∆(y) =((x|x)H −H(x) + TH(x)) ⊗ ((y|y)H −H(y) + TH(y))

=(x|x)H ⊗ (y|y)H −H(x) ⊗ (y|y)H + TH(x) ⊗ (y|y)H − (x|x)H ⊗H(y)

+H(x) ⊗H(y)− TH(x) ⊗H(y) + (x|x)H ⊗ TH(y)

−H(x) ⊗ TH(y) + TH(x) ⊗ TH(y)
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which coincides with ∆(x}y). �

6.5. Unit object for }. We start to check that Znil has the unit object property, where
(Znil)e = (Znil)ee = Z, P = 0 and H(n) =

(

n

2

)

. For any square group A we define

ι(A)e : (Znil}A)e → Ae

by

ι(A)e(n}x) = nx+

(

n

2

)

PH(x)

for n ∈ Z, x ∈ Ae and
ι(A)e(n⊗̄a) = nP (a).

Let us show that ι(A)e respects all relations of Definition 2. The relation (1) of Definition
2 is clear, because P is a homomorphism with values in the center of Ae. We have

ι(A)e(n}(x1 + x2)) = n(x1 + x2) +

(

n

2

)

PH(x1 + x2).

Since n(x1 +x2) = nx1 +nx2 −
(

n

2

)

[x1, x2] and PH(x1 +x2) = PH(x1)+PH(x2)+ [x1, x2],
the relation (2) of Definition 2 follows. We also have

ι(A)e((n1 + n2)}x) = (n1 + n2)x+

(

n1 + n2

2

)

PH(x)

= n1x + n2x +

(

n1

2

)

PH(x) +

(

n2

2

)

PH(x) + n1n2PH(x)

= ι(A)e(n1}x) + ι(A)e(n2}x) + ι(A)e(n1n2⊗̄H(x))

and the relation (3) of Definition 2 follows, because for H(n) =
(

n

2

)

one has (n1, n2)H =
n1n2. Similarly, we have

ι(A)e(n}P (a)) = nP (a) +

(

n

2

)

PHP (a)

= nP (a) +

(

n

2

)

2P (a)

= n2P (a)

= ι(A)e(n
2⊗̄a)

and the condition (4) of Definition 2 follows. Since P = 0 for Znil we have

ι(A)e(P (n)}x) = 0 = nP∆(x) = ι(A)e(n⊗̄∆(x))

and the condition (5) of Definition 2 follows. Finally, one has

ι(A)e(T (n)⊗̄T (a)) = −nPT (a) = −nP (a) = −ι(A)e(n⊗̄a)

and the relation (6) of Definition 2 follows.
We now define

ι(A)ee : (Znil}A)ee → Aee
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by

ι(A)ee(n⊗ a) = na.

We claim that ι(A) = (ι(A)e, ι(A)ee) defines the natural morphism of square groups ι(A) :
Znil}A→ A. Indeed, we have

ι(A)e(P (a⊗ a)) = ι(A)e(n⊗̄a) = nP (a) = P (na) = P (n⊗ a)

and compatibility with P follows. We have also

ι(A)eeH(n}x) = ι(A)ee(n
2 ⊗H(x) +

(

n

2

)

⊗ ∆(x))

= n2H(x) +

(

n

2

)

∆(x)

= n2H(x) +

(

n

2

)

HPH(x) −

(

n

2

)

2Hx+

(

n

2

)

(x | x)H

= nH(x) +

(

n

2

)

(x | x)H +

(

n

2

)

HPHx

= H(nx+

(

n

2

)

PHx)

= Hι(A)e(n}x)

and the claim follows.
Next we show that ι(A) : Znil}A→ A is an isomorphism. The inverse is given by

ι−1
e (A)(x) = 1}x, ι−1

ee (A)(a) = 1 ⊗ a.

Since

Pι−1
ee (A)(a) = P (1 ⊗ a) = 1⊗̄a = 1}Pa = ι−1

e (A)(Pa)

and

Hι−1
e (A)(x) = H(1}x) = 1 ⊗Hx = ι−1

ee (A)(Hx)

it follows that ι−1(A) : A→ Znil}A is indeed a morphism of square groups. Since

ιee(A)ι−1
ee (A)(a) = ιee(A)(1 ⊗ a) = a,

ιe(A)ι−1
e (A)(x) = ιe(A)(1}x) = x,

ι−1
ee (A)ιee(A)(n⊗ x) = 1 ⊗ nx = n⊗ x

and

ι−1
e (A)ιe(A)(n}x) = 1}nx + 1}

(

n

2

)

Phx = n}x

we see that ι(A) is really an isomorphism. In a similar way we will see that

κ(A) : A}Znil → A
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is an isomorphism of square groups, where A is an arbitrary square group and

κ(A)e(x}n) = nx, κ(A)e(a⊗̄n) = nP (a), κ(A)ee(a⊗ n) = na.

Finally, we have to check that

(A}Znil)}B //

κ}Id ((QQQQQQQQQQQQQ
A}(Znil}B)

Id}ι

��
A}B

is a commutative diagram, where the top map is given by the associativity isomorphisms.
Generators of ((A}Znil)}B)e are of the form (x}n)}y, (a ⊗ n)}y and (a⊗ n)⊗̄b. Com-
mutativity of the diagram is obvious for (a ⊗ n)⊗̄b. On the other hand for (a ⊗ n)}y it
means nP (a)}y = a⊗̄n∆(a), which follows from (5) of Definition 2. Finally, commutativ-
ity of the diagram for element (x}n)}y means (nx)}y = x}(nx +

(

n

2

)

PHy), which can
be checked as follows. By the identity (4) and (2) of Definition 2 we have

(nx)}y = n(x}y) +

(

n

2

)

(x|x)H⊗̄H(y)

while x}(nx +
(

n

2

)

PHy) = n(x}y) +
(

n

2

)

x}PHy = n(x}y) +
(

n

2

)

(x|x)H⊗̄H(y). Here we
used (2) and (4) of Definition 2. Now the proof that SG is a monoidal category is complete.

6.6. Symmetry property of }. Next we prove that the tensor product } is symmetric
monoidal. To this end we define

τ(A,B)e(x}y) = y}x−H(y)⊗̄TH(x)

for x ∈ Ae, y ∈ Be and

τ(A,B)ee(a⊗ b) = b⊗ a

for a ∈ Aee, b ∈ Bee, which then also necessarily determines

τ(A,B)e(a⊗̄b) = b⊗̄a

and makes compatibility with P clear. Compatibility with H means

H(y}x−H(y)⊗̄TH(x)) = H(y) ⊗ (x|x)H + ∆(y) ⊗H(x).
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Indeed we have

H(y}x−H(y)⊗̄TH(x))

=H(y}x) −H(H(y)⊗̄TH(x)) + (H(y)⊗̄TH(x)|H(y)⊗̄TH(x))H

=(y|y)H ⊗H(x) +H(y) ⊗ ∆(x)

+HPH(y)⊗HPTH(x)−HPH(y)⊗ TH(x) −H(y)⊗HPTH(x)

+ (P (H(y)⊗ TH(x))|P (H(y)⊗ TH(x)))H

=(∆(y) +H(y)− TH(y))⊗H(x) +H(y) ⊗ ((x|x)H −H(x) + TH(x))

+HPH(y)⊗HPH(x) −HPH(y)⊗ TH(x) −H(y) ⊗HPH(x)

=H(y) ⊗ (x|x)H + ∆(y) ⊗H(x)

− TH(y) ⊗H(x) +H(y) ⊗ TH(x)

+HPH(y)⊗HPH(x) −HPH(y)⊗ TH(x) −H(y) ⊗HPH(x),

so compatibility of τ with H amounts to showing that the sum

−TH(y)⊗H(x)+H(y)⊗TH(x)+HPH(y)⊗HPH(x)−HPH(y)⊗TH(x)−H(y)⊗HPH(x)

is zero. Substituting here HP = 1 + T gives

− TH(y)⊗H(x) +H(y)⊗ TH(x) +H(y)⊗H(x) +H(y) ⊗ TH(x) + TH(y)⊗H(x)

+TH(y)⊗ TH(x)−H(y)⊗ TH(x)− TH(y)⊗ TH(x)−H(y)⊗H(x)−H(y)⊗TH(x),

which is indeed zero.
Naturality of τ is straightforward; to check τ(B,A)τ(A,B) = Id, the only nontrivial part

is to look at

τ(B,A)eτ(A,B)e(x}y) = τ(B,A)e(y}x−H(y)⊗̄TH(x))

= x}y −H(x)⊗̄TH(y) − TH(x)⊗̄H(y).

But

−H(x)⊗̄TH(y)− TH(x)⊗̄H(y) = −P (H(x) ⊗ TH(y)) − P (TH(x) ⊗H(y))

= −P (H(x) ⊗ TH(y)) − P (TH(x) ⊗ TTH(y))

= −P (H(x) ⊗ TH(y)) + PT (H(x) ⊗ TH(y))

= 0.

Finally we have to check that two hexagons commute. The first case amounts to checking
that two ways from (A}B)}C to B}(C}A) are the same. That is the following diagram
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commutes.

(B}A)}C // B}(A}C)

''OOOOOOOOOOO

(A}B)}C

77ooooooooooo

''OOOOOOOOOOO
B}(C}A)

A}(B}C) // (B}C)}A

77ooooooooooo

Again this is trivial for elements of the form (a ⊗ b)⊗̄c. It is straightforward to check
that both ways take the element (a⊗̄b)}z to b⊗̄(∆(z) ⊗ a). For the element (x}y)}z
it amounts to showing that y}(z}x) − (y|y)H⊗̄(Hz ⊗ THx) − Hy⊗̄(∆(z) ⊗ THx) =
y}(z}x)−y}(Hz⊗̄THx)−Hy⊗̄(∆(z)⊗THx) which is obvious since of y}(Hz⊗̄THx) =
y}P (Hz⊗THx) = (y|y)H⊗̄(Hz⊗THx). The second hexagon axiom amounts to showing
that two ways from A}(B}C) to (C}A)}B are the same. That is the following diagram
commutes.

A}(C}B) // (A}C)}B

''OOOOOOOOOOO

A}(B}C)

77ooooooooooo

''OOOOOOOOOOO
(C}A)}B

(A}B)}C // C}(A}B)

77ooooooooooo

This is trivial for a⊗̄(b ⊗ c). One checks that both ways take the element x}(b⊗̄c) to
(c⊗ (x|x)H)⊗̄b. Finally the element x}(y}z) goes to

c}(a}b) −Hc⊗̄TH(a}b) = c}(a}b) −Hc⊗̄((a|a)H ⊗ TH(b)) −Hc⊗̄(THa⊗ ∆(b))

in C}(A}B) and to

(c}a)}b− (Hc⊗ (a|a)H)⊗̄TH(b) − (Hc⊗ THa)⊗̄∆(b))

in (C}A)}B. By the second way the element x}(y}z) goes to

(c}a)}b− (Hc⊗̄THa)}b− (Hc⊗ (a|a)H)⊗̄TH(b)

But these elements are the same, because

(Hc⊗̄THa)}b = P (Hc⊗ THa)}b = (Hc⊗ THa)⊗̄∆(b).

6.7. The action of the monoidal category (SG,}) on the category of pre-square

groups. In Section 6.1 we defined the bifunctor

} : PSG × SG → PSG
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which yields a right action of the monoidal category (SG,}) on the category PSG, meaning
that for any M ∈ PSG and N1, N2 ∈ SG there are coherent isomorphisms

(M}N1)}N2
∼= M}(N1}N2),

M}Znil
∼= M.

The proof of this fact is quite similar to the proof of associativity and unit properties of
(SG,}), therefore we omit it.

Existence of the bifunctor } : PSG×SG → PSG is crucial in the following Lemma. First
observe that if M , M ′ and N are square groups and f : ℘(M) → ℘(M ′) is a morphism of
underlying pre-square groups, then f}Id defines a morphism of pre-square groups

℘(M}N) → ℘(M}N ′).

We can take M ′ = M and f = n∗ (see Lemma 23). The following result shows that the
action of integers respects the tensor product.

Lemma 28. Let M and N be square groups. Then for any integer n one has

(n∗)M}IdN = (n∗)M}N .

Proof. The result is obvious on the ee-level, while on the e-level it can be checked as follows

(n∗(x))}y = (nx+ P (

(

n

2

)

Hx))}y = (nx)}y + P (

(

n

2

)

Hx)}y

= (nx)}y + (

(

n

2

)

Hx) } ∆(y) = n(x}y) +

(

n

2

)

((x|x)H }H(y) +H(x) } ∆(y))

= n(x}y) +

(

n

2

)

H(x}y)

Here we used the fact that (nx)}y = n(x}y) =
(

n

2

)

(x|x)H⊗̄H(y), which follows from
identity (4) in section 4. �

7. The tensor product of abelian square groups and quadratic Z-modules

We now describe the tensor product of those square groups which are abelian or are
quadratic Z-modules. In this case the tensor product has a particularly simple form.

Proposition 29. Let A be an abelian square group and B be a square group, then A}B
is an abelian square group. Moreover the abelian group (A}B)e is given by the following

pushout diagram of abelian groups.

Aee ⊗ Coker(PB)
Id⊗∆ //

P⊗Id

��

Aee ⊗Bee/(Id + T ⊗ T )

��

Ae ⊗ Coker(PB) // (A}B)e

If additionally A is a quadratic Z-module then A}B is a quadratic Z-module as well.
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Proof. Since the cross-effect of H vanishes on A it follows that ρ = 0, where ρ is the same
as in Definition 2. Hence HA}B is a homomorphism and therefore A}B ∈ Ab(SG). As a
consequence (A}B)e is an abelian group. Moreover for each x ∈ Ae one has x}P (b) = 0
for all b ∈ Bee, therefore the function x}− factors through Coker(PA). Finally, the relations
(5) and (6) of Definition 2 show that (A}B)e indeed fits into the above pushout diagram.
If additionally ∆A = 0, then ∆A}B = 0 (see Lemma 27), hence A}B is a quadratic
Z-module. �

Proposition 30. Let A be an abelian square group and B be a quadratic Z-module. Then

A}B ∼= E(Aee ⊗Bee, T ⊗ T ) ⊕ Coker(PA) ⊗ Coker(PB)

is a quadratic Z-module. Here the abelian group Coker(P A) ⊗ Coker(PB) is considered as

a square group by putting 0 on the ee-level and E(−,−) is defined in Section 5.2.

Proof. This is clear because ∆B = 0. �

Lemma 31. Let A be an abelian group and M be a square group. Then

f : (A⊗Mee)
⊗ → A⊗}M

is an isomorphism. Here

fe(a⊗ c) = (a, 0)⊗̄c

and

fee(a⊗ c, b⊗ d) = (a, 0) ⊗ c− (0, b) ⊗ T (d),

with a, b ∈ A and c, d ∈Mee.

Proof. The statement is obvious on the ee-level. To see it on the e-level one observes that
P is a split epimorphism on A⊗ and Ker(P ) consists of elements (a,−a) ∈ A⊗

ee, a ∈ A.
By Proposition 29 one can check that (A⊗}M)e is the quotient of (A⊕ A) ⊗Mee by the
relations

(a,−a) ⊗ ∆(x) = 0, a ∈ A, x ∈Me,

(a, 0) ⊗ c+ (0, a) ⊗ T (c) = 0, c ∈Mee.

Since T∆ + ∆ = 0 we see that the first relation follows from the second one. Now the
result is clear.

�

8. The tensor product V (S)}M

We consider the case when one of the factors in a tensor product is the free square group
V (S) (see Section 5.7). We take S = {1, 2, · · · , n}. In this case we use the notation V (n)
instead of V (S). If n = 1 then V (1) ∼= Z

Q and we have the following explicit result.

Lemma 32. For any square group A one has an isomorphism

Z
Q}A ∼= (Aee × Ae

HZ
Q}A

−−−−→ Aee ⊕ Aee ⊕ Aee
P Z

Q}A

−−−−→ Aee × Ae)
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where

P Z
Q}A(a, b, c) = (a+ b− Tb, Pa)

and

HZ
Q}A(a, x) = (a+ T (a) + ∆(x),−Ta,H(x)).

Proof. We just indicate the explicit isomorphism ψ : Ae ×Aee → (ZQ}A)c and its inverse:

αe(x, a) = (1, 0)}x+ (1, 0, 0)⊗̄a,

α−1
e ((m,n)}x+ (k1, k2, k3)⊗̄a) = (mx +

(

m

2

)

PHx+ k1Pa, n∆(x) + k1a+ k2a− k2Ta).

�

For arbitrary n and a square group M let Gn(M) be the group, which is (Me)
n×(Mee)

(n
2
)

as a set with (xk, aij) as a generic element. Here 1 6 k 6 n and 1 6 i < j 6 n. The group
structure is given by

(xk, aij) + (yk, bij) = (xk + yk, aij + bij + (xj | xi)H).

Proposition 33. For any integer n > 1 and any square group M one has isomorphisms

of groups

(V (n)}M)ee
∼= (Mee)

n2+2n,

(V (n)}M)e
∼= Gn(M) × (Mee)

n.

Proof. The isomorphism is obvious on the ee-level. We define

αe : Gn(M) × (Mee)
n → (V (n)}M)e

as follows. If a generic element of the group Gn(M) × (Mee)
n is (xk, aij, bl), where 1 6

k, l 6 n, 1 6 i < j 6 n and xk ∈Me, aij, bl ∈Mee, then we put

αe(xk, aij, bl) = 1}x1 + 2}x2 + · · ·+ n}xn +
∑

i<j

(j, i)⊗̄aij +
∑

l

Hl⊗̄bl.

One easily checks that α is a homomorphism. Actually it is an isomorphism with inverse
α−1

e which is uniquely determined by

α−1
e (

∑

i

PHi}xi +
∑

l

Hl⊗̄dl +
∑

ij

(i, j)⊗̄cij +
∑

k

HPHk⊗̄bk) =

(PHckk, cji + Tcij, dl + bl − Tbl + ∆(xl)),

and

α−1
e (m11 + · · ·+mnn +

∑

i<j

mij[i, j])}x =

(mkx+

(

mk

2

)

PHx, nimjHx+mij(Hx− THx), 0).

�
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9. Right exactness

We prove Proposition 4. First we check that for any square group A the tensor product
functor A}− : SG → SG preserves reflexive coequalizers. Recall that a functor R : SG →
SG preserves reflexive coequalizers if for any simplicial object B∗ in SG the canonical
morphism π0(R(B∗)) → R(π0(B∗)) is an isomorphism. Observe that π0(B∗) is a coequalizer
of two parallel arrows d1, d0 : B1 → B0. We put B = π0(B∗). By universality property of
coequalizers we have a canonical map π0(A}B∗) → A}B. This is an isomorphism, because
it has an inverse, which is defined as follows. Take a generator x}y with x ∈ Ae and y ∈ Be.
We choose an element z ∈ B0e in the class y ∈ π0(B0e). The class of x}ŷ ∈ A}B0 in the
quotient π0(A}B∗) is independent of the choice. Indeed, if z′ is also in the class y, then
there exists w ∈ B1e such that d0w = z and d1w = z′ and therefore x}z and x}z′ define
the same element in π0(A}B∗). Based on this fact one easily checks that this assignment
respects all relations for } and indeed defines a morphism A}B → π0(A}B∗) and hence
A}− : SG → SG preserves reflexive coequalizers.

Next we prove that the tensor product A}− : SG → SG preserves finite products.
Let B,C ∈ SG. Then B × C in SG is constructed degreewise, i. e. (B × C)e = Be × Ce,
(B×C)ee = Bee×Cee, P (b, c) = (Pb, P c) and H(y, z) = (Hy,Hz). Here y ∈ Be, z ∈ Ce and
b ∈ Bee, c ∈ Cee. The projection p1 : B×C → B has the canonical section i1 : B → B×C
given by i1e(x) = (x, 0) and i1ee(b) = (b, 0). This section yields a morphism of square
groups IdA}i1 : A}B → A}(B × C). Similarly, one gets the morphism IdA}i2 : A}C →
A}(B × C). The identity (7) in Section 6.1 shows that the images of IdA}i1 and IdA}i2
commute and therefore they yield the canonical morphism

i∗ : (A}B) × (A}C) → A}(B × C)

which obviously is left inverse to the canonical morphism A}(B×C) → (A}B)× (A}C)
induced by projections. It is clear that both morphisms are isomorphisms on the ee-
level. Thus we need only to show that the map i∗ is surjective on the e-level. This
follows immediately from the fact that x}(y, z) = x}i1(y) + x}i2(z) and a}(b, c) =
a}i1(b) + a}i2(c).

We now prove that for any short exact sequence of square groups

0 → B1
µ
−→ B

σ
−→ B2 → 0

the induced sequence

A}B1 → A}B → A}B2 → 0

is also exact. To this end one observes that by Lemma 19 it suffices to consider the case,
when the extension is central. Consider the following diagram in SG

B1 ×B
f //
g

// B

where g is the projection on the second factor, while fe(b1, b) = µe(b1) + b and fee(y1, y) =
µee(y) + y, y ∈ Be, y1 ∈ B1e, b1 ∈ B1ee, b ∈ Bee. Since B1 is central in B, it follows that f
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is a morphism in SG and in fact B2 is isomorphic to the coequalizer of this diagram. Since
A}− preserves products and reflexive coequalizers we see that

A}B1 × A}B
f∗ //
g∗

// A}B // A}B2

is a coequalizer. From this follows that the functor A}(−) is right exact.
Finally, assume that A is a projective square group. We have to show that the functor

A}(−) is exact. We can assume that A = V (S)× (Z[T ])⊗ for some S ∈ Sets and T ∈ Sets,
because any projective is a retract of a free one. Since the tensor product commutes with
filtered colimits we can assume that S and T are finite sets. Since the tensor product
commutes with finite products the result follows from Lemma 31 and Proposition 33.

10. Znil[−] as a monoidal functor

The next result generalizes the well-known fact that the free abelian group functor

Z[−] : (Sets,×) → (Ab,⊗)

is a symmetric monoidal functor.

Proposition 34. For any sets S and S ′, one has a natural isomorphism of square groups

δ : Znil[S × S ′] ∼= Znil[S]}Znil[S
′]

which on the ee-level is the canonical isomorphism Z[S × S ′] ∼= Z[S] ⊗ Z[S ′], given by

δee((s, s
′) ⊗ (t, t′)) = s⊗ t⊗ s′ ⊗ t′. On the e-level it is given by

δe(s, s
′) = s}s′, s, s′ ∈ S.

Thus the functor

Znil[−] : (Sets,×) → (SG,})

is symmetric monoidal.

Proof. Since (Znil[S × S ′])e is a free nil2-group on S × S ′, the homomorphism δe is well-
defined. Let us first check that the pair δ = (δe, δee) defines a morphism of square groups.
We have

Pδee((s, s
′) ⊗ (t, t′)) = P (s⊗ t⊗ s′ ⊗ t′) = (s⊗ t)⊗̄(s′ ⊗ t′).

Similarly we have

δeP ((s, s′) ⊗ (t, t′)) = δe([(t, t
′), (s, s′)]) = [δe(t, t

′), δe(s, s
′)] = [t}t′, s}s′]

= (t|s)H ⊗ (t′|s′)H = s⊗ t⊗ s′ ⊗ t′.

Comparing these expressions we see that δ is compatible with P . We have also

δee((s, s
′)|(t, t′))H = δ ((t, t′) ⊗ (s, s′)) = t⊗ s⊗ t′ ⊗ s′.

On the other hand we have

(δe(s, s
′) | δe(t, t

′))H = (s}s′|t}t′)H = (s|t)H ⊗ (s′|t′)H = t⊗ s⊗ t′ ⊗ s′.
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Since
δeeH(s, s′) = 0

and
H(δe((s, s

′)) = H(s}s′) = (s|s′)H ⊗H(s′) +H(s)}∆(s′) = 0

we conclude that δ is compatible with H and therefore δ is, in fact, a morphism of square
groups. Since δee is an isomorphism, it suffices to show that δe is an isomorphism. We
construct the inverse map

η : (Znil[S]}Znil[S
′])e → (Znil[S × S ′])e

as follows. Take s ∈ S. Since (Znil[S
′])e is a free nil2-group on S ′, there is a unique

homomorphism

fs : (Znil[S
′])e → (Znil[S × S ′])e

such that fs(s
′) = (s, s′), s′ ∈ S ′. In particular for any y ∈ (Znil[S

′])e the element fs(y)
is well-defined. Since (Znil[S])e is a free nil2-group we can extend s 7→ fs(y) to a map
x 7→ fx(y) ∈ (Znil[S × S ′])e in such a way that

fx1+x2
(y) = fx1

(y) + fx2
(y) + g(x1 ⊗ x2 ⊗H(y)),

where g : Z[S] ⊗ Z[S] ⊗ Z[S ′] ⊗ Z[S ′] → (Znil[S × S ′])e is given by g(s ⊗ t ⊗ s′ ⊗ t′) =
[(t, t′), (s, s′)]. Thus we have

[fx1
(y1), fx2

(y2)] = −g(x1, x2, y1, y2).

We claim that for all x ∈ (Znil[S])e and y1, y2 ∈ (Znil[S
′])e one has

fx(y1 + y2) = fx(y1) + fx(y2).

By our construction the claim holds if x ∈ S. Therefore it suffices to show that the
equation holds for x = x1 +x2, provided it holds for x1 and x2. To this end, we proceed as
follows: fx1+x2

(y1 + y2) = fx1
(y1) + fx1

(y2) + fx2
(y1) + fx2

(y2) + g(x1 ⊗ x2 ⊗H(y1 + y2)) =
fx(y1) + fx(y2) + [fx1

(y1), fx2
(y2)] + g(x1 ⊗ x2 ⊗ y2 ⊗ y1) because (y1|y1)H = y2 ⊗ y1 and

last two summands cancel; hence the claim.
Now we are ready to define the map η : (Znil[S]}Znil[S

′])e → (Znil[S × S ′])e by

η(x}y) = fx(y),

η((s⊗ t)⊗̄(s′ ⊗ t′)) = g(s⊗ t⊗ s′ ⊗ t′).

We have to check that η respects the relations (1)-(6) of Definition 2. The relations (1)
and (6) are clear, (3) holds by our construction and (2) we just checked. Let us check
(4). Without loss of generality we can assume that b = s′ ⊗ t′ with s′, t′ ∈ S ′. First we
consider the case x = s ∈ S. Then one has η(x}P (b)) = η(s}[t′, s′]) = [(s, t′), [(s, s′)] =
g(s⊗ s⊗ s′ ⊗ t′) = η((s⊗ s)⊗̄s′ ⊗ t′) = η((x|x)H⊗̄b). For general x it suffices to show that
η respects the equality (4) for x = x1 + x2 provided η respects it for x1 and x2. To check
the last assertion one needs to show the equality for the cross-effects of both sides of the
equality in question. But this is formal,

η((x1|x2)H⊗̄HP (b)) = η((x1|x2)H⊗̄(b+ Tb)) = η((x1|x2)H⊗̄b + (x2|x1)H⊗̄b).
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Here we used the fact that η respects the identity (6). Now we check that η respects the
equation (5). Indeed, we can assume that y = s′ ∈ S ′ and a = s ⊗ t, s, t ∈ S. Then we
have

η(P (a)}y) = η([t, s]}s′) = [(t, s′), (s, s′)].

On the other hand we have

η(a⊗̄∆(b)) = η(s⊗ s⊗ s′ ⊗ s′) = [(t, s′), (s, s′)]

and the result follows. �

11. Torsion product of square groups

It follows from Proposition 4 that the functor M}(−) respects weak equivalences of
simplicial square groups provided M is projective. We will exploit this fact in this section.

Thanks to Section 5.8 for any square group M one can take a cofibrant replacement M c

of M . This means that there is given a weak equivalence M c →M and M c is cofibrant in
the model category structure introduced in Section 5.8.

Lemma 35. For any square groups M and N there is an isomorphism of square groups

πi(M
c
}N) ∼= πi(M}N c), i > 0

Proof. According to [23] the square groups πi(M
c}N) (as well as πi(M}N c)) do not

depend on the cofibrant replacement. Moreover one can assume that each component of
M c and N c is a free square group ([23]). One considers now the bisimplicial square group
M c}N c. Both on the e- and on the ee-level one has the Quillen spectral sequences for
double simplicial groups [22]. Since the tensor product with a free object respects weak
equivalences, both spectral sequences degenerate yielding the isomorphism in question. �

We now put
Tor�i(M,N) = πi(M

c}N) ∼= πi(M}N c).

Lemma 36. For any square groupsM and N one has natural isomorphisms Tor�0(M,N) ∼=
M}N and Tor�1(M,N) ∈ Ab(SG) and for all i > 2 one has Tor�i(M,N) ∈ Ab.

Proof. The statement on Tor�0 follows from right exactness of }. As already mentioned,
for any simplicial square groupX one has πi(X) ∈ Ab(SG) for all i > 1, hence the statement
for i = 1. Finally let us observe that

(Tor�i(M,N))ee = TorZ
i(Mee, Nee), i > 0,

hence (Tor�i(M,N))ee = 0 for i > 2 and the result follows. �

Thus we have bifunctors

Tor�1 :SG × SG → Ab(SG)

and

Tor�i :SG × SG → Ab, i > 2.
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Proposition 37. If

0 → N1 → N → N2 → 0

is a short exact sequence of square groups then for any square group M one has a long

exact sequence of square groups

· · · → Tor�2(M,N2) → Tor�1(M,N1) → Tor�1(M,N)

→ Tor�1(M,N2) →M}N1 →M}N →M}N2 → 0.

Furthermore Tor�i(M,N) = 0 provided i > 1 and either M or N is projective.

Proof. If M is free, then one can take M c = M . A projective object is a retracts of a free
square group and hence the statement on projective objects is clear. For general M we
choose an M c with degreewise free square groups. According to Proposition 4 one has the
short exact sequence of simplicial objects

0 →M c}N1 →M c}N →M c}N2 → 0

yielding the long exact sequence for homotopy groups. Here we used the well-known fact
that epimorphisms of simplicial groups are Kan fibrations. �

Corollary 38. Let A be an abelian group and M be a square group. Then

Tor�1(A
⊗,M) ∼= (TotZ

1 (A,Mee))
⊗

and Tor�k(A
⊗,M) = 0 for k ≥ 2.

Proof. Take a short exact sequence 0 → F1 → F0 → A → 0 of abelian groups with free
abelian group F0. It yields a short exact sequence of square groups

0 → F⊗
1 → F⊗

0 → A⊗ → 0.

Since free square groups F⊗
0 and F⊗

1 are free square groups the result follows from Lemma
31 and Proposition 37. �

Now we give the proof of Proposition 5.

Proof of Proposition 5. We use the short exact sequence (6) in Section 5.6. Proposition 37
shows that it yields the exact sequence of square groups

Tor�1(M,A ∨ B) → Tor�1(M,A) × Tor�1(M,B)

→M}(Coker(PA) ⊗ Coker(PB))⊗
µ
−→M ⊗ (A ∨ B) →M}(A× B) → 0.

Let us observe that for any category C with coproducts and zero object and for any functor
F : C → Groups with F (0) = 0 the natural homomorphism r : F (X ∨ Y ) → F (X)×F (Y )
is always an epimorphism. Indeed, if s1 ∈ F (X) and s2 ∈ F (Y ) then s = i1(s1) + i2(s2) ∈
F (X ∨ Y ) has the property that r(s) = (s1, s2). Here i1 : X → X ∨ Y and i2 : Y → X ∨ Y
are standard inclusions. Thus µ is a monomorphism and the result follows from Proposition
31 and the fact that M}(−) preserves finite products. �
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Corollary 39. Let M be a square group. Then the functor Tor�k(M,−) preserves finite

products for all k ≥ 0. Moreover the natural map

Tor�k(M,A ∨ B) → Tor�k(M,A) × Tor�k(M,B)

is an isomorphism provided k ≥ 2. Here A and B are square groups. If k = 1, then one

has a short exact sequence of square groups

0 → (TorZ

1 (Mee,Coker(PA)⊗Coker(PB)))⊗ → Tor�1(M,A∨B) → Tor�1(M,A)×Tor�1(M,B) → 0

Proof. Since

π∗(M
c}(A× B)) = π∗(M

c}A) × π∗(M
c}B)

we have

Tor�∗(M,A× B) = Tor�∗(M,A) × Tor�∗(M,B)

and the statement on finite products follows. For the rest one apllies the long exact
sequence for Tor�-functors to the short exact sequence in Proposition 5 and uses Corollary
38. �

12. Quadratic rings

A monoid in the monoidal category (SG,}) is termed quadratic ring. More explicitly, a
quadratic ring structure on a square group R is given by a multiplicative monoid structure
on Re and a ring structure on Ree. The multiplicative unit of Re is denoted by 1. One
requires that these structures satisfy the following additional properties. First of all we
have

(i) x(y + z) = xy + xz,
(ii) (x+ y)z = xz + yz + P ((y | x)H H(z)).

Thus Coker(P ) is a ring. Moreover the maps

−T : Ree → Ree

(− | −)H : Coker(PR) ⊗ Coker(PR) → Ree

are ring homomorphisms, in other words one has

(iii) (x | y)H(u | v)H = (xu | yv)H,
(iv) T (ab) + T (a)T (b) = 0.

Let us observe that T (abc) = T (a)T (b)T (c).
Furthermore the following equations hold

(v) P (a∆(x)) = P (a)x,
(vi) P ((x | x)Ha) = xP (a),
(vii) H(xy) = (x | x)HH(y) +H(x)∆(y).

It follows from Lemma 27 that

∆ : Coker(PR) → Ree

is a ring homomorphism.
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Let QR denote the category of quadratic rings. We have a full embedding of categories

Rings ⊂ QR

which identifies rings with quadratic rings R satisfying Ree = 0. This inclusion has a left
adjoint given by R 7→ Coker(PR).

Let R be a quadratic ring. A right R-quadratic module is an object M ∈ SG together
with a right action of the monoid R in the monoidal category (SG,}). Equivalently, it is
given by a square group M together with a right Ree-module structure on Mee and a right
action of the multiplicative monoid Re on Me such that the following holds ( m,n ∈ Me,
c ∈Mee)

(i) m(x+ y) = mx +my,
(ii) (m+ n)x = mx + nx + P ((n | m)H H(x)).
(iii) (m | n)H (x | y)H = (mx | ny)H ,
(iv) T (ca) + T (c)T (a) = 0,
(v) P (c∆(x)) = P (c)x,
(vi) P ((m | m)H a) = mP (a),
(vii) H(mx) = (m | m)H H(x) +H(m)∆(x).

The category of right R-quadratic modules is denoted by QM-R. In a similar manner one
can define the notion of a left R-quadratic module.

12.1. Monoid quadratic rings. Thanks to Proposition 34 the functor Znil[−] is a monoidal
functor from the monoidal category of sets to square groups (SG,}). It follows that for
any monoid M one gets a quadratic ring Znil[M ] and thus the functor

Monoids → QR.

Now we observe that for a quadratic ring R the set of linear elements L(R) is a multiplica-
tive submonoid of Re. This follows directly from the formula H(xy) = (x | x)H H(y) +
H(x)∆(y). Thus we obtain the functor

L : QR → Monoids

The following result is a multiplicative version of Proposition 17.

Proposition 40. The functor Znil[−] : Monoids → QR is left adjoint to the functor L.

Proof. Let M be a monoid and let R be a quadratic ring. Given a morphism f : Znil[M ] →
R of quadratic rings, the corresponding map f0 : M → L(R) is just the composite M ⊂
Znil[M ] → R and hence is multiplicative.

Conversely we must show that any homomorphism f0 : M → L(R) ⊂ Re of monoids
extends uniquely to a quadratic ring morphism f : Znil[M ] → R. In the proof of Proposition
17 we already constructed the morphism of square groups f : Znil[M ] → R extending f0.
It remains to show that fe and fee are multiplicative. First note that the induced map

f∗ : Z[M ] = Coker(PZnil[M ]) → Coker(PR)
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is multiplicative as it is the unique additive extension of the composite monoid homomor-
phism

M → L(R) → Re � Coker(PR).

It follows that fee is multiplicative since by definition it factors into the composition of
multiplicative maps as follows.

Z[M ] ⊗ Z[M ] = Coker(PZnil[M ]) ⊗ Coker(PZnil[M ])
f∗⊗f∗
−−−→ Coker(PR) ⊗ Coker(PR)

( | )H
−−−→ Ree

Finally the function Ξ of two variables on Znil[M ]e given by

Ξ(x, y) = fe(xy) − fe(x)fe(y)

is central in Re. This function vanishes if both x and y are in M , so if we show that it is
biadditive it will follow that fe is multiplicative. Indeed

Ξ(x, y + y′) = fe(xy + xy′) − fe(x)(fe(y) + fe(y
′)) = fe(xy) + fe(xy

′) − fe(x)fe(y
′)

= Ξ(xy) + Ξ(xy′)

and

Ξ(x + x′, y) = fe(xy + x′y + P ((x̄⊗ x̄′)H(y)))− fe(x + x′)fe(y) =

fe(xy)+fe(x
′y)+Pfee((x̄⊗x̄

′)H(y))−(fe(x)fe(y)+fe(x
′)fe(y)+P (( ¯fe(x)⊗ ¯fe(x′))Hfe(y)))

= Ξ(x, y)+Ξ(x′, y)+P (fee(x̄⊗ x̄
′)feeH(y))−( ¯fe(x)⊗ ¯fe(x′))Hfe(y)) = Ξ(x, y)+Ξ(x′, y)

and we are done. �

12.2. Commutative quadratic rings. Since } defines a symmetric monoidal category
structure on SG, one can talk about commutative monoids in this monoidal category.
We call them commutative quadratic rings. Hence by definition a quadratic ring R is
commutative if the following equations hold

ba = ab, a, b ∈ Ree;

yx = xy − P (H(x)TH(y)), x, y ∈ Re.

In the following result we obtain a kind of cup1-product. We refer to Remark 44 below
for the homotopy theoretic meaning of the groups involving it. The elements of the form
kM(x) are the same as in Corollary 15.

Theorem 41. Let R be a commutative quadratic ring, then the map Re → Ker(P ) of

degree 4 given by x 7→ H(x)TH(x) ∈ Ker(P ) yields a well-defined quadratic map

ψ : Coker(PR) → Ker(P : Ree/(Id − T ) → Re)

satisfying

ψ(x̄ + ȳ) = ψ(x̄) + ψ(ȳ) − kR(x)kR(y)

and

ψ(x̄ȳ) = kR(x2)ψ(ȳ) + ψ(x̄)kR(y2).
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Proof. We have

ψ(x̄+ ȳ) =H(x+ y)TH(x+ y)

=(H(x) +H(y) + (x|y)H)(TH(x) + TH(y)− (y|x)H)

=H(x)TH(x) +H(y)TH(y) +H(x)TH(y) +H(y)TH(x)

−H(x)(y|x)H + (x|y)HTH(x) −H(y)(y|x)H + (x|y)HTH(x) − (xy|yx)H

=ψ(x̄) + ψ(ȳ) +H(x)TH(y)− T (TH(y)H(x))

−H(x)(y|x)H + T ((y|x)HH(x)) −H(y)(y|x)H + T ((y|x)HH(y))− (xy|yx)H;

using commutativity of Ree, this is equal to

ψ(x̄) + ψ(ȳ) − (xy|yx)H + (1 − T )(H(x)TH(y)−H(x)(y|x)H −H(y)(y|x)H).

On the other hand,

∆(x)∆(y) =((x|x)H −H(x) + TH(x))((y|y)H −H(y) + TH(y))

=(xy|xy)H − (x|x)HH(y) + (x|x)HTH(y)−H(x)(y|y)H + TH(x)(y|y)H

+H(x)H(y) + TH(x)TH(y)−H(x)TH(y) − TH(x)H(y)

=(xy|xy)H − (x|x)HH(y) + T ((x|x)HH(y))

−H(x)(y|y)H + T (H(x)(y|y)H) +H(x)H(y) − T (H(x)H(y))

−H(x)TH(y) + T (H(x)TH(y))

=(xy|xy)H

+ (1 − T )(−(x|x)HH(y) −H(x)(y|y)H +H(x)H(y)−H(x)TH(y)).

Thus it remains to prove

(xy|yx)H = (xy|xy)H;

but by the hypothesis yx is equal to xy modulo image of P , and ( | )H vanishes if one of
the operands is in the image of P .

For the second equality in the theorem one calculates

ψ(xy) =H(xy)TH(xy)

=((x|x)HH(y) +H(x)∆(y))T ((x|x)HH(y) +H(x)∆(y))

=((x|x)HH(y) +H(x)∆(y))((x|x)HTH(y) + TH(x)∆(y))

=(x2|x2)HH(y)TH(y) +H(x)TH(x)∆(y)2

+ (x|x)HH(y)TH(x)∆(y) +H(x)∆(y)(x|x)HTH(y)

=(x2|x2)Hψ(y) + ψ(x)∆(y2)

+ (x|x)HH(y)TH(x)∆(y)− T ((x|x)HH(y)TH(x)∆(y)).

�
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13. Comparison of }, } and �

In this section we prove Proposition 8. Actually, we only show that } and � are
isomorphic. The rest is similar. Given the product A}B we define

x} y = x}y −H(x)⊗̄TH(y).

We then must check that the equalities (3) and (5) hold in A}B. Indeed we have

(x1 + x2) } y = (x1 + x2)}y −H(x1 + x2)⊗̄TH(y)

= x1}y + x2}y + (x2|x1)H⊗̄H(y)− (H(x1) +H(x2) + (x1|x2)H)⊗̄TH(y)

= x1 } y + x2 } y + (x2|x1)H⊗̄H(y) − (x1|x2)H⊗̄TH(y).

Since m

(x2|x1)H⊗̄H(y) = TT ((x2|x1)H)⊗̄TTH(y) = −T ((x2|x1)H)⊗̄TH(y) = (x1|x2)H⊗̄TH(y),

We see that (3) indeed holds. For (5) one considers

x} P (b) = x}P (b) −H(x)⊗̄THP (b) = (x|x)H⊗̄b−H(x)⊗̄HP (b)

= (x|x)H⊗̄b−H(x)⊗̄b−H(x)⊗̄T (b) = (x|x)H⊗̄b−H(x)⊗̄b− TTH(x)⊗̄T (b)

= (x|x)H⊗̄b−H(x)⊗̄b + TH(x)⊗̄b = ∆(x)⊗̄b.

Moreover we have

H(x} y) = H(x}y −H(x)⊗̄TH(y))

= H(x}y) +H(−H(x)⊗̄TH(y))− (x}y|H(x)⊗̄TH(y))H

= H(x}y) −H(H(x)⊗̄TH(y)) + (H(x)⊗̄TH(y)|H(x)⊗̄TH(y))H

= (x|x)H ⊗H(y) +H(x) ⊗ ∆(y) −H(x) ⊗ TH(y) + TH(x) ⊗H(y)

= ((x|x)H + TH(x)) ⊗H(y) +H(x) ⊗ (∆(y) − TH(y))

= (∆(x) +H(x)) ⊗H(y) +H(x) ⊗ ((y|y)H −H(y)) = ∆(x) ⊗H(y) +H(x) ⊗ (y|y)H

We thus see that A}B with x} y defined as above has all properties required of A�B
in Definition 7. Conversely, we must show that the relations from Definition 7 imply all
the relations for A}B. We have

(x1 + x2)}y =(x1 + x2) } y +H(x1 + x2)⊗̄TH(y)

=x1 } y + x2 } y + (H(x1) +H(x2) + (x1|x2)H)⊗̄TH(y)

=x1}y −H(x1)⊗̄TH(y) + x2}y −H(x2)⊗̄TH(y)

+H(x1)⊗̄TH(y) +H(x2)⊗̄TH(y) + (x1|x2)H⊗̄TH(y)

=x1}y + x2}y + (x1|x2)H⊗̄TH(y).

Moreover

(x1|x2)H⊗̄TH(y) = −T (x2|x1)H⊗̄TH(y) = (x2|x1)H⊗̄H(y).
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Next, we check

x}P (b) = x} P (b) +H(x)⊗̄THP (b) = ∆(x)⊗̄b+H(x)⊗̄THP (b)

= (x|x)H⊗̄b−H(x)⊗̄b+ TH(x)⊗̄b +H(x)⊗̄HP (b)

= (x|x)H⊗̄b−H(x)⊗̄b− TTH(x)⊗̄Tb +H(x)⊗̄T (b) +H(x)⊗̄b = (x|x)H⊗̄b.

The remaining conditions of A}B are trivially satisfied.

14. Bilinear maps for square groups

The tensor product of square groups has a universal property similar to that of abelian
groups. To formulate it we need an analog of the notion of a bilinear map for square
groups.

Definition 42. For square groups A, B, C a bilinear map

φ : (A,B) → C

consists of three maps
φl, φr : Ae ×Be → Ce

and
φee : Aee × Bee → Cee

such that φl is left linear, φr is right linear, φee is bilinear and moreover one has

φl(P (a), y) = Pφee(a,∆(y)),

φr(x, P (b)) = Pφee(∆(x), b),

Hφl(x, y) = φee((x|x)H , H(y)) + φee(H(x),∆(y)),

Hφr(x, y) = φee(∆(x), H(y)) + φee(H(x), (y|y)H),

Pφee(T (a), T (b)) = −Pφee(a, b),

φl(x, y) − φr(x, y) = Pφee(H(x), TH(y)).

For a bilinear map φ as above and a morphism f : C → C ′ of square groups the composite
bilinear map fφ : A× B → C ′ is defined by the obvious equalities

(fφ)l(x, y) = feφl(x, y),

(fφ)r(x, y) = feφr(x, y),

(fφ)ee(x, y) = feeφee(x, y).

With this definition we then have

Theorem 43. For square groups A, B the rules

υl(x, y) = x}y,

υr(x, y) = x} y,

υee(a, b) = a⊗ b
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define a bilinear map

υ : (A,B) → A� B

which is universal; this means that for any bilinear map φ : (A,B) → C there exists a

unique morphism fφ : A� B → C of square groups with φ = f φυ.

Proof. It is straightforward to check that υ indeed is a bilinear map. Moreover given a
bilinear map φ we define

fφ
e (x}y) = φl(x, y),

fφ
e (x} y) = φr(x, y),

fφ
e (a⊗̄b) = Pφee(a, b),

fφ
ee(a⊗ b) = φee(a, b).

One checks easily that this indeed defines a morphism of square groups. Uniqueness is
then clear because of the relation a⊗̄b = P (a⊗ b). �

15. Quadratic functors

As mentioned in the introduction square groups correspond to quadratic endofunctors
of the category of groups. We now make this correspondence explicit.

15.1. Quadratic functors. Let C be a category with a zero object and finite coproducts.
We choose a zero object 0 ∈ C and for any objects X and Y we choose a coproduct X ∨Y
in C . We let i1 : X → X ∨ Y and i2 : Y → X ∨ Y be the structural inclusions. The
set HomC (X, Y ) has a distinguished element, the zero morphism, which is the composite
X → 0 → Y and which is denoted by 0 again. For morphisms f : X → Z, g : Y → Z
let (f, g) : X ∨ Y → Z be the unique morphism with (f, g)i1 = f and (f, g)i2 = g. In
particular, we have the morphisms r1 : X ∨Y → X and r2 : X ∨Y → Y given respectively
by r1 = (IdX , 0) and r2 = (0, IdY ). By definition one has r1i1 = IdX , r2i2 = IdY , r1i2 = 0
and r2i1 = 0.

We consider functors F : C → Groups to the category of groups with F (0) = 0. For a
morphism f : X → Y in C let f∗ denote the induced morphism F (f) : F (X) → F (Y ).
Then the canonical homomorphism

(r1∗, r2∗) : F (X ∨ Y ) → F (X) × F (Y )

is always surjective. The kernel of this map is denoted by F (X|Y ) and is called the second

cross effect of F . A functor F is called linear provided the second cross effect vanishes,
thus F is linear iff

(r1∗, r2∗) : F (X ∨ Y ) → F (X) × F (Y )

is an isomorphism. Moreover, F is called quadratic provided F (X|Y ) is linear in X and Y .
Any linear functor has values in the subcategory Ab of abelian groups, while values of any
quadratic functor lie in the subcategory Nil of groups of nilpotence class two [7]. Moreover,
for any quadratic functor F the group F (X|Y ) is a central subgroup of F (X ∨ Y ) [7].
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15.2. Pre-square groups and quadratic functors on the category of finite pointed

sets. Let Γ be the category of finite pointed sets. For any n > 0 we denote by [n] the
set {0, · · · , n}. We consider [n] as an object of Γ with basepoint 0. Let Quad(Γ) be the
category of all quadratic functors from Γ to Groups. There is an equivalence of categories

(8) PSG ∼= Quad(Γ)

between the category of pre-square groups and the category of quadratic functors from Γ
to Groups, which is a particular case of results obtained in [20]. We now discuss functors
involved in this equivalence.

There is a bifunctor

Γ × PSG → Groups

given as follows. Let M be a pre-square group and S a pointed set with basepoint ∗. Then
S �M is the group generated by the symbols s � x and [s, t] � a with s, t ∈ S, x ∈ Me,
a ∈Mee subject to the relations

[s, s] � a = s� P (a)
∗ � x = 0 = [∗, s] � a
[s, t] � a = [t, s] � T (a)
[s, t] � {x, y} = −t� x− s� y + t� x + s� y.

Here s � x is linear in x and [s, t] � a is central and linear in a. For such M the functor
(−)�M : Γ → Groups is quadratic. In this way one obtains a functor PSG → Quad(Γ). A
functor cr in the opposite direction has the following description. Let F : Γ → Groups be
a quadratic functor. Then we set

cr(F )e := F ([1]), cr(F )ee := F ([1]|[1]).

Hence one gets a central extension of groups

0 → cr(F )ee → F ([2]) → cr(F )e × cr(F )e → 0.

The bracket {−,−} : cr(F )e × cr(F )e → cr(F )ee is defined by

{x, y} := [F (i1)(x), F (i2)(y)] ∈ F ([2])

where x, y ∈ F ([1]) = cr(F )e and i1, i2 : [1] → [2] are pointed maps given by i1(1) = 1 and
i2(1) = 2 respectively. Moreover, the pointed involution [2] → [2] given by 1 7→ 2, 2 7→ 1
yields an involution on cr(F )ee which is denoted by T . We have also the homomorphism
P : cr(F )ee → cr(T )e induced by the pointed map [2] → [1] given by 1, 2 7→ 1. One checks
that in this way one obtains a well-defined pre-square group cr(F ). Then the functor
cr : Quad(Γ) → PSG is an equivalence of categories whose quasi-inverse is the functor
M 7→ (−) �M .

Linear functors correspond to pre-square groups with Mee = 0. Any such functor is
isomorphic to a functor S 7→ A⊗ Z̄(S), where A is an abelian group. Here S is a pointed
set with base point ∗, while Z̄(S) is the free abelian group generated by S modulo the
relation ∗ = 0.
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15.3. Square groups and quadratic endofunctors of the category of groups. We
restrict ourselves to endofunctors F : Groups → Groups preserving filtered colimits and
reflexive coequalizers. The last condition means that for any simplicial group G∗ the
canonical homomorphism π0(F (G∗)) → F (π0(G∗)) is an isomorphism. Such a functor F
is completely determined by the restriction of F to the subcategory of finitely generated
free groups. Let Lin(Groups) (resp. Quad(Groups)) be the category of such linear (resp.
quadratic) endofunctors.

A composite of linear endofunctors is linear, therefore Lin(Groups) is actually a monoidal
category, where the monoidal structure is induced by composition of endofunctors. Any
endofunctor in Lin(Groups) is isomorphic to a functor T of the form

T (X) = A⊗Xab

where A is an abelian group. Therefore there is a monoidal equivalence of monoidal
categories

(Lin(Groups), ◦) ' (Ab,⊗).

If Ti, i = 1, 2 are quadratic endofunctors of the category of groups, then the composite
T1◦T2 in general is not quadratic, but it has a maximal quadratic quotient which is denoted
by T2�T1. Then � defines a (highly nonsymmetric) monoidal category structure on the
category Quad(Groups) [7].

We now describe an equivalence of categories

SG ∼= Quad(Groups).

For any square group M and any group G one defines the group G⊗M [7] by the generators
g ⊗ x and [g, h] ⊗ a with g, h ∈ G, x ∈Me and a ∈Mee subject to the relations

(g + h) ⊗ x = g ⊗ x+ h⊗ x + [g, h] ⊗H(x),

[g, g] ⊗ a = g ⊗ P (a).

Here g⊗x is linear in x and [g, h]⊗a is central and linear in each variable g, h and a. One
can check that the functor

(−) ⊗M : Groups → Groups

preserves filtered colimits and reflexive coequalizers. For any groups X and Y one has by
[7] the following short exact sequence.

0 → Xab ⊗ Y ab ⊗Mee → (X ∨ Y ) ⊗M → (X ⊗M) × (Y ⊗M) → 0

Therefore (−) ⊗M : Groups → Groups is a quadratic functor and hence this functor is in
the category Quad(Groups). In this way one obtains a functor SG → Quad(Groups). The
functor in the opposite direction has the following description. If F : Groups → Groups is
a quadratic functor we put

cr(F )e = F (Z), cr(F )ee = F (Z | Z).
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The homomorphism P of the square group cr(F ) is the restriction of the homomorphism
(Id, Id)∗ : F (Z ∗ Z) → F (Z). Here ∗ is the coproduct in the category of groups, so that
Z ∗ Z is the free group on two generators e1 and e2 . The map H is given by

H(x) = µ∗(x) − p2(µ∗x) − p1(µ∗x)

Here µ : Z → Z ∗Z is the unique homomorphism which sends 1 to e1 + e2, while p1 and p2

are endomorphisms of Z ∗Z → Z ∗Z such that pi(ei) = ei, i = 1, 2 and pi(ej) = 0, if i 6= j.
For example the quadratic functor corresponding to the square group A⊗ is given by

G 7→ A⊗Gab ⊗Gab.

Here A ∈ Ab. Similarly, the quadratic functor corresponding to Znil[S] is given by

G 7→
∨

s∈S

Gnil

where the coproduct is taken in the category Nil.
The main result of [7] shows that

(9) (SG,�) ∼= (Quad(Groups),�)

is a monoidal equivalence of monoidal categories. Here � : SG × SG → SG is defined as
follows [7]. If M and N are square groups, then

M�N = ( (M�N)e
H // (M�N)ee

P // (M�N)e )

where

(M�N)e = Me ⊗N/([x, Pa] ⊗ c ∼ 0), x ∈ Me, a ∈Mee, c ∈ Nee

and

(M�N)ee = ((Mee ⊗ Coker(PN)) ⊕ (Coker(PM) ⊗ Coker(PM) ⊗Nee))/ ∼

where one uses the equivalence relation

(x|y)HM
⊗ z ∼ ȳ ⊗ x̄⊗ ∆(z)

Moreover, the homomorphism PM�N is given by

PM�N(a⊗ z̄) = (Pa) ⊗ z, PM�N(x̄⊗ ȳ ⊗ c) = [x, y] ⊗ c

while HM�N is the unique quadratic map satisfying

(x̄⊗ z̄|x̄′ ⊗ z̄′)HM�N
= x̄′ ⊗ x̄⊗ (z|z′)HN

HM�N(x⊗ z) = H(x) ⊗ z̄ + x̄⊗ x̄⊗H(z),

HM�N([x, y] ⊗ c) = x̄⊗ ȳ ⊗ c+ ȳ ⊗ x̄⊗ T (c).

The unit object in the monoidal category (SG,�) is Znil from Section 1.
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15.4. The functor ℘ : SG → PSG in terms of quadratic functors. Recall that we
have the functor

℘ : SG → PSG

defined by
℘(M) = (Me,Mee, T = HP − Id, (−,−)H , P ),

where M is a square group.
For a pointed set S let 〈S〉 be the free group generated by S modulo the relation ∗ = 0,

where ∗ is the base point of S. Then one has a natural isomorphism

S � ℘(M) ∼= 〈S〉 ⊗M.

In other words the following diagram commutes.

Γ
〈−〉

//

−�℘(M) ""E
E

E
E

E
E

E
E

E Groups

−⊗M

��
Groups

This fact has the following interpretation in the language of functors. Suppose F : Γ →
Groups and T : Groups → Groups are functors, then the composite T ◦ F : Γ → Groups

is a well-defined functor. Moreover, if F = 〈−〉 is the free group functor, then T ◦ F is
quadratic provided T is quadratic. This follows from the fact that 〈−〉 respects coproducts.
Thus one obtains the functor Quad(Groups) → Quad(Γ) which corresponds to ℘ under the
equivalences (8) and (9).

If F and T are quadratic functors then T ◦ F in general is not quadratic (it is of degree
6 4), but has a maximal quadratic quotient denoted by F�T . In terms of (pre)square
groups this means that there is a well-defined bifunctor

� : PSG × SG → PSG

with the property that for square groups M , N

℘(M)�N = ℘(M�N).

More precisely, if M is a pre-square group and N is a square group, then the definition of
M�N mimics the previous definition in Section 15.3. The groups (M�N)e and (M�N)ee

and the homomorphism PM�N are defined by the same formulæ , of course now we have to
consider the relation {x, y}M ⊗ z ∼ ȳ⊗ x̄⊗∆(z). The bilinear map {−,−}M�N is defined
by

{x̄⊗ z̄, x̄′ ⊗ z̄′}M�N = x̄′ ⊗ x̄⊗ (z | z′)HN

and the involution TM�N is given by

TM�N (a⊗ z) = TM (a) ⊗ z, TM�N(x̄⊗ ȳ ⊗ c) = ȳ ⊗ x̄⊗ TN (c).

Remark 44. It is well known that any functor Γ → Spaces gives rise to a spectrum (see

[24] and [11]). If F : Groups → Groups is a functor, then it yield a functor F̃ : Γ → Spaces

given by S 7→ B(F (〈S〉)). Here B(G) is the classifying space of a group G. In particular F
gives rise to a spectrum sp(F ), This construction can be applied to F = (−) ⊗M , where
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M ∈ SG. According to [8] the homotopy groups of this connective spectrum are isomorphic
to the homology groups of the complex

· · ·
Id−T
−−−→Mee

Id+T
−−−→Mee

Id−T
−−−→Mee

Id+T
−−−→Mee

Id−T
−−−→Mee

P
−→Me.

Thus in Corollary 15 we constructed for any square group the homomorphism kM :
π0(sp(F )) → π1(sp(F )) for F = (−) ⊗ M , which coincides with the first Postnikov in-
variant of the spectrum sp(F ) (see [8]). Similarly, for any commutative quadratic ring R
in Theorem 41 we constructed a nontrivial cup1-quadratic map ψ : π0(sp(F )) → π1(sp(F ))
for F = (−) ⊗ R. Here ψ is not an invariant of the homotopy type of the spectrum sp(F )
but depends on the structure of sp(F ) given by the commutative quadratic ring R.

15.5. Square rings. A monoid in the monoidal category (SG,�) is termed a square ring.
More explicitly a square ring can be defined as follows (see [4], [7], [5]). A square ring Q
is a square group such that Qe has additionally a multiplicative monoid structure. The
multiplicative unit of Qe is denoted by 1. One requires that this monoid structure induces
a ring structure on the abelian group Coker(PQ) through the canonical projection

Qe → Coker(PQ), a 7→ ā.

Moreover the abelian group Qee is a Coker(PQ) ⊗ Coker(PQ) ⊗ (Coker(PQ))op-module with
action denoted by (t̄ ⊗ s̄) · u · r̄ ∈ Qee for t̄, s̄, r̄ ∈ Coker(PQ), u ∈ Qee. In addition the
following identities must be satisfied, where H(2) = H(1 + 1):

(i) (x | y)H = (ȳ ⊗ x̄) ·H(2),
(ii) T ((x̄⊗ ȳ) · a · z̄) = (ȳ ⊗ x̄) · T (a) · z̄,
(iii) P (a)x = P (a · x),
(iv) xP (a) = P ((x̄⊗ x̄) · a),
(v) H(xy) = (x̄⊗ x̄) ·H(ȳ) +H(x) · ȳ,
(vi) (x+ y)z = xz + yz + P ((x̄⊗ ȳ) ·H(z)),
(vii) x(y + z) = xy + xz.

The category of square rings is denoted by SR. Square rings Q with Qee = 0 are precisely
rings. Thus we have a full embedding

Rings → SR

which has a left adjoint given by Q 7→ Coker(PQ). The initial object in the category of SR

is Znil. Observe that in any square ring Q one has ∆(a) = H(2) · ā for any a ∈ Qe.

15.6. Relation between the � and } products.

Proposition 45. For square groups M and N there is a well-defined morphism of square

groups

σ = σM,N : M�N →M}N
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given by

σe(x⊗ z) = x}z,

σe([x, y] ⊗ c) = (y|x)H⊗̄c,

σee(a⊗ z̄) = a⊗ ∆(z),

σee(x̄⊗ ȳ ⊗ c) = (y|x)H ⊗ c.

Here x, y ∈Me,z ∈ Ne and c ∈Mee. Moreover, σ equips the identity functor

Id : (SG,}) → (SG,�)

with the structure of a lax monoidal functor.

Proof. First we have to check that σe is well-defined. In other words σe respects all relations
of Me ⊗N and σ vanishes on [x, Pa] ⊗ c. The last assertion is easy to check:

σe([x, Pa] ⊗ c) = (Pa|x)H⊗̄c = 0.

We have σe((x + y) ⊗ z) = (x + y)}z = x}z + y}z + (y|x)H⊗̄H(z). On the other hand
σe(x ⊗ z + y ⊗ z + [x, y] ⊗ Hz) = x}z + y}z + (y|x)H⊗̄H(z). Thus σe respects the
corresponding relation of the definition of the tensor product Me ⊗N . Similarly

σe([x, x] ⊗ c) = (x|x)H⊗̄c = x}P (c),

therefore σe respects another relation of the definition of the tensor product Me⊗N . Other
relations are even easier to check and therefore we omit them. Next we have to show that
σ is a morphism of square groups. We have

σeP (a⊗ z) = σe(Pa⊗ z) = Pa}z = a⊗̄∆(z) = Pσee(a⊗ z)

and
σeP (x⊗ y ⊗ c) = σe([x, y] ⊗ c) = (y|x)H⊗̄c = Pσ(x⊗ y ⊗ c)

which shows compatibility with P . To show compatibility with H, first we have to check
it for cross-effects

(σe(x⊗ z) | σe(y ⊗ z′))H = (x}z | y}z′)

= (x | y)H}(z | z′)H = σee(y ⊗ x⊗ (z | z′)H) = σee((x⊗ z | y ⊗ z′)H).

Then we have

H(σe(x⊗ z)) = H(x}z) = (x | x)H ⊗Hz +Hx⊗ ∆(z)

= σee(x⊗ x⊗Hz +Hx⊗ z) = σee(H(x⊗ z))

as well as

Hσe([x, y] ⊗ c) = H((y | x)H⊗̄c)

= (y | x)H⊗̄c− T (y | x)H⊗̄Tc

= σee(x⊗ y ⊗ c+ y ⊗ x⊗ Tc)

= σeeH([x, y] ⊗ c),
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hence σ is compatible with H. �

Theorem 51 below describes an important case, when the transformation σ is an isomor-
phism.

Corollary 46. Any quadratic ring R gives rise to a square ring, whose underlying square

group is the same, while the Coker(P ) ⊗ Coker(P ) ⊗ Coker(P )op-module structure on Mee

is given by

(x̄⊗ ȳ)az = (x|y)Ha∆(z).

In this way one obtains a functor

U : QR → SR.

16. Abelian groups with cosymmetry as a full monoidal subcategory

In this section we introduce “abelian groups with cosymmetry” which form a subcategory
of the category of square groups. The corresponding quadratic endofunctors of the category
of groups of nilpotence class 2 are coproduct preserving.

16.1. Symmetric monoidal category Cos. A pair (A, ∂) is called an abelian group with

cosymmetry if A is an abelian group and ∂ : A→ Sym2(A) is a map from A to the second
symmetric power of A satisfying

∂(a + b) = ∂(a) + ∂(b) + ab, a, b ∈ A.

Let Cos be the category of abelian groups with cosymmetry. We equip this category
with a symmetric monoidal structure. To this end we need the maps

∗ : A× Sym2(B) → Sym2(A⊗ B),

∗ : Sym2(A) ×B → Sym2(A⊗ B)

and the homomorphism

∗ : Sym2(A) ⊗ Sym2(B) → Sym2(A⊗B)

defined respectively by

(a, bb′) 7→ (a⊗ b)(a⊗ b′),

(aa′, b) 7→ (a⊗ b)(a′ ⊗ b),

and
(aa′) ⊗ (bb′) 7→ (a⊗ b)(a′ ⊗ b′) + (a′ ⊗ b)(a⊗ b′).

Now we define
(A, ∂A) ⊗ (B, ∂B) = (A⊗ B, ∂A⊗B)

where ∂A⊗B : A⊗ B → Sym2(A⊗B) is given by

∂A⊗B(a⊗ b) = a ∗ ∂B(b) + ∂A(a) ∗ b− ∂A(a) ∗ ∂B(b).

It is straightforward to check that in this way we really get a symmetric monoidal
category (Cos,⊗), with unit object given by (Z,

(

−
2

)

)
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16.2. Coproduct preserving endofunctors of the category Nil. Let T ∈ Quad(Groups)
be a functor. By definition T is a quadratic endofunctor of the category of groups which
preserves filtered colimits and reflexive coequalizers. According to [7] values of T lie in the
category Nil of groups of nilpotence class two and moreover for any group G there is an
isomorphism

T (G) ∼= T (Gnil)

This implies that

Quad(Groups) ∼= Quad(Nil)

and we identify any object of Quad(Groups) with a quadratic endofunctor of the category
Nil which preserves filtered colimits and reflexive coequalizers.

Proposition 47. If F : Nil → Nil preserves finite coproducts then F is quadratic.

Proof. Since F (X ∨Y ) ∼= F (X)∨F (Y ) it follows from the exact sequence (2) that one has
the following exact sequence

0 → F (X)ab ⊗ F (Y )ab → F (X ∨ Y ) → F (X) × F (Y ) → 0.

Thus we have to show that the functor G given by G(X) = F (X)ab is linear. Since
(−)ab : Nil → Ab commutes with coproducts, we see that the functor G : Nil → Ab

commutes with finite coproducts, and therefore G is linear, because finite coproducts in
Ab are finite products as well. �

Let QuadΣ be the full subcategory of the category Quad(Nil) with finite coproduct pre-
serving functors as objects. By Proposition 47 the category QuadΣ consists of all endo-
functors T : Nil → Nil which commute with all colimits. Therefore we get the following
result.

Corollary 48. If Fi ∈ QuadΣ, i = 1, 2 then the composite F1 ◦ F2 ∈ QuadΣ. Therefore the

canonical projection

F2�F1 → F1 ◦ F2

is an isomorphism.

It follows that (QuadΣ, ◦) is a monoidal category. Below we show that it is equivalent as a
monoidal category to (Cos,⊗). In particular (QuadΣ, ◦) is a symmetric monoidal category.

Lemma 49. Let M be a square group and let F = (−)⊗M : Nil → Nil be the corresponding

functor. Then F ∈ QuadΣ if and only if the homomorphism of abelian groups

(−|−)H : Coker(P ) ⊗ Coker(P ) →Mee

is an isomorphism.
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Proof. For the groups Me = F (Z), Mee and F (Z)∨F (Z) we have the following commutative
diagram with exact rows

0 // Mee
// F (Z ∨ Z) // F (Z) × F (Z) // 0

0 // F (Z)ab ⊗ F (Z)ab

[−,−]
//

(−|−)H

OO

F (Z) ∨ F (Z) //

α

OO

F (Z) × F (Z) //

Id

OO

0

It follows that the canonical map α : F (Z) ∨ F (Z) → F (Z ∨ Z) is an isomorphism iff
(− | −)H : F (Z)ab ⊗ F (Z)ab → Mee is an isomorphism. Since this map always factors
through Coker(P ) ⊗ Coker(P ) it follows also that the quotient map F (Z)ab ⊗ F (Z)ab →
Coker(P )⊗Coker(P ) is an isomorphism as well. Thus we have proved the “if” part. Assume
(− | −)H : Coker(P ) ⊗ Coker(P ) → Mee is an isomorphism. Then we have the following
exact sequence

0 →Me ⊗Me ⊗Xab ⊗ Y ab → F (X ∨ Y ) → F (X) × F (Y ) → 0.

We have to show that F (X) ∨ F (Y ) → F (X ∨ Y ) is an isomorphism for all X, Y ∈ Nil.
Since F respects reflexive coequalizers, it suffices to assume that X, Y are free in Nil. Since
F preserves filtered colimits we can assume that X and Y are finitely generated free. So
it suffices to show that for all n the natural map from the n-th copower of F (Z) to F (X)
is an isomorphism, where X = Z ∨ · · · ∨ Z (n-fold coproduct). We already proved the
statement for n = 2. Since it is also clear for n = 0 or n = 1 we can proceed by induction.
Let Y be the (n− 1)-st copower of Z. Then we have the following exact sequence

0 →Mab
e ⊗Mab

e ⊗ Y ab → F (Y ∨ Z) → F (Y ) ×Me → 0.

We also have the following exact sequence

0 → F (Y )ab ⊗Mab
e → F (Y ) ∨Me → F (Y ) ×Me → 0.

Since Y ab = Z
n−1 and since by the inductive assumption F (Y )ab = (Me ∨ · · · ∨Me)

ab =
(Mab

ee )n−1 the result follows. �

Corollary 50. The category QuadΣ is equivalent to the full subcategory SGΣ of SG con-

sisting of square groups M for which

(− | −)H : Coker(PM) ⊗ Coker(PM) →Mee

is an isomorphism.

Proof. It is enough to notice that QuadΣ ⊂ Quad(Nil) and therefore an object F ∈ QuadΣ

is isomorphic to a functor F = (−) ⊗M , with a square group M . The rest follows from
Lemma 49. �

Now we define a functor

J : Cos → SGΣ
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which is based on a construction from [13]. Let ∂ be a cosymmetry on an abelian group
A. The square group J (A, ∂) is defined as follows. Consider the pullback diagram in the
category of sets:

(J (A, ∂))e
H //

p

��

A⊗ A

π

��

A
∂

// Sym2(A)

where π(a⊗ b) = ab. Then J (A, ∂)e is a group via

(a, x) + (b, y) = (a+ b, x + y + a⊗ b)

where a, b ∈ A and x, y ∈ A ⊗ A are such elements that π(x) = ∂(a) and π(y) = b. Let
J (A, ∂)ee be A⊗A, with P given by P (a⊗ b) = (0, a⊗ b− b⊗ a) ∈ J (A, ∂)e. One easily
shows that

J (A, ∂) = (J (A, ∂)e
H
−→ J (A, ∂)ee

P
−→ J (A, ∂)e) ∈ SG.

Let ∂ be a cosymmetry on an abelian group A. It follows from the construction of the
square group M = J (A, d) that

Coker(PM) ∼= A ∼= (Me)
ab

and the commutator map Λ2(A) →Me is a monomorphism. Moreover, the map

(− | −)H : A⊗ A→Mee

is an isomorphism. Hence we get in fact the functor

J : Cos → SGΣ.

For example, for a set S there is a unique cosymmetry structure on A = Z[S] such that
∂(s) = 0 for all s ∈ S. In this case one has

J (A, ∂) ∼= Znil[S].

The following theorem is a reformulation of a result from [13].

Theorem 51.

i) The above functor

J : Cos → SGΣ

is an equivalence of categories.

ii) A morphism f : M → N in SGΣ is an isomorphism iff the induced homomorphism

Coker(PM) → Coker(PN) is an isomorphism.

iii) Let M and N be square groups. If M,N ∈ SGΣ, then M}N ∈ SGΣ and M�N ∈
SGΣ and the canonical morphism σ : M�N →M}N is an isomorphism.

iv) Let (A, ∂) and (A′, ∂′) be abelian groups with cosymmetry. Then there is a natural

isomorphism

J (A, ∂)}J (A′, ∂′) ∼= J ((A, ∂) ⊗ (A′, ∂′))
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Thus the functor

J : (Cos,⊗) → (SG,})

is symmetric monoidal; moreover it is full.

Proof. By Corollary 50 we know that Cos is equivalent to the category of square groups for
which Mee = Coker(P )⊗Coker(P ) and {−|−} : Coker(P )⊗Coker(P ) →Mee is the identity
map. It follows from the definition of square groups that

P (a⊗ b) = a⊗ b− b⊗ a

and

H(x+ y − x− y) = −b⊗ a+ a⊗ b.

Thus we have the following commutative diagram with exact rows

Λ2A
c // Me

H

��

// A //

δ
���
�

�
0

0 // Λ2A
d

// A⊗ A π
// Sym2(A) // 0

which yields a cosymmetry δ : A → Sym2(A). Here c is the commutator map c(x̄ ∧ ȳ) =
x+y−x−y and d(a∧b) = a⊗b−b⊗a. It follows that c : Λ2A→Me is a monomorphism and
M ∼= J (A, ∂). In this way we have constructed a functor Ψ in the opposite direction, hence
the equivalence of categories in i) is proved. Explicitly, we have Ψ(M) = (Coker(PM), δM),
where δM is induced from the composite

H : Me →Mee
∼= Coker(PM) ⊗ Coker(PM) → Sym2(Coker(PM)).

ii) follows from i) because f is an isomorphism iff Ψ(f) is an isomorphism. iii) First we
consider the case of the }-product. It suffices to check that HM}N yields an isomor-
phism Coker(PM}N) ⊗ Coker(PM}N) → (M}N)ee. But this is clear, since Coker(PM}N) is
Coker(PM) ⊗ Coker(PN). For the �-product this follows from Corollary 48 and Corollary
50. It remains to prove iv), which claims compatibility with the } product. This follows
from the explicit description of this operation. �

16.3. An open question. Let T be an algebraic theory, and consider the category EndΣ(T)
of all endofunctors of the category of models of T preserving all colimits. Then End(T)
is closed with respect to composition. Under what conditions is the monoidal category
(EndΣ(T), ◦) symmetric? Does this happen if T is the theory of nilpotent groups of any
class n? It is obviously so if n = 1 and it follows from our results that the same is true for
n = 2. A classical result of Kan [17] implies that this also holds for the algebraic theory of
groups.
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