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Period relations for twisted Legendre equations

by William L. Hoyt

1. Introduction

Fix a square free polynomial T E([t] and let L = LT and q = qT be the

parabolic cohomology group and the quadratic form which are associated as in §§ 3,6 below

with the twisted Legendre equation over ((t)

(i) 2Y = Tx(x-1)(x-t) .

In § 3 it is shown that L has rank 2d+e with 2d = deg(T) if deg(T) ia even and

2d = deg(T)-1 if deg(T) ia odd and e = the number oI a f 0,1 such that T(a) = 0 .

The main purpose oI this paper ia to prove that there ia a bijective isomorphism

fjJ : 7l2d+e~ L such that

(ü)

The prooI oI (ii), which is completed in § 6, is based on general results oI Endo [3] which

imply that all elements of L 8 ( can be represented by periods p(G) of suitable vector

valued integrals of the second kind G = f dG • that q can be defined by an integral

q(p(G)) = f t GPdG , and that this integral for q(p(G)) has a 7l-bilinear expansion in

terms oI suitable values oI G . Proofs oI the results of [3] for the special case considered

here are sketched in § 4 for the convenienee of the reader; and explicit expansions for the

integral for q(p(G)) are derived in §§ 6,7. In addition it is shown in § 5 that d = the

geometrie genus of an associated elliptic 8UIface XT --+ IP1 ' that the holomorphic
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2-forms on Xr have the form w= Rdt A dx/y for some polynomial R E ([t] with

deg(R) ~ d-l , and that each such tJJ determines a vettor valued integral GR of the first

kind such that

(ili)

My earlier paper [6] contains an incorrect formula for qT for the special case

T = (t~)(t-a3)(t-a4) ; and my earlier paper [5] contains a formula for qT on 2LT

(rather than LT ) for the special case T = t(t-l)(t~) . The corrected formulas given

here are needed for applications to problems which are described in [5, 6] and which

cancern variation of Bodge structure, Kuga-Satake varieties, and modular

carrespondences.

My work on trus paper has been 8upported by the Faculty Academic Study Program

of Rutgers University and by the Max-Planck-Institut für Mathematik in Bonn. I am very

grateful to both for helping to make this work possible. I am also very grateful to

Miss Grau for typing and helping to arrange my rough manuscript.
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2. Preliminary definitions

(i) Let g2,g3' fJ = g~-27g~, j = 123g~/ä be weIl known modular forms of weights

4, 6, 12, 0 on the npper half plane SJ: Im r > 0 ; and let ,\ be the Legendre function,

viewed aB the universal cover of IP1-{CD,O,l} ,with r(2)/±I a.cting as fundamental group,

with (enended) values at cusps '\(=':1) = CD, '\(iCD) = 0, '\(0) = 1 , and with

j = 28(,\2_~+1)/ ,\2('\_1)2 . Also for T as in § 1 let

let 8 = IP1-~ ; and let <p: U ----t S and r 1(8) be the universal cover and fundamental

group for S.

(ii) Let

2 4 3 G G Wl'thw=z-2z-3

G2 = 3(t2-t+1)T2 ,

Gg = (t+1)(t-1/2)(t-2)T3 ,

be the Weierstrass equation obtained from (i) by the substitution

(x,y) = (z/T+(t+1)/3,w/2T) ; and let XT ----t IP1 be the Neron model relative to (t)

for these equivalent equations.

(iii) There are holomorphic functions r and h on U and a homomorphism

M : r 1(8) --t 8L2(11) such that
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Im(T) > on U ,

t.p= AOT,

G20cp = (~oT)h-4

G30cp = (g30T)h--{)

h2
= ((G2/G3)oCP)((g3/g2)OT

Toa = M(a)T = (aT+b)/(CT+d) and

hoa = (cT+d)h

far all a E ""1(5) with M( a) = [~~] E SL2(71) .

(iv) One can choose a polygonal fundamental domain D für 1r1(8) on U as

indicated in Figure (iv ') below, with successive vertices at cusps

which lie over points a
CD

= CD and ai EE , with boundary

e+l
IJD = ~ (A.-a.A.)

l. 0 1 1 1
1=

consisting cf pairs of congruent edges Ai' QiAi which lie over suitable arcs

t.p(Ai) = t.p( aiAi) from CD to ai in IP1 I with image T(D) in l) which coincides with a

standard fundamental domain for r(2) on l) (except for deletion of points

T(~),...,T(a~+l) above points ~, ... ,ae+l EE in case e > 0 , and slight detours if

necessary around such points on the boundary), and with generators Qco,QO,... ,Qe+l für

1r1(8) which correspond to suitable clockwise loops about the points of E and satisfy
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(v) Consideration of Figure (iv') and of types of singular fibers for ~ at ai

implies that the values Mi = M( l)i) are as follows:

Mi =-[~~] for i=2•... ,e+! (if e>O),

MI = + [~~] resp. -[~~] if T(I)4=O resp. T(I)=O,

[1-2]MO = + 0 1

[3-2]M en = + 2-1

[1-2]resp. - 0 1

[3-2]resp. - 2-1

if T(O):fO resp. T(O)=O,

if deg T is odd resp. even.

(vi) The universal cover of the complement of the singular fibers of ~ can be

identified with the map

t:U)((----t8 x lP
2

(u,z) ----t (rp(u),(1),h(u)-2'll(Z,T(U),h(u)-3'll' (z,T(u),1)))

with 'll, '+)' the Weierstrass p-functionBj and the fundamental group for ~ can be

identified with semi-direct product 'K1(8) ~"'8.2 operating on U)( (: by

(u,z) ----t (ou,(cT(u)+d)-1(z+mT(u)+n))

for each a E ~I(S) with M(a) = [~~] and for each (m,n) E7P .
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3. Parabolic cohomology

AB in Shimura [7] the monodromy representation M in § 2 detennines a group

Z~ar(M) of parabolic cocyeles, a subgroup B1(M) of coboundaries and a parabolic

cohomology group

(i)

By definition Z~ar(M) consists of all maps Y: wo1(S) ---+ 71.
2 which satisfy the cocycle

condition

(ii) Y( aß) = Y(a)+M(a)Y(ß) for all a,ß E "'1(S)

and also the following parabolic condition: For each ay E "'1(5) which stabilizes a cusp v

for wo1(S) on U there exists Vy E ~2 such that

(ili) Y(a ) = (I-M(o ))V .v v v

B1(M) consists of map8 satisfying the coboundary condition: There exists V0 E Q2 such

that

(iv) Y(a) = (I-M(o))VO forall oE "'1(5) .

(v) Lemma. For fixed 0k as in § 2, let Z~ar(M,ak) consist of all y ' E Z~ar(M)

with y ' (Qk) = 0 . Also suppose that det(I-M( 0k)) :j. 0 . Then there ia a natural bijection
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Proof: For arbitrary Y E Z~ar(M) there exists Vk E «12 such that

Y(O~) = (I-M(Ok»V

t
E .,P .By 2(v) the possible values of I-M(ok) are [~~] ,

[~~J ' [~-~] and ~ -~] . It follows that 2Vk E 712 • that Y"(O) = (I-M(o»Vk E 712

for a.ll a E r1(8) since M( a) Er(2) and I-M(a) == 0 mod(2) , and that Y" is the

unique element of B1(M) such that Y-Y" E7l~(M,ak) . Q.E.D.

(vi) Corol1ary. L can be identified with the set of elements

which s&tisfy the conditions

Ye+1 + Me+1Ye +...+ (Me+l .. ·Ml)YO+ (Me+1" ..M1MO)Ym = 0

Y = 0 if T=l or T = t(t-l) ,m

YO= 0 if T=t,

Y1 = 0 if T = t-l J

Ye+1 = 0 if e > 0 ,

YDJ = ~j = [[~ 4]-[~ iJ] VDJ if deg T is odd

YO= ~O] = [[~ ~] - [~ -iJ] V0 if T(O) f 0

Y1 = [~J = [[~ ~] - [~ ~] ] V1 if T(1) f 0
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Proof: The first condition ia obtained by applying the cocycle condition to the

relation Y(ae+ 1... 4 0
Q cn) = Y(l) = °and the full set of conditions defines one of the

submodules Z~ar(M,ai) with i = m,O,l or e+l. Q.E.D.

(vii) Corollary (cf. Shioda [8]).

rank L = 2(e+3)--4-#{I2 fibers} = 2d+e with

*e = #{IOfibera} and

* * { deg T if deg T ia even
2d = #{12 fibers} + #{IOfibera}-l =

deg T-l if deg T ia odd

Proof: The total number of singular fibers ia e+3 and the last three conditions in

(vi) correspond to 12 fibers. Q.E.D.
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4. Results of Endo

The following results (i)-{iv) for L = LT are special cases of general results of Endo

[3] . The results in [3] are valid for parabolic cohomology groups which are associated

with general Weierstrass equation with c~fficients in a function field over ( and with

non-constant J-invariant. Similar but less general results in Shioda [8], Hoyt [4], Cox

*and Zucker [1] explicitly exelude cases with 10 fibers. A general result of Stiller [9]

provides a more natural proof of surjectivity of the period map p below but does not

consider the period relations b and qT. Preliminary arguments from Shimura [7] are

used below to state (i)-(iv) in terms of vector valued integrals rather than scalar valued

Eichler integrals as in [3]. For the convenience of the reader, proofs of (i )-(iv) are

sketched below. Hypotheses and notation are aB in §§ 1-3.

(i) Let R E 4:(t) be such that the integral

with T = T(u), t = ~(T(u)), ä = &( T(u)) ,

is meromorphic on U and holomorphic on an and convergent as u approaches eusps in

n . Then G
R

has periods

whieh are independent of u and which determine an element p(GR) E L €O 4: .

(ü) There is asymmetrie bilinear form b on the space of such p(GR) whieh is

defined by
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(ni) There exist 2d+e = rank L such integrals Gn = G
Rn

which satisfy

(iv) Consequently all elements of L 8 ( can be represented by periods of such GR j

and q = qT can be defined on all of L 8 ( by

Proofa of (i) and (ii) follow easily from arguments in Eichler [2] and Shimura [7],

combined with relations in (vi) below. Obvioualy (üi) implies (iv). (üi) ca.n be proved by

adapting arguments in [3] as follows: First note that periods p(GR) E L ~ ( can be

defined as in (i) for more general integrals GR, R E ((t) , which are meromorphic on U

and convergent aB u approaches the cusps a;, aÖ' a1in D but which are not necessarily

convergent at &2, a~+l . Also note that such GR are meromorphic at &2, ...,a~+l in

terms of parameters lTi = (T-T(ai))1/2 , and that the bilinear form b can be extended to

such p( GR) by defining

(v)

with the SUDl over representatives v E D U{cusps} for points of IP1 ' with residues at

&2,... ,a~+l computed in terms of the parameters lTi , and with residues = 0 at a;, aÖ'
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&1 sinee the GR converge there.

The fact that (Y) defines asymmetrie bilinear form which depends only the classes of

periods modulo eoboundaries ean be ehecked as in [3] by making use of local expansion for

scalar valued Eichler integrals gR and many valued modular forms gii which are

associated with the GR and whieh satisfy

(vi) gR =-tGRP[r] .
2

gR =~ (gR) = R(t(t_l)/T)1/2ä l/4 ,
dT

gRoa= (CT+d)3gR foreach a E 71"1(8) with M(a) = [~~] ,

tGQPdGR = gQgRdT and

resv(gQgiidT) = resy((gR+A'T+B)gQd'T .

The next step, as in [3], is to show that for each choice of an auxiliary interior point

UoE D there exist 2d+e linear combinations Qn of the 2d+e+2 funetions

(vii) (t--<p(uOni-1, (t-aj+l)-l, (t--<p(uO))~k ,

1 ~ i ~ d, 1 ~ j ~ e, 1 ~ k ~ d+2 ,

with the following property: If En = GQ ,then the only nonzero residues of the form
n

resv(tEmPdEn) are

Because of the last relation in (vi), the desired vanishing and non-vanishing of residues in
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(vili) becomes obvious if one chooses the linear combinations Qn of the functions (vii)

successively in such a way that the corresponding e~ = gQn have local expansions of the

form (with suitable constants Cf0 )

(ix) ei = c( T-T(uo))d-i + 0(( T-T(uO))d), 1 ~ i ~ d ,

ed+e+k = c( T-T(uO))-l-(d-k) + 0(( T-T(uO))d), 1 5 k ~ d ,

ed+j = 0(( T-T(uO))d)

-3 -1 () < <= CO"j+1 + q j+10 1 for 1 _ j _ e ,

e~ = qj~10(1) for n f d+j .

Tc complete the sketch of the proof cf (iii) it suffices to check, as in [ ] , that for

each En there exists a rational function Fn such that

2 Feil - d [n)
n dT2. 11

vanishes at all CUBpS and has poles only on the orbit of Uo . It follows that

and that GR = En-GB has the same periods as En , has poles only on the orbit of
n n

Uo ' converges at Cusps, and hence satisfies (iii). Q.E.D.
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5. Meromorohic 2-foIms

(i) Every meromorphic 2-form on XT with poles only on fibers of XT ----t IP1 has

the form Rdt A dx/y for some R E ((t) . It can be checked that sueh a form is

holomorphie on the fiber above 8 E IP1 if and only if ordsR ~ 0 if 8 f m or

ordsR ~ --d+l if s=m . It follows that d = the geometrie genus of Xrr and that

{tidt A dx/y, 0 ~ i ~ d-l} is a basis for holomorphie 2-forms on Xrr if d ~ 1 .

(ü) There is a relation

which can be obtained by identifYing differentials with their pull backs along cp, T and t

and by combining c1assical relations with relations involving h, G2, G3 in § 2 as follows:

G~ - 27G~ = 362-2t 2(t_1)2T 6 = ~h-12 ,

dj/dT = 3526g~g3/nL\ = 3526G~G3h14/n~ ,

dj A dx/y = (dj/dT)d T A heiz

= 3526G~G3h15(n~)-1dT A dz

= 3526G~G3(362-2t2(t_1)2T6)-5/4!1/4(ri)-1dT A dz

j = 28(t2_t+1)3/t2(t_1)2 ,

dj/dt = 29(t
2
-t+1)2(t+l)(t-1/2)(t-2)/t3(t-1)3

= 293-2G~G3T-7/t3(t_1)3 ,

dt A dx/y=(dt/dj)(dj A dx/y)

= 2-1/ 23-1/ 2( n)-1T-l/2(t(t_l))1/2!1/4dT A dz .

(iü) If .,;..p Rdt A dx/y is holomorphic on XT J then the integral GR is

holomorphic on U and convergent on D U {a;,aÖ,...,a~+1} ; and conversely.
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Furthermore an argument in Shimura [7] implies that are relations

o<J WAW
XT

= J sli gli dz A dZ A dr A dr
XT

1 1
= J J J (Tda+db) A (Tda+db)g:ä gildT A dT

D a=O b=O

= JD(r-T)gli glidr A d'T

= JDtdGR[_~ ~]aGR

= 2J DtRe(dGR{~ ~] Re{dGR)

= 2JODtRe(GR{~~]Re(dGR)

= 2q(Re(p(GR))) .
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6. Fonnu1as for q = qT

(i) For GR aB in 4 (i) let G = GR+V with constant V E (2 . Then an argument

in Shimura [7] yields relations

qT(P(G)) = Jon t GPdG

,e+l J J=L (- )
i=O A. Q'.A.

1 1 1

e+l t J=-, Y.PM. dG
L·_o 1 1 A1- .

1

e+l
= -, tY.PM.(G(al·')-G(ß·a"))

Li=o 1 1 11m

with Yi = Y(ai) = (I-Mi)G(aj'), Mi = M(oi)' ßO= 1 and ßi = Q'i-lßi-l' i ~ 1 .

(ii) The preceeding relations can be transformed aB follows:

with Gi = G(ai), y~ = (Me+l· ..MO)Yml G~ = (Me+1· ..MO)Gm,

Yi = (Me+l· ..Mi+l)Yi and Gi = (Me+loO.Mi+1Mi)Gi for 0 ~ i ~ e+l and with Pi

aB in (iii) below. To verify this, first use the relations G(ßia;) = Yi- 1 + Mi- 1G(ßi_1a;) j
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next regroup the terms involving G and use the relations tM.PM. = P andm 1 1

(Me+ 1···MO)Ym+ (Me+1,,·M1)YO+ ... + Ye+ 1 = 0 j then replace Yi and Gi

and Gi; and finally use the relations - ty i PGi = ty i P i Y i in (iii) below.

(ili) There are relations

by y~
1

_tYaJPGaJ=\DPaJYaJ with PaJ=-H~~] resp. H~ -~] ifMaJ=[~ nresp. -[~ =~J,

-tYOPMOGO=tyopoYo with po=-H~~] resp. -H-~~] ifMO=[~ -~] resp. -[~ -n,
-tYIPMIGl=tYlPlY1 with Pl=-H~~] resp. H-~~] ifM1= [~~] resp. -[~ ~J,

_tY.PM.G.=ty.P.Y. with P.=-~p für 2~i~e+l ,
111 111 1",

and so p~ = P. =-lp and p~ +tp~ =0 for 2<i<e+l.
1 1 '" 1 1 --

[-2 2] [-2W+2Z]
Ym = -2 2 Gm = -2w+2z '

ty Y = 2(-2w+2z)2 andm m

t [ z] 2 1 t- Y PG = -[-2w+2z,-2w+2z] = +2(-w+z) = 7" Y Y . Etc.
l1l m -w ":I: m m
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(iv) Lemma. If e ~ 2 and Q~ = P~ +tp~ t then
1 1 1

Y'
m

Y'= Y'o

P' 0 0 0 0
m

o Po 0 0 0

= BCY", A= 0 P Pi 0 0

o P P P20

o P P P P3

, A+tA=

Q~ 0 0 0 0 ...
o Qi t p t p t p

o p Qo t p t p

o P P 0 t p

o P P P 0

1 J Q,tptptpt p ...
1 m m

Jo 0 p Qü t P t P t P

B= 0 I , c= J 1 , tB(A+tA)B= P P Qi t p t p

-I -1. ..-1 I P P P 0 P
0 I P P P P 00 0.... 0

Jm= mresp. [5~] if Mm= [~=~] resp. -[~ _~]

Jo= mresp. [5~] jf MO = [5 -~] resp. -[5 =~]

J I = [~] resp. [5~] if MI = [~~] resp. -[~~] .

Proof: This follows from the final relation in (ü), the conditions on the Yi in 3 (vi),

and corresponding conditions on the Yj . For examples see the proof of (v), and § 7 below.

Q.E.D.
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(v) Proposition. H e ~ 4 and if Tl = T/(t-ae)(t-ae+l ) , then

rv [0 1] [0 1]2qT Y. 2qT1 fB 1 0 EI 1 0 .

6 4
Proof: For exa.mple for T =TT (t-&.), Tl =TT (t-a.), e=5, there ia a

. 2 1 . 2 1
1= 1=

relation

with factors as follows:
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A+tA B (A+tA)B

Q' 0 0 0 0 0 0 0 ' I 0 0 0 0 0 Q' 0 0 0 0 0Q) Q)

0 QÜ tp tp tp tp tp tp 0 I 0 0 0 0 p QÜ+PO 0 0 0

0 p Qi tp tp tp tp tp 0 0 I 0 0 0 P 2P Ql+P 0 0 0

0 p p 0 tp tp tp tp 0 0 0 I 0 0 P 2P 2P P 0 0
0 P P P 0 tp tp tp 0 0 0 0 I 0 P 2P 2P 2P P 0
0 P P P P 0 tp tp 0 0 0 0 0 I P 2P 2P 2P 2P P
0 P P P P P 0 tp -I -I -I -I -I -I 0 P P P P P
0 P P P P P P 0 0 0 0 0 0 0 -p 0 0 0 0 0

tB(A+tA)B tEtB(A+tA)BE *Y' Y

Q' t p tp tp tp tp Y' Q' t p t p t p 0 0 Y'
(J) Q) m m

p QÜ t p tp tp tp Y' P QÜ t p t p 0 0 Y'0 0
P p Qi t p t p tp Y' P p Qi tp 0 0 Y'1 I

P P P 0 tp tp Y' P P P 0 '0 0 V'-V'-V'2 234
P P P P 0 t p yl 0 0 0 0 0 P Y/+Y'

3 3 2
p P P P P 0 y' 0 0 0 0 p 0 y/+yl

4 4 3

Note that the y~, Yü' Yi, Y2 block of tB(A+tA)B is the analogue of tB(A+tA)B for

2q
TI

. Also note (in general) that Jm, JO' JI in (iv) are the same for both T and Tl : In

thepresentexample, Mm= [~J], Jm= m and y~ . mmm forboth T and Tl"

Since the row operations used to define E do Mi affect Y~, Yü' Yi ' it follows from

3 (vi) that 2qT is completely determined by tEB(A+tA)BE, that 2qT is completely
I

determined by the y~, YÜ 1 Vi, Y2 block of tB(A+tA)B ,and that
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2qT ~ 2qT1 EB [~ ~P] ~ 2qT1 EB [~ ~] EB [~ ~] .

Clearly a similar argument works whenever e ~ 5 . However for e=4 a modification

of tbis argument (and of 3 (vi)) are needed to avoid row operations which affect Y1.For

example if T = rr (t-a.) with e=4, then the condition Ys = 0 in 3(vi) can be
. 2 11=

replaced by the condition Y = 0 with corresponding changes in Y~, B, C and E.m 1

Details are omitted. Q.E.D.

(vi) Similar arguments, wbich stop short of replacing Yi' Gi by Yi, Gi I show that

2qT is determined up to isomorphism over U. by relations of the form

with Z E (2d+e , with p(G) --+ Z inducing an isomorpbism L
T
~ 1l2d+e , with

suitable E determined by conditions in 3 (vi), and with

D - p 0 0
m

PMO Po 0 0

PMIMO PM1 PI
P2 0 0 ...

0 -P P3 0

P -P P4

(vii) The relation 1 (ü) can now be verified as follows: First if T = 1,t,t-1 , then

d=e=O and qT=O. Next i80morphisms such aB

X(t-1)(t-a)~ Xt(t-l+a), (t",x,y) --+ (l-t,1-x,y) ,
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which permute fibers above aJ, 0, 1 , can be used to transform all other cases with e<4

into one of the special cases for which the relations in (vi) above are calculated explicitly

in § 7 below and for which elementary row and column operations can be used to verify

1 (ü). Finally the proposition in (v) above together with the relation

[
: I 0 0] [:!: I 0 0]tE 0 0 1 E' = 0 Tl 0

oI 0 0 0 :1

reduce verification of 1 (ii) for other cases to cases with e<4. Q.E.D.

(viü) In each of the special cases tabnlated in § 7, the vectors Y E 1l2(e+3) and

Yi E 112 satisfying the relations specified in 3 (vi); and these relations determine (and can

be explicitly determined trom) the matrix E.



7. Special Cases with e < 4..

T D+ tn y E z tE(D + tn)E

1
0

[~]
I 1 (-n] [ -I]-T o -I 2 -1

o -I
1

1 2 -3 2 0 I

0 1 -1 0 2 -I 0

t-~ I -1 2 o -1 1 0 0 0

2 -3 2 -1 -1 0 -A
-1 2 1 0 o -1 0 0

0 0 0 0

[* * *1 [~;] [11]
[=: ] [: ~]

t(t-t) * 0 0 -2 1
o 1 -I 0

* -2 -1 1 0
1 0 0 0

* * * 0 8 000

[=:J
_[ 00-I ]

0 0 2 -1 - 000 01 0
0

t{t~} 1* 1
n 100 -10-1

0 1 o 0 0
0

010
2 1 -1 0 D

I 000 [ 10 0]* -I 0 o -1 0 • :; 0 I 0
N

I 0 0

2 001
N

n ***0 0 2 00-1

* *
0 o 0 0 0

[~n
CI -I 2 -I ]

-1 0
0 o 0 0 0 -I -I I 0

2 -I • I 0 0 0 2 I 0 0
o -I 1 0 0

0 0 o 0 0 0 -I 0 0 0
2 1 -1 0 0 o 0 0 0

{t~)(t-a3} I -1 0 o -1 n o I 0 0 [-1 000]I 0-1 0 0

0
o 1 111 o 0 I 0 :l:2 o 0 I 0

0 -1 0 n o 0 0 I
2 o 0 0 I

o -1 • -11 -I 0 I 0

* 1 0
0 n -~ -~II -2 -I 0 I

2 I 0

I
-"{ 0 o -1 2 -I ~ 10000

[~j] [-1 11-I 111o -]' 1 2 -3 2
-1ID

1 0 0 0 0 1 -I -I 2-1

0 1 -1 0 2 -I 0 • o I 000 I -I -I I 0

-1 2 o -I 1 0 0
0 o 0 0 0 0 -I 2 1 0 0

2 -3 2 1 -1 0 0 o 0 0 0 0 1 -I 0 0 0

(t~)(t~3)(t-a4) I -1
n 00100

2 -1 0 o -1 1- 00010

[-I -: -I I:10 1 o -1 2

0 -1 0 1 0
n

2
o 0 001

• -I 1 0 I 0 ;;
o -1 0 1 S

-I 2 1 0 I0 0 D

1 0 -I 0 OS o 0 000
o I o -1

0 0 o 000 0

-1 0 1 0



- 23 -

t(t--l)(t~)(t~3)

0
0

0 o - 2 1 2 ... 1111• • 0 1 0 0 o· 0 0 0-2 1
°0 0 1 - 1 0 1 0

0 0
111 0 1 0 0 0 0-1 0 0 m -2 -I 1 0 o -1

0 1
n 0 0 1 0 0 0 10 0

° 1 0 0 0 1 0
-2 -1 1

11 0 0 0 1 0 0 1
0

0 0 1 m 2 1 0 1 0
1 0

n 0 0 0 0 1 0 2
0

o -1 1
°2 -1 o - 1 o -20 11 0 0 0 0 0 11 0 2

-1 o -1 o -1 0
(4+,2-)

n
0 1 2

-2 -1 o -1 0 10 11
3• -1 0

Da

t(t~)(t~3)(t--a4)

• 0
• 0 00 2 -1

0 1 1 0 0
1 0 0 0 0 0 0

0 o -1 2 -1 -2 1
0 m

O2 1 -1 0 11
0 0 1 0 0 0 0 0 n 0 1 0 1 o -1 0-1 0 o -1 D
O 0 0 0 0 0 0 0 0

-1 o -1 1 o -1 0no -1 0 1 m
0 0 1 0 0 0 0 1

2 1 1 0 0 o -1
1

11
0

1 o -1 0 ° 1 0 0 0 2
0 0 0 1 0

1 0 0 0 n -1 00 1 o -1 m
0 0 0 0 1 0 0 2

2 -1 -1 0 1 0 0
0 2

11
30 -1 0 1 0 °2 0 0 0 0 0 1 0 Da 1 0 0 - 1 0 0 00 1 0 1 11

0 0 0 0 0 0 00 a
(4+,3-)

• 1 o -1 0 n
3

11
4

1 0 o -1 0 1 0
n 2 1 1 o ..1 0 1



-24-

References

1. D. Cox and S. Zucker, Intersection numbers of sections of elliptic surfaces, Inv. Math.

53 (1979), 1--44.

2. M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1959),

267-298.

3. Y. Endo, Parabolic cohomology and generalized cusp forms of weight three associated

to Weierstra.ss equations over function fields, Thesis, Temple University (1985).

4. W. Hoyt, Parabolic cohomology and CUBp forms of the second kind for extensions of

fields ef modular functions, in Proc. of Conf. on Automorphic Ferms and Fuchsian

Groups, T.A. Metzger, Ed. Univ. of Pittsburgh, 1978.

5. W. Hoyt, Notes on elliptic K3 surfaces, in LNM No. 1240, Springer-Verlag (1987),

196-213.

6. W. Hoyt, On twisted Legendre equations and Kummer surfaces, Theta Functions,

Bowdoin 1987, AMS Proc. Symp. Pure Math. Vol. 49 Part 1,695-707.

7. G. Shimura, Sur les integrales attachees aux formes automorphes, J. Math. Soc.

Japan 11 (1959), 291-311.

8. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 29 (1972), 20-59.

9. P. Stiller, Special values of Dirichlet series, monodromy and the periods of

automorphic forms, Memoirs of AMS, No. 299 (1984).


