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DIFFEOMORPHISMS, ANALYTIC TORSION AND
NONCOMMUTATIVE GEOMETRY

JOHN LOTT

ABSTRACT. We prove an index theorem concerning the pushforward of ftat !B-vector bUIl­

dIes, where !B is an appropriate algebra. We construct an associated analytic torsion
form r. If Z is a smooth closed aspherical mallifold, we show that r gives invariants of
1l".(Diff(Z)).

1. INTRODUCTION

Let Z be a smooth connected closed n-dimensional ]«(r, 1)-manifold. Let Diff(Z) be the
group of diffeomorphisms of Z, with its natural SIllOOth topology [28]. What are the rational
homotopy groups of Diff(Z)? Farrell and Hsiang Inacle the following conjecture :

Conjecture [13]: Xl (Diff(Z)) ®z Q = center(r) ®z Q

and if i > 1 is sufficiently small compared to n,

1ri(Diff(Z)) ®z Q = {EB
o
~l Hi+1- 4j (f; Q) if n is odd, (1.1)

if n is even.

It follows from the work of Farrell and Jones [14] that the conjecture is true when n > 10,
i < n~7 anel r is a eliscrete cocompact subgroup of a Lie group with a finite number of
connected components. (For example, it is truc when Z is a torus, something which was
already shown in [13].) The 1r1-result is what one would expect from homotopy theory.
However, (1.1) is peculiar to the fact that we are looking at diffeomorphisms; the analogous
rational homotopy groups of Homeo(Z) vanish. In thc cases when the conjecture has been
proven, the proofs are very impressive but rather indirect, using a great deal of topological
machinery.

From a constructive viewpoint, suppose that we are given a sInooth based map a :
Si --+ Diff(Z). How could we compute the corrcsponcling rational homotopy class [a]Q E
1ri(Diff(Z)) ®z Q? First, let us make an auxiliary fiber bundle. Using a, we can glue two
copies of Di+l x Z along their boundaries to obtain a sillooth manifold M which fibers over
Si+l, with fiber Z. Any (smooth) topological invariant af fiber bundlcs will give an invariant
of 1ri(Diff(Z)).

Wagoner suggested [33] that the relevant invariant is a fiber-bundle extension of the Ray­
Singer analytic torsion [32]. In [2], J.-M. Bismut and thc author constructed a certain exten­
sion of thc Ray-Singer analytic torsion which docs give same information about 1r. (DifI(Z)).
However, that extension is inadequate to capture all of the infonnation in (1.1). In this
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paper, using ideas from noncolTImutative geomctry, wc will construct a "higher" analytic
torsion which does potentially detect the right-hand-siele of (1.1).

One can think of the analytic torsion as arising frDln thc transgression of certain index
theorems. We describe the relevant index theorenls. Suppose that A1 ~ B is a smooth fiber
bundle with connected closed fibers Z. Let E be a flat eomplex vector bundlc on M. In
[2], certain characteristic classes c(E) E Hodd (.i\1; IR) were defined. The pushforward of E is
defined to be

dim(Z)

7r. (E) = L (-1)1' HP(Z; Elz)'
p=o

(1.2)

a formal alternating SUtTI of flat vector bundles on B constructed from the cohomology
groups of the fibers. Let e(TZ) E Hdim(Z) (.A1; o(TZ)) be the Euler class of the vertical
tangent bundle TZ. The index theorem of [2, Theorenl 0.1] stated

e(7f,E) = l e(TZ) U e(E) (1.3)

In its proof, which was analytic in nature, a certain differential form T E neven(B) appeared,
called the analytic torsion form.

This index theorem was reproved topologically and extendeel by Dwyer, Weiss and Williams
[12]. Their setup was a fiber bundle as above, a ring ~ and a loeal system E of finitely­
generated projective 2)-modules on M. Thc loeal SystClll defines a dass [E] E K~9(M) in

a generalized coholTIology group of M. One again has local.systems {HP(Z; Elz)}:~~(Z) of
finitely-generated ~-modules on B. Supposc that the)' are projective. Define 7r.(E) as in
(1.2). Then [12, Equation (0-3)] stated

[7r.(S)] = tr·[S] . 1,~(l19(B)In \23 , (1.4)

where tr· is the Becker-Gottlieb·Dold transfer. \"'hen ~ = C, (1.3) is a consequence of
applying the characteristic dass c to both sides of (1.4).

In the present paper, we essentially give an analytic prüof of (1.4). Provided that ~ is an
algebra over C which satisfies certain technical conditions, we define a characteristic dass

[es] : I(~g(M) -----t EB HP(.i\1; Hq(~)),
p>q

p+qodd

(1.5)

where H.(~) is the noncolumutative de Rhanl coholTIology of the algebra~. Using analytic
methüds, we prove the following theorem.

Theorem 1. Let the fiber bundle M ~ B be as above. Let E be a loeal system 0/ finitely·
generated projective ~.modules on M. Suppose that the fiberwise differentials dZ have closed
image. Then

[CS(7f,E))] = l e(TZ)U[CS(E)] m EB HP(B; Hq(~)).
l'>q

p+q odd

(1.6)
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The eondition that dZ have closed image guarantees that H· (Z; f, Iz) is a loeal system of
projeetive ~-modules. If ~ = ethen

if q = 0,

if q > 0
(1.7)

(1.8)

and so we reeover (1.3).
The statenlent of Theorem 1 ean also be obtaineel by applying thc eharacteristic dass

[eS] to both sides of (1.4). As in [2], the interest of thc analytic proof is that it gives a more
refined statement at the level of differential fonns. vVith notation that will be explained
later, a eertain explieit differential form T E ft"even (B, Q)) appears naturally in the proof
of Theorern 1. We call it the analytic torsion fonn.

Theorem 2. With the hypotheses 01 Theorem 1,

dT = Le (TZ, V'TZ) !I es (V'0, hO) - es (V''''O, h"'O) in rr"odd(B, 'B).

Here hE is a ~-valued Hermitian metric on f, allel h1r
•
E is the induced ~-valued Hermitian

metric on 7r.f,.
If dim(Z) is odd and H*(Z; f,lz) = 0 then the right-hand-side of (1.8) vanishes automat­

ically, implying that T is closed.

Theorem 3. With the hypotheses 0/ Theorem 1, suppose in addition that dim(Z) is odd
and H* (Z; f, Iz) = O. Then the cohomology dass

[Tl E EB HP(B; H q(Q)))
p>q

p+q even

(1.9)

is a (smooth) topological invariant 01 the fiber bundle !vI ~ Band the loeal system f,.

In partieular, [Tl will give invariants of 7r.(Diff(Z)) when Z is a smooth closed aspherical
manifold.

We now describe the contents of this paper. The loeal system E on M can be thought of
as a flat ~-vector bundle. The first order of business is to define the relevant characteristic
classes of f,. Unlike in [2], it is not enough to just use the flat conncction on f,. Instead, we
will need a conneetion on f, whieh also eliffcrentiates in the "noncommutative" directions.
The correet notion, duc to Karoubi, is that of a partially flat connection (called a "connexion
a courbure plate" in [17]).

In Seetion 2 we briefly review the geometry of Q)-vector bundles. We define certain
complexes of noncommutative differential forms and describe their cohomologies. We review
the nation of a ~-connection on f, and its ehern character. We define the relative Chern­
Simons dass of two ~-vector bundles which are topologically isomorphie, each having a
partially flat connection. Bccause our connections are partially flat and not campletely Hat,
the formalism involved is fundamentally different than that of [2].

In Seetion 3 we look at the ease when r is a finitely-generated discrete group anel ~ lies
between the group algebra cr and the group GT*-algebra c;r. If M is a manifold with a
normal f-covering MI --+ ]..;/ then there is a canonical ~-vcetor bundle f, = ~ Xr M' on M.
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(1.10)

We describe an explicit partially Hat connection on E and compute the pairing of its ehern
character with the group cohoInology of f. This computation is important for applications.

In Section 4 we define thc notion of a Q3-valucd Herrnitian metric hE on a Q3-vector bundle
E. With our assumptions on Q3, a Hermitian ll1etric on & always cxists and is unique up
to isotopy. A Hermitian nletric gives a topological isoIllOrphism bctween & and its antidual
bundle E*. Ir E has a partially Hat connection, we can use this isomorphism to define the

relative Chern-Simons dass CS (&, h&) E rr"odd(AI, Q3) of &and l*. Its cohomology dass is
independent of the choice of Hermitian metric, giving the characteristic dass

[CS(E)] E E9 Hll(M; Hq(~)).
p>q

p+qodd

In Section 5 we generalize the preceding results froIn connections to superconneetions.
This generalization will be crueial for the fiber bundle rcsults. We define the notion of
a partially Hat superconnection on M. VVe construet the relative Chern-Simons dass and
analytic torsion form. Using these constructions, we prove a finite-dimensional analog of
(1.4). This analog is similaI' to [2, Theorem 2.19], but the large-time analysis requires new
techniques. vVe then relate the finite-dimensional analytic torsion fonn to various versions
of the Reidemeister torsion.

In Section 6 we extend the methods of Section 5 to the setting of a fiber bundle Z ---t

M ~ B. First, we prove some basic facts about ~-pseudodifferentialoperators. Using
heat kernel techniques, we prove TheoreIll 1. Vve then define the analytic torsion form

-=-I/,even ( )T E n B, ~ and prove Theorems 2 and 3.
Relevant examples of thc preceding formalism come frOln finitely-generated discrete groups

f. Let us introduce a certain hypothesis on f :

Hypothesis 1. There is a Frechet locally ffi-convex algebra 23 containing Cf such that
1. Q3 is dense in c;r and stable under the holomorphic functional calculus in c;r.
2. For each [T] E Hq(r; C), there is a representative cocycle T E Zq(f; C) such that the
ensuing cyclic cocycle Z1" E Hcq(Cr) extends to a continuous cyclic cocycle on Q3.

Hypothesis 1 arises in analytic proofs of thc Novikov Conjectllre. It is known to be
satisfied by virtually nilpotent groups and Gromov-hypcrbolie groups [9, Section 3.5]. Using
the characteristic dass [es], in Section 4 we give a shnplc proof that thc algebraie K-theory
assembly map is rationally injective for such groups.

Let Z be a smooth connected dosed n-dimensional Inanifold with fundamental group
f. If the hypotheses of the preceding theorems are satisfiecl, wc can define invariants of
1fi(Diff(Z)), i > 1, by constructing thc auxiliary fiber bundle mentioned at the beginning,
computing its analytic torsion form T and integrating over B = Si+l to get

E9 H q (93).
q<i+l

q=i+l mod 2

(1.11)

By Hypothesis 1, fB[T] then pairs with Hq(r; C).
To Inake contaet with (1.1), in Section 7 wc assulne that Z is a j{(r, l)-manifold. In

order to satisfy thc hypotheses of the preccding the.2rclns, we would have to know that the
differential form Laplacian on the universal cover Z is invertible in all degrees, something
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which is probably never the case. We present two ways to get around this problem. First, we
consider the case when f = zn. In this case we can apply ordinary HcomInutative" analysis
to study the problem. We show that we can define a pairing between fB[T] and Hq(f; C)
provided that q < min(i + 1, n). This pairing vanishes for trivial reasons unless n is odd
and q _ i + 1 mod 4. Second, we consider general f satisfying Hypothesis 1. Using the
fact that the auxiliary fiber bundle M ...;. 5 i +1 is fiber-homotopically trivial, we construct a
relative analytic torsion form T such that fB[7] pairs with Hq(f; C) provided that q < i+ 1.
Again, the pairing vanishes for trivial reasons unless n is odel anel q == i + 1 mod 4.

Based on a comparison with (1.1), we expect that thc pairing between fB[7] and Hq(f; C)
will be nonzero if n is odd and q - i + 1 Inod 4, at least if i is sufficiently small with respect
to n. To show this, one will probably have to Inake a direct link between the analytic
constructions of the present paper and the topological machinery.

We note that we do not construct a "higher" analytic torsion of a single manifold, in the
sense of Novikov's higher signatures. In the case of a single manifolel, i.e. if the base B
of the fiber bundle is a point, the analytic torsion that we construct in this paper lies in
~/[~, ~L something which pairs with the zero-diIllensional cyclic cohomology of~. The
higher-dimensional cyclic cohomology of ~ only enters when the base of the fiber bundle is
also higher-dimensiona1.

So far, our topological applications of the analytic torsion form are to the rational ho­
motopy of diffeomorphism groups of aspherical Inanifolds. There are also results in the
literature about the rational hOInotopy of diffeoInorphisIll groups of simply-connected man­
ifolds [7, §4]. It would be interesting to see if there is an analog of the analytic torsion form
in the simply-connected case.

Finally, let us remark that in [21L we constrllcted Cl lligher eta-invariant of a manifold
with virtually nilpotent fundamental group. Using the mcthods of Scctions 5 anel 6 of the
present paper, one can relax this condition to allow for GroInov-hyperbolic fundamental
groups.

I thank Alain Connes anel Michael Weiss for helpful discussions. I thank the Max-Planck­
Institut-Bonn for its hospitality while this paper was written.

2. NONCOMMUTATIVE BUNDLE THEORY

In this section we review some facts about ~-vcctor bllndles anel their characteristic
classes. The material in this section is taken froIn [17], along with [10] anel [20].

2.1. Noncommutative Differential Forms. Let ~ be a Fnkhet locally m-convex algebra
with unit, Le. the projective liInit of a sequence

... -)- B j +1 -+ B j --1 ... --1 Bo (2.1)

of Banach algebras with unit. (A relevant example is ~ = C oo (51
) anel B j = Cj (51 ).) We

recall some basic facts about such algebras [26]. For j 2: 0, let i j : ~ --+ B j be thc obvious
homomorphism. The Banach norm I. Ij on Bj illduces a subInultiplicative seminorm 11 . Ilj
on ~ by 11 b IIj= lij(b)lj· Givcn b E ~, its spectrum a(b) ~ C is given by

00

a(b) = Ua(ij(b)).
j=O

(2.2)
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As each Banach algebra Bj has a holomorphic functional calculus, it follows from (2.2) that
~ also has a holomorphic functional calculus.

We asstIme that Bo is a C·-algebra A, that 'io is injectivc with clense image and that
~ is stable under the holomorphic functional calculus in A. A consequence is that the
invertible elements Inv(~) are open in ~, as Inv(A) is open in A and Inv(~) = iö1(Inv(A)).
Furthermore, a(b) = a(ij(b)) for all j ~ 0.

Let us ignore the topology of ~ far amoment. Thc universal graded differential algebra
(GDA) of ~ is

00

.O.(~) = EB Ok(~)
k=O

(2.3)

where as a vector space, Ok(23) = ~ ® (®k(~/C)). As a GOA, O.(~) is generated by
23 = Oo(~) and d~ C 0 1(~) with the relations

dl = 0, d2 = 0, d(WkWz) = (cUuk)Wt + (-l)kwkdwl (2.4)

for Wk E Ok(~), Wl E Ol(~)' It will be convenient to write an eleIuent Wk of Ok(~) as a
fini te sum E bodb t •.• dbk · There is a differential complex

(2.5)

Let Z.(~), B.(~) and H .(23) clenote its cocycles, coboundaries and cohomology, respec­
tively. The latter is given by

H.(23) = {Ker (B : HCo(~) (= '13/[~, '13)) ---+ Hd'13, 23))
Ker (B : HC*(f13) ---+ H.+ 1('13,23))

if * = 0,

if * > o.
(2.6)

Here HC*(lJ3) is the reduced cyclic homology of Q3 and H.(lJ3, lJ3) is the Hochschilcl homo1­
ogy. In particular, there is a pairing between H.(Q3) alld the (reduccd) cyclic cohomology
of lJ3.

Taking the topology on lJ3 into consideration, there is a Frechet completion of 0. (~),
which we again denote by O.(lJ3). Furthermore, therc is a Frechet space 0.(lJ3) defined as
in (2.5), except quotienting by the closure of the COIumutator. HereafteI', when we refer
to spaces of differential forms we will always Inean these Frechet spaces. Furthermore, all
tensor products of Frechet spaces will implicitly be projectivc tensor products. We again
denote thc (separable) homology ofO.('ß) by H.('ß). It pairs with the (I'educed) topological
cyclic cohomology of 23.

Let <oE be a Frechet left 'ß-module, meaning a FI'cchet space which is a continuous left
lJ3-module. Hereafter, we assume that <oE is a finitely-gcnerated projective 'ß-module. If ~ is
a Frechet right 'ß-module then there is a Frechet space ~®'B <E. If ~ is a Fnkhet 'ß-bimodule
then there is a "trace map"

(2.7)

(We quotient by the closure of [lJ3,~] to ensure that thc result lies in a Frechet space.) If ~
is a Frechet algebra containing lJ3 then TI' gives a trace

(2.8)
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In the case that <e is Z2-graded by an operator r ~ E Enel23 (<e) satisfying r~ = 1, we can
extend Tr to a supertracc by

(2.9)

Let M be a smooth connected manifold. Put

n p,q(A1, Q3) = np(M; nq (Q3)),

nk(M, Q3) = EB np,q(M, Q3),
p+q=k

o:,q(A1, Q3) = np (A1; nq (Q3))

nk(ft1,~) = EB [flq(M, 23).
p+q=k

We also write COO(M; Q3) for nO(M, 23). There is a total differential d on rr (M, 2)) which
decomposes as the surn of two differentials d = d1,o + rfJ,l. Put

n,,2k(!vI, Q3) = Zk(M; Slk(~)) ffi ( EB S'Y,q(lvf, ~)) ,
p+q=2k

p<q

o',2k+\M,~) = EB rf,q(M, ~),
p+q=2k+l

p<q

0,,,,. (A1, 23) = 0,* (M, 23)/rl"* (M, ~).

(2.10)

Then 0",* (M, 23) anel 0',,* (A1, 23) are also differential cOIllplexes. Let H;(M), H~· (M) anel

H:i*(M) denote thc coholnology groups of 0* (A1, 23), n"*(M,23) anel n"'*(M, 23), respec­
tively. Then

H;(M) ~ EB HP (M;Hq (23)) ,
p+q=k

H~2k(M) :: Hk(M; Zk(23)) ffi ( EB HP(M; Hq(23))) ,
p+q=2k

p<q

H~2k+l(M) ~ EB HP(M; Hq(~)),
p+q=2k+l

p<q

H:i2k (M):: EB HP(M; H q (Q3)),
p+q=2k

p>q

H:i2k+1(M) ~ Hk+1 (M; ~k(:)) ffi ( EB HP(M; Hq(23))) .
k() p+q=2k+ 1

p>q+l

(2.11)

Ta realize the first isomorphism in (2.11) explicitly, if w E rl(M,~) is d-closeel anel z E
Zp(M; C) then fz W E Zk-p(23). The other isomorphisms can be realized similarly.
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2.2. Noncommutative Connections and ehern Character. Let f, be a smooth ~­

vector bundle on !v! with fibers isomorphie to~. This llleans that if f, is clefinecl using
charts {Ua} then a transition functioll is a smooth map 1Jaß : Uan Uß --+ Aut!8(IE). There is
a corresponding element [E] in thc topological K-group ](;;P(M) = [M, Ko(~) x BGL(~)].

We will denote the fiber of f, over m E M by Ern. If ~ is a Frechet 23-bimodule, let ~®!8 f,
denote the Q3-vector bundle on M with fibers (~®':B f,)m = ~®!8 f,m anel transition functions

Iel~ ®!8 cPaß·
Let Coo (M; f,) denote the left 23-module of SIllooth sections of f, anel let S1( M; &) denote

the left Q3-Inodule of smooth sections of A(T* /\11) 0 [. 'rVe put

S1p,Q(M, ~; f,) = np (111; nq(~) ®':B [) (2.12)

and

nk(M, ~; f,) = EB OP,q(/l.1,~; f,).
p+q=k

Definition 1. A connection on f, is a C-lineaT map

\JE : Coo(M; f,) --+ n1(iVf, ~; t:)

such that for all / E Coo(M;~) and s E Coo(/l.1; f,),

\1E(/s) = f \1E S + (lf ®COO{Mill3) 8.

We can decompose \1E: as

where

\1E,I,O : COO(M; f,) --+ 0 1(111; f,)

is a connection on f, in the usual sense which happens to be Q3-linear, and

\1E,O,l : Coo(M; &) -+ COO(M; 0 1(~) ®':B f,)

is a COO(M)-linear map which comes from a C-linear bundle hOlllomorphism

at: :f, --+ 0 1(~) 0lB f,

satisfying

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

[JE (bsm ) = b aE: Sm + db 0!B 8 m (2.20)

for all m E M, Sm E f,m and b E 23. One can consider \1E,O,l to be the part of \1E which
involves differentiation in the "noncommutativc" direction.

Extend \1E to a C-linear Inap

\1E : 0* (M, ~j f,) --+ 0*+1 (1\1, 23j f,) (2.21)

by requiring that for all w E O,k(M,~) and S E nl(jV[, 23; f,),

\1E(WS) = (-l)k w /\ \1Es+dw0coo(M;!B) s. (2.22)

Similarly, extend \7E,I,O to

(2.23)
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Now (\7E)2 -ismultiplieation by an element of

EB OP(AI; HOll1'B(&, Oq(~) Q9'B &)),
p+q=2

whieh we also denote by (\7E) 2.

Definition 2. The ehern character 01 \7E is

ch(\7E) = Tr (e-(vt;)2) E nctJcn(M, Q3). (2.24)

As usual, eh(\7E) is d-closed and its cohomology class [ch(\7E)] E HF;en(M) only depends

on [&] E ](~OP(M). If & and &f are ~ and ~'-vector bundlcs on lvI, respectively, then

ch(V'E0CE') = Ch(V'E) . Ch(V'E') E Ocveu(A{ ~ ®c 23'). (2.25)

Definition 3. A connection \JE is partially flat il iLr; component \JE,l,O is fiat, mean1,ng
(\7E,l,O) 2 = o.
Definition 4. A flat structure on & is given by fL connection

\JE,flat; COO(M; &) -+ 0 1(1\1[; &)

which is 23-linear and whose extension to 0:(1\1; &) satisfies (\JE,flat )2 = O.

Clearly a partially flat cOllnection on E detennines a. flat structure on E through its (1,0)­
part. Conversely, given a Bat. structure on &, thcre is a partially Bat connection on E which
is compatible with the Bat structure, although generally not a l1nique one.

The flat structure (E, \JE,flat) is classified by a map 111 -+ BAut'B(~)J, where 8 denotes
the discrete topology. Then there is a eomposite Inap

AI -r BAut~(\E)o -r BGL(Q3)o --+ BGL(Q3)t, (2.27)

where + denotes Quillcn's plus construction. Thus thc pair (E, \JE,flat) gives an element
[E, \7E,flat] E K~9(M) = [lvI, Ko(23) x BGL(Q3)tL the 1(0(93) factor simply representing
the K-theory class of the fiber \E.

If \JE is partially flat then

(\7E)2 E 0 1(J\tJ; Homl)3(E, Od23) ®'B E)) ffi 0°(1\1[; Hom'B(&, O2 (23) Q9'B &)).
(2.28)

Thus ch(\JE) E EB p~q o:,q(M, ~). As ch(\JE) is d-closed, its (p,p)-component ehP'P must
p+qeven

satisfy d1,ochP'P = O. HCllee eh(\JE) E O"even(AI,~) alld [eh(\JE)] E H~even(M). There is a
commutative diagram

](;9(1\1) -+ ]<;;J1(M)
eh + eh +

H;aeven(M) -+ H&vcn(l\1).

Example 1 : If 23 = C then 0 0 (23) = Zo(~) = ]io(~) = C and O.(~) = Z.(~) =
H .(23) = 0 for * > O. Thell if f, has a Bat structure, by (2.11) we have that [ch(\JE)] lies
in HO (iVJ; C) alld simply represents rk(&). On the other hand, I(~9(M) can be very rieh.
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Thus the ehern character does not see the interesting part of I(~9. We now give another
construction which will be used in Section 4 to see more of I(~9.

2.3. Chern-Simons Classes of Partially Flat Connections. Let [1 and &2 be smooth
~-vector bundles on M with flat structures. Suppose that there is a smooth isomorphism
a : [1 --+ [2 of [1 and [2 as topological ~-vector buudles. The tripie (Cl, &2, a) defines an
element af Karoubi's relative K-group ](;;l(A1), which fits inta an exact sequence

K~9,-1(M) -t K~op,-1(j\1) -+ ](~el(A1) -+ IC;i9(A1) -t I(~OP(M).

(2.30)

Choose partially flat connections V't't, V'E'l which are compatible with thc Hat structures.
For 11, E [0,1], put V'E(U) = 11,\1EI + (1 - u) a*\1E2 . Note that for 11, E (0,1), \1E(u) may not
be partially Hat on Cl'

Definition 5. The relative Chern-Simons dass es (\7EI , V'E'l) E rr"odd(M,~) is

(2.31)

By construction,

(2.32)

vanishes in O",even(M, 23). Thus there is a dass [es (\7EI,flat, \7E'l,flat)] E H:iodd(M) which
turns out to only clepend Oll [Cl, [2, a] E K;el (lvI). In particular, [es (\lEI ,flut, \1E'l,flat)] is
independent of the choice of the partially flat connections \7E1 , \1E2 and only depends on Q

through its isotopy dass; this will also follow frOln Proposition 9.
From (2.11),

[es (\lEI ,flut, \1E2,flat)] E (EB HP+1 ( M; ~I'(:))) EB ( EB HP(M; Hq(~))) .
P p( ) p>q+1 (2.33)

p+q odd

The next proposition is implicitly contained in [10, p. 444-448]. We give a simpler proof.

Proposition 1. [es (\1E1 ,flat, \1E'l./lat)] actually lies in ES p>q HP(M; H q (23)).
p+qodd

Proof. Let esP+1,p E f?+1'P(A1,23) denote the (p + 1,p)-component of the explicit differ­
ential form in (2.31). Frolll (2.32), dI,o CSp+l,p = 0 anel so esP+1,p defines an element of

HP+I (M; ~:~:~). We show that this element lies in HP+l(lvl, Hp (23)). For i E {1, 2}, dcfine

as in (2.19). Put
2e-x -1

g(x) = .
:r;

(2.34)

(2.35)
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If z E Zp+l(.lvJ; C) then in 0p+d93),

d'll /. CSp+l,p = /. cf,l CSp+l,p = /. (rt1,0 CSp,p+l + cf,l CSP+l,P) (2.36)

= /. [Tr (e-(V'E""Oo<, )2) _Tr (e-(V'E2"'Oo<' )')]

= /. [Tr ((\7[1,1,0&,1) 9(\7[,,1,0&,1))

- Tr ((V[2,1,Oac2)g(\7[2,1'0(f2))]

= /. d1,0 [Tr (&" 9(\7[1,1,0&'1)) - Tr (&" 9(\7[2,1,0&,'))] = 0,

The proposition follows. 0

If E' is a 93'-vector bundle with a Bat strueture anel a partially ftat connection \1c' then

es (\1CI0CC', \1C20CC') = es (\1Cl, \7C2) . eh (\1c') E n",odd(M, ~ 0c ~').

Finally, for future referenee we define a trace on an algebra of integral operators on E.
Suppose that M is eOlnpaet and Riemannian. Let J be a Frechet algebra containing 93. Let
Hom; (E, ~ 093 E) be the algebra of integral operators

T : COO(M; c) -t COO (A1; ~ 023 c)

with smooth kerneIs T(ml' m2) E HomlJ3(cm2 , ~ 023 cmJ. That is, for s E COO(M; E),

Put

TR(T) = LTr(T(m, m)) rtvol(m) E ;Y/[;Y, ;Y].

(2.38)

(2.39)

Then TR is a trace on Hom;(c, ~ 023 E). If E is Z2-gradecl then there is a supertrace TRs

on Hom;(E, ~ 0123 E).

3. GROUPS AND COVERING SPACES

In this section we review the calculation of the cyclic cohomology of a group algebra. We
then deseribe the relationship between analysis on anormal covering spaee M' -t M anel
on a certain 93-vector bunelle E over M. We put an explicit partially Hat connection on c
and compute the pairing of its Chern character with the cohomology of the covering group.

3.1. Cyclic Cohomology of Group Algebras. Let f be a discrete group. Let Cf be
the group algebra of f. Let (f) denote the conjugacy c1a.sses of f, anel (f)' (resp. (f)")
those represented by elements of finite (resp. infinite) oreIer. For x E f, let Zx denote its
centralizer in fand put Nx = Zxl {x}, the quotient of Zx by the eyclie group generated by
x. If x and x' are eonjugate then N x and N x' are isolllOrphic grOllpS, anel we will write N(x)
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(3.3)

for their isomorphism class. Let C[z] be a polyuOInial ring in a variable Z of degree 2. Then
the cyclic cohomology of er is given [6] by

HC*(Cr) = ( EB H*(N(x); C) ® C[Z]) EI;) EB H*(N(x}; C). (3.1)
(x}E(r)' (X)E(r)"

We will need explicit cocycles for HC*(cr). Fix a representative x E (x). Put

C; = {T :rk+1 -r C : T is skew and for all ('Yo, ... ,'Yk) E r k+1 and Z E Zx,
(3.2)

T('YOZ,'YI Z, ... ,'YkZ) = 7(')'0,')'1,'" ,'Yk) and

7(-roX,')'Il'" "k) = T(')'O"I,'" ,'Yk)}.

Let 0 be the usual coboundary operator :

k+1
(07)('0,'" , ,k+d = L(-1)j 7('0, ... ,'?j, ... ,'k+d·

j=-O

Denote the resulting cohomology groups by H;. Then H: is isolnorphic to Hk(N(x); C) and
for each cocycle 7 E z;, there is a cyclic cocycle Zr E ZCk(Cf') given by

Z ( ) - {o if,k .. ·,0 ~ (x) (3.4)
r ,0,'1,'" "k - ( )' -I

7 ,og, lI/ag, ... , /k ... ')'09 If /k ... '0 = gxg .

For k > 0, these are in fact reduced cocycles. In particular, [rom (2.6), they pair with
Hk(Cr).

3.2. Noncommutative Geometry of Covering Spaces. The Inaterial in tbis subsection
is essentially taken from [20], with a change frOIn right Inodllles to left modules.

Let r be a finitely generated discrete group. Let 11 0 11 be a right-invariant word-length
metric on r. Put

23w = {b: r -r C: for allq E Z,sup (eqll!Jlllb(g)l) < oo}. (3.5)
gEr

Then 23W is independent of the choice of I1 0 1I and is a Frechet locally m-convex algebra
with unit. Note tbat ~w is generally not stable nnder the holonl0rphic functional calculus
in tbe reduced group C*-algebra c;r. For this reason, we will eventually replace it with a
Iarger algebra. But let us continue with Q3w for thc mOinent.

Let M be a smooth connected compact Rieluannian Inanifold. Let p : 1fI (M) -r r be a
surjective homomorphislTI. There is an induced connected normal r-covering MI of 1vJ, on
which gEr acts on tbe left by L g E Diff(MI

). Let 7r : lVI' -r M be thc projection map. Put

V W = Q3w x r M'. (3.6)

Then V W is a Q3w-vector bundle on M with a Hat structure.
Let E be a cOInplex vector bundle on M with connection \JE and let E' be the pulled-back

vector bundle 7r* E on M' with connection \JE' = 7r*\JE . DeHne

(3.7)
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a Q)w-vector bundle on· /1.1. Fix a basepoint Xo E 111'. There is an isomorphism between
Coo (M; EW) anel

{s E COO(M'; E') : for a11 q E Z anel Inulti-inelices D:,

sup (eqd(xo,x)I\lGs(x)l) < oo}.
xEM'

(3.8)

The action of Q3w on Coo (A1; [W) is given explicitly by saying that b = L:gEr bg 9 E ~w

sends s E Coo (M'; E') to

b . s = L bg L;_I S.

gEr

(3.9)

(3.10)

(3.11)

We now construct an explieit partially flat connection \l'D
iOJ

on D W
• The (1, O)-part \7'D

iOJ

,I,O

is determined by the Hat structure on VW. It relnains to construct

\7'DiOJ
,O,l : COO(M; DW

) -+ COO(M; 0 1 (93 W
) ®l)3iOJ DW

).

Let h E COO(A1') be a real-valued function satisfying

LL;h = l.
gEr

Given s E COO(M; DW), eonsidering it to be an elernent of Coo(/\11
) by (3.8), define its

covariant derivative to be

(3.12)

Proposition 2. [20, Prop. 9]

(3.13)

defines the (0, l)-part 0/ a partially flat connection on D W
•

We will use the inclUSiOIl

The curvature of \7'D
iOJ

, aeting on s E Coo(MI), is cOlllputed to be

(\7'D
iOJ

)

2
s = - L dg (d

MI
h) L;s + L dg dg' h (L;h) L;,gs.

gEr 9,g'Er

(3.14)

(3.15)

Let 7 E z; be as in (3.2) and let Zr E ZCk(cr) be the corresponding eyclic eoeycle.
Suppose that there are constants C, D > 0 such that for all ('Yo, ... ,'Yk) E r k+1

,

(3.16)

Then Zr extends to an element of ZCk(Q3w).
The cover M' of M is classified by a map v : ]\11 -7 Er, definecl up to homotopy. If x = e,

we can think of [7] as an element of Hk (r; C) rv Hk (Er; C). Reeall that [eh (\l'D
iOJ

)] E
H~v~n(M).



14 JOHN LOTT

Proposition 3. .The pairing (Zn eh (\7'P.... ) E H*(M; C) is given by

{
o ij x #- e

(Zn eh (\7'P.... ) = . *[]
Ck 1) T ij x = e,

where Ck is a nonzero constant which only depends on k.

Proof. Let Ck denote a generie nonzero k-dependent eonstallt. Vve l1se equation (3.15) for the

eurvature of V'V
w

. Consicler first the term in eh (V'V
W

) eoming from ( - EgEl' dg (dM' h) L;) k.

For s E COO(M'), we have

(L dg (dMI h) L;) k s = (3.17)
yEr

L [d91 (d
MI

h) L;l] ... [d9k ( dM' h) L;k] S =
Yl .. ·Yk

Ck L dg l ·· .dgk (dM1h) (L;l dM1h) ... (L;k_1'''91r1M'h) L;k ...Y\S =
9\···Yk

Ck L dg I ... dgk (d
M' h) (L;l dM

' h) ... (L;k_\"'Y\ ri M'
h) (Ok .. . gd-I. S =

Yl .. ·g/c

Ck L dgI ... dgk(gk ... gd- I L(Yk ...Yd-1 [(riM' h) (L;l dM' h) ... L;/C_1 ...Yl dM' h] S =
Y1 .. ·Y/c

Ck L dgI ... dgk(gk .. . gd- l (L(y/c ...Yt}-l d"F h) ... (L:;l dM' h) s. (3.18)
gl···Yk

The eontribution of this term to (Zn eh (\71).... ), 01' 1110re preeisely the pullbaek of the
eontribution to M', is

Ck L Zr (dg l ... dgk(gk .. ·gd- 1
) (LCYJc ...Yt}-ldMlh) ... (L;;ldM'h) =

Y1 .. ·9Jc

Ck L Zr ((gk .. ·gd-ldgl ... dgk) (LCYk ...9d-ldMlh) ... (L;;ldM'h).
gl .. ·Y/c

It is clear at this point that a nonzero eontribl1tion ollly arises when x = e, in which easc
we get

Ck L T (1'1, . .. ,'Yk, e) (L;l dM' h) ... (L;kdM
' h) .

'l·"'YJc

One ean show [20, LemIna 3] that there is a closed fOrIll w E nk (A1) such that

L T (,I, ... 1 'Yk, e) (L;l dM
' h) ... (L~kdM' h) = 7[*W.

'Yl .. ·'Yk

(3.19)

(3.20)

(3.21)
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Furthermore, the de Rhanl cohomology class [w] E Hk (A1; C) of w satisfies [20, Prop. 14]

[w] = Ck lJ* [T]. (3.22)

We now argue that this is in fact the only nonzero cont,ribution to (Zn eh ('\7 tJ"'). First,

looking at the group element factors in ('\7 tJ"') 2 anel thc strueture of Zn it is clear that
(Zn eh (V''D''') vanishcs if x #- e. Next, eonsidcr the possible eontributions of the term

L:9,9'Er dgdg' h (L;h) L;'g to \ Zn Tr ('\7 tJ"')2j
). For example, consider the case j = 1. Then

for sECco (lvI'),

If T E Z; then

L dg dg' h (L;h) L;'g8 =
g,g'Er

L dg dg'(g/g)-lL(glg)_i [11, (L;h)J s =
g,g/Er

L dg dg'(g/g)-l (L(g,g)-ih) (L;,-th) s.
g,g/Er

(3.23)

(3.24)/ Zr> Tr ( L dg dg' h (L;h) L19)) =
\ g,g'Er

L ZT (dgdg/(g/g)-l) (L(g'g)-lh) (L;'-ih)
g,g'Er

L ZT ((g/g)-1 dg dg') (L(g,g)-lh) (L;'-lh)
g,g'Er

L T ((g/g)-l,g/-l,e) (L(g,g)-lh) (L;'-lh)
g,g'Er

L T (" ,', e) (L;h) (L~h) . (3.25)
/'dEr

Because of the antisynlInetry of T, this vanishes. A siInilar argument using antisymmetry
applies to all terms in (ZTl eh (V'TYM) involving 2:9,9IEr dg dg' h (L;h) L~g' 0

Remark 1: There is a universal Cr-vector bundlc DO on Er. "Vorking simplicially [17,
Chapitre V]' one can define a natural partially ftat eonnection "\ItJ° on D ü . Provided that
one relaxes thc regularity condition on h to being Lipschitz, olle can realize '\7 tJ'" as v*\7 tJo,

extended from cr to Q3w.

Remark 2: Let c;r denote thc reduced group C*-algebra of r. Suppose that there
is a Fnkhet locally m-convex algebra ~oo such that
1. ~w C 2)00 c c;r.
2. 2)00 is dense in c;r.
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3. ~oo is stable under thc holoIllorphic functional calculus in c;r.
··Wc can ·complete VW to a Q3oo-vector bundle '000 on A1 alld to a c;r-vector bundle V
on M. The latter represents an element ['0] E Ki;fr (J\1) "'-' !(]«(C, C(M) ® C;r) and
so gives a map a : K*(lvI) --+ ]<.(C;r) ~ ]<*(~OO).r COluposing with the Chern charac­
ter gives (ch 0 a)c : ](*(M) ® C --+ H*(rJ3°°), which coincides with the map coming from
[ch (\71'00)] E EBp+qeven HP (M; Hq(rJ300)). Suppose that for each [T] E H* (r; C), there is a
representative T E z*(r; C) such that the cydic cocyde Z'T E ZC*(cr) extends to a contin­
uous cydic cocyde on Q3oo. Proposition 3 shows that if V*[T] E H·(M; C) is nontrivial then
ZT pairs nontrivially with Im(ch 0 a)c. Taking lvI to be a sufficicntly good approximation
to Er, we conclude that the Strong Novikov Conjecture (SNC) holds für r, meaning that
thc assembly map K.(Br) ® C --+ ](*(C;r) ® C is injective. The fact that the existence of
rJ300 implies SNC is well-known [9, III.5], but we wish to emphasize how it comes from the
computation of eh (VDoo

).

If r acts properly and cocompactly on a SIllooth Il1anifold X then one can form the Q3W_

vector bundle Q3w Xr X on the orbifold r /X anel carry out a similar analysis. The upshot
is that if a finitely-generated discrete group r satisfies Hypothesis 2 bclow then the Baum­
Connes map [9, II.ID.c] is rationally injective.

Remark 3: In [20] we gave a heat kernel proof of the lIigher index theorem. This
proof can be reinterpretecl using partially flat connections. For example, let M be a even­
dimensional doseel connected spin Riemannian Inanifolel and let E bc a Hermitian vector
bundle on M with Hermitian connection VB. Then [20, Prop. 12] can be interpreted as
saying

(3.26)

Here TR.'I is the supertrace, S > 0 is a factor which rescales the metric on M and D s denotes
the (rescaled) Dirac operator on M, couplecl to EW using the conncction \7E

w
• One can also

prove (3.26) using the methods of Section 6 of thc prescnt paper.

4. rJ3-HERMITIAN METRICS AND CHARACTERISTIC CLASSES

In this section we discuss the basic properties of a rJ3-valued Hermitian metric on a 23"­
vector bundle. We use such a Hermitian metric to define a characteristic class of a Q3-vector
bundle with a flat structure. (Related ideas occur in [17, 6.31-6.32].) We show that the
explicit partially flat connection described in the previous section, in thc context of covering
spaces, is self-adjoint. y.·/e give an application to the qllestion of the rational injectivity of
the algebraic K-theory asselubly map.

4.1. rJ3-Hermitian Metries. Let M, ~ and lE be as in Section 2. vVe assurne that 111 is
compact, possibly with boundary. Suppose that ~ has an anti-involution, meaning a C­
antilinear Illap * : rJ3 --+ rJ3 such that (bi~)* = bibi anel (b*)· = b. We extend * to n. (rJ3) by
requiring that (db)* = -d(b*). Let ~ be the vector space of C-antilinear maps t : <C --+ rJ3
such that t(be) = t(e)b· for all b E 93 and e E <C. It is a left rJ3-module. If E is a Q3-vector
bundle on M then there is an associated rJ3-vector bllncllc [* such that (l*)m = Ern *. If E
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has a Hat structure then so does &*. An element t E COO(ft/I; l·) extends to a C-antilinear
map t : n(M, ~; S) -t n(A1, ~) such that

t (w 01J3 e) = t (e)w* (4.1 )

for all w E n.(23) and e E COO(M; S). If \JE is a connection on S then there is an induced

connection \JE- on &* given by

d(t(e)) = (\JE- t ) (e) - t (\JE e) E 0 1(23) (4.2)

for all t E COO(M; &*) and e E COO(M; S). (Thc funny sign in (4.2) comes from the definition
of the the involution on 0 1UB).) If \J& is partially flat then so is \JE- .

D efinition 6. 1. A Hennitian form on ct is a map (', .) : ct X ct -t 23 whieh is C-linear in
the first variable, C-antilinear in the seeond variable and satisfies (b 1el , ~e2) = bl (e1, e2) b;
for alt bI , b2 E 23 and Cl, e2 E ct.
2. A Hermitian form (-, -) is nondegenerate if it ind1J.ces an isomorphism h~ : <C -t (f by
(he (ed) (e2) = (e 1, e2) .

We can extend (".) to a Hermitian form on 0* (23) 01)3 <C by requiring that

(WI ®1)3 el, W2 ®1J3 e2) = wdet, e2)w; E 0* (~) (4.3)

for all WI, w2 E O.(iB) and el, C2 E ce.
There is a canonical Hermitian form (', .)0 on ~n given by ({xi}i~I' {Yi}i=l)O = I:7=I XiY;.

Definition 7. A Hermitian rnetric on lE is a Hermitian fonn (".) on ce whieh is positive­
definite, meaning that there is an embedding i : <E -t ~n f 01' Some n such that (', .) = i· (" .)0 .

The method of proof of [18, Lemme 2.7] shows that a Hermitian metric is nondegenerate.
Since ct is a finitely-gencrated projective 23-I11odule, it is clear that it admits some Her­

mitian metric. Tbe method of proof of [18, Lenulle 2.9] gives thc foUowing proposition.

Proposition 4. 1/ (', ')0 and (-,·h are HemLitian metncs on ~ then there is a smooth
1-parameter family {O:thE[O,lj in AutlJ3 (ct) such that 0:0 = Id~ and (-, -)0 = ai (', .h·
Definition 8. A Hermitian metne on a ~-veetor bundle S is given by a smooth lamily 01
Hennitian metnes on the fibers {Sm} mEM .

Proposition 5. There is a Hermitian metric on a ~-vector bundle S. Any two sueh Her­
mitian metnes are related by an automorphism whieh is isotopie to the identity.

Proof. The algebra COO(/vI; ~) is a Frechet locally m-convex algebra in a natural way. Fur­
thenllore, COO(M; S) is a finitely-generated projectivc COO(M; ~)-Illodule. (The proof is
siInilar to tbat of the usual case when 23 = C, the essential tool being that Inv(MN (23)) is
open in A1N(~)') A Hermitian metric on the Q)-vector bundle S is the same as a Hermitian
metric on the COO(M; ~)-module COO(M; S). Thc result now follows from Proposition 4. 0

A Hermitian metric on S gives a COO(M; ~)-linear isolllorphisIll h[ : S -+ &*.
Definition 9. Given a eonneetion '\1E on S, it.r; adjoint connection is

(\JE)· = (ht')-l 0 \JE- 0 hE, (4.4)

another conneetion on S.
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Explicitly,
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(4.5)

We say that \1& is self-adjoint if (\1&). = \1&.

Suppose that Ehas a ftat structure. The tripie (E, r, h[;) defines an element of K!ael (M).
In this case, we write

es (\1&, ht:) = es (v&, \7r) E n/,odd(M, ~).

Proposition 5 implies that

[es (\1E
, hE

)] E EB HP(A1; Hq(~))
p>q

p+q ()(ld

(4.6)

(4.7)

only depends on the flat structure on E. To put it allother way, the assignment of (S, r, h&)
to E gives an explicit map I{~9(M) -+ ](;;l(A1). Wc can then apply es to obtain an

invariant of l(~g(M). In total, we have defined a map

eh EI) es: K;:9 (M) --t ( E!1 HP(M; Zp ('B))) EB ( ~ HP (M; Hq ('B))) EB

p+q evcn

( EB HP(M; H q(~))) .
p>q

p+q odd

Let (M, *) and (M', *') be smooth connected manifolds with basepoints. Let E be a 23"­
vector bundle on M and similarly for E'. Let T = Mx EI. denotc thc trivial ~-vector bundle
on M with the same fiber at * as S, and similarly for T'. Then [E] - [7] is an element of
the reduced group R;;P(M), and similarly for [E'] - [T']. Thc virtual ~ ®c ~'-vector bundle
E®cS'-T®cE'-E®cT'+T®cT' on MxM' is trivial on (A1x{ *'} )u({*}xM') and so passes

-t
to an element of I(fl3~dlY(M /\ M') which represcnts thc product ([E] - [7]) . ([S'] - [T']). If

E and E' have flat structures then wc get the product in j(alg [19, Chapitre II].
Let \1& and \1&' be connections on E and E', respectively. There are induced connections

on T and T'. Let z E Z*(A1, *; C) and z' E Z.(lvI', *'; C) be relative cycles. Let zz' E
Z.(M 1\ M', *; C) be the product. Then with an obviol1S notatioIl, (2.25) implies that

{ eh ( V Co- Tl- ([' - T')) = {eh (VO- r). { eh (Vo' - r') .
lzzf lz JZI

(4.8)

Suppose that E and E' have partially flat connections anel Hennitian metries. Suppose that
\J&' is self-adjoint. Then from (2.37),

{ es (VCO-Tl-Co'-TJ, hCO-Tl-CO'-T')) = {es (vO-r,ll-T). { eh (VE'-T') .
lzzl lz lzl (4.9)



DIFFEOMORPHISMS l ANALYTIC TORSION AND NONCOMMUTATIVE GEOMETRY 19

- ..4.2:··~,;,Hermitian ...Metrics,-Group "Algebras"and -Assembly Maps. We use thc no­

tation of Subsection 3.2. Define an involution on ~w by * (I:gEr Ggg) == I:9Ef cgg- l .

Considering 23w as a left-Inodule over itself, it has a Hermitian form given by (bl,~) == b1b2.
We can transfer this Hennitian form fiberwise to DW. In what fallows, we will freely identify
differential forms on M and r -invariant differential forrns on M'.

Definition 10. Given 81,82 E COO(M; DW), conside1' them to be elernents 0/ COO(M') by
(3.8). Then the Hermitian form (81, 82)W E COO(JVI; ~W) is given by

(SI, S2)W(x) == L: 9 (L;!fSl)(l:) (L;,S2)(X)
Yly'Er

== L: 9 SI (gg'x) S2(g'X).
glg'Er

(4.10)

We da not claim that (".)W is a Hermitian Inetric, in that it may be degenerate.

Proposition 6. \l"D
l4J

is self-adjoint with respect to (".)W J rneaning that for alt SI, 82 E
COO(M; D W

),

(4.11)

Proof. As r -invariant differential forms on NI', wc have

d (SI, S2)W == L: [dg (L;9,81) L~S2 + 9 (dM' L;O,8 1) L;,82 + 9 (L;9,8I) dM
' L;'82]

Y19' (4.12)

and

(VPW,O,l SI, S2r = (;;. d, (hL;SI) , S2r
== L: d, 9 L;9' (hL;81) L;,82

glY' >''{

(4.13)

(4.14)

== L: [d(-yg) - ,dg] L;g,h (L~gg,8d L~82
g,g' (y

== L: dg L;-lg9,h (L;g,st) L;,82 - L: J dg L;g,h (L;99,81) L~82'
9,9',7 g,g' ,'1

== L: dg (L;9' SI) L;,82 - L: ,dg L;g,h (L;99'81) L;,82'
g,g' g,g' ('f

Switching SI and 82 gives

( "Dl4J 1 0 )W '""" (L* iM' ) L* -\7 " 82,81 == L... 9 99,( 82 9' 8 1

9,9'

(4.15)
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and

Then

and
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(\7'D
W

,0,lS2,Sl)W = L d'9 L;91 (hL~S2) L;,Sl.
g,g',"f

= - L9 (L~/s}) L;_lg,dM
' S2

g,g'

= - L 9 (L;9IS1) L~/dM' 82

9,9'

( n1Y"" °l)W """ -1 1 -1 L* (L* h) L* -SI, v " 82 = - 0 9 (, giS} ggl "f99,82

g,g'"

(4.16)

(4.17)

(4.18)

= - L ,dg L~Sl (L~~lg,h) L;-I"f- 1g,82
g,fl ,"f

= - L ,dg L;gg,Sl (L~g,h) L;,.':i2.
g,g',"f

COInbining (4.12), (4.13), (4.14) l (4.17) anel (4.18) givcs (4.11). o
'vVe now give examples in which the Inap (4.7) is nontrivial. Recall the notation of Sub­

section 3.1.

Hypothesis 2. There is an involutive Fn?,chet locally 111-convcx algebra ~oo such that
1. ~w C ~oo c c;r.
2. ~oo is dense in c;r and stable under the holomorphic functional calculus in c;r.
3. For each (x) E (r)' and (7] E H*(N(x); C), there is a representative r E Z; such that the
cyclic cocycle Zr E ZC* (Cr) extends to a continuous cyclic cocycle on ~oo.

Hypothesis 2 is known to bc satisfied by virtually nilpotent groups [16] and Gromov­
hyperbolic groups [30].

We can extend DW to a ~OO-vector bundle D oo on 111, \l'D
w

to a connection \7'000

on Doo

and (', .)W to a Hermitian mctric (', .)00 on 'DOO .
By [17, Chapitre III], we can consider an elelnent k of j(t~lg(Zr) to be given by a formal

difference of homology n-spheres Hsn equipped with ftat bunclles &0 of finitely-generated
projective Zr-modules. For simplicity, we just consider a single H sn. As in [17, p. 98], we
may approximate Hsn by compact manifolds (possibly with boundary), so for simplicity we
assurne that H sn is a compact manifold. Let (H sn] E Hn(H sn j C) clenote its "fundamental
dass". Putting &00 = ~oo ®zr &0, the algebraic K-theory dass of [&00] represents the image
of k under the map K:9(Zr) -t l(~g (~OO). Now apply (4.7) to [&00], pair the result with
Zr and integrate over [Hsn] to get a number. This procedure gives a map

( (

[n;-l] ))
j(:9(Zr) ®z C -t EB Hn(N(x); C) ffi EB Hn - I - 2k (N(x); C)

(x)E{r') k=O (4.19)
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which-is conjecturally injective.

Example 2 : Take r to be the trivial group allel 8 00 = C. In this case, (4.7) becomes

eh ffi es :I(~9(!vf) --+ HO(JV/; C) EB (EB HP(A1; C)) .
podd

Applied to a flat complex vector bundle E on 1'1, this represents the rank of E along with
its Borel classes [2, Section Ig]. It is known that

ifn = 0

if n - 1 Inoel 4, n > 1

othcrwise,

(4.21)

with the higher terms being detected by the Borel dasses [4]. Thus for all n - 1 mod 4, n >
1, there is a homology n-sphere Hsn anel a flat bundle EO of finitely-generated projective
Z-modules on HSn such that if [, = C 0z &0 then J[HS"l es ([,) i= O.

Example 3: Take r to be a finite group and 23 00 = Cf. We can write Cf =
EBpiEf Mni(C), where ni = dim(pi)' Then (4.7) becoInes

eh IJJ es :J(;!! (M) -t~ [HO(M; C) IJJ (~W(M; C)) ]. (4.22)

Consider thc case n = 1 of (4.19). Take the hOInology sphcre to be a circle 8 1
. Given

T E GLr(Zr), fonn a flat Zr-bundle [,0 on SI by gluing thc enels of [0,1] x (Zry using T.
Then [,00 = cr 0zr &0 is a Hat Cr-vector bllndle Oll Si \vith holonomy T. One computes
that

Les ([EOO
]) = EI? 2 log Idet(p(T))I·

pEr

Thus es detects all of l(~lg(Zr) ® C [31].

(4.23)

Example 4: Suppose that r satisfies Hypothcsis 1 of the introduction. For an algebra
A, let K A denote the algebraic K-theory spectnun of A, with (KA)o = Ko(A) x EGL(A)t.
For an abelian group G, let HG denote the Eilenberg-IVIac1ane spectrum of G. We can think
of the dass es as arising froIn a map

Kl]3co.E4 rr L:P(Hllq (lJ3co)).

p>q
p+qodd

(4.24)

We recall thc assembly Inap of [19, Chapitrc IV], extenclecl froIn zr to Q3OO. The indusion
of r into GL(Zr), as a matrix with olle nonzero entry in thc upper lcft corner, induces Inaps

Er --+ BGL(Zf){j --+ BGL(Zr)t ---7 BGL (~lV:o)t 1 (4.25)
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which extend to
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Er --+ Ko(Zr) x EGL(Zr){i --+ Ko(Zr) x BGL(Zf)t -+ /(0 (~oo) x BGL (~oo)t .
(4.26)

Smashing with K z gives the assembly map

We cau compose with es to get

Kz A Er --+ Kzr -+ KlJ3~ -+ II L?(H77q(I)3~))'
p>q

p+q odd

Taking homotopy groups gives

Hp (Er; Kz) -+ Kp(Zr) -t I(p(~oo) -+ EB H q(~oo).
q<p

q+p odd

Then tensoring with <C, we obtain

(4.27)

(4.28)

(4.29)

Let H Si and & be as in ExampIe 2. Let [&]c E !(i (Z) 0z C bc thc corresponding K -theory
dass. Then (4.30) gives a lnap

[&]c : Hp-t(f; 112) -t Kp(Zf) 0z 112 --+ I(p(~oo) 0z C -t EB Hq(~oo).
q<p (4.31)

q+podd

Tracing through the definitions, (4.31) can bc illterprctecl cOllcretely as follows. Assume
that Ef is a lnanifold, possibly with boundary. (Otherwise, approximate it by manifolds.)
Let &' be the ~oo-vector bundle 7)00 on Br. The map (4.25) is realized geometrically by

[&'] - [T'] E K~Z,(Bf), where T' is as in the discussioll above equation (4.8). Consider the
~OO-vector bundle (E - T) ®c (&' - T') on HS t A Ef. Then

es ([(E - T) 0c (E' - T')]) E EB HP (HS l A Bf; Hq(fBoo)) (4.32)
q<p

q+p odd

= EB HP-l(f; C) ® Hq(~oo).
q<p

q+p odd

The map (4.31) comes froln pairing Hp-l(f; C) with es ([(E - T) <Sc (E' - T')]).
From Proposition 6, \1&' is self-adjoint. ThllS wc can apply (4.9), with z E Zt(HS i , *; C)

and z' E Zp_i(Ef, *'; <C). If l - 1 mod 4 and l > 1 then by Example 2, we cau choose HS l

and & so that fz es (\1&-T, h&-T) is nonzero. Applying Proposition 3 to fzJ ch (\1&'-T') ,
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we eonclude that (4.30) gives an injeetion

Thus

[9]
EB Hp- 1- 4k (r; C) -; ](p(zr) ®z C -; ](p(~OO) ®z C -;
k::;:l

[~] [zr]
EB Hp_t_2k(fJ300) ---+ EB Hp - 1- 2k (r; C).
k::;:O k::;:O

(4.33)

(4.34)
[9]
EB Hp- 1- 4k (r; C) -; ](p(zr) 0z C
k=l

is injeetive. Including thc eontribution of the eharaetcristie class eh and taking more carc
with redueed vs. unredueed homology gives the injeetivity of

(4.35)

This is not an optimal result, as (4.35) is known to be injective for all groups f such that
dime Hk(f; C) < 00 for a11 k E N, regardless of whcthcr or not thcy satisfy Hypothesis 1 [3].
The proof of [3] uses more complicated methods.

There is a eonjeeture that (4.35) is an iSOl1l0rphisll1 if r is torsion-frec. This is known
to be true when r is a diserete eoeompact subgroup of a Lie group with a finite number of
connected eomponcnts [14].

5. N ONCOMMUTATIVE SUPERCONNECTIONS

In this seetion we first extcnd the results of thc prccecling sections from connections to
superconnections. For basic information about the sllperconnection formalism, we refer to
the book [1]. We then use superconnections to prove a finite-dimensional analog of our fiber­
bundle index theorem. \·Ve also construct the associatcd finite-dimensional analytic torsion
form and relate it to various versions of the Reidemcister torsion. The main technical
problems of this section involve the large-time behaviour of heat kerneis in Frechet spaces.

5.1. Partially Flat Superconnections. Let 111, ~ anel S be as in Subsection 4.1. Suppose
that S is Z-graded as a direct sum

n

(5.1)

of ~-vector bundles on A1. vVe use the induced Z2-graclillg on S when defining supertraces.
The algebra n (M; HomiE(t:, n*(~) ®iE t:)) has a trigrading a.s

n (M; HOln~(t:, n*(~) 0~ t:)) = EB np,q,T(M,~, End(t:)), (5.2)
p,q,rEZ
p,q~O
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where by definition

op,q,T(AI, ~, End(t')) = op (M; HOlnQ3(t'·, Oq(~) ®Q3 t'.+T)) .

Define a subalgebra of 0 (AI; HomQ3(E , n*(~) ®Q3 t')) by

n' (M; HOIlllB(E, n*(~) ®lB E)) = EB np,q,T(M,~, End(E)).
p+r$q

Definition 11. A degree-1 superconnection A' on t' is a SUffi

A'= LA~
p>o

(5.3)

(5.4)

(5.5)

where
1. A~ is a connection \Je on t' which preserves the Z-grading.
2. For p i= 1, A~ E EBp+q+T=l op,q,r(M, ~, End(E)).

We will sometimes omit the phrase "degree-1". For]J #- 1, let A~,q,r denote the component
of A~ in np,q,r(lvf, ~, E). As in (2.16), we write \Je = \76",1,0 EB \76",0,1.

The superconnection A' gives a C-linear map

A' : COO(M; &) -+ 0.*(1\1,~; E) (5.6)

which satisfies the Leibniz rule. We extend A' to a ClillCar lllap on 0* (M, Q3; &) by requiring
that for all w E nk(M, Q3) and S E nl(M, ~; &),

\76"(ws) = (-l)k w /\ \76"s+dw®C~(M;lB) s. (5.7)

The curvature of A' is

(A' )2 E EB np,q,r(1'1,~, End(&)).
p+q+r=2

(5.8)

(5.10)

Let (A')~,q,r denote the component of (A,)2 in o.p,q,r(A1, Q3, End(E)).
The ehern character of A' is

eh (A') = Trs (e-(A 1)2) E Ifvcn(AI, Q3). (5.9)

It is a c10sed form whose cohomology dass [ch (A')} E Hißuen(AI) is independent of the choice
of A'.

Definition 12. The superconnection A' is partially }tat ij (A')~,0,2-P = 0 for all p ~ O.

Definition 13. A superflat structure on & is given by a degree-1 superconnection

A',flat : COO(M; &) -+ 0* (A1; &)

which is ~-linear and whose extension to O*(M; &) satis/ies (A',/lat)2 = O.

Note that the map in (5.10) does not involve any Q3-differentiation. A partially flat
superconnection determines a superflat structure on & by

00

A',flat = A' + \76",1,0 + '""'" A' .
0,0,1 L..... p,O,l-p

p=2
(5.11)



DIFFEOMORPHISMS, ANALYTIC TORSION AND NONCOMMUTATIVE GEOMETRY 25

. Conve:r;-sely,· given.a:superflat .structure on E:, there is a partially flat superconnection on &
which is compatible with thc superflat structurc} althollgh generally not a unique one.

Example 5 : If!B = ethen a partially flat degree-1 superconnection on & is the same as
a Bat degree-1 superconnection on & in the sense of [2} Section Ha].

Example 6 : If & is concentrated in degrce 0 thcn a partially flat degree-1 supercon­
nection on & is the same as a partially flat connection on E. in the sense of Subsection 2.2.

Hereafter, we assurne that A' is a partially fiat degrce-1 superconnection.

Proposition 7. We have ch(A') E rr,even(M, 23).

Proo/. As (A')2 E S1' (1\1; Homl)3(&, S1.(!B) 0123 E.))} the same is true for e-CA' )2.

ishes outside of EBp,q2::0 S1p,q,O(M, !B} End(&))} thc proposition folIows.
As Trs van­

D

(5.12)

Thus [ch(A')] E H~evcn(M).

Let Cl and &2 be smooth ~-vector bundles on ~1 with supcrfiat structures. Suppose
that there is a smooth isomorphism a : &1 -t &2 of &1 and &2 as topological ~-vector

bundles. Choose partially flat superconnections A~} A~ Oll &1 and &2} respectively} which
are compatible with the superfiat structures. For 1L E [0,1], put A(u) = uA~ + (1- u) a·A~.
Note that for u E (0,1), A(u) may not be partially Bat on &1.

Definition 14. The relative Chern-Simons da.58 CS (A'l' A~) E rr"odd(M} 23) is

CS (A;, A;) = - [Tr, ((i:JuA(u)) e-A'(U)) du.

By construction,

dCS (A~, A~) = ch(A~) - ch(A~)

vanishes in rr"even(M, 23). Thus there is a class [eS (A'l' A~)] E H:i°dd(M).

Proposition 8. [eS (A~, A~)] actually lies in E9 p>q HP(M; H q (Q3)).
p+qodd

Proo/. Thc pfoof is like that of Proposition 1. vVc omit the details.

(5.13)

D

Proposition 9. The dass [eS (A ~ )A~)] is independcnt 0f the choice 0J partially fiat con­

nections A~J A~J' hence we denote it by [es (A'/ lat
) A~flat) ]. It only depends on a through

its isotopy dass. More p1'cciselYJ let {a(€)} tOEN. be a smooth 1-pararneter Jamily 01 a Js. Then

the variation oJ es (A~, A~) E n",odd(M,~) is given by

8,CS (A;, A;) = d ([ Tr, (a-1(E) d~~E) e-A'(U)) du + [ [ u(l - u) (5.14)

Tr, (a-\ (E) d~~E) [A; - a* A;, e-rA'Cu) (A; - a* A;) e-(l-r)A'(u)J) drdU)
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Proof. We first prove (5.14). Put M = IR x /vI. Let p : IR x M --+ Iv! be tbe projection onto

the second factor. For i E {I, 2}, put ~ = p*t:i ; A~ = p~ A~. Then A~ is partially flat on ~.

Define Ci : &1 --+ &2 by saying that a]{f}XM = a(c). Let d= dc BE + d clenote the differential

on r('*(M, ~). Write es (A~, A~) E IT"odd(ft;f,~) as

es (A~, A;) = es (A;, A;) (c) + dc 1\ T(c)

with T(c) E IT"eve71 (A1, ~). Then the equation deS (A~, A~) = 0 implies that

It remains to work out T(c) explicitly.
With an obvious notation, we have

A~ = d€ 1\ 8( + A~,

0:' A; = du\ [0, + a-1(E) d~~E)] + arE)'A;.

Then

(5.15)

(5.16)

(5.17)

(5.19)

A(u) = dE!\ [0, + (1 - u) a-I(E) d(~~~E)] + ?LA'J + (1 - u) a(E)' A; (5.18)

= dE!\ [0, + (1 - u) a-I(E) d~~E)] + A(u),

- da(c)
8u A(u) = - dc 1\ a- 1(e)~ + A~ - a(c)* A;.

As a(e)*A~ = a- 1(e) 0 A~ 0 a(e), it follows that

o,[a(E)'A;] = [a(E)'A;,a-l(E)d~~E)].

Then one finds

Thus de 1\ T(e) is the de-term of

- [Tr, ((ouA(u)) e-l.
2
(U)) du = (5.21)

- [Tr, ( ( - dE 1\ a-I(E) d~~E) + A') - a' A;)
e-(u(l-u) dfl\[a-l(f)dä~~),A'I-a(f)" A~]+A2(u))) du,



DIFFEOMORPHISMS, ANALYTIC TORSION AND NONCOMMUTATIVE GEOMETRY 27

giving

dE!\ T(E) = dE/I l' Tr, (a-1(E) d~~E) e-A'(U») du (5.22)

+11l' Tr, ((A; - a' A~) e-(1-r)A'(u)

u(l - u) dE!\ [a-1 (E) d~~E) ,A; - a' A~] e-rA'(U») drdu

=dE A l' Tr, (a- 1(E) d~~E) e-A'(U») du

+ dE A l'l' u(l - u)Tr, ([a -1 (E) d~~E) ,A; - a' A~] e-rA'(u)

(A~ - a*A;) e-(1-r)A2(u)) drdu

=dE A l' Trs (a- 1(E) d~~E) e-A'(U») du

1111 (da(€)+ d€ /\ 0 0 u(l - u)Trs a- 1
(€)~

[A~ - a* A;, e-rA2 (u) (A; - a* A;) e-(1-r)A2(u)]) drdu

Equation (5.14) follows from cOInbining (5.16) anel (5.22).
Thus [CS (A~, A~)] only depends on a through its isotopy class. A similar argument,

working on 1R X M, shows that [CS (A~, A~)] is independent of thc choice of partially flat
connections A~ 1 A~. 0

Put

v = A~,O,l E COO (NI; HOIll$ ([-, [_+1)) .

Then the partial flatness condition implies that

v2 = 0,

\7&,1,0 V = 0,

( \7&,1,0)2 + [v A' ] = O.
1 2,0,-1

Thus there is a cochain complex of 23-vector bundles

([ ) 0 [ 0 v [ 1 11 11 cn °
1 V : ---+ ---+ ---+ . .. ---+ (... ---+ .

(5.23)

(5.24)

(5.25)

Definition 15. For 1n E M, let H(E, v)m = EB:::o Hi
([, v)m be the cohomology of the

complex ([, v)m over m.

V\fe cannot conclude immediately that H(E , v)m is a projective module. Put E = A 0$ E
and vm = IdA 0$ vm .

Hypothesis 3. For all m E A1, the map vm has closed itnage.
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Remark·4: If ~ = A = ethen, as the fiber of E is finitely-generated, Hypothesis 3 is
.automatically satisfied.

Proposit ion 10. Under Hypothesis 3, H (E, v) m is a fin itely-generated projective ~ -module.

Proof. Thc claim is that if we have a cochain cOInplex

(
tC: ) 0 rt:O v rt:l v v tC:n 0 (5 26)~,v: --+ ~ --+ ~ --+ ... --+ 'C --+ . .

of finitely-generated projective ~-modules anel if IIn(v) is closed then H* (<E, v) is a finitely­
generated projective ~-module. We first provc a smalllenlma.

Lemma 1. Suppose that E is a jinitely-generated projective left 23-module. Put E = A <8l'B
E. Given T E End'B(E), put T = ldh <8123 T E EnelA(E). 1f T is invertible then T is
invertible.

Proof. Write E = ~Ne for SOlne projection e E l11N(Q)). Then E = ANe, with e E MN(A).
We can consider T to be an element T' E A1N (23) satisfying eT' = T'e = T'. Put S =
T' + 1 - e E MN(~) alld S = T' + 1 - e E A1N (A). Then S is invertible. Hence S is
invertible [5, Proposition A.2.2). The inverse of T is given by the restriction of 8-1 to
lm(e). []

Now put ~-Hermitian metrics on {<Ei}?=l' Let v* E HOIn'B (<E., <E.- l) be the adjoint to
v, defined using these metrics. Put ~ = vv· + 'v·v. Put <t = A <8123 <E, v = IdA<8123 v anel
6 = vV* +V* v. Then (<E, v) is a cochain cOlnplcx of fillitely-generated projective Hilbert A­
modules with Im(v) closed. "Ve use [34, Theorell1 15.3.8), about operators with closed image,
throughout. lt implies that 1<er(v) is a finitely-generatcel projective Hilbert A-module with
Im(v) as a Hilbert A-subInodule. As usual,

1<er(v) n lm(v)l- = 1<er(v) n 1<er(v*) = 1<er(6). (5.27)

As V* is conjugate to v, Im(V*) is also closeel. There is an inclusion map r Im(~)--+

lm(v) EI7 IIn(V*). We claim that r is onto. "Ve have that v is an isomorphism between
1<er(v).L = lm(v*) anel IIn(v). Thus if Z E Im(v) thell there is a y such that z = vV*(y).
Similarly, there is an x such that V*(y) = 1). v(x), giving that z = 6(v(x)). The same
argument applies if z E hn(v*). Thus r is an isomorphism.

In particular1 IIn(~) ~ Inl (v) EI7 Im (V*) is closcd, implyillg that 6. restricts to an isomor­
phism between Ker(6.)l- = IIn(~) alld Im(~). It follows that 0 is isolated in the spectrum
a(~) of ~. By Lemlna 1, a(~) = a(~). Hencc we can take a small loop , around 0 anel
form the projection operator

pKer(t::.) = -1-1 d)" . (5.28)
21ri ,).. - ~

It follows that Ker(6) is a finitely-generated projectivc 23-modulc.
If " is a contour arounel a(~) - {O} then thc Grecll's operator of ~ is given by

G = _11~ d)" . (5.29)
21ri 1')..).. - 6.

For x E <E, let x = 1 <8123 x denote its image in ~. If x E Kcr(v) nKer(v*) then x E Ker(6).
Conversely, if x E Ker(~) then x E Ker(6), itnplyillg that x E 1<er(v) n Ker(v). Hence
x E Ker(v) n Ker(v·), showing that 1<er(v) n Ker(v*) = 1<er(~).
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Finally, consider the map s : Ker(v) n Ker(v"') -+ H(~, V). We claim that s is an isomor­
phism. If x E Ker(s) then x = v(y) for some y. ThcIl v"'v(y) = 0, so V*v(y) = 0, so v(y) = 0,
so x = O. Thus s is injective. If h E H(~,v), find some y E Ker(v) in thc equivalence dass
of h. Clearly y - vGv·(y) E Ker(v). By usual arguments, y - vGv*(y) E Ker(V-) and hence
y - vGv'" (y) E Ker(v·). As s(y - vGv* (y)) = h, S is onto.

Vve have shown that H(~, v) I"V Ker(v) n Ker(v*) = Ker(tl) is a finitely-generated projec-
tive Q3-module. D

Hereafter, we assumc that Hypothesis 3 is satisfied.

Proposition 11. The {H(&, V)m}mEM fit tagether to f01m a Z-graded Q3-vector bundle
H (& , v) on M with a flat structure.

Proof. By (5.24), v is covariantly-constant with rcspect to the connection \7e,l,o. Given
m E M, we cau use thc parallel transport of \7e,l,o to cxtcnd the rcsult of Proposition 10
uniformly to a neighbarhood of m, giving thc Q3-vector bundlc structure on H(E, v). Thc
flat structure on H(E,v) conles from [2, Prop. 2.5]. D

There is a Hermitian Inetric hH(E ,v) on H(E, v) coming [raIn its identification with Ker( tl) c
E. Letting pKer(b.) be as in the proof of Proposition 10, there is an induced connection

VJl(e,v) = pKer(6)\7e (5.30)

on H(E, v).

Proposition 12. The connection \7H(E,v) is par·tially flut and c01npatible with the flat struc­
ture on H(E, v). Furthermore, (\7 H(E,v))* = pKer(6) (\7 E)*.

Proof. Thc proof is similar to that of [2, Prop. 2.6]. \~TC Olnit the details. 0

5.2. A Finite-Dimensional Index Theorem. Let (', .) be a Hermitian metric on E as in
Subsection 4.1, which rcspects the Z-grading on E. As in that subsection, there is a partially
flat degree-l superconnection A'* on l* and an adjoint partially flat degree-l superconnection
AU = (A'r on E. given by

(5.31)

Explicitly, define an adjoint operation on 0 (JI/f; HaIn~ (& , O. (Q3) ®l13 E)) by requi ri ng that
1. For 0:,0:' E n (M; HOlnl)3(E, O*(Q3) ®~ E)), (ac/)* = a'*cy*.
2. If V E Coo (!vI; Homl)3 (E, O. (Q3) ®l)3 E)) then V* is t.hc adjoint defined using the Hermitian
form (4.3).
3. Ifw E Ol(M) then its extension by the identity to become an elelnent of01 (M; Endl)3(E))
satisfies w· = -wo

Then for A' as in (5.5),

AU = " A"L...J p'

1J

where A~ = (\7 E)* and for p #- 1, A; = (A~)*. \,Ve write

es (A', hE ) = es (A', A'*) E n",odd(/ilI, Q3).

(5.32)

(5.33)
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. Let.N be the ,number.operator_on E, Ineaning that.N aets on Coo (M; Ej) a.s multiplieation
by j. For t > 0, let (-, ')t be the Hennitian metric on E sueh that if Cl, e2 E COO (M; Ej) then

(eh e2) t = ti (e1, e2) E C OO
( iVI; ~). (5.34)

Letting hf : [, ~ -r be the isomorphism indueecl frolll (-, ')t, we have hf = hetN . Letting
A~ denote the adjoint of A' with respeet to (.) ·)t, wc have A~ = t-N A" tN.

Proposition 13. For u E [0,1], put A(u) = uA' + (1 - u)A~. Then

ates (A', hf) = ~ d ([ Tr. (Ne- A2(U») du +[[U(l -u) (5.35)

Trs (N [AI - A~/, e- rA2 (u) (A' - A~') e-(I-r)A
2(U)]) drdu) .

Proof. This follows from Proposition 9. 0

To make the equations more symmetrie, put B: = t N / 2 A' t- N /
2 anel B:' = t-N / 2 A" t N / 2 .

Then B:' is the aeljoint of B: with respect to (-, .). Explicitly,

B' = "t(1-1')/2 A' (5.36)
t ~ 1"

p~O

B~' = L t(1-1')/2A~.

p~O

Proposition 14. Foru E [0)1], put Bt(u) = uB: + (l-u)B:'. Define T(t) E rr"even(lvf, 23)
by

T(t) = - ~ ([ Tr8 (Ne- BI (")) du + [[1L(1 -1L) (5.37)

Trs (N [B~ - B~', e-rB;(u) (B~ - B~') e-(I-r)Bl(u)]) drdu) .

Then

(5.38)

and

(5.39)

Proof. This follows from (5.12) anel (5.35) by conjugatillg within the supertrace by t N
/

2
. 0

We now discuss thc large-t asymptotics of eh (Bten)), es (B:, hf
) anel T(t). We must

first specify the notion of eonvergence. Define ij anel 11 . Ilj as after equation (2.1).
Let l! be a finitely-generated projeetive left Q3-lllodule with a ~-Hcrmitian metrie. Write

~ = ~Ne for some fixed projection e E MN (Q3). Put Cj = ij(e) E MN(Bj ) anel E j = Efej.

Thcn Ej inherits a Banach space structure as a closed subspaee of Ef. Furthermore,
Enel Bj (Ej ) inherits a Banaeh algebra structure as a doscd subalgebra of End(Ej ). Note
that EndBo(Eo) is the saIne underlying algebra as thc C*-algebra EndA(<e), hut may have a
different norm.
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We ean identify Endl.B(<E) with the projeetive limit of Banach algebras

... -----+ Endßj+l (Ei+d -----+ EndBj (Ej ) -----+ ... -----+ End ßo (Eo). (5.40)

We again write 11 . l1j for the indueed submultiplicative seminorm on End'B(<E). Given
T E End'B(~), let Ti be its itnage in EndBj (Ej ). Then

(5.41)

and o(T) = U~o o(Tj ). As EndBo(Eo) is the same underlying algebra as the C*-algebra

EndA(<E), o(To) = o(T). By Lemma 1, o(T) = a(T). Thus o(T) = o(Tj ) = o(T) for all j.
Using the description of 0* (23) in [20, Seetion IIJ, there is a sequence of seminorms

{li . J1j}~o on each Ok(23) coming from the norms Oll B j . Wc obtain seminorms 11 . Ili on

Hom'B (<E, nk(~) ®!l3 <E) and nk(~), with respect to whieh (2.8) is eontinuous. Convergenee
of eh (Bt(u)) or CS (B:, Il) will mean convergenee in all seminorms {ll . lIi}~o'

Proposition 15. FOT all 11, E (0,1), as t --+ 00,

(5.42)

uniformlyon M. Also,

(5.43)

(5.44)

uniforrnly on M.

Proof. We will only prove (5.43), as the proof of (5.42) is sitnilar but easier. We begin with
some generalities. Supposc that E is a finitely-generatcd projective left 23-module, Tl is an
element of End'B(E) and Tz is an element of End!}3(E) ® <B for some Grassmann algebra
(!;. We assurne that Tz has positive Grassmann degrce. Suppose that o(Td C lR and that
o is isolated in o(Tl ). Let /1 be a small loop aroulld 0 and let /z bc a contour around
o(T1 ) - {O}. We orient ,1 and /z counterc1ockwise. Then we can write

pKer(TI) =1 1 dZ,
11 Z - TI 27f~

and

plm(Tl) =1 1 dz .
/"2 Z - Tl 27fi

(5.45)

Using thc series

1 1 1 1

( ) = --T- + T Tz T + ... ,z-T1 +Tz z- 1 z- I z- 1

(5.46)

(5.47)
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the first contour integral becomes

+ ...
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(5.48)

where G is the Green's operator of Tl.
Writing out B; anel B;' explicitly, we have

B; - B;' = Vi (v - v*) + \7& - (\7&)* + O(t-1/2), (5.49)

Bt(u) = Vi (uv + (1 - u)v*) + '11.\7& + (1 - u) (\7E)· + O(t- I/2).

We apply equations (5.44) - (5.48) with

Tl = UV + (1 - u)v·, (5.50)

T2 = t- I / 2Bt(u) - Tl = t- I
/
2 (u\7 f + (1 - u) (\7&).) + O(t-1).

For u E (0,1), Ker(Td = Ker(u(l- u).6) = Ker(.6). Let 118 write

(5.51)

with

(5.52)

Substituting the series (5.48) into es l , we sec that the lcacling terms in t come from the
terms in (5.48) without any factors of G. Using (5.30) and Proposition 12, one finds

eSI = -11 Tr. (( .ji (v - v') + vt: - (vt:r) pKcr(") (5.53)

1 -tz2 d )
e pKer(6)~ du + O(t-1/ 2 ),1 Z - t-1/2pKer(b.) (u\7& + (1 - 1/.) (\7&)*) pKcr(b.) 27ri

= - 11
Tr s ( (vlI(t:,V) - (VII(t:,V»)') e-(u'VH1',Vl+(l-ul('VH(',Vl)")') du + O(t-l/2)

= es (\7H(&,v) , hH(E,v)) + O(t- l / 2 ).

Note that only a finite nUInber of terms of the scries (5.48) contribute to the component of

eSl of a given degree in O",odd(M, ~). Thus the derivation of (5.53) is purely algebraic.
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if l 2: 1.

if l = 0,
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It remains to estimate CS2 . Put X = T1T2 + T2T1 + Ti anel e-rT{2 = plm(TI)e-rTl plm(TI).

We use the heat kernel expansion

1 e-tz2 dz 100
12

_ (T T) -2. = e-roTI 8(1'0 - t) dro
"'12 z 1 + 2 1f1, 0

100 100 12? ' 12

- 0 0 e- roTI X e-r1T1 8(1'0 + 1'1 - t) drOd1'l

+100

pKer(TdXe-roT;' O(TO - t) dTo

+100

e-roT(' xpKer(TdO(To - t) dTo + ...

Here fJ is the Heaviside function : fJ(1') = l+SiEn(r). Thc scrics (5.54) is similar to the Duhamel

expansion of e-t(Tl+X), with each intermediatc factor of e-rTl in thc Duhamel expansion
heing replaced by either e~rr:.2 or pKer(TI). A tenn on the right-hand-side of (5.54) with k
X's and l pKer(Tl)'s k > l will have a factor of, -,

(_l)k 8 (L::==o 1'i - t)
:: c =7:> -t (=7:~ Ti - tt l

In our case, from (5.50),

X = t- l / 2 (u2\7Ev + u(1- u) ((\7 E)* v + \7EV·) + (1 - u? (\7&)* v*) + O(t- l
).

(5.55)

Put

(5.56)

Using (5.54) gives

CS2 = - 11

Trs [('vE - ('\7 E) ') e-tU(I-U)"'] du (5.57)

+ [ 100100

Trs [(v - v')e-rou(l-u)'" (u2\1Ev + u(l - u) ((\1E)' V+ \1Ev')

+(1 - U)2 (\7&) * v*) e-r1U(1-U)6'] 8(1'0 + 1'1 - t) drod1'1du + ...

We now use the crucial fact [11, Theorem 1.22] that if {ar }r>O is a 1-paralueter semigroup
in a Banach algebra then thc number

a = lim 1'-1 log 11 CYr 11
r-too

exists. Furtherrnare, for all l' > 0, the spectral radius of ar is given by

(5.58)

(5.59)

Let AQ > 0 be the infimuln of the nonzero spectrum of 6.. Then by the spectral mapping
theorem, SpRacl(e-r .6

l

) = e-r>.o. Thus for any j ~ 0, thcre is a constant Cj > 0 such that
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for all r > 1,
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(5.62)

11 e-rt::/ Ilj::; Cj e- r>'o/2. (5.60)

Consicler the IT"\M, ~)-componentof C82 , which is given explicitly in (5.57). First, we
have

1111

Tr, [('v< - (V'<)') e-tU(I-U)l'>'] du Ili ::: coust.l 1

e- tu(l-u)>'o/2du = D(t- I ).

a 0 (5.61)

Next, consider the seconcl term in (5.57). Recall that es (B;, ht:) lives in the quotient space

IT"odd(lvI,~) defined in (2.10). It follows frolll (5.24) that \7t:v will not contribute to the

IT"I(lv1, ~)-component of C82, and similarly for (\7t:) * V*. Hence the second term in (5.57)
is bouncled above in the 11 . Ilrseminorm by

coust.l1100 100

u(l - u)e- tu(l-u)>'o/2J(ro + rl - t) drodrldu = D(t-I).

-1/ 1
Thus we have shown that for each j, the 11 . Ilrselninonn of the n ' (M, ~)-component of

CS2 is O(t-1). One can carry out a similar analysis for all of the terms in CS2 . The point
is that for large t, the e- tu(l-u)>'o/2 faetor ensures that in thc 7l-integral, only the behavior
near u = 0 and u = 1 is important. Consider, for exatnple, what happens when u is elose
to 1. When u = 1, Bt (l) is partially flat and so X lies in n' (M; HOlnlB(E, n*(~) ®1B E)), as
defined in (5.4). COllsidcr the value at u == 1 of a given term cf C82 - The contribution from
B; - B;I lies in EBp+q±r=l np,q,r(lvf,~, End(E)) and thc contribution from thc X's lies in

EBp'+r':Sq Di,q',r'(M, ~,End(E)). For the supertrace to bc nonzero, we must have r+r' = O.
The explici t factor of t appearing is

(5.63)

Suppose first that p+ q + r = 1. The integral near u = 1 of e- tu(l-u)>'o/2 yields an additional
factor of t- I , giving a total estimate of 0 (t- I ). Suppose 1l0W that p + q - r = 1. Thc explicit
factor of t is t-r _ Along with the integral of e-tu(1-u)>'o/2, we obtain a total estimate of
O(t- I - r ). For this to be 1l10re signifieant than O(t-l), wc must havc r < O. As r = p+q-l
and p, q 2:: 0, the only possibility is p == q = 0 anel r = -1. Then r' = 1 anel so pI +1 ::; r/. The
supertrace ofsuch a term lies in rr',q/ (M,~) c n"odd(M,~) and so vanishes in n",odd(M, ~).

One ean carry out a similar analysis near u = O. Finally, the convergenee is clearly
uniform on M. D

Corollary 1. We have

[eh (A')] = [eh (\7H(t:,v))] in H~even(1'v!)

and

[CS (A', h&)] = [cs (\7 H(t:,v) 1 hJl(t:,v))] in E9 HP(M; Hq(~)).
p>q

Tl+q odd

(5.64)

(5.65)

Proof. For all U E (0,1), [eh (A(u))] = [eh (A')] and [eh (\7 H (&,v) (u))]
A' = B~, the eorollary follows from (5.39) anel Proposition 15.

[eh (\7 H(t:,v))]. As
D
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Remark 5-:. Ir. 23 = ethen (5.65) is equivalent to [2, TheorCIll 2.14].

Proposition 16. As t -t 00,

T(t) = O(t-3 j 2) (5.66)

uniformlyon M.

Praaf. Let f be a new variable which comrllutes with the other variables and satisfies f2 = o.
Then

T(t) = - ~ ([ Tr. (N e-ß?(U») du + 0, [ u(1 - u) (5.67)

Tr" (N [B; - B;',e-Bl(u)+((B~-Bn]) dU).
The implication is that we can again write T(t) as Tl (t) + 72(t), where 7i(t) is a contour
integral around Ti, Using the method of proof of Proposition 15, olle finds

Ti (t) = - ~ (11 Tr, (Ne-V'H(E,.l'(U)) du +1111u(1 - n)Tr, (N [y>H(t".V) _ (y>H(t".V))· ,

to~ ° (5.68)

e_r~Jl(E,v)2 (u) (~H(&,V) _ (\7 H(&,v)) *) e-(I-r)V'Jl([,V)2 (U)] ) drdu) + O(t-3j2)

_ ~ l' Tr. ( N e-V'Il(E.vl'(U») du + O(r3/ 2 ).

As Trs (Ne-yrH(['V}2(U)) E f.2"p-ven(M, 23), it follows that Tl(t) is O(t-3j2 ) in rr"even(M, 23).

Next, consider 72 (t). Counting powers of t as in the proof of Proposition 15, one finds that
J2(t) is O(t-3j2 ) exccpt for possible terms which decay like t- I and He in EBp fr,P(M, ~)
mod n"even(M, 23:). Let HS write such a tenn a." t-1T!'P, with 'Ti),P E ff,P(.i\1,23). Frorn

(5.39), we see that t-Id1,0T!'P comes from the t-derivative of the s=f+l,P (M, 23)-component
of es (B: ,hE). Howcver, as es (B;, ht:) has no log(t)-term in its asymptotics, it follows
that dl'0T!'P = O. Thus T!'P lies in ZP (!v!; f.2p (~) ). As we quotient by this subspace in

defining n",even(M,~), equation (5.66) folIows.
Again, the convergence is c1early uniform on At!. 0

Remark 6: There Inay seem to be a contradiction between Proposition 16 and [2, Theorem
2.13], in which a nonzero O(t- 1

) tenn for T(t) was found. However, in the present paper

we quotient by Zk (A1;nk(~)) in defining f.22k (M;f.2p(~)). When ~ = C, as in [2], this
quotienting removes the O(t-I) term of [2, Theorem 2.13] and so there is no contradiction.

5.3. The Analytic Torsion Form. In this subsectioll wc consider thc special case when
E has not only a partially flat degree-1 superconnectioll , but has a partially flat connection
in the sense of Definition 3. Let

(E, v) : 0 -t EO -4 EI -4 ... -4 E71 ---1 0 (5.69)

be a cochain complex of ~-vector bundles on 111. Let
H

\7& = EB '\lEi

i=O

(5.70)
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be a partially ·Rat eonncetion on E = EB7=o Ei. Sllppose that V E,I,OV = O. Put

A' = v + VE
• (5.71)

Then A' is a partially flat e1egree-1 supereonnection. In the notation of Subscetion 5.2,

B~ =Vt v + V E
, (5.72)

B~' =Vt v* + (VE
) * .

Proposition 17. As t -t 0,

eh (Bt(u)) = eh (\7 E(u)) + O(t),

es (B;,hE) = es (VE,I/) +O(t)

and

T(t) = 0(1).

Proof. Equations (5.73) anel (5.74) are evident. From (5.37), the t- 1-term of T is

1 (r 1
2 r1 r1

- t Jo Tr, (Ne-'(7E (u)) du + Jo Jo u{l - u)Tr, (N [Vt: - (Vt:r,

(5.73)

(5.74)

(5.75)

(5.76)

e-rV'E~ (u) (\7E _ (VE) *) e-(I-r)V'E
2 (U)] ) drdu)

~ l Tr, (Ne-'(7E' (U)) du.

As Trs (Ne-'VE~(U)) E IT,even(M, ~), this vanishes in n",evC71 (!t1, ~). It is easy to check that

there is no O(t- 1/ 2)-tenn. 0

Corollary 2. We have

(5.77)

and
[CS(VG,hE)] = [CS(VH(G,v),hll(G,v))] in EB HP(M;Hq(~)). (5.78)

p>q
p+q odd

Proof. For all u E (0,1), [eh (VE(u))] = [ch (VG)] anel [eh (V//(G,v)(u))] = [eh (VH(E,v))].
The eorollary now follows from Corollary 1 anel Proposition 17. 0

Remark 7: If 23 = ethen Corollary 2 is equivalent to [2, Theorem 2.19].

Definition 16. The analytic torsion form TE n",evC71 (lvI, 23) is given by

T = [Xl T{t) dt. (5.79)

By Propositions 16 anel 17, thc integral in (5.79) nlakes sense.

Proposition 18. We have

dT = CS (VG, hG) - CS (VH(G,v), hH(E,v)) in n"'odd (l\tI, ~). (5.80)
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Proof. This follows froru (5.39) anel Propositions 15 anel 17. 0

Let us look ruore closely at 7[0]' the component of Tin 0./1,0 (1vJ, Q3). Assume for simplicity
that M is connected. Then

o.",o(M, Q3) = (Coo(M)jC) ® (Q3/[Q3, Q3]) . (5.81)

From (5.37) anel (5.79),

7[01 =-[0 ([ Tr, (Ne-tU(l-U)!:>.) du + t [ [ u(l- u) (5.82)

dtTrs (N [v - v*, e-ru(l-u).b. (v - v*) e-(I-r)u(l-u)6.]) drdu) t

= -10011

Tr.'l (N (1 - 2tu(1 - 7J.)~) e- tU
(I-u)6) du dt

° 0 t

To give a specific lifting of 7[oJ to Coo(M) ® (~j[Q), 93]), we use the fact that Trs (NIe)

anel Trs (N]H(E,V)) are constant on M. Put

g(t) = -11 (1 - 2u(1 - u)t)e-'u(L-u)du. (5.83)

The asymptotics of gare giyen by

g(O) = -1 and hIU g(t) = O. (5.84)
t-Jooo

Then we can define the lifting ta be

7[oJ = [" [Tr, (Ng (ti:>)) - (Trs (NltJ - Trs (NIH(E,u»)) g(t) (5.85)

+Tr, (NI H(E,U))] ~t.
Let ~' be the restrietion of ~ to Im (~). Then

100 ] dt
7[01 = 0 [Tr, (N9 (ti:>'» - Tr, (Nllm(!:>.») g(t) t'

It follaws from (5.84) that far A > 0,

100 [g(At) - g(t)] dt = log('x).
o t

Thus by the holol110rphic functional calculus,

7[0) = Trs (N log(~')) E Coo(lvJ) 0 (Q)/[Q), Q3]) . (5.88)

Example 7: If Q3 = C then 7[0] is the usual Reidelueister torsion of tbe cochain complex
(t:, v) [32], considered to be a function on M.

Example 8: Suppose that r is a finite group allel ~ = cr. Then 7[0] is equivalent
to the equivariant Reidemeister torsion of [25].
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. Example 9: .Suppose that r is a discrcte group alld ~ = c;r. Let T be the trace
on Q3 given by T(L::""Er c,,) = Ce' Then T (7[oJ) is the L2-Reidemeister torsion of [8], in
the case when there is a gap in the spectrum. (One can define the L2-Reidemeister torsion
for a cochain complex of modules over the group von Nellmann algebra, not just the group
C*-algebra.)

6. FIBER B UNDLES

In this section we extend the results of Section 5 to thc fiber bundle setting. The transla­
tion is that the algebra of endomorphisms of a finitely-generated projective ~-module gets
replaced by an algebra of ~-pseudodifferentialoperators. In the case ~ = C, we recover
the fiber-bundle results of [2]. We emphasize thc necessary Inodifications to [2] and refer to
[2] for some computations.

6.1. Q3-Pseudodifferential Calculus. Let zn be a SlllOOth closecl manifold. Let &1 and
[.2 be smooth Q3-vector bundles on Z, with fibers isolnorphic to ~I and (E2, respectively. In
the case when Q3 is a C*-algebra, an algebra 'lJ~(Z; &1, [.2) of classical Q3-pseudodifferential
operators was defined in [29, §3]. We extend this notion to tbc Frcchet locally rn-convex
algebra Q3 as follows. First, define seminonns {li . 11}~0 on HOll1'B(<cI, ~2) similarly to the
discussion after Proposition 14. Let U ~ Rn be a coordinate patch of Z equipped with
isomorphisms [.11 u '" U X <cl and [.2] u ~ U X lE2

• We define an algebra w~ (U; [.1, [.2)

of classical Q3-pseudodifferential operators on U by requiring that the symbol a(z,~) E
Homi)3(~l, lE2) of an order-rn operator T E Wr{{(Z; &1, &2) be cOInpactly supported in z and
satisfy

(6.1)

for all multi-indices a anel ß. Then we define W2r(Z; &l ,&2) l1sing a partition of unity as in
[29, §3].

Using the representation of Q3 as thc projective liInit of the sequence (2.1) of Banach
algebras {Bj } ~o, with Bo a C*-algebra, we can say that 'lJ 2r (Z; &1, &2) is the projective
limit of the sequellce of pseudodifferential operator algebras

... -----1 'lJ~. l(Z;E]+l,EJ+I) -----1 Wc;.(Z;E],EJ) -----1 ... -----1 \lJ~o(Z;EJ,Eg).
J+ J (6.2)

Let & be a ~-vector bundle on Z. Given T E 'lJ2r(Z; &, &), let ij(T) be its image in
\lJ~. (Z; Ej , Ej ).

J

Proposition 19. 1/ io(T) is invertible in WIro(Z; Eo, Eo) then T is inverlible in 'lJ; (Z; &, &) .

Proof. It is enough to show that each ij(T) is invcrtible in W~ (Z; Ej , E j ), as then T- I will

be the inverse linüt of {(ij(T))-l}~O' So supposc that B is a Banach algebra which is dense
in a C*-algebra Band stable under the holOInorphic functional calculus in B. Let E be a
B-vector bundle on Z. Let E = B ®B E be the corresponeling B-vector bundle on Z. Given
T E W'l1(Z; E, E), let T be its image in 'lJ1j(Z; E, E). vVe will show that if T is invertible in

'lJi(Z; E, E) thcn T is invertible in 'lJB(Z; E, E).
vVrite E as the iInage under a projcction e E COO(Z; ll/!N(B)) of a trivial B-vector

bundle Z x B N . Let E' = Im(l - e) be the complelncntary B-vector bundle. Choose
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TI E \I!lI(Z; E, E) such that T' is invertible in 'lJi(Z; E', E'). If we can show that T ffi TI
is invertible in \I!n(Z; B N , B N ) then the inverse of Twill be given by the restriction of
(T EB T,)-l to Im(e). So we mayasweIl assume that E is a trivial B-vector bundle with
fiber B N

.

Note that as T is invertible, T is elliptic. By the usual paramctrix construction, we can find
U E \I!"Bm(Z; E, E) such that TU = I - K with !( E w1/)O(Z; E, E), and similarly for UT.
Perturbing U a bit if necessary, we can assurne that U is invertible. Then I - K is invertible,
with inverse U-1T-

1
. If we can show that I - I( is invertiblc then T- 1 = U(I - K)-I.

Thus we are reduced to showing that if I< E \J!ilOO(Z; E, E) anel I - K is invertible
then I - I< is invertible. Fix a Riemannian lnctric on Z. Let {ei}~1 be the orthonormal
basis of smooth functions on Z given by the eigcnfunctions of the Laplacian. For M 2: 1,

let PM E \I!COO(Z; C, C) be thc obvious projection operator froln L 2 (Z) to (EB~1 ei ) and

let PM E wBOO(Z; E, E) be its extension by thc identity on B N
. Consider the operator

DM = 1 - (1 - PM )K(1 - PM)' We claim that if M is large enough then DM is invertible.
To see this, write the Schwartz kernel of (1 - PM )K(I - PM) as

[(1 - PM )K(I - PM)] (z, z') =K(z, z') -1 PM(z, w)J((w, z')dw -1 K(z, w')PM(w', z')dw
Z Z (6.3)

+ hh PM(z,w)J((w,w')PM(w',z')dwdw'.

The sequellce of Schwartz kerneIs {PM(w, w')}M=1 fonns an approximate identity. By as­
sumption, K(z, z') is a smooth function from Z x Z to A1N (B). It follows that for any € > 0,
there is an M 2: 1 such that for all z, z' E Z, in the Banach norm,

I[(I - PM )1«1 - PA,)] (z, Zl) I ::; €.

Taking E small enough, the surn of convolutions
00

(6.4)

(6.6)

(6.5)D;,/ = L ((1 - PM )1«I - PM))k
k=O

converges in the algebra I + \I!liOO(Z; E, E).
\Nith respect to the decolnposition I = PM + (1 - P AJ ), write

1 - K = (~ ~).
We have shown that J is invertible. Then

(~ ~) = Gß;-l) (a -~8-1, ~) (8-\, n. (6.7)

As I - K is invertible, it follows that 0: - ßfJ-l, is invertible in l11MN (B). Then 0: - ßJ-l,
is inver.tible in MMN(B) [5, Proposition A.2.21. Hence

(1_/<)-1 = (1 0) ((0: - ßJ-l,)-1 0) (1 -ßfJ-
1
)

-5- 1, 1 0 5- 1 0 1 (6.8)

is well-defined in 1 + WliOO(Z; E, E). o
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Note --that ,w;BOO(Z;.t', t') ~is~ an algebra in its OWH right (without unit). Given T E
W;BOO(Z; t', &), let O'w-oo(T) denote its spectrull1 in w;OO(Z; &} &) and let O'woo(T) denote
its spectrum in w; (Z; t: , t:).

Lemma 2. ow-oo(T) = owoo(T).

Proof. As w;OO(Z; t'} t:) has no unit, 0 E 0\11-00 (T). As T is not invertible in W;( Z; &, &),
o E o'lloo(T). If"\ f:. 0 then by definition, A ~ ow-oo(T) if and only if we can solve the
equation TU - AU - A- 1T = UT - AU - A- 1T = 0 for some U E '1J;OO(Z; t', &). Thus
if ,,\ tI. 01JJ-o:l (T) then in w;(Z; t'} t'), we have (T - A)(U - A-1) = (U - ,,\-I)(T - A) = I
and hence,,\ ~ o'lfo:l(T). Conversely, if,,\ ~ CJ4JOCJ(T) thcn wc can solve (T - "\)(U _ A- 1) =
(U -,,\-1) (T - A) = I for some U E w;(Z; t', t:). By thc pseudodifferential operator calculus,
U = A-IT(T - ,,\)-1 = A-1 (T - ,,\)-IT E W;j300(Z; t', t:) anel so ,,\ ~ (1\1f-OCJ (T). 0

Fix a lliemannian metric on Z. Given a ~-vector bundle t: Oll Z, write t' = ~Ne for
some N and some projection e E COO(Zj MN(~))' Then

HOlnl)3 (t'Z2,t'zJ ~ {k E A1N(~) : k = e(zdke(z2)}' (6.9)

Consider the algebra 2( of integral operators whose kerneis ]((ZI' Z2) E Homl.B (t'z:n t'Z\) are
continuous in ZI and Z2} with multiplication

(KK')(Zh Z2) = hK(z" z)K'(z, Z2) dvol(z). (6.10)

Let Aj be the analogous algebra with continuous kernels ]((ZI, Z2) E HOmBj ((Ej )Z2' (Ej)ZI)'
Give HOmBj ((Ej )Z2' (Ej)ZI) the Banach space Bonn I·I} indllced from Horn (EI', EI'). Define
a norm I. Ij on Aj by

11(lj = (vol(Z))-1 Inax 11((ZI, z2)lj' (6.11)
z\ ,z2EZ

Then Olle can check that A j is a Banach algebra (without unit). Furthennore, 2t is thc
projective limit of {Ai}j>o and so is a Frechct locally r71.-convcx algebra with seminorms
{II . Ilj}j2:o coming from {I . Ij}j2:o, Any T E w;;OO(Z; E, E) gives an element of Q!. through
its Schwartz kernel. Let o2l(T) be its spectnllll in Ql.

Lemma 3. o'){(T) = 0W-OCJ (T).

Proof. As 2t and W;OO(Z; t', &) have no unit} 0 E (J']{(T) anel 0 E oW- OCJ (T). For"\ f:. 0,
suppose that ,,\ fI. a'll-co(T). Then we can solve TU - AU - A- 1T = UT - AU - )..-IT = 0 for
some U E w;nOO(Z; E, &). As U defines an elelnent of 2t, we have A ~ o2l(T). Now suppose
that ,,\ ~ 02', (T). Then we can salve TU - AU - ,,\-IT = UT - ,,\U - A-IT = 0 for same
U E 21. As U = ,,\-IT(U - )..-1) = ,,\-I(U - A- 1)T, it follows that U has a smooth kernel
and so defines an element of w;OO(Z; t', t'). Thus ,,\ ~ 0\lf-OCJ (T). 0

Define TR : 21 ---1 ~/[~} ~] as in (2.39).

Corollary 3. Suppose thai {G:r } r>O is al-parameter sernigr'oup in W;;oo (Z; E) t') whose spec­
tral radius in W; (Z; t', E) is given by SpRad (etr ) = ear foT' some a < O. Then for all j 2:: 0,
as T' ---1 00, in 21 we have 11 etr Ili= 0 (ear / 2 ). In particular, TR (ar) = 0 (ear / 2 ).

Proof. By Lemmas 2 and 3, the spectral radius of ar in 2l is eur . Then its spectral radius in
the Banach algebra A j is less than or equal to ear . By (5.58) and (5.59)} 11 Qr Ili= 0 (eur / 2

).

As TR is continuous on 21, the corollary follows. 0
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6.2. Induced Superconnections. Let Z -; 111 4 B be a smooth fiber bundle with total
.space M, compact base Band connected closecl fibers {Zb}bEB of dimension n. We use
the notation of [2, Section 3] when discussing the topology or geometry of such a fiber
bundle. Let TZ be the vertical tangent bundle of the fiber bundle, an lRn-bundle on lvI,
and let o(TZ) be its orientation bundle, a Rat lR-bundle on M. Let T H M be a horizontal
distribution for the fiber bundle. Let & be a ~-vector bllndle on 111. There is an induceel
Z-graded 23-vector bundle W on B whose fiber over bEB consists of the smooth &-valued

differential fonns on Zb, i.c. Wb = [2* (Zb; &!Zb)' Ir 11, > 0 then Wb is infinitely-generated.

Using the horizontal distribution, there is an isolnorphisln

[2(B, 23; W) ~ 0(111,23; &). (6.12)

(6.13)

We equip f, with a partially Rat connection \J& as in (2.21). Using (6.12), this induces a
partially Rat degree-1 superconnection A' on W. Thc connection component yoW of A' has
two pieces :

\JW ,I,O . np,q(M ~. E) -; n p+i ,q(ll1 ~. E). " , , ,
\JW,O,l : [2P,Q(M, 23; E) -; Op,q+l(1'1, 23; E).

As in [2, Proposition 3.4), \7W,I,O is given by Lie differentiation with respect to a horizontal
vector field on M. On the other hand, \JW,O,1 comes froln thc action of a& as in (2.19).
The other nonzero components of A' are A~ 01 = rl Z aud A~ 0-1 = iT . The degree-1
superconnection A',/lat defining the superflat st;llcturc on W is ~~sentially the same as the
Rat degree-1 superconnection of [2, Section 3b]. The lnain difference between [2, Section 3]
anel the present paper is that we take into account \7W,O,I, so that A' is not completely Hat.

Let gTZ be a family of vertical Riemannian Inetrics on the fiber bundle. Let * be the
corresponding fiberwise Hodge duality operator, extencled linearly from COCJ(M; A(T·Z)) to
Coo(1\1; A(T·Z) 0 &) ~ COCJ(B; W). Let h& be a Hennitian metric on &. Let (\7&). be the
adjoint connection to \J&, with respect to h&. Thcre is a self-adjoint connection on & given
by

(6.14)

Put

'IjJ = (\7&,1,0)· - \7&,1,0 E [21(1\1; End'B(E)). (6.15)

Let us assume that ((jE) * = a&; this can always be achicved by rcplacillg a& by ~ (Cf + ((JE).)
if necessary. Then

For notational convenience, put

'i;70,flat,sa = ~ ('i;7O,flat + ('i;7O,flat)') .

Then

(6.16)

(6.17)

(6.18)
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\JE ,sa = \JE ,/tat,sa + ae (6.19)

(6.20)
:.!

(\JE,flat,$a)2 = _~.
4

Furthermore, one can check that \JTM0E:,flat,sa'lj; vanishcs in 0 2 (M; Endl)3(t")).
There is a Hermitian metric hW on W such that for s, s' E Wb,

(s, S')hW = r (s 1\ *S')hC E ~. (6.21)JZb

Let (A')* be the adjoint superconnection to A', with respect to hW . There is a self-adjoint
connection \JW,$a on W given by

\lW,sn = ~ (\lw + (\lW) ') . (6.22)

Let {ej }j=l be a local orthonormal basis for TZ, with dual basis {T j }j=l' Let Ej denote
exterior multiplication by Ti and let Ij denote interior Inultiplication by ej. Put

Then

d = Ei - Ii,

2 = Ei + Ij.

(6.23)

(6.24)dek + ekd = -2bjk
,

2(f + (f2 = 28jk
,

cl?! + C!'d = o.

Thus e and cgenerate two graded-commuting Clifford algebras.
Let \JTZ be Bismut's conneetion on TZ [I, p. 322), with curvature RTZ . Let e (TZ, \JTZ) E

on(M; o(TZ)) be the eorresponding Euler fonn. Definc R E 0 2 (lv!; End(A(T*Z) ® t")) by

1 ( TZ '''"::k) 1 ( 2)R = 4 (ej, R ek)gTZ 2e ® I E - 4" I/\(T·z) ® 'Ij; . (6.25)

Let R E COO(M) be thc scalar curvature of the tibers. Let Ta be a loeal basis of T*Band
let EO denote exterior lnultiplication by T O

• Definc thc superconncction Bt(u) on W as in
Proposition 14.

Proposition 20. We have

= .jt d\JTZ 0E:,sa _ (~ _ u) Vi 2\7TZ0E,st1 - Vi 2"j,· + (~ - u) Vi ci"j,·
2 Cj 2 Cj 4 o/J 2 2 o/J

(6.26)

+ \lW,sn + (~ - u ) Ea1j;" + (~ - U) wajkEndC*

(
1 ) 1 0 ß' 1 Ct ß .+ 2 - u Vi woßjE E 2 + 20 waßjE E cl,
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where

\7W,sa,l,O = E Q (VTZ0 t;,sa + ~k )
Co 2 0' ,

\7W,sa,O,l = ae.

(6.27)

(6.28)

(6.30)

Froo/. This follows from a computation using [2, Prop. 3.5, 3.7]. We omit the details. 0

Let z be an odd Grassmann variable which anticoInmutes with all of the Grassmann
variables previously introduccd. Put

V nTZ0e sa 1 E Q k 1 EOEß 1 -::i
j = v Cj , - 20 Wojk C - 4t Wnßj - 20 Zl-~ ,

v 2 =VjVj - V\lr.ZCj'
J

Proposition 21. The Jollowing Lichnerowicz-type Jormula holds :

Blt(u) + 2u(1 - u)z (B~t - B~t) =4u(1 - u) [t (_7)2 + ~) (6.29)

+ ~cidR(Ci' Cj) + ViciEOR(ei' co) + ~EOEßR(eo , eß)

+ t (~"/'~ + ~cJ2'["/l' ,,/, ] - ~d2' ("VTZ0E
,sa,,/, ))4 0/) 8 0/) 1 lf-'k 2 Cj o/k

_0 E0(j (\7TZ®t:,sa7!J') _ z0rJ,,{,. _ ~EO,,/. ]
2 Co J 2 0/) 2 lf/o

+ Vi d (\l~;,a(l) - 2G-u) Vi Ci (\l~;,acf)

+ E O (\l~~'''iJe) + (~ - u ) E O [1/Jo, cf] - V; Ci [1/Jj, cf]

+ Vi G-u) d[1/Jj, iJe] + (0&)2 .

Froo/. Let us write B4t (u) = uB~{lat + (1 - u)B~/lat + EJE. Then

B 2 ( ) - (1 _ ) (BfJlatB"Jlat + B",fl(dBf,/lat)4t U -u U 4t 4t 4t 4t

+ u [B~,!lat, ae] + (1 - u) [B~I/lat, ae] + (ff) 2 .

A formula for 1:. (B,,/lat B",/lat + B",/latB',/lat) + ! Z (B',/lat - BIf,/lat) was given in [2 The-
4 4t 4t 4t 4t 2 o1t 4t ,

orem 3.11). The rest of (6.29) can be derived using Proposition 20. 0

6.3. Small Time Limits. For t > 0 and u E (0,1), the restriction of B;(u) to a fiber

Zb is an element of \lJ~ (Zb; A(T* Zb) ® &Iz
b

' A(Tb*B) ® n*(~) ®lB (A(T* Zb) ® &!z)) with

principal symbol a(z,~) = u(1 - u)tl~12. It follows that on Zbl

e-B;(ti) E \lJmoo (Zb; A(T* Zb) ® &Iz ,A(Tb*B) ® n*(~) ®lB (A(T* Zb) ® [Iz )) .
b b (6.31)
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(6.32)

if n is even,

if n is odd

Henee e-B;(u) has.a smooth kernel e-B;(u)(z, Zl) and using the nation ofTRs from Subseetion

2.3, we ean define TRs (e-B;(U)) E rrven(B, 23).

Put V'6"(u) = UV'E + (1 - u) (V'E)*.

Proposition 22. Far all 'U E (0,1), as t -). 0,

(
-Bl(u)) _ {fz e (TZ, \7TZ) 1\ eh (\76" (u)) + O( t)

TRs e - 0(0)

(6,33)

(6,34)

uniformlyon B.

Proof. Consider a rescaling in which aj -). (.-1/28j J ci ---+ (.-1/2 Ej - (.1/2Ij, EQ -). (.-1/2EQ,
Ci -). Ci allel Cf -+ (.-1/2a6". Oue finds from (6.29) that as E ---+ 0, iu adapted coordinates the
rescaling of fBl (u) approaehes

(
1 TZ k) 2- 4u(1 - u) aj - 4" Rjk .7; + 41/.(1 - u)R

+ Ej (V'E~saae) + EO (\7E,saff)
~ Co

+ G-u) Ei[t/Ji,ff] + G-u) E"[t/J",ff] + (ff)2,

Using loeal index 1nethods as in the proof of [2, TheorC111 3.15], oue finds

[
TZ]lim TR

s
(e-B[(U)) = r (4u(1 _ u))-n/2 Pf 4u(1 - u)R 1\

t~O Jz 2~

Tr
- [(VE,Jlat,lIa aE)+(1-u ) [,p,ot:]+(0[;)2 -u(I-U)t,/J2]

se

=he (TZ, 'VTZ ) 1\ Trse - [(VEJlal"aü")+O-u )[.;"ü"l+(&')' -ti(l-ti)';''1.

On the other hand,

(6.35)

and so

(6.36)

(6.37)

('VI': (u)) 2 = ('VI':,/lal,Saff) + (~ - u) [t/J, ff] + (ff) 2 - u(l - u)t/J2,

This gives the t -). °limit of (6.32).
We have error estimates as in [2, Theorem 3.16], fronl whieh thc proposition follows. D

Define eS(B~,hW) E n",odd(B,23) alld T(t) E n",eVC71(B,23) as in Proposition 14.

Proposition 23. As t ---+ 0,

es (B' I W) = {fz e (TZ, V'TZ) 1\ es (V't:, h
E) + O(t) if n is even,

t, ~ 0(0) ifn is odd

uniformlyon B.
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Proof. Given al, a2 E rr"*(B, ~), let us write

8z (al + z(2) = 0:2' (6.38)

Then

(6.42)
if n is even,

if n Ü3 odd

es (B' hW ) = ~ a11
1 Tl' e-[Br(u)+2u(1-U)Z(B~-B~I)]du. (6.39)

t, 2 Z 0 u(l - u) ,q

Let us do a rescaling as in the proof of Proposition 22, with z ---t (.-1/2 Z in addition. One finds
from (6.29) that as E ---t 0, in aclapted coordinates the rescaling of E (B~(u) + 2u(1 - u)z(B~ - B~))

approaches

- 4u(1 - u) (8j - ~ RJkZxk ) 2 + 4u(1 - u)'R. - 2u(1 - u)z1/J (6.40)

+ Ei (\7;taef ) + E Q (\7;~saa&)

+G-u) Ej[1/Jj, lf] + G-u) E"[VJo , lf] + (8")2 .

Proceeding as in the proof of [2, TheorcIll 3.16], one obtains

limeS (B;, hW) = ~ 8z11
1 re (TZ, \7TZ) A Tr,qC-[(\7E(U))2_2U(1-U)Z1,b] du

t-.+O 2 0 u(l - u) Jz (6.41)

=11l e (TZ, V TZ ) A Trs [1/J e-(VC(U»)'] du

= l e (TZ, vTZ
) A es (vI:, hl:) .

Although wc are integrating ovcr u, there is no problclll with tbe t ---t °limit as the effective
time parameter is u(1 - u)t, which only improvcs the convcrgence. 0

Proposition 24. As t ---t 0,

{
O(1)

T(t) = O(t-l/2)

(6.43)

uniformlyon B.

Proof. Using the method of proof of [2, TheorClJl 3.21], OIlC finds

{

- !! ! Cl Tr (e-Bt(U)) du + 0(1) if n is cven,T(t) = 2 t Ja s

O(t-1j2 ) if n is odd.

By Proposition 22, if n is even then

lim11

Trs (e-Bt(U)) du = re (TZ, \7TZ) A11

eh (VE(u)) du E rr,even (B, 2)).
t~O 0 } Z 0 (6.44)

(Again, as the effective time parameter is u(1 - u)t, thcrc is 110 problem in switching the
t ---t °limit and the u-integration.) As we quotient by n"even(B,~) in defining rr"even(B, ~),
the proposition follows. 0
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o

(6.45)

6.4. Index Theorems. We continue with the setup of Subsection 6.2. For each bEB,

let H (Zb; E!Zb) denote the cohomology of the complex (Wb, dZ). Put 6.b = dZ(dZ)* +

(dZ )* dZ E Wfu (Zb; A(T* Zb) ® Elz
b

' A(T* Zb) 0 Elz
b
)' Put l = A0~E aod Wb = n (Zb; &Iz

b
)·

Let 6 b E wÄ (Zb; A(T* Zb) 0&lzb' A(T*Zb) 0&1 Zb) be the corresponding Laplacian in the

A-pseudodifferential operator calculHS.

Hypothesis 4. For each bEB, the operator dZE EndA (Wb) has closed image.

Proposition 25. Hypothesis 4- is satisfied if and only if 0 is isolated in a(6.b).

Proof. This follows from standard arguments. Wc onlit the details.

Hereafter, we assurne that Hypothesis 4 is satisfied.

Proposition 26. For each bEB, H (Zb; Elz
b

) is a finitely-generated projective ß-module.

The {H (Zb; Elz
b

) }bEB fit together to form a Z-graded ~-vector bundle H (Z; Elz) on B
with a flat structure.

Proof. The proof is similar to the proofs of Propositions 10 anel 11 , with Proposition 19
replacing Lemma 1. 0

There is an induced Hermitian metric hH{Z;Elz) on H (Z; &Iz) alld an induced partially

Hat connection \7H{Z;El z ) as in (5.30).

Proposition 27. For alt u E (0,1), as t --+ 00,

eh (B,(u)) = eh (\7H(z;&lz)(u)) + O(t-1{2)

uniformlyon B. Also,

es (B;, hW ) = es (\7H(z;&lz), hlI(Z;&lz») + o(rl{2) (6.46)

uniformlyon B.

Proof. Let Ao > 0 be the infimum of the nonzero spectrum of 6.. For r > 0, put ar =
plm(b.)e-rb. plm(b.). By Proposition 19 and Corollary 3, for each j ~ 0 there is a cünstant
Cj > 0 such that für an r > 1,

(6.47)

The prüof üf the proposition is now fürmally the same as that of Proposition 15, with (6.47)
replacing (5.60). 0

Proposition 28. We have

[eh ( \71l(z;&lz»)] = he(TZ) A [eh (\7&)] in H~even(B) (6.48)
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and

Proof. As in the finite-dimensional setting, Olle ean verify that [eh (B t (u) )J and [es (B;, hW) ]

are independent üf t. Für all u E (0,1), [Ch (vH(Z;e1z)(u))] = [Ch (VH(Z;Elz»)] and

[eh (V'E(U))] = [eh (V'E)]. The proposition now follows from Propositions 22, 23 and
27. 0

Remark 8: Proposition 28 is also a eonsequenee of the topologieal index theorem of [12].
Namely, Proposition 26 ensures that we can apply (0-3) of their paper, as given in (1.4) of
the present paper. Proposition 28 follows from (1.4) by applying eh and es.
6.5. The Analytic Torsion Form 11. We eontinue with the assumptions of Subsection
6.4. Let N be thc number operator on W. For t > 0, define T(t) as in (5.37).

Proposition 29. As t ~ 00,

(6.50)

(6.52)

(6.51)

.\

uniformlyon B.

Proof. The proof is formally thc same as that of Proposition 16. Vve omit the details. 0

Again, we have

ates (B~, hW
) = - dT(t).

Definition 17. The analytic torsion form T E n",even (111, Q3) is given by

7 = ['" 7(t) dt.

By Propositions 24 and 29, the integral in (6.52) makes sense.

Proposition 30. We have

d7 = lz e (TZ, V'TZ) 1\ es (V'E, hE) - es (V'Il(z;El z ), hll(Z;El z )) in fJ",Odd(B, ~).
(6.53)

Proof. This follows from Proposition 23, Proposition 27 and (6.51). 0

Corollary 4. 11 Z is odd-dimensional and H (Z; t: Iz) = 0 then T is closed and so represents
a dass [T].E H",even(B, Q3).

Proof. If Z is oeld-dimensional then e (TZ, V'TZ) = O. The eorollary now follows from
Proposition 30. 0

Proposition 31. 1f Z is odd-dimensional and H(Z; t:l z ) = 0 then [T] E H",even(B, Q3) is
independent 0/ gTZ, TU M, hE and Cf. Thus it only depends on the (smooth) topological
fiber bundle Z ~ M ~ Band the /lat structu1'e on E.
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(6.54)

By our assumptions, thc right-hand-siele of (6.54) vanishes. Thus 8(T (E) = dT' (E), from
which the proposition folIows. D

Proof. Put F = {gTZ, TU A1, hE, ßE} anel let :F' be another choice of such data. We can find

~mooth 1-param~er faInily {F(E)}€ElR~ch that :F(O) = Fand :F(1) = F'. Put Z = Z,
A1 = :IR x M anel B = IR x B. Let p : M -t /\1 be projection onto the seconel factor and
put l = p*e. Then the family {F(E)}I:ElR provicles the clata gTZ, THM, hE and aE on the

~ --:;r ~ ~ -"*~

fiber bundle Z -t M -t B. Let d = dE 8( + d denotc thc differe~tial on 0 ' (B,23). By
t:!le preceding constructions, there is an analytic torsion form on B which we can write as
T = T(E) + dE 1\ T'(E), satisfying

dT = he (TZ, \7TZ) /\ es (\7&, Il) - es (\711(Zllzl,hH (Zllz)) .

Proposition 32. Suppose that
1. Z is even-dimensional
2. TZ is oriented
3. \JE is self-adjoint with respect to hE.

Then T = O.

Proof. This follows from an argument using Hodge cluality, as in [2, Theorem 3.26]. We
omit the details. D

Let us look more closedly at 7[0], the cümponent ofT in O",o(B, 23). Assurne für simplicity
that B is cünnected. Then

o:"o(B,23) = (COO(B)/C) ® (~/[~, ~]) . (6.55)

As in (5.82),

7[0] - - {OO r1
Trs (N (1 _ 2tu(1 _ 1L)~) e- tU(1-u)6) du dt. (6.56)

Jo Jo t

Define 9 as in (5.83). Then a specific lifting of 7[0] to Coo(B) ® (23/[23, 23J) is given by

7[01 = ['" [Tr.. (N9 (t6.)) - (~ X(Z) Tr., (fIE) - Tr, ( NIII(Z;Elz)) ) g(t) (6.57)

+Trs (NI H(Z;Elz})] ~t.
Example 10: If 23 = ethen as in [2, Theorem 3.29], 7[oJ is the usual Ray-Singer analytic
torsion [32], considered to be a function on B.

Example 11: Suppose that r is a finite group anel 23
lent to the equivariant analytic torsion of [25].

cr. Then 7[0] is equiva-

Example 12: Suppose that r is a discrete group anel 23 = c;r. Let r be the trace
on 23 given by r(L::-rEr c..,.1') = Ce' Then r (7[0]) is the L2-analytic torsion of (22, 27]. (In
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the cited papers, the L 2-torsion is defined using the group von Neumann algebra and with­
out the assumption of a gap in the spectrum of D., but with the assumption of positive
Novikov-Shubin invariants.)

7. DIFFEOMORPHISM GROUPS

Let Z be a connected cIosed Inanifold and let Diff(Z) be its diffeomorphism group, en­
dowed with the natural smooth topology [28]. For i > 1, let Q : (Si, *) -t (Diff(Z), Id) be a
smooth map. We want to find invariants of [al E 7fi(Diff(Z)). Put MI = M 2 = Di+I X Z.
Glue MI and NI2 along their common boundary Si x Z by identifying (0, z) E 8MI with
(0, (a(O))(z)) E 8A12 • Let A1 = MI USiXZ 1\12 be the resulting manifold. Then M is thc
total space of a fiber bundle with base B = Si+1 allel fiber Z. Any (smooth) topological
invariant of such fiber bundles gives an invariant of [0'].

As mentioned in the introduction, we are interestcd in the case when Z is a K(f, 1)­
manifold. Then 7fI (M) = f. Suppose that r satisfies Hypothesis 1 of the introdllction.

There is a Q3-vector bundle t: = ~ Xr /\1 on Ai. Choosing h E Ct{-'(M) satisfying (3.11),
Proposition 2 gives a partially flat connection \JE on t:. Let HS add vertical Riemannian
metrics gTZ and a horizontal distribution T H /\1 to thc fiber bundle.

We would like to use the fonnalism of SectiOll 6 to define thc analytic torsion form. By
Proposition 6, \JE is self-adjoint and so Proposition 32 irnplies that the torsion form vanishcs
if dim(Z) is even. (As the analysis is effectively done on thc universal cover Z, the orientation
assumption on TZ is irrelevant.) So assurne that diIn(Z) is oeld. Let T E Zq(f; C) be a
group cocycIe and let Zr E zcq(~) be the cyclic cocycle coming from (3.4) (with X = e).
Vve want to use Proposition 31 to define the analytic torsion cIass

[Tl E H:ieven(B) = EB HP(B; H q (Q3)) ,
p+q evcn

p>q

take its integral over E to get

1[T] E EB Hq(~)
B q=i+l mod 2

q<i+I

and pair the result with Zr'
In order to satisfy thc hypotheses of Proposition 31, we need to know that H(Z; erz) = 0

and that Hypothesis 4 is satisfied. Equivalently, we neecl to know that the p-form Laplacian
on Zb is invertible for all 0 :::; p :::; dim(Z). This is a topological condition on Z, but it seems
likely that it is never satisfied [23]. To understand the nature of the problem, let us look in
detail at the case when f is a free abelian group.

7.1. Free Abelian Fundamental Groups. Suppose that f = zn. Then Z = rn. Let Ef
and f denote the dassifying space of rand the Pontl'yagin dual of f, respectively. They
are again n-tori, but it will be convenient to distinguish them from Z.

Under Fourier transform, C;f "-J C(r). Take Q3 = COO(r). Instead of using the universal
GDA of Q3, we will simplify things and use the GDA of smooth differential forms on f. This
allows us to use ordinary "commutative" analysis. All of the relevant steps of the paper go
through with this replacement. We now summarize thc statements.
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First, there is a natural Hermitian line bundle H with Hermitian connection \lH on Ef x f
[21, Section 3.1.1]. (The third line of that section sholild read H1 (A1; Z)modTor C H1 (M; IR).)
For all B E r, the restriction of \lH to Br x {B} is thc flat connection on Br with holonomy
specified by B.

We assurne that we are given a fiber bundle Z -t 111 -r B as above, endowed with a
vertical Riemannian metric and a horizontal distribution. Considcr the fiber bundle Z -t
M x r -t B x r. It inherits a vertical Riemannian metric anel a horizontal distribution. Let
f : M -t Ef be a dassifying map for the universal cover A1 -t 111. Put Eo = (/ x Idt H, a
Hermitian line bundle on M x r. The pulled-back conncction \lEo ~ partiallyllat.

Let ~ be the vertical Laplacian of the fiber bundle Z -+ Al x f -t B x f, acting on
n (Z; Eol z ), Then ~ is invertible except on thc tibers ovcr B x {I} c B x r. This lack of
invertibility on B x {I} is responsible for the fact that Hypothcsis 4 is not satisfied. The
effect is that the analytic torsion form may be singular on B x r, with singularity along
B x {I}.

In order to get around this problem, one approach is to just remove the singular subspace
from consideration. Let U erbe a small neighborhood of 1 E f. Consider the restriction
of the fiber bundle to B x (f - U). Then the vertical Laplacian is invertible and we can
define the analytic torsion dass

[Tl E EB HP(B; C) ® Hq(I' - V; C).
p+qeven

p>q

Now Hq(I' - V; C) ~ Hq(f; C) if 0 ::; q < n, anel Hn(I' - Vi C) = O. Thus there is a (smooth)
topological invariant of the fiber bundle given by

l[T1 E EB Hq(f;iC).
q;;i+l mod 2
q<min( i+ 1,n)

(7.1)

In fact, an argument involving complex conjugation shows that thc component of fa[Tl in
Hq(f; C) vanishes unless q =i + 1 mod 4.

Comparing (7.1) with (1.1) (in tbe case r = zn) shows that IB[Tl potentially detects all

of 1r. (Diff(Tn)) ®z C in the stable range. By rellloving U frOIll r, wc have lost the component
of fB[Tl in Hn(fi C) if i + 1 > n, hut this lies outside of the stable range, anyway.

Remark 9: Although Hypothesis 4 is not satisfied for the bundle Z -+ M -+ B, we
have seen that it is nevertheless possible to extract nlost of the information in [Tl, due to
the fact that ~ is noninvertible only on a high-codimension subset of B x f. Although [Tl
is possibly singular on B x {I}, it may be that its singularity is sufficiently mild to still
define the cOIllponent of fB[Tl in Hn(rj C). \~Te have not looked at this point in detail.

In summary, when r = zn then a certain part of the analytic torsion form is well-defined
directly. We do not know what the situation is for the analytic torsion form in the case of
general r. In the next subsection we will make ase of the hornotopic triviality of the fiber
bundle in orcler to define a relative analytic torsion dass for general r.
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7.2. General Fundamental Groups. Let Z --t AI ~ Band t: be as described at the
beginning of Section 7. Vve again assulne that r satisfies Hypothesis 1, that Z is a K(r, 1)­
manifold and that diIn(Z) is odd. Let M' = Z x B be the product bundle over B. Let t:'
be the corresponding ~-vector bundle on M'. From hOlnotopy theory, we know that M and
M' are fiber-homotopy equivalent by some smooth map f : Al --t A1'. Furthermore, f is
unique up to homotopy. It induces an isomorphism betwcen the loeal systems t: and t:'. We
will show that the problems with invertibility of the Laplaeian eancel out when we consider
M relative to M'.

Consider the restrietion of f to a single fiber Zb' It acts by pullback on differential
forms. However, this need not be a bounded, 01' even closable, operator. To get around this
problem, we use the trick of (15], which involvcs modifying f to Inake it a submersion.

Let i : Z --+ RN be an embedding of Z in Euelidean spacc. For € > 0 suffieiently smalI, let
U be an €-tubular neighborhood of i(Z), with projeetion P : U --+ Z. Let Pt : Z x B --+ Z
be projection on the first factor. Let BN denote the unit ball in lRN . Consider thc fiber
bundle B N x Z --+ B N

X M --+ B. Define F : B N x lt1 -+ M' by

F(x, m) = (p (~ x + (i 0 PI 0 f)(rn)) ,7f(m)) . (7.2)

Then F is a fiber-homotopy equivalenee which is a fiberwise subrnersion. Choose v E
nN (B N

) with support near 0 E B N and total integral 1. Dcfine W as in Subseetion~.2 and

let W be the analogous object for the fiber bundle 1\1'. Define a coehain map T : W --+ W
by

T(s') = r v /\ F* Si, (7.3)iBN
where F* acts fiberwise. Then T is bounded.

Put W= WEB W, with the Z-grading Wi = W i ffi (W/)i+l. Let A' be the superconneetion

on W defined in Subseetion 6.2 and let Ä' be the analogous supereonnection on W. For
r E IR, define a supereonneetion A~ on Wby

(7.4)

(7.5)

The cochain part A~,o,o,t of A~ is

dZ = (dZ
TT(:-l)N)

r 0 dZ .

Proposition 33. The supercannection A~ is parlially flat an W.
Prao/. It is enough to show that A',/latT( _l)N + T( _l)N A',/lat = O. Now A',/lat acts on

n(B; W) = n(M; t:) by cxterior differentiation dM
, and similarly for Ä',flat . Taking into

aeeount that T is an odd variable, in ungraded language we mnst show that dMT = TdM1 .
As T acts on n(M' ; t:') by

the proposition folIows.

T(w') = r lJ A F*w',iBN (7.6)

D
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(7.10)

As T is a cochain hOIllOtOpy equivalence, if r =1= °then H(W, d;) = 0, while if r = °then
H*(W, d;) = H*(Z; cz) EB H*+l(Z; [z).

We now want to define an analytic torsion form T using the superconnection A~. If t is
large, we want r to be nonzero, in order to get thc gap in the spectrum necessary for large-t
convergence of the integral for T. If t is small, we want r to be zero, in order to use the
small-time estimates separatelyon M and 1'111'.

Choose a tP E Cgo([O, 00)) which is identically one near t = 0. Put h(t) = Vi (1 - tP(t))
and

B' - tN
/

2 A' t- N
/

2 (7.7)t - h(t} .

The cochain part B;,o,o,l of B; is

B;,O,O,1 = Vi (d; (1 - cP(tp:(-l)N) . (7.8)

Let B;' be the adjoint of S;. For u E (0,1), put Bt (1L) = u13; + (1 - u)13;'.
-=-I1,odd -",even

Definition 18. For t > 0, define CS(t) E n (B, '13) und T(t) E n (B,23) by

CS(t) = - [ Tr, ( (B; - B;') e-B;(U)) du (7.9)

and

T(t) = - ~ ([ Tr, (Ne-B;(U)) du +[[ u(l- u)

Trs (N [13; - 13;', e-rB;(u) (B; - n;/) e-(l-r)Bf(u}]) drdu)

+ h'(t) [ [ Tr, ( ((1- u)~-1)NT' UT(~l)N)

e-rBf(u} (n; - B;') e-(l-r}Bl(u)) d1'du.

Proposition 34. We have 8tCS(t) = -dT(t).

Proof. There is a partially Hat superconnection on IR+ x B given by dE 8f. + A~(f.}' One can
then proceed M in the proofs of Propositions 9 and 14. \Ve omit the details. 0

Definition 19. Define TE n",even(B,~) by

T = LX> T(t)dt. (7.11)

The integrand in (7.11) is integrable. For small t, this follows [rom the fact that 1 - cjJ
vanishes identically near t = 0, so one effectively hM the difference of the torsion integrands
of M and M'. The large-t cOllvergence comes [rOlll the fact that T is a cochain homotopy
equivalence, which implies that the Laplacian

(d
Z

T(-:l)N) * (dZ
T(-:l)N) (dZ

T(-:l)N) (dZ
T(-:l)N)*

o d
Z ° d

Z + 0 d
Z ° d

Z

is invertible [24, Lemma 2.5].



(7.12)

DIFFEOMORPHISMS, ANALYTIC TORSION AND NONCOMMUTATIVE GEOMETRY 53

Proposition 35. The fa7in T is clased. Its dass [T] E H",eve71(B,23) anly depends an
[a] E 7ri(Diff(Z)).

Praaj. This follows as in Corollary 4 and Proposition 31. The only point to check is that
any two choices of the auxiliary data are connecteel by a slnooth I-parameter family. This is
obvious except, perhaps, for the choice of embedding i : Z -t lRN. If i' : Z -+ RN' is another
choice, we can find some N" anel isometrie embeddings I : lRN -+ lRN ", !' : IRN ' -+ RN" such
that ! 0 i and I' 0 i' are connected by a smooth I-parameter fanüly of embeddings. 0

So we have an invariant

hrTl E EB H q ('13).
q:::i+l mod 2

q<i+l

Because of the underlying real structures of the vector bundles involved, one can show that
the Hq (Q3 )-component of fB [T] vanishes unless q - i + 1 lllOd 4. By Hypothesis 1, for each
[7] E Hq(r; C), there is a representative 7 E zq(f; C) such that Zr E HCq(Cr) extends to a
continuous cyclic cocycle on 23. Then the pairing (Zrl J~[T]) E C is a numerical invariant
of [a] E 7ri(Diff(Z)).
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