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Introduction.

This is a slightly revised version of my notes prepared for the

lectures given in Genova (Italy) during the second fortnight

of February 1987.

Let us start by recalling a few classical notions to fix

our notations. Let k be an algebraic number field of finite

degree over m. The (absolute) Weil group W(k) is defined,

[23], [24], as the projective limit-

W(k) = lim W(E!k)
<-

of relative Weil g~oups W(Elk) ,where Evaries over all the

finite Galois extensions of k . Each of the relative Weil groups

W(Ejk) is qua~i-compacz:

where m+ is the multiplicative group of positive real nurnbers

and W
1

(Elk) is a compact group, being an extension of the finite

Galois group G(Elk) of E over k by a compact group of

idele-classes having unit volume. Any conzinuou~ finite dimensional

representation

W(k) ---> GL(~, ~) ( 1)

factors through W(Elk) for some E. We say that r is
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no~mali~ed if it factors through W1 (E!k) for a finite Galois

extension E Ik • Let So (F), 51 (.F) , and 52 (F) denote the sets

of prime ideals, of real places and of complex places of a

number field F, respectivelYi sometimes we write

5
00

(F") : = 51 (F) U S2 (F) , and S (F) : = So (F) U 5
00

(F) • For

P E: 5 (F) , let F
p

be the completion of F at r and let Fa
p

denote the maximal abelian extension of Fp . With a finite

Galois extension Elk and a pair of primes .P € So (E) ,

P € SO(k) such that plp one associates the inertia subgroup

and the Frobenius class

for a E V }
P

Ta. = alp] (mod p) for CL E ".. }
P

in G(Ealk) , the Galois group of
p p

stands for the ring of integers in

over kp , here ~p

and we write, for brevity,

where a ranges over the fractional ideals of a number field F .

The Galois group G(Ealk) is regarded as a subgroup of W(Elk)
P P

Let V be the representation space of ~ and suppose that r
factars through W(Elk) i one defines a vector space

Vp = {xIx E: V , TX = x for T E: I }
P
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and proves (cf., e. g., [14, p. 21·]) that the set

1s finite. Let

L(s,X) = ( 2 )

where X :=

p(T) Iv of
p

only on 0p

factor

tr f ' p(ap ) = p"(T) 1 V f er
p

the operator r(T) to vp

hut not on the choice cf

T E 0p (the restrietion

is easily seen to depend
,

T i moreover, the Euler

-1
det(I-r(Op) [pl-S)

depends only on p but not on the choice cf p above p). If

f is normalised (or if it is unitary) then the Euler product (2)

converges absolutely in the half-plane Re s > 1 • Continuing the

function

meromorphically to ~ , one defines the Weil L-function, [24],

associated to f. If the image cf r is 6~n~te, it can be

shown to facter through the Galois group G(Flk) cf a finite

Galcis""extension Flk on the ether hand, since
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any one-dimensional representation of W(k) may be identified

with a Grössencharakter of k (here Ck denotes the idele-c!ass

group of k ). Thus the class of Weil L-functions contains both

any Artin L-function and any Hecke L-function "mit Grössen-

charakteren". Let X (k) be the set of all the cont'inuous

finite-dimensional normalised representations of the form (1)

and let gr (F) be the group of normalised grossencharacter·s

of an algebraic number field F . We shall view an element of

gr(F) both as a character of CF (trivial on m+ embedded

diagonally in the connected component of CF) and as a multi­

plicative function on the monoid Io(F) of integral ideals.of

F • By a theorem of R. Brauer, [1], the Weil L-function (2) may

be decomposed in a product of abelian L-functions (cf. (241):

L e.
- I I L ( s , lP.) ~ , e

i
E {-1, 1} , <0. E gr (E .) ,

i=1 ~ ~ ~
( 2 I )

where k ~ Ei ~ E (assuming that ~ factors through W1 (Elk) ,

say). It has been conjectured, [24], that the function

where g(X) denotes the multiplicity of the identical represen­

tation in r, is holomorphic in ~ (A~~~n-We~l conjectu~e) .
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Lecture 1. Eht~ma~eh 6o~ eha~ae~e~ hum~ ~n numbe~ 6~eld~.

Let A E gr(F) and let F(A) denote the conductor of A ,

then

A((a)) = for a = 1(F(A)),

where ~F denotes the ring of integers of a number field Fand

~ = a (~), a : F ~ F being the natural embedding of F into
p p p P

its completion F at the place p. Moreover,p

t (A) E JR, a (A)
p p

E Z, a (A) E {O,1}
p

for P E 8
1

(F) •

We write

1/2 It (A) I+la (A) I
a (A) = n (2+1t (A) I) n (2+ pp),

pES 1
P pES 2

2

and

1/2
b (A) = ( I DF 1 NF/<eF(A) )

where DF 1s the d1scriminant of F. One develops the Weil

L-function (2) in a Dirichlet series:

L(s,X) = I c"(a,x) ]al-s

aEIo(k)

and remarks that
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c(a,x) = x(a) for X E: gr(k) .

Let

~j W(k) ---> GL(d j , ~), 1 ~ j ~ r ,

be a continuous normalised representation of the Weil group of

k and let

...
L(s,X) =

r
L 1a l-s 'n c(a , X.) ,

aE:l o (k) j=1 J
(3)

letwhere X:= (X1'···'Xr ), Xj := tr rj · On the other hand

k j be a finite extension of k and let d j = [~j:k], 1 ~ j ~

so that

and let

r .

~

L(s,A) =
r

L la I-s n c (A.) ,
aE:lo(k) j=1 a ]

(4 )

-I.

where A:= (A 1 , ... ,A r ) . We call the function (3) the scalar

product of'Weil L-functions L(S,Xj)' 1 ~ j ~ r , while the
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function (4)- is called the scalar product ove~ k of the Hecke

functions L(S,A
j

) , 1 ~ j ~ r . Regarding A
j

as an one­

dimensional representation of W(k.) we deduce from the basic
J

properties of the Weil L-functions that

when o = IndW(k) "\
'J' W(k.) 1\.

J J

and, in particular,

.... ~

L(S,A) = L(s,X) when = I d-~ (k)"\ 1 <' J' <'Pj n-w (k .) _I\j' .01 .. r ·
J

(5 )

Proposition 1. Let ~ = V1 0 ••• @ fr ' X = tr r . Then

(6)

2 ~

wheJte. cI>p(t) E CJ:[t], <t> (t) = 1 (mod t ), SO(x) A..c a 6.i.Y1.i..te. .6 e.:t. ,p

Ip(t) E CJ:[t] . MoJteove.~, :t.he. degJtee.6 06 cb (t) and 1 (t) aJte..
d p P

bou.nded by d-1, d := n d
j

.
j = 1

Equation (6) defines a meromorphic continuation of the
~

function s ~> L(s,X) to the half-plane 1
Re s > 2 since

~

L(s,X) is meromorphic in ~, So(X) is finite and the product

Moreover, by a theorem

meromorphic continuation of the scalar product

L-functions to the half-plane Re s > ~

converges absolutely for Re s > ~ • Thus, by (5), we obtain a
~

L(S,A) of Hecke
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of G. Mackey, [12], a tensor product of monomial representations,

i5 equivalent to a direct SUffi of monomial representations, so that

L(s,X) satisfies the Artin-Weil conjecture when each of Pj ,

1 ~ j ~ r , is L'"lduced by a A. • To be more prec-ise, we have the
]

following result.

Corollary 1. E., 1 S i ~ v , and g~o44en­
~

eha~aete44 ~i 4ueh that

~ v -1 ~
L(s,)..) = n- L(S,Wi) L(s,4» L o (>..,5)

i=1

1
Re s > :2 ' (7)

whe4e Lo(t,S) = rl ~ Ip(lpl-S
) ~n notat~on4 06 (6), Wi E gr(E i )

pESo(X)

k c Ei ~ K , K be~ng the 4malle4t Galo~4 exten~~on 06 k eon­

ta~n~ng eaeh 06 the 6ield~ k. , 1 ~ j Sr.
]

In particular, one rernarks that

~

L(s,>")

...
= w ( >.. , s) + f ( s), w(r, s) EC[ 5 ] ,

(s-1)w

where f(s) is holomorphic for s = 1 and

w = card {ilwi = 1} •

The methods of classical analytic number theorYr [10], lead to

an asymptotic estimate for the SUffi

~ r
A(X,A):= Y. rl c (A.) ,

la T<x j =1 a ]

and, more generally, for the 5um
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r
~ n c(a,x j ) ·

JaT<x j=1

~ .
A(x,A) = x Pt(log x) + R(A,x)

and

(8 )

~

= x P~(log x) + R(X,x)
X

(9 )

where Pt(t) (respectively, Px(t)) is a polynomial in ~[t] of

degree w-1 (respectively, g(X)-1 ) whose coefficients are effectively
..a

computable in terms of the behaviou~ of L(s,A) (respectively,
...

L(s,X) ) in the neighbourhood of the point s = , • If w = 0

(respectively, g(X) = 0 ) we let Pt(t) = 0 (respectively, PX(t) = 0) ·

Theorem 1. E~t~mate (9) hold~ w~th

~ ~ ~

R(X,x) = O(x exp.(-c, (X) Ilog xl), c 1 (x) > 0 ,

""'"~~ x ~ 00 with e66ectively computable (in te4m~ 06 x) con~tant~.

M04eove~, i6 L(s,X) ln (6) ~ati~6ie~ the A~tin-Weil conjectu~e,

the.n

~ 1-h+E: nd
R ( X , x ) = 0 (C 2 ( E ; Ö1 ) B (X) x N+ L. ( log x) ), E > 0 ,

whe.~e., in notation~ 06 (2'),
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_ ~ . ej +1 _ ~
N - j~' [E j .Oll 2 ' . ö, - d card(So (X» , n = [k:W] ,

with Bo depending on

eaeh 06 the 6unetion~

:the~i~ we have

g (X) a. nd j t (e j -1) 0 nf. y . F.üta.U y, .(. 6

L(s,~.) ~n (2 1
) ~ati~6ie~ Riemann hypo­

~

In view of Corollary 1, one obtains as a consequence of Theorem 1

the following result.

Corollary 2. E~:t-imate (8') hold4 w-ith

~

R(:\,x)
v 2 2 1--L. d= 0 (C 2 ( e: ; ö1) ( n. a (l~ .) b (~ .) ) 6 W x N+ 2 + e: (lo.g x) n) ,

~=1 1. ~

\)

wh ett.e N = I [E.: CD], E > 0 •
j=1 ]

We remark that an estimate of the form

R(X,x) = O(x 1/ 2 - y ) with y > 0

would imply"the Artin-Weil conjecture for L(s,X) and that, on

the other hand, the well-known n-theorem, [2], for grossen-

characters gives

y 1 1
R(X,x) = O(x ) ~ y ~ 2 - 2n
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when X € gr(k) .

Corollary 2 will be used in the last lecture to obtain an

eq~idistribution theorem for integral ideals having equal norms.

Theorem 2. Suppo~e f ~~ no~mal~~ed and L(s,X) ~ati~6ie~

(2'). Then

L X(p)
IpT<x

x d l.l cx.
= g (X) J u' + 0 ( r (x ] + IX [E

j
: W] +

2 log u j=1

wheILe et.
]
2(when t,p. =
]

e.a.c.h 06 the.

the.n

L X(p)
jpl<x

L(s,t,p.)
]

1 ) and whe.~e. x(p) := tr \,(Gp ) 60IL p E: So(k) • .76

L(s,t,p.), 1 ~ j ~ l.l , ~ati~6ie~ R~emann hypothe~i~,
]

x du ~ ~
= g (X) J

2
log u + 0 (IX l. [E.: W] log [x l. a (t.P j ) b (t,p . ) ] )

j=1 ] j=1 ]

This theorem may' be proved along the classical lines (cf.,

for instance, [15]); it will be a starting point of our con-

siderations in the next lecture.
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Lecture 2. A new pJt-ime· numb eJt theoJtem.

tet ISj(k) I = r j , j = 1,2, so that n = r t + 2r
2

' and let

Ek be the group of units in k . By the Dirichlet's unit theorem,

we can write

x W ,

where W is a finite cyclic. group. Let

n ~= JRr 1 x 11' r 2
X = k \10

pES P
co

and let X* be the group of invertible elements in the m-algebra

X ; let i denote the diagonal embedding of k* in X* . Obviously,

X* / i (E
k

) :;; JR+ x T ,

where T is an (n-1)-dimensional real torus. Finally, consider

a homomorphism

f I(k) -> T

subject to the condition

f ( (Ci.» = 'Jf (i (Cl) ) f or Ci. E k * ,

where rr denotes the natural projection of X* on T and I(k)

stands for the group of fractional ideals of k.
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Theorem 3. Le..t U be. a ".omoo:th" .6ub.oe.t (* of T and te..t A

be a. conjugacy cla.oh ~n .the. Galo~.o g~oup 06 a 6~n~.te Galo~.o

e.x.te.nh~on E/k. The 60llow~ng 60~mula. hold.o:

c ard {p 1pES 0 (k) I I pI< x, f (p) EU, 0'P = A} =

~ (U) 1A I j du + 0 (x exp ( -C (U) Ilog x», C ( U) > 0 ,
~ 2 log u

Whe.Ae. ~ ~.6 the. HaaA meahuAe. on T nOAma.l~.oe.d by the. cond~t~on

~ (T) = 1

As a special case of this theorem, one obtains Chebotarev's

density theorem (just take U = T ); on the other hand, if E is

chosen to be Abelian over k theorem 3 reduces to an equi-

distribution theorem in the· spirit of Hecke 1 5 multidimensional

arithmetic, [4], [5], [13]. Theorem 3 is an easy consequence of

the estimates of theorem 2 (see, for instance, [14, p. 68]).

To state the main theorem of this paragr~ph consider a

6~n~te subset N of X(k) and let

m= {xlx = tr f' ~ E N}

be the corresponding set of characters.

Theorem 4. Let go E W(k) and let 0 < E < 1 . The 6oiiow~ng

ahyrnptot~c 6oArnut~ hoid.o:

(* This notion will be analysed in the fourth lecture. For' the
time being one may picture U as a rectangular subset of T.
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card {plp E 8 o (k), Ix(p)-x(go) I < E for each X in m} =

x du
a(m,go,E) ~ log u + 0 (x exp(-c 4 /1og x», c 4 > 0 • ( 10)

c sM04eave4, a(m,go,E) > CsE , c s > 0, c 6 > 0 . He4e ~he eon~~an~~

c
j

' j = 4,5,6, depend a~ mo~~ on m (bu~ no~ on E, go, X ).

Theorem 4 can also be viewed as a generalisation of both

Cheboratev's density theorem and Hecke's type equidistribution

theorems: one obtains the former one when each in N has a

finite image, while the latter ones follow if each ~ in N 15

one-dimensional. Ta sketch the proof of theorem 4 let us note

first that there is a. finite Galois extension Elk such that

each p in N factors threugh W1 (E!k) since N is finite.

Consider a s'ubset

A (m, go , e: ) = {g Ig E W1 (E Ik), IX(g) -X (g 0) I < e: f er X E m}

of W1 (E!k) and let ~ be the Haar measure on W
1

(Elk) norma­

lised by the condition ~(W1 (Ejk» = 1 • One can actually take

( 11 )

and prove that

To deduce the asymptotic formula (10) with a defined by (11)
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one notes that, in fact, each ~ in N factors through a

certain grqup Gwhich fits in the exact sequence

1 ~ T ~ G ~ H ~ 1 ,

where T is a finite-dimensional real torus and H is a

compact group. Moreover, conditions Ix(g)-x(go) I < E, X E m ,
define a .semialgebraic" subset U of G . The asyrnptotic fonnula

to be proved would follow now from theorem 2 and the general

equidistribution principles if one could estimate from above

the volume of the 8-neighbourhood of the boundary of U uniformly

in the interval, say, 0 < ö < 1 . Such an estimate can indeed be

proved as a consequence of recent results on volumes of tubes

"around semialgebraic sets, [25] (cf. also [3]). This concludes

our sketch of the proof of theorem 4 (cf., however, [16] and

[17, § 5] where this proof has been carried out in detail). We

close this lecture by suggesting an open problem: can one prove

a general theorem on equidistribution of Frobenius classes in a

Weil group (cf. [14, p. 69-71]) that, in particular, would

imply both theorem 3 and theorem 4 ?
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Lecture 3. Anatytic continuation and the natu4al bounda~y 06

.6cata.1t pltoduct.6.

The object of this lecture is the following theorem.

Theorem 5.
~

(i) The 6unction L(s,X) de6ined by (3) can be meltomoltphicatly

eontinued to the hal6-plane ~+ = {sIRe 5 > O} •

( ii) SUPPO.6 e that r ;;;: 2 and d, ~ ... ~ d ~ 2 . The liner

{siRe O} the
~

0: 0 = s = i.6 natultal boundalty 06 L(s,X) unl e.6.6

r - d = d
2 = 2- ,

~

(li1) I6 r = d, = d 2 = 2 , then the ounetion L(s,X) ~.6 equal

to a Ita.t~o 06 two We~t L~6unetion~ (up to a 6~nite numbe4 00

Eulelt 6actOlt4) and the4e60lte it i.6 meltomoltphic in 0: •

Identity (5) shows that assertions (i)-(iii} hold true
~ .»

when one replaces L(s,X) by L(S,A) . Let us describe now the

main steps in the proof of theorem 5. In view of (6), the
~ ...;.,

function L (s , X) L ( s', ~) i s meromorphic in CI:; moreover, the

polynomials ~ (t) can be explicitely evaluated whenp

r = d, = d 2 = 2 and this evaluation proves (iii). In general,

the sequence of polynomials {~p(t) Ip E So(k)} can be para­

metrized as follows. Let Y be the ring of virtual characters

of W,(k) and let

H(t) = a. E Y ,
J
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be a polynomial with coefficients in this ring. We extend

the definition X(p) = tr ~(Op) by linearity to V and

write

1 .
H (t) = L t~a. (p) for p € So(k) ,

p j=O ]

and

1
H (t) = j~otjaj(g) for g E W(k) .g

Lemma 1 • The.ite. a.lte. a. polynom-i..a.! H(t) in V[t] a.nd a 6-i..nite.
-l

.6u.b.6e.t S~ (X) 06 So (k) .6u.ch tha.t

~

H (t) = ~ (t) 601t P € So(k) ..... S~(X) •
P P

( 1 2)

This lemma shows that it suffices to investigate the analytic

properties of the Euler product

for H(t) E V[t] .

( 1 3) .

Definition. Le.t H(t) E Y[t] a.rtd ~u.ppo~e. tha.t H(O) = 1 . We.

.6a.y that H ih un.i.tatty in

H (a) = 0 ~ jal = 1g

601t e.a.ch g in W(k) •
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Lemma 2. 16 2 S r S dr S ... S d, and d,d2r> 8 , ~hen

~he polynomial H de6ined by' (12) ~nd (6) i~ no~ uni~a~y.

In view of Lemma 2, the statements (i) and (ii) follow from

the following proposition.

Proposition 2. Le~ H(t) E Y[t] and H(O) = , . The 6une~ion

s ~> L(s,H)

de6ined by (13) ~n ~he hal6-plane Re s > 1 ean be me~omo~phieally

eon~inued to 0:+

bounda4Y 06 thi~ 6unetion.

We sketch the proof of Proposition 2. Without lass of

generality, we may assume that

H(t) = 1 +
.f
\' a t j E YL. j , a j 0'

j =1

where YO denotes the ring of virtual characters of W1 (Ejk) for

a finite Galois extension E]k. Let

H (t)
g

and let

oS
= n (1-cl1 (g) t) I g E W1 (E Ik ) I

i=1

y = sup {I a i (g) I I 1 :ii i :ii l!, g E G} •
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Lemma 3. (i) Foltmally, -<'Yl Yo [[t]] , we. ha.ve.

H(t)
, co n b n (4))

= n n det (1-t 4))
n=1 4)EXn (H)

[L b (4))tr 4)(g) I ::; -tyn 1 I 1 60lt g E W1 (Elk) .
4)€X (H) n n dTn

n

Making use of' lemma 3, one can prove the following statement.

Lemma 4. Thelte. i~ Mo ~ueh that i6 M-> Mo a.nd N > (y+1)M then

wheJte.

-b (4))
UM (s) = "n n L (ns , tr<c) n ,

1Sn<M 4)€X (H)
n

-1
ZN (s) = n Hp ( lp[-s)

Ip[<N .

aYld g (s) i..~ holomoltphic. a.n.d ha.~ no z eJto.6 .{.n.

( 14)

a: 1 / M = {s [ Re

Since both ZN(s) and UM(s) are meromorphic in a: and since

0:+ = u a:
M>M 1 IM

o
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equations (14) provide a meromorphic continuation of L(s,H) to

~+ • Moreover, as an .easy consequence of Lemma 3 one proves that

L(s,H) is a meromorphic function in ~ when H is unitary

(that is, if y = 1 ). If Y > 1 one can prove that the

closure cf the set

-1
{sIRe 5 > 0, ZN(s) = 0 for some N}

contain&,~he line ~o • Tc show that this line is the natural

boundary of L(s,H) it remains to prove that the poles of this

function coming from the first factor in (14) cannot be cancelled

by the zeros, of the second factar. Making use of theorem 4 one

can estimate the number of'poles of ZN(s) in a neighbourhood

ef a fixed point in ~o • On the ether hand, a careful analysis

of the structure of the zero-set of UM(s) provides an upper

bound for the number of such zeros which shows that complete

cancellation cannot occur. We have to refer to [17] for the

details of this argument; an alternative proof of theorem 5 may

be found in [9].

Theorem 5 is of considerable interest for the general theory

of L-functions having Euler product. For the history of its proof

and for some related results we refer the reader to two short

notas, [21], [22], and our final report on this problem, [17].

This exposition (as weIl as the article [17]) owes much to the

early werk of N. Kurokawa, [6]-[8], where Theorem 5 has been

preved .for representations fj' 1 ~ j ~ r , of Galois type.
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Lecture 4. In~eg4ai poin~~ on algeb4aic ~e~~ de6ined by a

~y~~em 06 n04m-604mh.

The following problem has stimulated much research in number

theory.and arithmetic algebraic geometry. Let fj(x
j

) € Z[X j ] ,

1 ~ j Sr, and consider the algebraie set U given by the

system of equations

compact subset of

f .. (x.) = 0, 1 S j Sr. Qne chooses' a
J J

U (::IR) and asks for an estimate of the number

i5

n.
J

i5 relatively 5mall compared to the degrees and the

of integer points in this subset (here x j = (X j1 ' ••. ,X. )
Jn j

variables). When the number of variablesan array of
r

n = Ln.
j = 1 J

number' of equations the analytic methods must be supplemented

by arithmetieal considerations. We study here the simplest

problem af this type:. dealing with norm-form equations allows

ane to avoid algebra-geometrie considerations and ta werk in

the framework af classical algebraic number theery. Ta give a

precise statement of our results we need a notion of "smoothness"

generalising the nation of a plane domain with a boundary satis-

fying Lipschitz condition. Consider a triple (W,E,~) consisting

of a set W, a Borel measure. ~ and a system E of measurable

subsets of W a measurable subset V of W is said to be

n-hmoo~h if for each ß in the interval 0 < ß < 1 ane can find

a finite subset Eo(ß) af E satisfying the fallowing conditians:

( i i ) ~ n ~ I = ep when. f> * f', fEE 0 (~), ~' € E0 (ß)
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(iii ). let V+ = U t' ' v = -.0 ~ then-
~€Eo (Cd {>EE o (td

~=V

V ::) V and ll(V+ ...... v_) < C(V)ß (for some constant C (V) inde~
+ -

pendent of ß and called the ~moothne~~ constant of V) •. The

elements of E are refered to as elementa~y ~et~. Consider,

secondly, a triple (S,~,N) consisting of a set S, a map

~ : S ~ Wand a rnap N : S ~m+ ; this triple is said to be

(E,ll)-equidi~t~ibutedif

card {sls E s, ~(s) €~, Ns < x} = ll(r)a(x) + a(b(x))

for ~ E E , where
b(x)älXT ~ 0 as x ~ co •

Lemma 5. 16 (S,n,N) i~ (E,ll)-equidi~t~ibuted, th~n

card {sls E: S, n(s) E V, Ns < x} = ll(V)a(x) + 0 (b
1

(x))

with b 1 (x) /a(x) ~ 0 (and b 1 exactly exp~e~~ib!e ~n te~m~ 06

bj n, C(V») 6o~ any n-6mooth ~et v.

Let k.I~, 1 ~ j ~ r, be a finite Galois extension of degree
]

d j and let K = ki ... k r be the composite field of k
j

,

[K:W] =;d . To simplify our exposition we impose the following

condition on these fields (cf. [11]):

(e i (p), e j (p)) = 1 f or i * j, pES 0 (W) , ( 15)

where denotes the rarnification index of p in k.
~
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r
Condition (1 5) implies, in particular, that d = Wd

j

that the fields k
1

, ... ,k
r

are linearly.disjoint over

, so

aJ • Let

T = Tl x ••• x Tr and let H = H1 x ••• x Hr ' where Tj denotes

the (d.-1)-dimensional torus assigned to k. as in lecture 2 and
J J

where Hj is the ideal class group of k
j

let

f : I(k 1)x ••• x I(k
t

) ~ T be the product of hornomorphisrns

f
j

: I(k
j

) ~ Tj defined in lecture 2 and consider two sets of

r-tuples of ideals

and

~ ~

50 = {p Ip = (p 1 ' • • • , Pr)' P j € 50 (k j)' Np 1 =

= Na }
r

= Np } •
r

and iez ~ be the Haa~ meahu~e on T

~(T) = 1 • Let A € H and ~uppo~e that

~Ub4~t 06 T. Then·

no~mat~~ed by the eond~t~on

r
T ~~ a L (d.-l)-~mooth

j=l J

~ ~ ~ ~

card {p!p E 50 n A, f(p) E L}

w~th c > 0 ,and

X
J:ll.!lHL) ~ du ..+= IHI log u 0 (x exp(-c/log x))

~....i. ~ ~ () 1
card {ala E I o n A, f(a) € T} =~ x + 0 (x -y)

with y > 0 I whe~e Wo = W(K)L(l,~)-l I w(K) denote~ the ~e~~due
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06 zhe '-6uncz~on ZK (s) o~ .K a..t s = 1 a.nd L(s,~) .La
00 I(

a (j) -1
de6~ned by zhe equa~on L n

-s n = ZK (s )L ( s , ~ )
n=1 j=1 n

a(j):= card {a Ia € Io (k j ) , Na = n} .n
Theorem 6 shows that both integral and prime divisors

with equal norms are equidistributed in the sense of E. Hecke;

it can be deduced form the estimates (8) and the prime number

theorem for grossencharacters with the help of lemma 5 and

equation (6). Choose an integral ideal in and let

{w .. 11 ~ i ~ d,} be a Z-basis of a Oj one defines a norm-
]J. ]

form f j associated to A
j

as follows:

= Nk ( ) Im( ) ( l. x j ,w· i )Na o ,-1 ;
-. X. 'lW x. 1~ i <d J. ] I
] ] J" - j

obviously, f. (x .) € Z[X
j

] ,. Consider the algebraic set W defined
J J

by a system of equations:

and let Wo- = Wo 1· x ••.• x Wo with Wo". , 1 ~ j ~ r , be defined
r J

by the equation f.(x,) = 1 . In what fellows we assume, for
] ]

simplicity, that k. is tota.lly complex, then f. is positive
] ]

definite and we can define a projection

7T W(JR) ~ Wo ( JR), 1T
-1 Id.

a. l----> a j f . (a . ) ]
] ] ]

d.
a. E JR ]

]

(this map is not defined on the subset f. (x.) = 0, 1 S j :i r ,
] ]

of smaller dimension and containing no integer points except the
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origin). Moreqver, one can define a natural projection map

h : Wo ( :IR) .... T of Wo (JR) on T and take as elementary

the subsets of W(JR) of the shape:

where 0 ~ t 1 < t
2

and where heU) is a smooth subset of T.

Theorem 7. The4e·Lh a B04et mea~U4e ~ on W(:IR) ~ueh zhat

card (V n W(Z))

..Jl

wi.:th y > 0 , whe4e t (V) = rnax {f. (a.) la E V} , 604 any 6mooth
] ]

.6ub~et V 06 W( lR) (i.. e . .6mooth wi.th 4e.6pe.eZ to zhe. .6y~ze.m 06

eteme.nta4y 6e:t~ we have ju~:t de.6C4i.bed).

Corollary 3. The 60ttow~ng a.6ymp:tot~c 604muta hotd~ t4ue:

~ .a.
card {a t a € W(Z ). , 11 a j 11 < 1 :ii j ~ r}

1-y wi.th 0 wh e.4 e. 11 a. 11 : = max jaij l and0(x ) y > ,
J 1 ~i:;;d .

1/d. J
~ ~

whe.Jte m(x) := ~({yly E W( :IR) , 11 y ·11 < x J, 1 ~ j S r} ) .
J

MoJteoveJt" theJte two con4tanz4 C1 ' C2 4uch tha.:t c 1x ~ m(x) ~ c 2x .
Theorem 7 can be deduced (with the help of lemma 5) frorn theorem 6.

The results described in this lecture appear in [18]-[20] (cf.

also [11] and [14, Ch. III]).
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Coneiud~ng ~em~~kh ~nd ~eknowiegdemen~h.

These lectures are meant as a summary of our work carried

out during the latest years. We refer for the details omitted

here to the articles [15]-[20] and to our recent monograph,

[14]. It is my pleasaht duty to thank Professor A. Perelli

for inviting me to visit Genovaj we are grateful to our

colleagues at the Mathematical Institute (University of Genova)

for their kind hospitality. ~he author acknowledges financial

assistance of the University of Genova which made this visit

possible.
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