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Abstract. In this paper, using the additivity of the topological Euler-Poincaré char-
acteristic of a complex stratification, some elementary properties of the behaviour of
the Euler-Poincaré characteristic in linear systems of divisors are established. As a
corollary a new simple proof of the Dimca-Némethi formula for the multiplicity of the
dual variety is presented. The method of the proof allows to extend the formula for
the case of any codimension of the dual variety and to give a general formula for the
degree of dual variety.
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Let M be a connected compact complex manifold and let E be a holomorphic vector
bundle over M. Let v € H(E) \ 0 be a holomorphic section of E and let X = v~1(0).

Then, we define the number p(M, X) (or just u(X), if M and E are obvious) as
p(X) = (~1)HmMmEmER ((X) - x(M, E)),

where x(X') denotes the topological Euler-Poincaré characteristic of X and x(M, E) is
the Euler-Poincaré characteristic excpected for a smooth zero set of a section (i.e. of a
section transversal to the zero section), which can be expressed in terms of Chern classes

c(E),c(M) of E and M as follows
M) X(M, E) = (caim(E)-c(M)/c(E), [M]),

where [M] is a fundamental class of M (for a more general formula for the Euler-Poincaré
characteristic of smooth degeneracy loci see [P]). One may prove (1) in the same way
as in the case of line bundle (see [H]). The normal bundle of X (provided it is smooth)
equals F|x and consequently the tangent bundle equals TM|x/E|x. Therefore, x(X) =
(c(X),[X]) = (c(M)|x/c(E)|x),[X]) and (1) follows from the fact that i, ([X]) =
[M] N caimpe(E) (here 7 denotes the inclusion X C M). For the case dimE = 1 see
[P] for the discusion of the properties of x(X'). In particular, in this case, if X has only
isolated singularities, then
2 wX)= > wX;p),
pESing(X)

where u( X; p) denotes the Milnor number of X at p (see [M] for the definition).

The aim of this paper is to study the behaviour of this number (i.e. in fact the behaviour
of the topological Euler-Poincaré characteristic) in a system of linearly dependent divisors

(Proposition 1) and using its properties to prove a formula (Formula 2) for the multiplicity



of the dual variety. This formula generalizes the Dimca-Némethi formula (Formula 1, see
also [D1] [N]) to the case of any codimension of the dual variety. As a corollary we
reprove (Proposition 2) the generalized Plcker formulas for the degree of the dual variety
(see e.g. [Ho], [Ka], (K1],[K2]).

Let L be a holomorphic line bundle over M (M as above) and let V be a k-dimensional

vector subspace of P(H®(L)). Consider

T={(z,v) e M xV;v(z) =0}
and the canonical projections p;,p, of T onto M and V respectively. Note that there
exists a stratification S of V such that x(p2)~!(v) is constant along each stratum of S.
For example we may take a stratification such that p, is topologically locally trivial along
each stratum. The existence of such a stratification follows from the existence of Whitney

stratification of a complex analytic set (see e.g. [L-T]). In the case k& = 1 this stratification

consist of a finite set and its complement.

PROPOSITION 1. Let V be a k-dimensional linear subspace of P(H®(L)) such that
a generic section in V has a smooth zero set X;. Let Y denote the base points set
of V and let S be a stratification of V such that x(pz)~'(v) (p; defined above) is

constant along each stratum of §. Then the number

Y(V) =Y x(S)u(Xs) + (1) u(Y),
Ses

where p(Xs) = (=1)¥*™M(x(X,) — x(Xs)) and X5 denotes a generic fibre of p over

S € 8, does not depend on V but only on L and k and equals
(=1)™M (ko (M) — (k+1)-x(M, L) + x(M, k-L))
=(=1)#"M((k-o(D)** = (k + 1)-e1(D)-o(L)* + ex(L)*F)e(M)/e(D)*H, [M])).

(in particular for k = 1 it equals (—=1)¥™M (c(M)/c(L)?, [M]))



NoTATION. We will denote the number from Proposition 2 by ~i(L).

Proof The main tool we will use in the proof is the good behaviour of the Euler-
Poincaré characteristic of a complex stratified set (see e.g. [L.T]) and of a fibration. First
we compute x(7") using p; and next pp. So,

X(T) = x(M\ p7}(Y)) + x(pT ' (Y)
3 = x(M\Y)-(x(V) = 1) + x(¥)-x(V)

= k-x(M) + x(¥).

On the other hand we have

€) X(T) =Y x(8)-x(Xs),

5es$

where x{Xg) denotes the Euler-Poincaré characteristic of a fibre of p; over S € S. By
comparing (3) and (4) we obtain

S X(S)u(Xs) + (~1)F u(Y)
SES

=(=1)*™M (k- x(M) = (k +1)-x(M, L) + x(M, k-L))

The last equality of the statement of the proposition follows directly from (1).

O

Assume that M is imbeded into P¥ in such a way that it is not contained in any
projective subspace of PV, Consider on M the bundle L associated to the restriction to
M of Opn~(1). Then we can treat PN_the space of hyperplanes of PV as a subspace of
P(H'(L)). The set of hyperplanes H for which H N M is singular is a proper subvariety
of PV and is called the dual variety of M and denoted by M (see e.g. [K1], [K2] for
more information). We will use Proposition 1 for studying the properties of H M M. First

we need the following lemma.



Lemma 1. Let M C PV be a smooth irreducible subvariety. Then, for H € Reg(M)
the set of singular points of M N H is a linear subspace (TyMY of PN. Moreover,
at any its singular point M N H has a transversal singularity of the type A,. For an
arbitrary H € M the dimension of the set of singular points of M N H can not be

smaller than for generic one i.e. codimM — 1.

Proof The first statement follows from Biduality Theorem (see e.g. [K1]) which says
that M = M. In fact, let C(M) C P x PN be a projective conormal space i.e.
C(M)={(z,H);T;M C H} and m, m, denote the projection of C(M) into the factors.
Then M equals the image of C(M) by 7. By Biduality Theorem Sing(M N H) =
mi(ry (H)) = (TyMY and H is a regular value of 7, iff H € Reg(M). To examine
Sing(M N H) locally we follow the notation of [D1] . Take zo = 0 € CV¥ ¢ PV and

assume that M near z, is given by

h:(C™,0) — (CN,0); At) = (t1,- .- tn, fas1(t),. .., [N (L)),

for some germs of analytic functions f; : (C",0) — (C,0). We may assume %{;‘I-(O) =0
for each j = n+1,...,N;m = 1,... ,n. We parametrize affine hyperplanes H :

ao+ajuy +...+ayuy =0 (normalizing ay = 1) in CV and tangent to M near z, by

— Zf:l ajh;(t) ifm=0
am(t, @) = —Z;v:n“aja{';(t) ifm=1,...,n .
Cm fm=n+1,..., N,
where @ = (apt1,... ,@N-1) € CN-"-1 and anx = 1. Assume that Hy, € M given
by {ao = a; = ... = ay—; = 0} belongs to Reg(M) and is a regular value of m; :

C(M) — M. Consider the points of m,"(Hy). They are defined by the equations

= =808 =0,a=0.



Take the point of 7, 1(Ho) corresponding to zg (i.e. ¢ = 0, @ = 0). It is a regular point

of w4, so the differential of =,

(At a)) (*)
(— Z;v:"'{'l ) a: f.t‘ )i,l:l,... R (* )
(0) (Id)

has constant rank, say s, 0 < s < n, in the neighbourhood of this point. Since A(0,0) =0,

the matrix

""EN . 8 f;
j=n+1 aJ ;8¢ ‘i,‘=1,. n

has also constant rank s. In particular we obtain that at the points of Ho N M the Hessian

2
H(t) = (‘E‘aﬁé% )i,l=1,... n

has also constant rank s. After a linear change of variables we can assume that at z, (i.e.

t=0)

- (157 )

We know that Sing(Ho N M) is (near x¢) the zero set of %[tlli, e ,%Q;i. We claim that
it is defined by the first s of them. In fact, they have independent differentials near x and,
by biduality, Sing(H, N M) is a submanifold of M of codimension n — s, so the claim
follows. It is now obvious that the transversal singularity of fn at z¢ is a nondegenerate

one. The last statement of the lemma is obvious.

O

REMARK 1.. When M is a hypersurface or a complete intersection, then it is not
difficult to see that M is a hypersurface (see e.g [K2]). Moreover, then m, is finite (see
1], 2] or [F-L]), so the intersection M N H has always only isolated singularities.
Generaly, we have trivially dimM > codimM — 1 and, for M smooth as above,
dimM > dimM (see [Z],[F-L] and also [K1]).

5



Assume codimM = 1. Then the following formula for the multiplicity of the dual

variety holds.

FORMULA 1. (Dimca, Némethi)

Let codimM =1 and H € PN. Then,
muM = py(MNH)+ u(MNHNH,),

where H, is a generic hyperplane of PV.

The formula above was first proved by Némethi in [N] as a corollary of his Affine
Lefschetz Theorem. In the case when Sing(M N H) is finite it was also proved, by
elementary methods, by Dimca in [D1]. Then M N H N H, is smooth and the fomula has

a simple form

myM = Z p(M N H;p).
pESing(MnH)

Now we generalize the formula for the case of any codimension of M.
FORMULA 2. Let k = codimM and H € PN. Then,
muyM = (MO H)+ (-1 w(M N HNW,),

where W, is a generic dimM -dimensional linear subspace of PV.

Proof For H ¢ M, it is obvious. If H € Mreg, then by Lemma 1 M N H N W, is

smooth and the formula follows from the following lemma.

Lemma 2. For H € M,.,
w(MNH)=(-1)F1,

6



Proof This follows, for example, from Propositionl.5 in [P} and Lemma 1. We can
prove it also using Proposition 1. First note that +,_;(L) = 0. Let V' be a generic

(k — 1)-dimensional linear subspace of PY going through H. Then, by Proposition
(-1 u(V' N M)+ p(MNH)=0.

But by Lemma 1 V' N M has only one nondegenerate singular point and so the lemma

follows from (2).

O

Take arbitrary Hy € M and consider a generic k-dimensional linear subspace V' of
P¥ going through Hy and crossing M \ H only at regular points H,, Hg,... , H, with
transversal crossings. We can assume also that ! contains a generic hyperplane H, (in

particular V' is not tangent to the normal cone to M at H). Move V a little to obtain

t
3

a linear subspace V' crossing M only at regular points :H!, H},... ,H! coresponding
to Hi,H,,... ,H,;and H.,,... , H.,,, coresponding to Ho, where m = myM and
s +m = degM. Then, VI hM and by Proposition 1

. (L) =p(M O H) + s+ (-1)" ' y(M V)

® =m+s+(-0)"MuMnV),

Since V' is general M N V' is smooth and consequently u(M N V') = 0. The formula

follows from (5).

O

Next using Proposition 1 we prove the formula for the degree of dual variety which is

due to Holme [Ho] ( for k = 2 to Katz [Ka], see also [K1]).

Proposition 2. Let k = dimM. Then,

(L) = = y-1(L) = 0,7(0) > 0

7



and

degM = yi(L)
= (="M (k- x(M) — (k +1)-x(M, L) + x(M, k-L))
= (=T M(RET (M) /(1 + R)$H, [M])

dimM ,.
= (—1)%mM Z (z -;; 1) (=h) cdimm—i(M), [M]),

i=k—-1

where H,, is a generic hypersurface of PY | W, a generic linear subspace of codmension

k and h is the hyperplane class.

Proof The first statement is obvious. Take a generic k-dimensional linear subspace V
of PN, Then V intersects M in exactly degM regular points. Because V is generic, its
base points set is smooth (Bertini Theorem) and consequently by Proposition and Lemma

1

w(L)= Y w(mnH)=degM.
HeMnV

To end the proof of the proposition it sufficies to prove that
(=DM k(L + h)**T — (k+ DAL+ h)* + R Ne(M) /(1 + B)*H, (M)

= (=1)HmHM(RE (M) /(1 + b)Y (M),
This follows from the following lemma.
Lemma 3. Let M be a connected compact complex manifold and let L be a holo-

morphic line bundle over M. Then for each s € N we have

Yo + 2+Ya—1 + Yi—2
= (—1)™M (e, (L)1 o(M)/e( LY, [M]),

8



where y—1 = o = 0.

Proof This follows directly from Proposition 2 and the following formula
Sk(t) = 25k-1(t) + Sk—a(t) = 571 /(1 + )"+,

where S;(t) = (i(t + 1)+ — (i + 1)t(t + 1)* + t*F1) /(¢ + 1), applied to t = ¢;(L).
This ends the proof of the lemma and of the corollary.
O
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