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Period relations for twisted Legendre equations

by William L. Hoyt

1. Introduction

Fix a square free polynomial T € C[t] andlet L = Ly and q=qq bethe
parabolic cohomology group and the quadratic form which are associated as in §§ 3,6 below
with the twisted Legendre equation over (%)

(i) 2 Tx(x—1)(x—t) .

In § 3 it is shown that L has rank 2d+e with 2d = deg(T) if deg(T) is even and
2d = deg(T)-1 if deg(T) is odd and e = the number of a # 0,1 such that T(a) =0.
The main purpose of this paper is to prove that there is a bijective isomorphism

¥: E2d+e -~ L such that

. 1, .2 2 2 2
@) ety = H X )

The proof of (ii), which is completed in § 6, is based on general results of Endo [3] which
imply that all elements of L @ € can be represented by periods p(G) of suitable vector
valued integrals of the second kind G = J dG , that q can be defined by an integral
q(p(G)) = J 'GPdG , and that this integral for q(p(G)) has a Z—bilinear expansion in
terms of suitable values of G . Proofs of the results of [3] for the special case considered
here are sketched in § 4 for the convenience of the reader; and explicit expansions for the
integral for q(p(G)) are derived in §§ 6,7. In addition it is shown in § 5 that d = the

geometric genus of an associated elliptic surface X — P, , that the holomorphic
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2—forms on Xy have the form w = Rdt 4 dx/y for some polynomial R € C[t] with
deg(R) < d—1, and that each such « determines a vector valued integral Gp of the first
kind such that

(iii ) JxTw r w=2q(p(Gg)) -

My earlier paper [6] contains an incorrect formula for qy for the special case
T = (t—a,)(t—a,)(t—a,) ; and my earlier paper [5] contains a formula for qp on 2L,
(rather than L ) for the special case T = t(t—1)(t—a,) . The corrected formulas given
here are needed for applications to problems which are described in [5, 6] and which
concern variation of Hodge structure, Kuga—Satake varieties, and modular
correspondences.

My work on this paper has been supported by the Faculty Academic Study Program
of Rutgers University and by the Max—Planck—Institut fiir Mathematik in Bonn. I am very
grateful to both for helping to make this work possible. I am also very grateful to

Miss Grau for typing and helping to arrange my rough manuscript.



2. Preliminary definitions

(i) Let gq.84, & = gg—27g§, j= 12353/11 be well known modular forms of weights
4,6,12,0 on the upper half plane $H:Im 7> 0 ; andlet A be the Legendre function,
viewed as the universal cover of P,—{w,0,1} , with I'(2)/4I acting as fundamental group,
with (extended) values at cusps A(*1) = w, A(im) =0, A(0) =1, and with
i=2802-241)/2%(a-1)% . Alsofor T asin §11let

Y= {o,0,1} U {zeros of T } = {am,a .

0r-i8ey1) With distinct a, ;

let =P —%;andlet ¢:U—S and x,(5) be the universal cover and fundamental
group for S.

(ii) Let

we = 475 —~Gyz— G, with

G, = 3(t*4+1)12,
Gy = (t+1)(1-1/2)(t-2)T°,

be the Weierstrass equation obtained from (i) by the substitution
(x,y) = (z/T+(t+1)/3,w/2T) ; and let X, — P, be the Neron model relative to €{(t)

for these equivalent equations.

(iii) There are holomorphic functions 7 and h on U and a homomorphism

M : 7,(5) — SL,(7) such that



Im(7)>on U,
@ = doT,
Gyop = (gpomh

Gqop = (gao*r)h_6

h® = ((Gy/Gq)ow)((e5/8q)0

roa = M(a)r = (ar+b)/(cr+d) and
hoa = (c7+d)h

. b
forall a € 7y(S) with M(a) = [g d] € SL(T)
(iv) One can choose a polygonal fundamental domain D for 7,(S) on U as

indicated in Figure (iv’) below, with successive vertices at cusps

ar = co“,aﬁ,aom",...,(ae...ao)m",ag_'_l,(ae_l_l...ao)m" = "
which lie over points 3, =0 and a € Y, with boundary

e+l

o =Y
consisting of pairs of congruent edges A;, a;A, which lie over suitable arcs
(A} = p(a;A;) from o to a, in P, withimage 7(D) in h which coincides with a ‘
standard fundamental domain for I'(2) on h (except for deletion of points
7'(35)»---»7‘(32_,_1) above points a,,...,a, ;€ Y in case e > 0, and slight detours if

necessary around such points on the boundary), and with generators a ,aq,. for

.’ae+1
xl(S) which correspond to suitable clockwise loops about the points of ¥ and satisfy
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Figure (iv')
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(v) Consideration of Figure (iv’) and of types of singular fibers for Xp at a
implies that the values M, = M(a;) are as follows:

M, = —[(1) g] for i=2,.,.e+l (if >0),

M, = +B 2] resp. —B (1’] if T(1)#0 resp. T(1)=0,
M, =+[[1) “‘1’] resp. —[3 ‘21’] if T(0)#0 resp. T(0)=0,
M =+ [g :ﬂ resp. —[g :ﬂ if deg T is odd resp. even.

(vi) The universal cover of the complement of the singular fibers of X canbe
identified with the map

¢:UxC—Sx IP2
(,8) — ({u),(1),2(0) 2%z, 7(),h(w) P (2,7(u),1)))

with B, B’ the Weierstrass p—functions; and the fundamental group for & can be
identified with semi—direct product xl(S) X 12 operatingon U x € by

(u,2) — (au,(c(u)+d) L(z+m7(u)+n))

for each a € x{(S) with M(a) = [g‘ 3] and for each (m,n) € .



3. Parabolic cohomology

As in Shimura [7] the monodromy representation M in § 2 determines a group
le)a.r(M) of parabolic cocycles, a subgroup BI(M) of coboundaries and a parabolic
cohomology group |

(i) L= ZIIM(M)/BI(M) .

By definition lem(M) consists of all maps Y : x,(§) — 1% which satisfy the cocycle

condition
(ii) Y(af) = Y(a)+M(a)Y(f) forall a,8€ x(S)

and also the following parabolic condition: For each a_ € 7,(S) which stabilizes a cusp v

for #,(S) on U thereexists V_E€ 02 such that
(iii) Y(a ) = (I-M(a))V,, .

Bl(M) consists of maps satisfying the coboundary condition: There exists vV, € 02 such
that

(iv) Y(a) = (I-M(a))V, forall a € m((S5) .

(v) Lemma. For fixed @, asin§2, let leaa.r(M'“k) consist of all Y’ € leaa.r(M)
with Y'(a,) = 0. Also suppose that det(I-M(a,)) # 0. Then there is a natural bijection

1 ~
Zar(Mia) —— L.



Proof: For arbitrary Y € leaar(M) there exists V, € 02 such that

2 0
forall a € x,(S) since M(a) € I'(2) and I-M(a) = 0 mod(2) , and that Y" is the

unique element of BI(M) such that Y-Y" € lelm,(M,ak) . Q.E.D.

Y(ay ) = (I-M(ay))V, € 2. By 2(v) the possible values of I-M(a,) are [g g] ,
B gl] : [g ‘g] and ][4 ‘2] It follows that 2V, € I°, that Y"(a) = (I-M(a))V, € Z°

(vi) Corollary. L can be identified with the set of elements

which satisfy the conditions

Yo 1 +Mo Yo+t (Mg g

Y =0 if T=1 or T =t(t-1),
o

Y,

Y, =0if T=t-1,

MY, + (M, - MM)Y,_ =0

e+1”

=0 if T=t,

Ye+1=0 ife>0,

gt
_ Tl _[]1-0 3-2 . .
Y = _mm] - [[0 1]-[2_1]]vm if deg T is odd

Yo [39 - [Bg-B v o

0

nl] - [[(1) g]_[; ?]]V1 if T(1)#0
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Proof: The first condition is obtained by applying the cocycle condition to the
relation Y(a, +l...aoam) =Y(1) = 0 and the full set of conditions defines one of the
submodules Z;M(M,ai) with i = 0,0,1 or e+1. Q.E.D.

(vii) Corollary (cf. Shioda [8]).

rank L = 2(e+3)—4—#{1, fibers} = 2d+e with

e= #{I; fibers} and
deg T if deg T iseven

*
24 = #{I, fibers} + #{I, fibers}—1 =
deg T-1 if deg T is odd

Proof: The total number of singular fibers is e+3 and the last three conditions in
- (vi) correspond to I, fibers. Q.E.D.



4. Results of Endo

The following results (i)—(iv) for L = Ly are special cases of general results of Endo
[3]. The results in [3] are valid for parabolic cohomology groups which are associated
with general Weierstrass equation with coefficients in a function field over € and with
non—constant J—invariant. Similar but less general results in Shioda [8], Hoyt [4], Cox
and Zucker [1] explicitly exclude cases with I; fibers. A general result of Stiller [9]
provides a more natural proof of surjectivity of the period map p below but does not
consider the period relations b and g - Preliminary arguments from Shimura [7] are
used below to state (i)—(iv) in terms of vector valued integrals rather than scalar valued
Eichler integrals as in [3]. For the convenience of the reader, proofs of (i)—{iv) are
sketched below. Hypotheses and notation are as in §§ 1-3.

(i) Let R € €(t) be such that the integral

GR(u)=Ju R(t(t-1)/T)1/2A1/4[;]dr ,

alf
1)

with 7= 7(0), t = A(7(u)), & = A(r(u)) ,

is meromorphic on U and holomorphic on #D and convergent as u approaches cusps in

D . Then GR has periods
Y(a) = Gpoa—M(a)Gg , a € 7(S) ,
which are independent of u and which determine an element p(Gp) EL®@C.

(ii) There is a symmetric bilinear form b on the space of such p(GR) which is
defined by
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t . 01
(iii) There exist 2d+e = rank L such integrals G = Gp which satisfy
‘ n

0 Id
Matrix(b((G;), (G))) = [0 10

IdO

(iv) Consequently all elements of L ® € can be represented by periods of such GR ;
and q=gqg can be defined on all of L ® € by

qT(P(GR)) = b(p(GR),p(GR)) .

Proofs of (i) and (ii) follow easily from arguments in Eichler [2] and Shimura [7],
combined with relations in (vi) below. Obviously (iii) implies (iv). (iii) can be proved by
adapting arguments in [3] as follows: First note that periods p(Gp) € L® € can be
defined as in (i) for more general integrals Gp, R € (t), which are meromorphic on U
and convergent as u approaches the cusps a('l'J, a.'d, ag in D but which are not necessarily
convergent at a.g, ag e Also note that such GR are meromorphic at a.g,...,a'é +1 in
terms of parameters o; = (r—r(a'i'))ll 2 , and that the bilinear form b can be extended to

such p(Gg) by defining
(v) b(p(Gg)p(Gp)) = 27}, res,(‘GPdGR) ,

with the sum over representatives v € D U {cusps} for points of P, , with residues at

3-5:---»32 +1 computed in terms of the parameters oy and with residues =0 at a.t‘l'), a‘d,
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a] since the Gp converge there.

The fact that (v) defines a symmetric bilinear form which depends only the classes of
periods modulo coboundaries can be checked as in [3] by making use of local expansion for
scalar valued Eichler integrals R and many valued modular forms gﬁ which are
associated with the GR and which satisfy

(vi) en=-"6xP7],
8p = %ﬁ (8g) = R(t(t-1)/T) /224,
gpoe = (CT+d)3gﬁ for each a € 7,(5) with M(a) = [‘: g] ’
‘GyPdGy = gQ8rd7 and
res (8q8Rd7) = res (g +AT+B)ggdr .

The next step, as in [3], is to show that for each choice of an auxiliary interior point

U, € D there exist 2d+e linear combinations Q ~of the 2d+e+2 functions

(vii) () ™, (t-agy )7 (t=elug))
1<i<d, 1¢i<e 1<k d+2,

with the following property: If Ell = GQ , then the only nonzero residues of the form
n

1
res ("E PdE ) are

¢ _ t 1.
(viii) resuo( ER,PdEd+e+£) = resvo( Ed+e+2.PdEf_) =gp 1$2<d,

t 1 :
res;j+1( Ed+deEd+j) =5 1$j<e.

Because of the last relation in (vi), the desired vanishing and non—vanishing of residues in
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(viii) becomes obvious if one chooses the linear combinations Q= of the functions (vii)

successively in such a way that the corresponding e; = ga have local expansions of the
n

form (with suitable constants c#0 )

(ix) &) = c(r—r(ug) ¥ + 0((—r(ug)?), 1<i<d,
e ory = lr=r(ug) ) 4 o((r-r(ug))d), 1<K <A,
45 = (r-r(ug)?)
= ca'.3

J+
-1 .
el = aj+10(1) for n #d+j.

-1 .
1+aj+10(1) for 1<j<e,

To complete the sketch of the proof of (iii) it suffices to check, as in [ ], that for

each En there exists a rational function Fll such that

-5
2 F

vanishes at all cusps and has poles only on the orbit of U - It follows that

3_22 [i_n] = Hn(t(t—l)/T)llell4 for some H € C(t),

and that GR = En—GH has the same periods as En , has poles only on the orbit of
] n n

U, , Converges at cusps, and hence satisfies (iii). Q.E.D.
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5. Meromorphic 2—forms

(i) Every meromorphic 2—form on Xy, with poles only on fibers of Xp. — P; has
the form Rdt 4 dx/y for some R € €(t). It can be checked that such a form is
holomorphic on the fiber above s € IP1 if and only if ordsR 20 if s#m or
ord R 2 —d+1 if s=o . It follows that d = the geometric genus of X and that
{tidt A dx/y, 0 i< d-1} is a basis for holomorphic 2—forms on Xpif d 21.

(ii) There is a relation
x5 dt r dxfy = (1(t=1)/T) /28 447 » 4z

which can be obtained by identifying differentials with their pull backs along ¢,7 and &

and by combining classical relations with relations involving h, G2, G3 in § 2 as follows:

a3 - 2162 = 389722 11)?16 = an 712,
dj/dr =3 59 g2g3/1nA =3 26G2G h14/nA
dj o dx/y = (dj/dr)d7 A hdz
= 3°29G2G,h ' (xia) Tdr 4 da
=3 26G2 3(3 8y2¢2(1-1)218) /4 4(xi) a7 4 da
i = 2B02-t41)3 12 04-1)2
dj/dt = 29(t2—t+1)2(t+1)(t—1/2)(t—2)/t3(t—1)3
= 2572626, 17 11¥(t-1)°,
dt a dx/y = (dt/dj)(dj » dx/y)
ok B GO e (TSN T

(iii) If #4~8 Rdt 4 dx/y is holomorphic on X, then the integral Gp is

holomorphic on U and convergent on D U {a;,aa,...,ag +1} ; and conversely.
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Furthermore an argument in Shimura [7] implies that are relations

= gn Bp dz A dz A d7 A d7
XTRR

- 1 1
=] L=0 J | (rdatdb) & (Fda+db)g Bhdr 4 7

= D(‘r—-?)gft gpdT A d7

-~

[ty [01
=1p dGR[—l o] @Gy

- 2JDtRe(dGR) [‘1’ (1)] Re(dGp)

- 2J'0Dtne(GR) [‘1’ (1)} Re(dGp)

= 2q(Re(p(Gp)))



-15 —

6. Formulas for q = Ay
(i) For Gp asin4 (i) let G = Gp+V with constant V € €2 . Then an argument

in Shimura [7] yields relations

ag(e(@) = | ‘GraG

e+1 J L'A

e+l
= —2 Y.PM. J' dG
. =0 1 1 A
1

e+1 t n n
= _2i=0 Y,;PM,(G(a!)-G(B.a"))

with Y; = Y(a;) = (I-M,)G(a}), M; = M(a,), fy=1 and f=e_f_,, i21.

(ii) The preceeding relations can be transformed as follows:

qT(p(G))
=Y _PM (G,—G )-'Y,PM,(G,—Y~M.G )—.—*Y_ .PM__ (G, Y —
== YoPMplGp=bg) =Y PMy (G =Y g MG )= =Y e 1 PMe 1 (G 1= Y e
~AM . M)G,_)
¢

t t t
~Y PM(G,—Y,PM, (G,-Y )-.—'Y, APM, +1Gep Yo —(Mg 1 M)Y)

0" "0
=-ty’pG’-ty’pG! -Eeﬂ Y! P(G’ El Y’ )
- o o 0" -0 = . j—1

1
4 / / /
=+'v/pry 4ty pryg +z Yi(PiYi +PE;=1 i)
. —_ ¥a —
with G; = G(al), Y, = (M, ;- M
/ _ 7 _
Yi= Mg MY, and Gy = (Mg, M;
as in (iii) below. To verify this, first use the relations G(Ba') =Y, ; + M, ,G(8_ja});

I —
Mg)Yg G = (Mg ;- M)Ge,
M, M, JG; for 0<i<e+l and with P
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next regroup the terms involving Gcn and use the relations tMiPMi =P and

— . ’
(Me+1...M0)Ym + (Me-i-l"’Ml)YO +..+ Y, ;=0;thenreplace Y; and G; by Y

and G{ ; and finally use the relations —tY;PG; = tY;PiY; in (iii) below.

(iii) There are relations

t _t . 1110 1(1-2]. _ |32 (32
-Y PG =Y P Y withP =— I[O 1] Iesp. 2-[0 1] ifM = [2 _1] Iesp. [2 _l:l )

¢ _t o _ 110 C1[01] e 12 _[1-2

0
vy PM G,='Y.P.Y, with P.=—1
17171 17171 1= 2
t _t : _ 1 :

tv s t _trprivr r_t -1 ~1 s
- YiPGi_ YiPiYi with Pi-— (Me+1"'Mi+1) Pi(Me+1'"Mi+l) for i=m,0,...,e+1,

and 50 P{ = P, =— 5P and P{+'P{=0 for 2<i<e+1.

For example if M_ = I:g :ﬂ and G = [:r] , then

_ |22 _ |2w+42z
ch - [—2 2] Gm - [—2w+2z] !
YY Y =2(-2w+22)% and

o o

t 2 _1t
Y _PG_ = —[-2w+22,-2w+21] [i] = +2(-w+2)* =7 'Y_Y_. Etc.
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(iv) Lemma. If e 2 2 and Q] =P'i'+tP‘i' , then

2ap(p(G)) = 'Y’ (A+tA)Y = ty"'C'B(A+'A)BCY" with

- ] - _
yr Pmolo 0 0. Qmo/(t) 2 (t)
@ 0 PjO 0 0 0 Q;‘ptptp
Y'=|Yy |=BCY", A=]0 P Pj0 0 |, A+'A=|0 P Q) 'P'P |,
: 0 P P PyO o PP o ‘p
: 0P PP P 0O PP P O
Y’ ) : .
i e+1j . :
1 T A T Q. tptrtptp.
I I, 0 PQ(’,‘:PPP
B={ o 'y C= 3 , ‘Ba+'A)B=|P P Q] ‘'P'P |
I ;oL PP P O P
(0 0....0 PP P PO

‘1’] .- [% ?]

Proof: This follows from the final relation in (ii), the conditions on the Y, in 3 (vi),
and corresponding conditions on the Y ; . For examples see the proof of (v), and § 7 below.

Q.E.D.
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(v) Broposition. If e 24 andif T, = T/(t—ae)(t—ae+1) , then

01] & [01
2ag £ 2ag ® [1 0] ® [1 0] :

6 4
Proof: For example for T =TT (t—a,l), T, = 1T (t—ai), e=5 , thereis a
i=2 i

i=

relation
_t *t ot t *
20p(p(G)) = 'Y ‘E'B(A+'A)BEY

with factors as follows:
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A+tA B (A+'A)B
"“Q;ooooooo—-_looooo__qéo 0 0 0 0
0 Q(’]tP 'ptptptptpl lo 1 0 0 0 of P Q+P0 0 0 0
0 Q] tptptptptpilo 01 0 0 ofllp op Q+P0 0 0
o PP o Pttilo 0 01 0 ofl|P 22 22 P 0 o
o PP PO 't |00 o0 0 I ollP 22 20 2PP o
o PP PP o 'pt|l|o 0 0 0 o0 I||P 2 9P 9P P
O PPPPPO Y{|{dagaagaga1-1|l0 P P PPEP
0 PP PPPPO||00000O0O[|-P0O 0 00 0]

*
'B(A+'A)B Y’ 'E'B(A+'A)BE Y
r— rou B B —
Q/tp tp tp tp tp Y’ 3, tptptpo ol [y 1
[11] @® [¢1] [14]
P Q)'p 'p tp tp Yol [P Qi'P P o o Y]
PPQitPtPtP ' PPQitPO 0 Y]
t, ¢ ’ . ’ / ’
P PP o 'ptlp Ysl [P PP o000 |Yi-Yievg
P PP P o tp Y;| 0o 0 0o 0 0o P Y4+Y)
7 7 !
P PP P PO |Yjljooo o0 Po| |vivy |,

Note that the Y/, Y(, Y{, Y/ block of *B(A+'A)B is the analogue of ‘B(A+'A)B for
2q . Also note (in general) that Jg» Jg» I in (iv) are the same for both T and T,:In

the present example, M_ = [2 _1], Jm = [l] and YuJ = [1] m_ for both T and Tl'

Since the row operations used to define E do not affect Y ; , Y6, Yi , it follows from
3 (vi) that 2q, is completely determined by tEB(A+';A)BE » that 2qp  is completely
1

determined by the Y/, Y{, Y/, Y/ block of *B(A+'A)B, and that
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¢
o tp 01] o [01
2ng2que[P0 ]g%rle[m]“’[m]'

Clearly a similar argument works whenever e 2 5 . However for e=4 a modification

of this argument (and of 3 (vi)) are needed to avoid row operations which affect Yi . For
example if T = '|_|'5 (t—a;) with e=4, then the condition Y, =0 in 3(vi) can be
=2

replaced by the condition Ym = 0 with corresponding changes in Y; ,B,C and E.
Details are omitted. Q.E.D.

(vi) Similar arguments, which stop short of replacing Y;, G; by Y{, G‘i' , sShow that

2qT is determined up to isomorphism over Z by relations of the form
2 _t t _tst t
qp(p(G)) = "Y(D+'D)Y = "Z'E(D+ D)EZ

with 2 € €2€, with p(G) — Z inducing an isomorphism Ly —— 724+ with

suitable E determined by conditions in 3 (vi), and with

D = |P_ 0 0
PM0 P0 0 0
PM,M, PM, P,
P, 0 0.
0 —P P3 0
P P P,
__ : —

(vii) The relation 1 (ii) car now be verified as follows: First if T = 1,t,t—1, then

d=e=0 and qp=0. Next isomorphisms such as

X(t-1)(1-a) — X\ (t-14a), (txy) — (1-,1xy) ,
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which permute fibers above ®, 0, 1, can be used to transform all other cases with e<4
into one of the special cases for which the relations in (vi) above are calculated explicitly
in § 7 below and for which elementary row and column operations can be used to verify

1 (ii). Finally the proposition in (v) above together with the relation

t 100, |10 O
E( 001(E=| 0%1 0
010 00 #1

reduce verification of 1 (ii) for other cases to cases with e<4 . Q.E.D.

(viii) In each of the special cases tabulated in § 7, the vectors Y € 72(et3) and
Y, € 1’ satisfying the relations specified in 3 (vi); and these relations determine (and can

be explicitly determined from) the matrix E .



‘E(D + 'D)E

D+'p

cial ¢ with

7.

L ] L )
- -0 00 (-} -t
~ N~ ) !
.ﬂooo OO0 - -ﬂoll.oo -t
pr—— . f— -
™ - e, OO ™ NSO o6=~o l..ﬂ.ﬂ.lo '
o - + ' ! - - O o =00 et e Ny e - o
r~— (-3 - o - O LI} 1 [ ] ]
- —~e GO MO0 weaSN-" wOOO -
[ — | T— ) + [} ] 1 ) ] i
4 J \ v \ -t . J \ 7 L% J
i u "
e,
— o o PR e —— P —
a® -] O O - . I B © = &
2 —_— aaa = caa " mcaas
Qe Nt L
f R
— \ D000 CDOO=0Om™mOO
OO0 0000 =GO - O C O 000 wWO =000
e N 000000 ™mMO =0 o0 OmMOQO OO
F——— ©e 000k OO 00O mMOOO0 ™ OO "N OO ODmMMNEO
L O OO =0 = C OO0 =mOoO% !
- gy -
004.00 O —-e - C O =m0 O oK 00100000.“.-.1 110000004400
\ ) 4 — A\ J 4 J [N J
L — ]
o -
L]
o
o LB - L
oo A0oO0 £ HE -t
f ‘ — ) I's - l—lm £ S
2 d Poos™ S O = - I ) ~ 580 -~ s
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