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ABSTRACT. We define higher quantum Airy structures as generalizations of the Kontsevich-
Soibelman quantum Airy structures by allowing differential operators of arbitrary order (instead
of only quadratic). We construct many classes of examples of higher quantum Airy structures
as modules of W(g) algebras at self-dual level, with g = gl ¢, s02n or en. We discuss their
enumerative geometric meaning in the context of (open and closed) intersection theory of the
moduli space of curves and its variants. Some of these W constraints have already appeared
in the literature, but we find many new ones. For gly_; our result hinges on the description
of previously unnoticed Lie subalgebras of the algebra of modes. As a consequence, we ob-
tain a simple characterization of the spectral curves (with arbitrary ramification) for which the
Bouchard-Eynard topological recursion gives symmetric wg ns and is thus well defined. For all
such cases, we show that the topological recursion is equivalent to W(gl) constraints realized as
higher quantum Airy structures, and obtain a Givental-like decomposition for the corresponding
partition functions.
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1. INTRODUCTION

1.1. Motivation

Virasoro constraints are ubiquitous in enumerative geometry. The general statement goes as fol-
lows. Given a particular enumerative geometric context, such as intersection theory on the moduli
spaces of curves, or Gromov-Witten theory of a given target space, an interesting object of study
is the generating series F' for connected descendant invariants and the corresponding generating
series Z = el” for disconnected invariants. The statement of Virasoro constraints is that Z satisfies
a collection of differential equations of the form HyZ = 0, where the Hys are differential operators
(in the formal coordinates of the generating series F') that form a representation of a subalgebra
of the Virasoro algebra. In this context, the starting point is a given enumerative theory, and the
goal is to show that the generating series Z satisfies Virasoro constraints.

An interesting question is whether the sequence of events can be reversed. Can “Virasoro-
like constraints” be formulated abstractly such that there always exists a unique solution to the
collection of differential equations, in the form of the exponential of a generating series? One may
understand the recent of work of Kontsevich and Soibelman [50] (see also [5]) as providing an
answer to this question, in the form of “quantum Airy structures”.

Let V be a vector space of dimension D (which may be countably infinite) over C. Using the
notation I = {1,..., D}, let (x;);er be linear coordinates on V*, and denote by

Diy 2 C[LA, (21)ier, (hdy, Jier ]
the completed algebra of differential operators on V. We introduce a grading on ’D%W by assigning:
degz; =degh0y, =1, degh =2.
Then a quantum Airy structure is a collection of differential operators (Hy)rer of the form
Hy = h0y, — Py, (1.1)
where Py, € D%V is homogeneous of degree 2, such that the Hj generate a graded Lie subalgebra

of D;E,,V. That is, there exists scalars ¢j"; such that

(Hy, Hi]=h Y i Hi (1.2)
mel
The crucial theorem proved in [50] is that for any quantum Airy structure, there exists a unique
solution Z to the collection of differential constraints HypZ = 0, k € I, of the following form:

ho~t
Z=exp| > ' > Fynlalza, - za, |- (1.3)
>0, n>1 T qeln
2g-24+n>0

It does not say what kind of enumerative invariants the coefficients Fy, ,,[a] are; this depends on the
choice of quantum Airy structure. But the existence and uniqueness of a solution to the differential
constraints is guaranteed.

There are two key features in the definition of quantum Airy structures that are responsible
for existence and uniqueness of a solution. The first one is the particular form of the differential
operators H;, which implies that the differential constraints H;Z = 0 translate into a recursive
system for the coefficients F, ,[«]. The second is the subalgebra property, which, together with
the form of the operators, ensures the existence of a solution.

While quantum Airy structures may be understood as an abstract construction of Virasoro-like
constraints, they were first introduced in [50] as generalizations of the topological recursion of
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Chekhov, Eynard and Orantin [3T], 32]. The Chekhov-Eynard-Orantin topological recursion ap-
pears rather different from quantum Airy structures or Virasoro constraints a priori. It starts from
the geometry of a spectral curve C, and constructs an infinite sequence of meromorphic symmetric
differentials on C™ through a period computation. But it turns out that for any admissible spectral
curve with simple ramification, the Chekhov-Eynard-Orantin topological recursion can be recast
into a quantum Airy structure. In other words, its recursive structure is equivalent to the collection
of differential constraints of a quantum Airy structure.

Thus, quantum Airy structures provide a clear conceptual framework behind the Chekhov-
Eynard-Orantin topological recursion, and a generalization thereof. In particular, it clarifies the
relations between topological recursion, symplectic geometry and deformation quantization. It
also incorporates earlier observations of Kazarian about the role of symplectic loop spaces and
polarizations in the theory of [32] (see also [48]) and provides a simpler approach to the relation
with the Givental group action and semi-simple cohomological field theories established in [29].

Natural generalizations of Virasoro constraints that appear in enumerative geometry are W
constraints. They are known to be satisfied in some contexts, such as intersection theory on the
moduli space of curves with r-spin structures, and certain Fan-Jarvis-Ruan theories. W constraints
are similar in nature to Virasoro constraints. They consist of a collection of differential constraints
H,Z =0 for a generating series of disconnected invariants, but where the H;s form a representation
of a subalgebra of a W algebra. Recall that W algebras are non-linear extensions of the Virasoro
algebra, which arise in conformal field theory when the theory contains chiral primary fields of
conformal weight > 2. W algebras always contain the Virasoro algebra as a subalgebra.

In this paper we provide an answer to the question: Can “W-like constraints” be formulated
abstractly such that there always exists a unique solution to the collection of differential equations,
and that this solution has the form of an exponential of a generating series?

The answer takes the form of “higher quantum Airy structures”. We use the same conceptual
framework as for quantum Airy structures, but we relax the two conditions on the differential
operators. We consider differential operators (Hp)rer of the same form as in , but with
P, e ’D%V a sum of terms of degree > 2. The subalgebra condition is replaced by the requirement
that the left D%*V—ideal generated by the Hy, is a graded Lie subalgebra of D%*V. Concretely, this
means that is replaced by:

[Hi, H) =0 3 g Hin o 93 € Doy -
mel
Under these conditions, Kontsevich and Soibelman (in [50]) already proved the existence and
uniqueness of a solution to the collection of differential constraints HiZ = 0 of the same form as
(1.3). The goal of this paper is to construct many examples of higher quantum Airy structures
from W algebras and discuss their enumerative meaning.

1.2. Main results

Let us now describe the main results of the paper briefly. First, we construct various types of
W constraints. Second, we show that the Bouchard-Eynard topological recursion of [15] [16] [17]
is equivalent to a previously constructed class of W constraints. We also proved along the way a
property about the modes of the W(gly,,) algebra at the self-dual level, which was essential to
our construction of VW constraints.
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1.2.1. Higher quantum Airy structures from W constraints

Our general recipe to produce higher quantum Airy structures from modules of W algebras goes
as follows. The starting ingredients are a Lie algebra g and an element o of the Weyl group of g.
We then consider the principal W-algebra of g at the self-dual level k = —hY + 1 (h" is the dual
Coxeter number of g). This vertex operator algebra is denoted by W(g) and we realize it as a
subalgebra of the Heisenberg vertex operator algebra associated to the Cartan subalgebra § of g.
Then:

(1) We construct a o-twisted module 7 of the Heisenberg vertex operator algebra.

(2) Upon restriction to the W(g) algebra, we obtain an untwisted module. We realize the
modes of the generators of the W(g) algebra as differential operators acting on the space
of formal series in countably many variables.

(3) We pick a subset of modes generating a left ideal which is a graded Lie subalgebra of the
algebra of modes. These modes fulfil the second (and hardest to check) condition to be a
higher quantum Airy structure.

(4) If possible, we conjugate these modes (dilaton shift) to bring them in the form of a higher
quantum Airy structure.

Remarkably, following this simple recipe we can construct a large variety of higher quantum
Airy structures, including many that have interesting enumerative interpretations. Our general
construction reproduces some of the W constraints that have already appeared in the literature,
but most of the higher quantum Airy structures that we obtain are new.

We also note that our construction relies on certain explicit strong generators of the W algebras
that are known in the literature. We discuss this in detail in Section [3.2.41

W(gly,1) higher quantum Airy structures: first class. For clarity let r := N + 1. Our first
set of examples starts with g = gl and o = (12 --- r) — the Coxeter element of the Weyl group &,..
Theorem [£.9]is the main result of this construction, which can be summarized as follows:

Theorem A. Let r>2 and s € {1,...,r +1} be such that r = £1 mod s. Let

) i~ 1 - )

o =i-1—[MJ, So={G,k) | ie{l,...,r} and k>0 +3,}.
r

There exists an (explicit) quantum r-Airy structure on V = @59 C(x;) based on a representation of

the subset of modes (W,i)(i k)ed. of the W(gl,) algebra generators with central charge r in Dy, .

We use Z(, ) to denote its partition function.

The case s = r + 1 (for all r) was studied by Bakalov and Milanov [9 10, 53]. Z, ,.1) is a
generating series for intersection numbers on the moduli space of curves with r-spin structure,
as explained in Section Other choices of s however are new. As explained in the proof of
Theorem [£.9] the condition that s be coprime with 7 arises for the dilaton shift to yield differential
operators of the right form for a higher quantum Airy structure. The condition that r = +1 mod s
is necessary and sufficient for the left ideal generated by the subset of modes to be a graded Lie
subalgebra (see Theorem . We will come back to this statement, and state the precise result in

Section [[.2.3]

The enumerative meaning of the cases corresponding to these general values of s is particularly
intriguing. The partition function Z(, ;) corresponds to the Brézin-Gross-Witten tau function
of the KdV hierarchy [I8] [46]. Further, Norbury constructed in [55] a cohomology class on the
moduli space of curves such that the partition function Z, ;) generates its descendant invariants.
It is then natural to ask whether similar results exist for r > 2, and for the various allowed
values of s. It would be interesting to find an enumerative interpretation for all Z(, ;) since they
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are the building blocks for the Givental-like decomposition proved in Theorem [G] below for the
Bouchard-Eynard topological recursion. For instance, we can ask: does Z,;y coincide with the
r-Brézin-Gross-Witten tau function? And if it does, what is the analog of the Norbury class such
that Z(, 1) becomes the generating series of its descendant invariants? In Section @ we explore
these questions in greater detail.

Propositions and provide straightforward generalizations of the above construction,
by allowing direct sums and conjugations of the quantum Airy structures of Theorem [A] This easy
observation will be necessary to compare the W constraints with the Bouchard-Eynard topological
recursion.

W(gly,1) higher quantum Airy structures: second class. For our second important class
of examples, we keep g = gl,., with r = N + 1, but replace the Coxeter element of the Weyl group by
an arbitrary automorphism o. Although part of our construction is general, we only complete the
program in the case 0 = (1--- r = 1). Theorem realizes these modules as higher quantum Airy
structures with half-integer powers of i (which we call “crosscapped”) and can be summarized as
follows.

Theorem B. Letr >3 and s {1,...,r} dividing r. Let

Oi:i—l—[%J, Ss:{(l,k) | iE{l,...,T} and k20i+(5i71+6i7,«}.

There exists an (explicit) 1-parameter family of crosscapped quantum T-Airy structures on V =
>0 (C(le,) ® (C(xg) based on a representation of the subset of modes (le)(i es, of the W(gl,)

algebra generators with central charge r into 'D%l*/s/.

In Section[6.3] we speculate that the enumerative geometry interpretation of these quantum Airy
structures lies in the open intersection theory developed by Pandharipande, Solomon and Tessler
57, [63). Indeed, for (r,s) = (3,3) we can identify them with the W(sl3) constraints derived by
Alexandrov in [4] for the partition function of the open intersection theory on the moduli space of
bordered Riemann surfaces. For higher r, do we recover the tau function of the extended (r —1)-
KdV hierarchy constructed by Bertola and Yang [I1]? Can it be understood in terms of the open
(r — 1)-spin intersection theory of [21]7

It would be interesting to classify the automorphisms o that can lead to higher quantum Airy
structures and the corresponding structures themselves, as we did when o is a r or (r — 1)-cycle.

W(so2n) higher quantum Airy structures. Another class of examples is obtained by choosing
the Lie algebra g = s0o and the Coxeter element o of the Weyl group, which has order r = 2(N-1).
The resulting higher quantum Airy structures are presented in Theorem summarized here:

Theorem C. Let N >3, that isr=2(N-1)24, and s=1 orr+1. Let
0 =0,1(i-1),  Se={G.k) | ie{2,4,....2N-2}u{N} and k2>?'}.
There exists an (explicit) quantum r-Airy structure on V = @50 C{xp+1) ® C(Top+1) based on a

representation of the subset of modes (I/V,z)(Z k)es, of the W(soan) algebra generators with central
charge N in Dy,

Here, for any r we get two higher quantum Airy structures (where s =1 and s = 7 + 1), corre-
sponding to the well-known subalgebra of modes of Proposition [3.13] and [3.14] For now, we do not
have a construction for more general values of s for sosp, as in Theorem for gly,q (equivalently,
the analog of Theorem [H| for soox). The enumerative meaning of these higher quantum Airy
structures is discussed in Section in terms of Fan-Jarvis-Ruan theory [34].
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Exceptional higher quantum Airy structures. We construct two higher quantum Airy struc-
tures starting with the exceptional Lie algebras g = ey with N € {6,7,8} and using the Coxeter
element (of order denoted by r) as the automorphism o. Our main result here is Theorem m
which we summarize as follows.

Theorem D. Let D = {dy,...,dy} the set of Dynkin exponents of en (see Section , Let
se{l,r+1} and denote

0 ifs=r+1

Se={(i,k) | ie{l,...,N} and k>0'} ai:{di_l Facl

There exists a quantum r-Airy structure on V = @peprrny C{z,) based on a representation of the
subset of modes (VV,z)(Z k)es. of the W(en) algebra generators with central charge N into D%*V.

This Airy structure is as (un)explicit as the generators of the W(ey) algebra, see Theorem
For s =r +1 it is not new: its partition function coincides with the Fan-Jarvis-Ruan invariants of
E-type (see Section and it was already known that it is uniquely determined by W constraints,
see Section[6.4] for references. We have a new case s = 1 whose enumerative geometry interpretation
is currently unknown. For simple but non simply-laced Lie algebras, according to a private com-
munication of Di Yang, W constraints cannot be brought to the form and therefore cannot
yield higher quantum Airy structures.

1.2.2. Higher quantum Airy structures from topological recursion

The Chekhov-Eynard-Orantin topological recursion [31, B2] associates, to the data of a spec-
tral curve S = (C, z,y,wo,2) satisfying certain conditions, a sequence of meromorphic differentials
(wg,n)2g-24n>0 that generate enumerative invariants. It was shown in [50L [5] that for a given S
with simple ramification, the topological recursion is equivalent to a quantum Airy structure that
has countable dimension and whose Lie algebra is isomorphic to a direct sum of subalgebras of
the Virasoro algebra. The Fy s for 2g —2 +n > 0 encode the coefficients of decomposition of the
meromorphic n-differentials wy ,s of [32] on a suitable basis of meromorphic 1-forms. The choice
of polarization in the construction of the quantum Airy structure is determined by w2, which is
part of the data of the spectral curve. This dictionary was established in detail in [50] [5].

The original formulation of the Chekhov-Eynard-Orantin topological recursion requires the
branched cover z : C — C to have simple ramification points only, i.e. dx has simple zeroes.
This restriction on the order of the ramification points was lifted in [I5] 16, I7]. For arbitrary
spectral curves, the combinatorial structure of the topological recursion becomes a little more
involved; it is now known in the literature as the Bouchard-Eynard topological recursion.

In Section [5| we extend the dictionary between topological recursion and Airy structures to
arbitrary spectral curves without any restriction on the order of ramifications. Our main results
(Theorems and Theorem in the text) can be summarized as follows.

For each ramification point p,, denote r, the order of ramification at p,, and introduce a local
coordinate ¢ such that z(z) - x(pa) = 4:7(2) Let us consider the series expansion (denoted with
=) near the ramification points

- l-rq
y(z):ZFO,l[?l:Lg(z) " Z = Pas
>0

and introduce
So i= min{l >0 | Foyl[f‘l] +0 and 7o + l}.

The statement of Theorem [5.32] can be summarized as follows:
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Theorem E. The Bouchard-Eynard topological recursion is well defined (i.e. produces symmetric
wg,n) if and only if ro = £1 mod s, for all o (the £ could depend on o). When this condition is
not satisfied, the lack of symmetry is apparent in wo 3.

Definition F. We say that the spectral curve is admissible when r, = £1 mod s, for all ramifica-
tion points pqy .

Now let us consider the series expansion

5&1,&2 Ozl,az 1— 27
w0,2(21,22)5((§(21)<(22))2 11,122;0 o2 C(21) 7 (22)! 1)dC(Zl)@’dC(Z?) Zj = Pay

and introduce for [ > 0 the meromorphic 1-forms on C
d¢(=")

() = Res ([ w<>)<()l

Theorem relates the Bouchard-Eynard topological recursion to higher quantum Airy struc-
tures, as summarized below:

’

Theorem G. For any admissible spectral curve, the wg , computed by the Bouchard-Eynard topo-
logical recursion can be decomposed as finite sums

wg,n(zla- -~7Zn) = Z F n [a1 an] ®d£ (Zj

A1y..0yQn
l1,...,lpn>0
and the generating series

h91 n
= Q1 ot Qn (1_7
Z =exp > ' > Fg)n[ e ] Hxlj
920, n>1 n: oy, o j=1
2g-2+n>0 Iyl >0

is the partition function of a higher quantum Airy structure based on an (explicit) representation
of a subset of modes of the @, W(gl, ) algebra generators as differential operators.

More precisely, Z satisfies a Givental-like decomposition:

F, + 61, e
Z:exp Zwama + E Z M@ '116 HZ(T s )((l‘l )l>0) (14)
a,l l ! 2 lOtll,Oé2 ll l2 1 e
1,12>0

where the Z(,. 58 are the partition functions of the quantum Airy structures described in Theorem E|

The formula (1.4)) is a Givental-like decomposition for the Bouchard-Eynard topological recur-
sion. If r, = 2, Theorem [G] was obtained in [30] for s, = 3 and in [24] when s, can take any of the
admissible values 1 or 3.

Let us comment on our approach as we do not construct the higher quantum Airy structures di-
rectly from the topological recursion as in [5]. Rather, we start with the notion of “higher abstract
loop equations” of Definition which generalizes the one of [12] [14] to arbitrary ramifications.
We prove in Appendix [C] that if a solution to the higher abstract loop equations exists, then it
is uniquely given by the Bouchard-Eynard topological recursion. Thus, it is just as good to take
the higher abstract loop equations as starting point. But there is a fundamental reason why we
start with the loop equations instead of the topological recursion. It is not too difficult to con-
struct differential operators that produce a recursive structure equivalent to the Bouchard-Eynard
topological recursion; but proving the graded Lie subalgebra condition required for existence of
a common solution of these differential operators (i.e. the symmetry of the F,,) appears quite
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difficult. While if we start with loop equations, we observe that the resulting differential oper-
ators can be identified directly with those coming from modules over W(gl,.) algebras; therefore
we can use Theorems [H] and [[] to prove the graded Lie subalgebra condition. In other words, the
loop equations make the algebraic structure of the corresponding higher quantum Airy structure
explicit, at the expense of obscuring the recursive structure of the original system of equations.

The identification with higher quantum Airy structures constructed from W(gl,.) algebras has
a number of interesting consequences. We are not aware of a direct proof that the Bouchard-
Eynard topological recursion produces symmetric differentials for arbitrary spectral curves. An
indirect argument exists for spectral curves that appear as limits of family of curves with simple
ramification [I6], but it is not clear which spectral curves precisely satisfy this condition. A
consequence of our identification between loop equations and higher quantum Airy structures is
that for any admissible spectral curves, a solution to the loop equations exist. It must then be
given uniquely by the Bouchard-Eynard topological recursion. It then follows that for all admissible
spectral curves the Bouchard-Eynard topological recursion produces symmetric differentials (the
announced Theorem [E| which is Theorem in the text).

What is particularly intriguing though is the cases that fail. The admissibility in Definition [F]
is a constraint on the local behavior of wp,; = ydx. While the condition that s is coprime with r
is easy to understand from the geometry of spectral curves (it says that C is locally irreducible at
its ramification points), the condition that r = £1 mod s is rather unexpected and its geometric
meaning is mysterious for us. Nonetheless, when it is not satisfied, we show in Proposition
that the Bouchard-Eynard topological recursion does not in fact produce symmetric differentials.
The simplest such case is (r,s) = (7,5). Consequently, we can deduce that the left ideal generated
by the appropriate set of modes of the W(gl,.) algebra cannot be a graded Lie subalgebra of the
algebra of modes, and that the collection of differential operators is not a higher quantum Airy
structure.

For r = 3, Safnuk, in [62], recast the W constraints of [4] for open intersection theory into a
period computation, which turns out to be an unusual modification of the topological recursion
on the spectral curve x = y?/2. It would be interesting — but beyond the scope of this article — to
generalize Safnuk’s result and realize the F},, of Theorem |E| as a period computation. The same
question could be asked if quantum Airy structures are found for other automorphisms o € S,..
It amounts to asking what is the appropriate modification of the topological recursion to treat
reducible spectral curves, and whether there will be new conditions of admissibility (like the one
we found in Theorem . This level of generality may enlighten the geometric meaning of those
admissibility constraints.

1.2.3. Results on W algebras

As a side result of our construction, we prove a certain curious property of the algebra of modes
of the W(gl,) algebra at the self dual level. Propositions and Theorem can be
combined into the following result.

Theorem H. Let r>2 and Ay >+ > A\, > 1 such that 2 X\; =r. Forie{l,...,r} denote
P
Ai) = min {m >0 ‘ Yazmb, Sa={Gk) | ie{l...r} and k2i-A(0)}.
j=1

The left ideal generated by the modes W,§ of the W(gl,.) algebra of central charge r indexed by

(i,k) € Sx forms a Lie subalgebra of the algebra A of modes, i.e. there exists g((,]:fzf; (kasin) € A
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such that _ _ (s ee) _
V(il, kl), (i27 k2) €Sy ) [WIZ ) W]:z] = ) Z g(;f:kf),(iz,kz) W]zz .
(i3,k3)eSx
The case A = (1,...,1), which corresponds to k& > 0, gives a well-known Lie subalgebra. It

is the one generated by the modes annihilating the vacuum vector. The other cases however
seem new. Some of these Lie subalgebras are used to prove Theorem [A] thanks to an arithmetic
correspondence established in Proposition [B:I]in Appendix [B] which is summarized here:

Proposition I. For any s € {1,...,r+ 1} such that r = r's+ 1" with " € {1,s -1}, we have the
equality Sy = Ss between the set of modes appearing in Them"em and Theorem@for the choice
)\1:~--:)\7ﬁ//:’f“l+17 )\T"+l:"':)\s:’r,

If r # £1 mod s, there exists a unique sequence (X\;); such that Sy = S, but it is not weakly
decreasing and the left ideal generated by the modes (W,i)(l k)es, does not form a subalgebra of A.

The proof of Theorem [H] relies on the construction of a highest weight module whose highest
weight vector is annihilated by the modes indexed by Sy. The existence of such a highest weight
module is perhaps unexpected; it relies heavily on our realization of the W(gl,.) algebra as a
subalgebra of the Heisenberg vertex operator algebra and on certain embeddings of gl,, & - @
gly, into gl.. It would be worth investigating this construction further, and see whether it can
be generalized to W algebra of other types. In particular, this would yield generalizations of
Theorem |C| Note that it is important in the proof for gl,. that (};); be a weakly decreasing
sequence and this is confirmed by the counterexamples mentioned in the last claim in Theorem [I|

1.3. Outline

We start in Section [2| by defining higher quantum Airy structures. We first propose in Section
a basis-independent definition, starting from the point of view of quantization of classical
higher Airy structures, as in [50]. In Section we revisit higher quantum Airy structures using
bases. We calculate the explicit recursive system satisfied by the coefficients F, ,,. We also prove
a reduction statement to get rid of linear differential operators in higher quantum Airy structures.
We introduce crosscapped Airy structures in Section [2.3] which are related to generating functions
in open intersection theory.

In Section [3| we first introduce the background on vertex operators algebras (Section and
W(g) algebras (Section that will be needed for the construction of our first type of higher
quantum Airy structures. We construct in Section a number of left ideals for the algebra of
modes that are graded Lie subalgebras (see Propositions and Theorem . We then
review the concept of twisted modules for vertex operators algebras in Section in preparation
for the next section.

Our construction of higher quantum Airy structures as modules of W(g) algebras is proposed
in Section [4] The first class of W(gl,.) higher quantum Airy structures, with the automorphism o
given by the Coxeter element of the Weyl group, is explored in Section The second class of
W(gl,) higher quantum Airy structures for arbitrary automorphisms o is studied in Section
We introduce the W(s04,.) higher quantum Airy structures in Section and the W(e,) higher
quantum Airy structures in Section [4:4]

Section [p|is devoted to the reconstruction of the higher quantum Airy structures associated to
the Bouchard-Eynard topological recursion on arbitrary admissible spectral curves. We study the
geometry of local spectral curves in Section and describe the relation with the standard notion
of (global) spectral curves. We introduce the Bouchard-Eynard topological recursion and higher
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abstract loop equations in Section We then prove that the higher abstract loop equations for
local spectral curves with one component are equivalent to W(gl,.) higher quantum Airy structures
in Section The general result for local spectral curves with several components is obtained in

Section [5.41

Finally, Section [f] reviews the known and conjectural enumerative geometric interpretations of
the higher quantum Airy structures that we construct; we also attempt to summarize the rich
history of existing results in this area. We discuss the (closed) r-spin intersection theory (Section
, higher analogs of the Brézin-Gross-Witten theory (Section , open 7r-spin intersection
theory (Section , and Fan-Jarvis-Ruan theories (Section .

We conclude with three appendices. In Appendix [A] we prove, by elementary means, various
properties of certain sums over roots of unity that play an important role in our construction of
the W(gl,.) quantum Airy structures. In Appendix [B] we show that the graded Lie subalgebra
property is only satisfied for values of (r, s) such that » = £1 mod s. When r = £1 mod s, we show
that we get a subalgebra of the intermediate type described in Theorem [} and when r # +1 mod s,
we prove that there is no symmetric solution to the system of differential equations, and hence the
left ideal generated by the set of modes cannot be a graded Lie subalgebra. The proof consists of
an explicit computation and check of (lack of) symmetry for Fj 3 by elementary — but still lengthy
— arithmetics. We also compute explicitly F; ; in Appendix Lastly, in Appendix |§| we prove
that if a solution to the higher abstract loop equations that respects the polarization exists, then
it is uniquely constructed by the Bouchard-Eynard topological recursion.
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2. HIGHER QUANTUM AIRY STRUCTURES

2.1. A conceptual approach

In this section, we provide a conceptual introduction to the concept of higher Airy structures,
starting from the point of view of quantization of higher classical Airy structures. We propose a
basis-free definition of co-Airy structures, and its finite counterpart r-Airy structures. We offer a
basis-dependent and computational approach to higher Airy structures in Section[2.2] Readers who
are mostly interested in the computational aspects of Airy structures may prefer to skip directly
to Section

2.1.1. Classical picture

Let k be a field of characteristic zero and W be a finite-dimensional symplectic k-vector space
equipped with the symplectic form Q. k[[W]] is the completion of the graded ring of polynomial
functions on W. It is a Poisson algebra. The projection from k[[TW]] onto its subspace of degree i
is denoted ;. In fact, we can consider 7 as a linear map k[[W]] — W since the subspace of linear

functions on W is naturally isomorphic to W* and can be identified with W itself via the pairing
Q.

Definition 2.1. A classical oo-Airy structure on (W, ) is the data of a k-vector space V together
with a linear map A : V' — k[[W]] such that

(i) mooA=0.
(i1) T=m oA : V> W is a linear embedding of V' as a Lagrangian subspace of W.
(#47) The k[[W]]-ideal generated by Im X is a Poisson subalgebra of k[[W]].

If Im X is a subspace of the space k,.[WW] of polynomial functions of degree at most r for some given
integer r > 2, we will call it a classical r-Airy structure.

For r =2, (ii7) is equivalent to requiring that Im \ is a Poisson subalgebra and we recover the
Airy structures studied in [50} B]. Definition formally corresponds to r = co.

2.1.2. The quantization problem

The Poisson algebra C[[W]] can be quantized by forming the Weyl algebra Df.. We define it as
the completion of the graded associative algebra over C[[A]] of non-commutative polynomials in
elements of W modulo the relations [w,w’] = AQ(w,w") for any w,w’ € W. The grading is defined
by degW =1 and degh = 2.

Definition 2.2. A subspace A ¢ DI, is a graded Lie subalgebra if [L,L'] € h-A for any L,L' €A.

We have a linear map cl : Dft, - C[[W]] which is a reduction to h = 0 and is called the classical
limst. It is such that

cl(%[L,L’]) — {el(L), cl(L))} .

Obviously, if A is a graded Lie subalgebra, then cl(A) is a Poisson subalgebra in C[[WW]]. Conversely,
given a Poisson subalgebra A c¢ C[[W]], we may ask whether it can be quantized, i.e. whether
there exists a graded Lie subalgebra Ac D"}V such that CI(A) = A. In this article, we will study the
quantization of classical co-Airy structures in the following sense.

Definition 2.3. A quantum oo-Airy structure on V' is a linear map AV D{}V such that clo X is
a classical co-Airy structure and the left ideal A= D@V -Im A is a graded Lie subalgebra. As before,
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if Im\ is a subspace of the space of elements of degree at most r in D{}V, we will call it a quantum
r-Airy structure instead.

For r = 2, the condition that D"’}V Im\is a graded Lie subalgebra is equivalent to Im A being a
graded Lie subalgebra, but this is no longer true for r > 2.

2.1.3. The partition function

The most important fact about quantum Airy structures is that they determine a partition function
via a topological recursion once a polarization is chosen.

Definition 2.4. A polarization of a symplectic vector space (W, Q) is a decomposition W =V eV’
such that V and V' are Lagrangian.

If we are given a Lagrangian subspace V of W, a polarization is a choice of a transverse La-
grangian subspace V’. In this case, we say that the polarization is adapted to V.

If we choose a polarization, the symplectic pairing gives a canonical identification V* = V' and,
therefore, an isomorphism W = T*V of symplectic vector spaces. Here TV =V & V* is equipped
with the natural symplectic form defined for v € V and ¢ € V* by Q(v,¢) = ¢(v). Therefore, the
C[[h]] algebra D{}V acts faithfully on the space of functions on the formal neighborhood of 0 in V'

Funf, = [TSym®(V*)[[].

d>0

Elements v e V act on f ¢ Fun?/ by derivation and z € V* by multiplication by linear functions

v-f=hopf, —x-f=xf.

and the commutation relations in D{}V are represented by the Leibniz rule.

The space Funf‘l/ is in fact a graded associative algebra, where the grading is specified again by
degV* =1 and degh = 2. Besides, the action of D{}V respects the grading

(DhYg - (Funf) g ¢ (Funf)gpa .

Thanks to this grading, for any elements L € D{}V and F ¢ Fun?/ it is possible to make sense of
e FIM(L.eF/") as an element of Fun’.

Note that any F € Fun?/ can be uniquely decomposed as

h9 .

F= 3 —Fyn  FyneSym"(V7).

g,n>0 n:

Theorem 2.5 ([50], Theorem 2.4.2). Let A\: V — DI, be a quantum oco-Airy structure on 'V and
choose a polarization of (W,) adapted to the Lagrangian subspace Z(V') of W (as given by the
corresponding classical oo-Airy structure). There exists a unique F € Fun?/ such that

(i) e FIM(A(v)-eF™) =0 for anyveV,
(it) Fy0 =0 for any g >0,
(ZZ’L) FO,I =0 and FO’Q =0.

The Fy, are usually called “amplitudes” or “correlation functions” or “free energies”, and
Z = ef'/? is called the “partition function”. Conditions (i) — (i4) — (éii) imply that the amplitudes
are uniquely determined by a recursion on 2g — 2+ n > 0. The recursive formula is spelled out
in Corollary The main feature to remember about this formula is that its terms are in
correspondence with equivalence classes of excisions of embedded S +— X, ,, of smooth surfaces .S of
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genus h with k ordered boundaries into a smooth surface 3, ,, of genus g with n ordered boundaries,
such that the first boundary component of S coincides with the first boundary component of 3, ,,.
Here, two embeddings S — X, ,, and S’ — 3, ,, are considered equivalent if they are related by a
diffeomorphism of 3, , preserving the ordering of the boundary components of ¥, ,. Therefore,
the number of equivalence classes is finite and they are characterized by the topology of ¥4, - S.
This justifies the name topological recursion. In the special case of (r = 2)-Airy structures, the
only terms appearing correspond to excisions of pairs of pants, i.e. (h, k) =(0,3). The topological
recursion modeled on the excision of surfaces other than pairs of pants first appeared in [I7].

2.1.4. Finite vs. countable dimension

We will encounter vector spaces V' which are countable products of finite-dimensional vector spaces.
V= H Vp.

p=0
This situation can be handled without difficulty in our discussions, by defining tensorial construc-
tions relying on the unambiguous finite-dimensional tensorial constructions. For instance, we agree
that the dual is
V= vy,

p=0
where @ is the direct sum as opposed to the direct product []. Then, the cotangent space T*V =
V @& V™ has a well-defined symplectic pairing. We define the tensor product as

p
VeV =T[(VeV'),, (VeV),=@V,eV, .

p=0 q=0
2.1.5. Classical versus quantum Airy structures

Due to Theorem quantum Airy structures can be considered as initial data for the topological
recursion. As many known examples show, the Fy ,s often have an interpretation in enumerative
geometry or topological field theory, i.e. count surfaces of genus g with n punctures/boundaries
in various instances. Another trend of applications (for r = 2) concerns the computation of WKB
expansions of sections of holomorphic bundles on curves annihilated by a flat h-connection. The
beauty of the theory is that all these problems fit in the same universal scheme of the topological
recursion. On the other hand, it is not an obvious task to construct quantum Airy structures.

Reversing the usual path from a problem to its solution, we think that it is worth searching
for other constructions of quantum Airy structures as they would probably provide solutions to
interesting geometric problems. In particular, it is appealing to look for constructions directly
from the symplectic or Kéahler geometry of manifolds and their Lagrangians. We certainly have
the possible applications to the moduli space of flat connections on curves in mind.

We now point out that symplectic geometry easily gives rise to classical co-Airy structures.
Consider for instance a real symplectic manifold (X, 2y ), which can be assumed to be real-analytic
without any loss of generality according to [6I]. Let Lo and L be two real-analytic Lagrangian
subvarieties, which intersect and are tangent at a point p € M. Take W =T, X with the symplectic
form induced by Q := Qx|,, and V = T,Ly. A suitable choice of Darboux coordinates gives an
analytic isomorphism f : Ux — Uy from a neighborhood Ux € X of p to a neighborhood Uy ¢ W
of 0, preserving the symplectic structure, such that f(p) =0 and f(LonUx) =V nUw. By the
inverse function theorem, upon taking smaller Us, there exists a linear map A,y from V to the
space of real-analytic functions on Uy, realizing L locally as the zero-locus of A,y

FLAUx)={weUpw | YoeV, Am(v)(w)=0}.
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Im M.y, generates the ideal of the ring of real-analytic functions on Uy, which vanish on f(LnUx). In
fact, since L is Lagrangian, this ideal is a Poisson subalgebra. The condition 7,A¢ = T),L implies
that the linear map V' — W, which associates to v € V' the unique ¢, € W such that Q(t,,-) =
doAan(v), namely the differential of A,, at 0 € W, is a Lagrangian embedding. Consequently, we
obtain a classical co-Airy structure by taking A(v) to be the formal Taylor series at 0 of A\,n(v).

In the less frequent situation where there are Darboux coordinates such that L is cut out (locally
around p) by polynomial equations of degree < r, we obtain a classical r-Airy structure.

It is not easy to exhibit a classical 2-Airy structure A. In fact, this amounts (see [5]) to finding

a collection of functions (\;)ss of the form
Xi=yi— 2 (3AL szt + Bl yways + 3Ce pyath),  {Nis A} =2 (Bja—Bl ),  (21)
a,bel ael
where (z;);er is a basis of linear coordinates on V', (y;)ser the dual coordinates on V* such that
{zi,y;} = 6;; and (A},,Bj,,C},) are scalars. The Poisson commutation relations impose an
overdetermined system of linear and quadratic constraints on these scalars. However, once a
classical 2-Airy structure has been found, it is fairly easy to describe its possible quantizations.
Indeed, such a quantization A; must be of the form
Ni=hp = Y (3AL ywoxy+ Bl yaq hy, + 1CL  h20,,0,, ) —h D', [\, A1 = 2 h(B; .- Bl )Aa
a,bel ael

for some scalars D*. The Lie algebra commutation relations are in fact equivalent to affine con-
straints for D*. Note that the “quantum correction” D* arises naturally from the ambiguity in
the ordering of x and h0, to quantize the B-terms in (2.1)).

The previous example suggests that the difficulty in finding classical r-Airy structures decreases
with 7, and disappears for r = co. On the contrary, the difficulty of quantizing a given classical
r-Airy structure is absent for r = 2, but increases with r. Indeed, one has to introduce an increasing
number of quantum corrections which, for r > 2, must satisfy non-linear constraints in order to lift
the Poisson subalgebra condition to a graded Lie subalgebra condition.

2.2. A computational approach

The basis-free definitions of quantum higher Airy structures given in Section [2.1] clarify the geo-
metric context of our work. We are going to restart from scratch and give a roughly equivalent
presentation of the setup using bases. It can be read independently of Section 2.1} some readers
may find these more basic definitions easier to grasp, it facilitates the exposition and is closer to
the notations of [50].

2.2.1. Basis-dependent definition

Let V be a C-vector spaceﬂ We are going to assume that V has finite dimension D, but there is no
difficulty in adapting it to the case of countably infinite dimension as in Section Denoting
I={1,...,D}, let (y;)ier be a basis of V and (x;);c; be the dual basis. We can think of ys as
linear coordinates on V* and xs as linear coordinates on V*. Then W =V @& V* is equipped with
the Poisson bracket

Vi,mel, {mz,ym}:@,m, {xlamm}:{ylvym}:o'

IThe paper would be equally valid over a field of characteristic 0.
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We identify ’D{}V 2 k[[A, (21)ier, (7O, )ier]] with the completed algebra of differential operators
on V. We define an algebra grading by assigning

degx; = deghOy, =1, degh=2. (2.2)

Definition 2.6. A higher quantum Airy structure on V is a family of differential operators (Hy,)ger
of the form

Hy, = h0y,, — P, (2.3)
where Py € D{}V is a sum of terms of degree > 2. Moreover, we require that the left D{}V—ideal
generated by the Hys forms a graded Lie subalgebra, i.e. there exists g],jf’kz € ’D{}V such that

[kasz] =h Z g’]jikQHk:;' (2.4)
ksel

This definition is a basis-dependent definition that should be compared with the basis-free
Definition[2.3] As introduced there, we may define a quantum r-Airy structure as a higher quantum
Airy structure such that all Py only have terms of degree < r.

Remark 2.7. In the particular case where all the Py are homogeneous of degree equal to 2, the
g,’:f r, must be scalars, and the H}, generate a graded Lie subalgebra. We then recover the standard
definition of quantum Airy structures in [50].

Remark 2.8. It is easy to see the two distinctive properties of higher quantum Airy structures
from the basis-dependent definition

(1) The operators Hj, have a very specific form. There are exactly D operators, and they all
start with a linear term of the form A9, . This precise form is what is responsible for the
uniqueness of the solution to the constraints Hy - Z = 0, as we will see computationally by
calculating the resulting topological recursion.

(2) The operators satisfy the subalgebra property , which is crucial to ensure that a
solution to the constraints Hy - Z = 0 exists.

We can write down an explicit decomposition of the differential operators H; in monomials. To
simplify notation, and anticipating further interpretations, we introduce the operators

Jl = ha:z,; J_l = l.’L‘l lel. (2.5)
We define a new index set Z={-D,...,-1,1,...,D}.

Let dj, (possibly co) be the maximal degree in Hy. We can decompose

dp. hI .
Hy=Ji - Z Z ﬁ Z C(])[k|a]:<]oé1""]az:a (26)
m=2 £,520 *' qeIt
0+25=m
where :---: denotes normal ordering, i.e. all the J; with negative is are on the left. The coefficients
CU[k|a] are fully symmetric under permutations of o = (v, ..., ay). By convention, the product

*Jay - Ja, 18 replaced by 1 when ¢ = 0.

Remark 2.9. Note that in the quantization framework introduced in Section 2.1} the terms with
7 =0 correspond to the quantization of classical terms with normal ordering, while the terms with
7 >0 arise as quantum ordering ambiguities.
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Example 2.10. To clarify the notation, let us compare with the notation used in [5] for quantum
Airy structures, where dj, = 2 for all k € I. In this case we have

Hk = Jk—% Z C(O)[k|alva2]:Ja1Ja2:+hC(1)[k|®]

aq,a9€l

hoy, — (; Z c© (k| - a1, —az] a1aaa, Ta, + Z C(o)[k| - ag, 0] a1y, hO

Too
1,006l aq,a0€el

+1 3 COklay, az] h?0 6%2+h0(1)[k|®]).

Ty
aq,a0el
In the notation of [5], we recognize the tensors
Ak
C(O)[k|—a1,—ag] —anaz
102
Bk:
COk|-oq,00] = —2192
aq

COklay, 0] = CF

ap,ap

CW[klg] = D*.

To a higher quantum Airy structure, we can associate a partition function due to the following
key result of Kontsevich and Soibelman (see Theorem [2.5)).

Theorem 2.11. [50, Theorem 2.4.2] Given a higher quantum Airy structure (Hy)ges, the system
of equations

Vkel, Hy-Z=0,
has a unique solution of the form

ho~t
7 =exp > —Fyal, FyneSym"V™. (2.7)
920, n>1 n!
2g-24+n>0

The existence of partition functions associated with higher quantum Airy structures and the
fact that they often have enumerative geometric interpretations (see Section @ is essentially the
reason why quantum Airy structures are interesting. We can decompose

Fyon= > Fynlalza,za,,
ael™
where F ,[a] is fully symmetric under permutations of o = (a1, . .., o, ), and see the Fy ,, as gener-
ating series for the coefficients Fy, ,,[a], which are expected to have an interesting interpretation in
enumerative geometry. By applying the differential operators Hy on Z, we can obtain the Fy ,[a]
by induction on 2g - 2 +n > 0, as we now show explicitly.

2.2.2. Recursive system

The set of constraints Hj, - Z = 0 can be turned into a recursive system for the Fj,[a]. Due to
the specific form of the differential operators Hj (see Remark , this recursive system is always
triangular. And because it is known that a solution to the constraints exists (see Theorem ,
it follows that the recursive system uniquely determines this solution.

Let us explicitly write down the recursive system satisfied by the Fy, ,[a]. Given a formal series
f in h, we introduce the notation [A9]f to denote the coefficient of f of order g in h.
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Definition 2.12. For a € Z* and 8 € I, we define

ZgnalB] = (1] 0s,, + Oy, (27T Ja3Z)| (2.8)

Notice that 2% [2(8] = 64.00n.1.
Then we have the following result.
Lemma 2.13. The system of equations
Vkel, Hy-Z=0,
implies the following system of equations
dy 1 ) ¢
Ealkpl= Y ¥ 5 ¥ COka] =, [al8), (2.9)

|
m=2 0530 U aeze
0+2j=m

forall BeI™ ', n>0, all g>0, and all ke 1.

Proof. Apply the differential operator 0, -+ 0y, to Z ™ Hy - Z =0, set all (7)1 to zero and pick
the coefficient of order ¢ in h. |

We need some more notation. The coefficients Fy, ,,[ ] were defined for 2g-2+n >0 and o € I"
in (2.7). We extend this definition to a € Z", by setting F, ,[a] = 0 whenever one of the ay is
negative. For 2g — 2 +n =0, we introduce

F0,2 [041, O42] = |al|5a1,—a2 . (210)

Let « € Z" and 8 € I™'. The notation XA - a means that A is a set partition of o, i.e. a
set of |A| non-empty subsets of o which are pairwise disjoint and whose union is . We denote
the elements (sets) of the partition A generically by A. A partition of 8 indexed by A is a map
p o A= P(B) such that (ur)rex are possibly empty, pairwise disjoint subsets of § whose union is
[. We summarize this notion with the notation u +~y 5.

Then we have the following result.

Lemma 2.14. Leti,n>1. For a €T’ and €I, we have

=M [al8] = Y > Z,: (HFhA,MHw[%MA])’ (2.11)

A« h:A—-N p=xB \ Ae

i+ xex ha=g+Al
where the double prime over the summation symbol means that terms with hy = 0, |ux| = 0 and
I\ <2 are excluded from the sum. In other words, Fy1 does not appear in the sum, and Fy o only
appears with |A| =1 and |px| = 1.

Proof. For ace I', i.e. all a; >0, the identity is straightforward. It involves Fp 2 only via positive
indices, therefore such terms are zero. When some of the a; are negative, we remember that
Jo, = |ou|z)q,). Thus one of the 3, must be 8, = |an|, otherwise by definition (see (2.8)) the
contribution would be zero. We can include these cases by introducing coefficients Fy o[ v, B ]
that are equal to |oy| when f,, = -y, and zero otherwise. This is precisely how we defined the
Fy,2 coeflicients in . Thus the formula remains valid with these cases included, as long as the
condition enforced by the double primed summation is there. O
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Example 2.15. To clarify the notation, let us write down explicitly what this expression looks
like for i =1,2,3.

EEJ?T)L[OZHBJ = Fg,n[al,ﬂ] ’
"
=@ (a1, 00l8] = Fyineilan,az, 81+ Y Fuavpoilon, #1]F 1o [az, pe].
h1+h2=g
H1Up2=p

Note that the second line is not valid for (g,n) = (1,1), in which case 5521) [a1, as|@] = 0 because

of the double prime condition in the summation (i.e. Fp2[aq,az] cannot appear).
Further,

=) a1, az, as|B]

”

= Fg—2,n+2[a1;a2aa375] + Z (Fh1,1+|p,1\[alvﬂl]Fh2,2+|M2|[a2aa37:u’2]
h1+h2=g*1
p1lpe=p

+Fpy 1) L2 101 Fy 2o [, s, 2] + Fiy 1 [as, 101 Fy 240 [, a2, p12])

”

+ > s lon, i1 Fn, e [0z, 2] Fhg 1) s, 3] -
hi+ha+hs=g
pilpoUpz=03

Substituting (2.11]) back into (2.9), we get the following formula for the coefficients Fy ,,[a].
Corollary 2.16. For all € I we have

Fynlk,Bl= ) % > CP0kla] Y > i (HFhA,IAIH/LAl[)\»M)\])- (2.12)

£,520 aeTt A h:A-N p=x B\ Ae
2<0+25<d), L+5+3 sex Pa=g+A|

Let us now argue that Corollary is a recursive system for the F, ,[a]. For each term in

the right-hand side, using the constraints under the sums we get
S (2ha =2+ A+ |ual) =2(g + Al - (£+5)) —2[A| + L+n-1=(2g-2+n) + (1 -€-2j).
X

Since we have £ + 25 > 2, we deduce that
S (2hy -2+ |\ +|ua]) <29 -2+ n. (2.13)
X

Since the Fj; terms are absent, all terms in the left-hand side of the inequality are non-negative,

hence 2hy—2+|A|+|ux| < 2g—2+n for each A € A. In other words, (2.12)) is a recursion on 2g-2+n > 0

determining uniquely Fy, ,, starting from the value of Fj o given by (2.10). For instance, the formula
gives for 2g—-2+n=1

Foslk,B1,B2] = BiBaCOfk|-B1,-B2], (2.14)

Fialk] = COa], (2.15)

and for 2g-2+n=2
Foalk,B1, B2, B3] = B1B2Bs C Ok = Br,~Ba, B3]+ Y. (B COLK| - B, a] Fy 3[ev, B2, Bs]

ael

+B2 CO[k| - B2, 0] Fo 3, B, B3] + B3 CO[k| - B, a] Fy 5[, B, Ba])
(2.16)
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and

Fi[k,B] = ZBC(O)[k|—B,a]F171[a]+ > %C(O)[k|a1,0[2]Fo_rg[ﬁ,()él,OéQ]

ael ay,azel
+8CWO [k - 5]. (2.17)

Remark 2.17. While (2.12)) is recursive, it does not treat k and (i,...,8,-1 in a symmetric
fashion. In other words, it is not clear from that the F, [k, 8] thus constructed are fully
symmetric. It could happen that no symmetric solution to exists. That is, the recursive
system does not justify the existence part of Theorem [2.11} it does however imply uniqueness if a
solution exists. In fact symmetry cannot hold for general coefficients C's. The graded subalgebra
property of (H)ger — which implies nonlinear relations between the Cs — is essential in proving
the existence of a solution Z to the constraints, which is equivalent to proving the existence of a

symmetric solution to (2.12)).
2.2.3. Reduction

In general a higher quantum Airy structure (Hy)ger may involve linear differential operators. In
this section we argue that we can essentially get rid of the linear differential operators. Note that
this section is not essential for the rest of the paper.

Let (Hg)ger be a higher quantum Airy structure. Assume that Ij;, c I is such that Hy = Jy, for
all k € Ij;,. For any k € I, we introduce the reduced differential operator Hy/|req, which is obtained
from Hy, by formally setting J,,, = 0 (in the normal-ordered expression for Hy) whenever |m| € L;,.
Note that H;|yeq = 0 for all i € I);,. We can think of the Hy|..q as differential operators on V or on
its subspace

Viea={z eV | VYmely,, x,=0}

Lemma 2.18. There exists a unique solution to the differential constraints Hy|reaZ = 0. Moreover,
the partition function Z, considered as a formal function on V, coincides with the unique solution
to the differential constraints HyZ = 0.

In other words, if we are interested in calculating Z, we can forget about the linear differential
constraints H; for i € Iy, and instead solve the reduced differential constraints Hy|eqZ = 0 on
VVred-

Proof. Let J be the left ideal generated by the Hy, and let Z be the unique solution to the
differential constraints HpZ = 0. It is straightforward to show inductively that for all k € I,
Hilrea € J. Thus, Hi|reaZ = 0, and hence Z is also a solution to the reduced differential constraints.

To show that it is unique, we look at the form of the differential operators. First, we know
that HyZ = J,Z =0 for all k € Ij;,, so Z does not depend on those x. It follows that Z depends
on the same number of variables as the number of non-zero Hy|.eq. Moreover, it is clear that
the non-zero Hylyeq satisfy the degree 1 condition of quantum higher Airy structures with respect
to these variables. Together those imply that the differential constraints Hg|reaZ = 0 uniquely
reconstruct the coefficients Fy ,,[a] of the partition function by topological recursion. It follows
that the solution is unique. O

What we have proven is that there always exists a unique solution to the reduced differential
constraints Hy|eqZ = 0, and that this solution coincides with the unique partition function of the
higher quantum Airy structure (Hg)ger. It is tempting to conclude that the Hy|,eqs thus also form
a higher quantum Airy structure. But to claim that we would need to show that the left ideal
generated by the reduced Hy|req is a graded Lie subalgebra of the algebra of differential operators
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on Vieq. While we expect this to be true and we prove it in a special case (Lemma [4.11)), we do
not have a complete proof of this fact currently.

2.3. Crosscapped Airy structures

A variant of the topological recursion involving Fy ,, for half-integer ¢ is required in applications
to large size expansions in S-matrix integrals [23] and to open intersection theory [62] 4]. We can
include this variant in the formalism of Airy structures by allowing half-integer powers of &, i.e. a
formal variable A'/2 of degree 1, as follows.

Definition 2.19. A crosscapped higher quantum Airy structure on a vector space V equipped with
a basis of linear coordinates (xg)ker is a family of differential operators indexed by k € I of the

form Hy, = h 0, — P, where the terms in P, € Dé’i/f/ have degree > 2. Moreover, we require that the

left D%lt/‘i—ideal generated by the Hs forms a graded Lie subalgebra i.e. there exists g’gf ko € D%i/‘z/

such that

Vkl,kQEI, I‘I}<;17I‘.’k2 ngl szkS‘
ksel

The degree condition means that we have a decomposition

Hy=Jp— Z Z CYUPkla] Ja, -+ Ju,
m>2 £,7>0 4 et
l+3=m

Proposition 2.20. Given a crosscapped higher quantum Airy structure (Hy)ger, the system of
equations

Vkel, Hy-Z=0, (2.18)
has a unique solution of the form
ho~t
7 =exp > — Fyn | FyneSym"(V*). (2.19)
geN/2, n>1 n:
2g-2+n>0

given by the recursive system ([2.12)) where one allows half-integer genera.

Proof. The proof of existence is a small adaptation of the proof of [50] and therefore omitted. To
prove uniqueness, we repeat the arguments of Section 2{to show that 1_' computes the Fy ,,
inductively on 2g — 2 + n > 0. In fact, this recursive system takes the for 2|) except that j, g
and hy can be nonnegative integers or half-integers (but note that 2g -2+ n is always an integer).
The condition is still valid and implies, as there are no Fy, ,, with 2go —2+ng <0 in ,
that this recursive system determines uniquely all Fy , from the value of Fp o specified by the

convention (2.10)). O

It is perhaps instructive to write down the value of F;, given by the recursion. In fact this
also gives for g = 0 a recursion on n, therefore the formula for the Fy ,, are the same as those of
Section 2 2.2] Notice that F1 2 1 1s absent from . With 29 - 2 +n = 1, we have a new term

Fija2 Whlle the formulae (2.14] remain unchanged
Fo,g[ 751752] = BB COk| - B1,-B],
Fipolk, ] = BCYP[H-5],

Fya[k] ko).
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With 2g -2 +n = 2, F} o receives a new contribution compared to (2.17) and we have two new
terms with half-integer genus

Foulk,B1,02,03] = 5152530(0)[k|—517—527—53]+Z(510(0)[k|—Bl,a]Fo,s[avﬁmﬁﬂ

ael

+B2 COLk| - Ba, ] Fy v, B1, B3] + B3 COk| - B3, ] Fo [, B, B])

Fijp 5[k, B1,B2] = PP CUD k| - B1,-Bo] + > CU ko] Fosla, B, fa]

> (81 CO[k] - 1, 0] Flj;[a,ﬂﬂ + B2 CO k] = B2, 0] Fija ol 1))
Fiolk,8] = BCO[k|-8]+ %ﬂc@w - B,a] Fia[a]
+ Zd;0<°>[Z|a1,a2]Fo,gw,al,aﬂ,
Fypalk] = C‘;;,’j;[k'@] + 3 (CWTHa] Fiyaala] + CYP[Kla] Fiaa))

ael

+ Z % C(O)[khh ag] Fijpfar, as].

ai,a€el
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3. VW ALGEBRAS AND TWISTED MODULES

Our main construction of higher quantum Airy structures will take the form of W constraints for
some particular modules of W algebras. W algebras are vertex operator algebras (VOAs), and
hence we introduce some terminology and notation about VOAs and modules over them.

We are primarily interested in Heisenberg VOAs and W algebras in this paper. From a conformal
field theory point of view, VW algebras arise as the algebra of modes when the CFT includes chiral
primary fields of conformal weight > 2. Algebraically, they are certain “non-linear” extensions of
the Virasoro algebra; the first examples were constructed in [66].

To obtain higher quantum Airy structures we need to construct particular modules for these
VOAs. Those will always be obtained by restriction of twisted modules of Heisenberg VOAs to
W algebras. In order to construct a twisted module, we essentially construct fields that have
fractional power expansions in formal variables. From the point of view of conformal field theories,
these correspond to choosing a branch in the orbifold VOA.

In this section we introduce VOAs and twisted modules. Along the way we construct a number
of interesting left ideals for the algebra of modes of W algebras that are graded Lie subalgebras.
This will prove crucial in the next section to construct higher quantum Airy structures.

3.1. Vertex operator algebras

There are many references on this topic. We mostly follow the presentation of [10] 28|, 42} 40].
Definition 3.1. A vertex operator algebra (VOA) is a quadruple (V.Y |0}, |w)) such that

e V is a Z-graded vector space (the space of states) V = @;zV, such that V; = 0 for !
sufficiently negative and dimV] < oo for all [ € Z. If |v) € V}, we say that the conformal
weight of |v) is [.

e Y is a linear map (the state-field correspondence)

V. — End(V)[[z,2]

Y(,2): -
R (G R
Y(|v),z) is called the vertex operator (or field) associated to the state |v), and v, its
modes.
e |0) € V is the vacuum state, which satisfies the vacuum property

Y(|0),2) =idy
and the creation property
ViyeV,  Y(|v),2)0) - |v) e 2V[[=]].
o |w) eV is the conformal state, which satisfies the truncation condition
Viv)eV, v w)y=0 for [ € Z sufficiently positive,

and the Virasoro algebra condition, which can be stated as follows. Let w,, be the modes
of Y(Jw), z), and define L; = w;1. Then
13- .
[Ll; Lm] = (l - m)Ll+m +C ?&er,()ld\/v
where ¢ € C is the central charge. Further, if |v) is homogeneous of conformal weight n,
then Lg|v) = nlv) and we have the derivation property

Vi€V, Y (L), 2) = SV (), 2)
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e Finally, we have the axiom of locality. (Y(|U),z)) is a local family of fields; i.e., for

lu),[v) eV,
(21 - zg)N“'“ [Y(lu),21),Y(Jv),22)] =0 for some N, , € Z,,

Although innocuous looking, this axiom gives the vertex operator algebra much of its
structure. In particular, this is equivalent to the Jacobi identity /Borcherds identity.

veV

We will often drop the Y, |0} and |w) in the definition of a VOA and merely denote it by the
underlying space of states V. We note that the mode L keeps track of the conformal weight of
the states.

As the vertex algebra is (usually) non-commutative, we define the notion of normal ordering

Definition 3.2. We define the normally ordered product of two fields Y (Ju},z) and Y (Jv),z) as
the following

Y ([u), 2)Y (Jv),w): =Y (Ju), 2)-Y (Jo) ,w) + Y (Jo) , w)Y (Ju) , 2)+, (3.1)
where we defined Y (Jw), 2); = Yo wiz™7! and Y (|Jw), 2)- = ¥ o w271

3.2. W(g) algebras

There are various equivalent constructions of W algebras. They are defined as the semi-infinite
cohomology of affine vertex algebras of level k € C [38] associated to a Lie algebra g. For
generic k, they are isomorphic to certain intersections of kernels of screening operators on free
field/Heisenberg algebras [38, [40] [43], and for the principal W algebras of simply-laced type there
is also a coset realization [7]. Both the coset and screening realizations admit a certain limit where
the W algebra is described as an orbifold by the compact Lie group G of the Lie algebra g. This
is the situation we are interested in. In this case, the WV algebra is a subalgebra of the Heisenberg
vertex algebra of rank equal to the rank of g. For W algebras of type gly,;, we can also use the
quantum Miura transformation, which gives us explicit generators.

We now construct our first example of a VOA, the Heisenberg VOA. Then we explain the
construction of W algebras as subalgebras of the Heisenberg VOA.

3.2.1. Heisenberg vertex operator algebras

Let L be a lattice of finite rank equipped with a symmetric non-degenerate bilinear form
(Y:LxL->Z

Define b := L ®7 C. The bilinear form on L induces a bilinear form on §h. We define the Heisenberg

Lie algebra b as the affine Lie algebra

6:(@!;@#)@@[(, (3.2)

leZ
with Lie bracket relations

[flanm] :<£777) 15l+m,OK7 67776 [Ja l7mEZ7 (33)
[K,H] =0, (3.4)
where we introduced the notation & = ¢ ®@t!, [ € Z for any € € b.

We define the Weyl algebra #H; as the universal enveloping algebra of b quotiented by the
relation K = 1. We also define a class of modules over Hp, called Fock modules as follows. For any
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A € by, define the Fock module S, as the H-module generated by the vector |A), such that for any
£ebh,
VIS0, &N=0, and &) =(E AN (3.5)

If we define 7 as the subalgebra of 7, generated by the negative elements {§; | { € h, 1< 0},
we have the isomorphism Sy = Sym(#H7)|A) as vector spaces.

The Fock module Sy = Sym(#;)|0) admits a vertex operator algebra structure, by which we
mean that we can find a quadruple (Sp,Y,|0),|w)), that satisfies the axioms of Definition [3.1] The
vacuum state is |0). The state-field correspondence Y (-, z) : So — End(Sy)[[z,271]] is defined as

Y (|0),2) =ids, , (3.6)
VEeh, Y (6.110),2) = IZZ&Z—H . (3.7)

States of the form fik,l--- T |0) where k; > 0 clearly span Sp, and the state-field correspondence
is defined as

V(e ety 10,2) = T e LA e (38
&k, %, | )az)—~mm (&1 )az)"'mm (£110), 2):. (3.8)
Finally, if we pick an orthonormal basis £!,... &% for b, we define the conformal vector |w) as
185 5
)= 13EE ). 39)
i

Its modes form a Virasoro algebra with central charge ¢ = dim b = rank L. It can be checked that
those satisfy the axioms of a VOA.

Definition 3.3. We denote the Heisenberg vertex operator algebra associated to h by Sy.

3.2.2. Lattice vertex operator algebras

From the previous section, one can naturally define the lattice vertex operator algebra associated
to L, which contains the Heisenberg VOA as a sub-VOA.

The underlying vector space of the lattice VOA is Vp, := @xcr, Sa (recall that Sy are the Fock
modules defined in the previous section). In particular Sy c Vy,, and we define the vacuum state |0)
and the conformal state |w) as the ones for the Heisenberg VOA Sy. The state-field correspondence
defined earlier also holds. It suffices to define the state-field correspondence for the states
|A). (The general prescription is obtained by taking normally ordered products as in ) We
hav

Va(z) =Y (N),2) = Uy 2™ exp (— Z élz_l) exp (— Z ?z_l) ,
1<0 >0
where U), is a shift operator

Unlv)=eap v+ A) and [Ux,A\n]=0, n£0,
and ¢y, € C* is a (essentially) unique 2-cocycle. We will also denote the state |A) by e”.
Definition 3.4. We denote the lattice vertex operator algebra associated to the even lattice L by

V.

If L = @ is the root lattice of a simple simply-laced Lie algebra g then Vg is isomorphic to the
simple affine vertex algebra of g at level one and is also denoted by Li(g).

2V>\(z) is the standard notation for these operators, here we use bold letters not to confuse them with vector
spaces of VOAs also denoted V' elsewhere in the text.
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3.2.3. The W(g) algebras

A standard introduction to W algebras is [6]. Let g be a simple finite-dimensional Lie algebra.
Then to each embedding of sl; in g one can associate the W algebra of g at level k € C via quantum
Hamiltonian reduction from the affine vertex algebra of g at level k. The best-known case is the
one of the principal embedding of sl in g, which we will simply denote by W*(g). Let now g be
simply-laced. In this case the principal W algebra can also be realized as a coset [7, Main Theorem
2], that is, for generic k

Y4 ~ o[t] I AY, k+h"
Wig) = (Vilg) @ Li(g))™ . l=-h"+ 0,
with h"Y the dual Coxeter number of g, and Vj(g) the universal affine vertex algebra of g at level k
and Li(g) its simple quotient at level one. Let G be the compact Lie group whose Lie algebra is
g. In the limit & — oo this coset becomes just the G-orbifold of the lattice vertex algebra [26] and
this is the case we are interested in

W(g) =W (g) = L1 (9).

W¥(g) and in particular W(g) is strongly generated by elements W' of conformal weights d; + 1,
where the d; are the Dynkin exponents of g, see for example [40, Theorem 15.1.9]. For generic
level it is also freely generated by these fields and the orbifold limit is always a generic point of a
deformable family of vertex algebras by [26].

Remark 3.5. In summary, the principal VW algebras form a one-parameter family of vertex alge-
bras and we are interested in a very special point, namely the level for which the W algebra can
be realized as a G-orbifold inside the lattice vertex algebra (for this g needs to be simply-laced).
This level is special for a second reason. W algebras enjoy Feigin-Frenkel duality [37] and our level
is the self-dual case, i.e. W(g) is its own Feigin-Frenkel dual.

For completeness we recall the definition of strong generators for a vertex operator algebra:

Definition 3.6. A vertex operator algebra V is said to be strongly generated by elements (7)™,
in V if the underlying vector space V is spanned by

’)Ekl =yt [0) where k; > 0.

In addition, V is said to be freely generated if the above spanning set is a basis for the underlying
vector space V.

Remark 3.7. If we know the state-field correspondence for the set of strong generators of a vertex
operator algebra V', say v* =+";|0), we can use the strong reconstruction theorem [40, Theorem
4.4.1] to determine the state-field correspondence for the states v2, -~ |0) where k; >0

1 1 dkht S
Y (7, [0), 2) = ;WWY(%l 0),2) - O

Hence, we can interpret strong generation as the statement that all fields of the VOA can be
obtained as linear combinations of normally ordered products of the fields Y (1", 2) where i €
{1,...,n} and their derivatives.

Y(72110),2):. (3.10)

3.2.4. Examples

Let us now study some examples of W(g) algebras.

Example 3.8. The algebra W(sly) is isomorphic to the Virasoro vertex algebra with central
charge ¢ = 1. It is well known that this VOA is strongly generated by a single vector of conformal
weight 2.
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Strictly speaking, we only defined W algebras for simple and simply-laced Lie algebras. It is
straightforward to construct W algebras for direct sums of those. In particular, in the following
we will study the algebra W(gly,;) := W(sly11) ® Sp, defined as the tensor product of W(sly1)
and a rank one Heisenberg vertex algebra Sy.

Example 3.9. The Lie algebra gly,; is the algebra of (N +1) x (N + 1) matrices over C. TIts
Cartan subalgebra h can be described as the subspace of diagonal matrices. We equip it with the
basis (x")N¢! where x' is the matrix element that has a 1 in the (i + 1)th place on the diagonal
and 0 elsewhere. The algebra W(gly,,) with central charge ¢ = N + 1 is strongly freely generated

by the following N + 1 vectors in the Heisenberg VOA Sy associated to h
(e XDI0) el N1, (3.11)

where the e; denotes the i-th elementary symmetric polynomial. The proof of this statement
follows immediately from the Miura transformation, see [8, Corollary 2.2] where we take the limit
a — 0. The result is originally due to [36].

Example 3.10. The Lie algebra Dy = sooy is the Lie algebra of orthogonal 2N x 2N matrices
over C. The roots of soox can be described as +x* + x? where (Xl)f\:f 1 is an orthonormal basis for
the Cartan subalgebra CV. The following vectors in Sy strongly generate the algebra W(soqx )
with central charge ¢ = N.

N o

yd:(Zexde:iC +e )y e’_‘l)|0) de{2,4,6,...,2N -2}, (3.12)
i=1

7N = xhxd - 10) (3.13)

The conformal weight of these vectors are 2,4,...,2N -2 and N, which are indeed the Dynkin
exponents of s0oy. This statement follows from the results of [7, [26], i.e. from the description of
W(soan) as SOqpn-orbifold of the lattice vertex algebra of soop.

Remark 3.11. We note the important fact that W(g) is invariant under G and hence under the
action of the Weyl group of g. This remark will be fundamental, in our construction of higher Airy
structures as W(g)-modules in Section

3.3. The graded Lie subalgebra property

In this section we construct a number of left ideals for the algebra of modes of W algebras that
are graded Lie subalgebras. This will be essential for the construction of higher quantum Airy
structures from modules of W algebras in the next section.

3.3.1. Graded Lie subalgebras and left ideals

Let V be a vertex operator algebra with finitely many strong generators V*',..., V" and let A be
its associative algebra of modes. We fix an order in the set of modes and by L(.A) we mean possibly
infinite sums of ordered monomials in A of bounded degree and conformal weight, i.e. there exists
a d and h such that each monomial appearing in the sum has at most degree d and conformal
weight h. We assume that every polynomial in the modes is in L(A) and so equipped with the
commutator of modes L(.A) becomes a Lie algebra. This Lie algebra is graded by conformal weight,
that is Lg-eigenvalue.

Our goal is to find Lie subalgebras of L(.A). We consider certain subsets S of the modes of the
strong generators and show that the left ideal 4.5 generated by the modes in S is a graded Lie
subalgebra of L(A).
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We can make this subalgebra property more explicit by introducing an ordering on the set of
all modes (i.e, the underlying set of A). We define an ordering such that a mode in S is always
greater than a mode not in S. We say that elements of the ideal A.S are good with respect to S.
In particular, v is good if the right-most term of every ordered monomial of v (expressed in terms
of the strong generators) is in S.

The following lemma is clear.

Lemma 3.12. The left ideal generated by the modes in S is a graded Lie subalgebra of L(A) if
and only if for any two modes X,Y €S, one has that [X,Y ] € L(A) is good with respect to S.

The following subsections give examples in an increasing order of complexity. However the idea
of construction is always the same. We are looking for a suitable module M generated by a
highest weight vector |A) and such that this highest weight vector is annihilated by a mode if and
only if this mode is in the set S of interest (i.e., it is a good mode). It then remains to show that
the commutator of two modes in S is still good and essentially this amounts to showing that a
basis of M is given by all the ordered monomials that are not good. We start with the case where
M, is the vacuum of our vertex algebra.

3.3.2. The vacuum subalgebra Asq

Our first subalgebra is the left ideal generated by all modes of the strong generators of a W algebra
that kill the vacuum state |0).

Proposition 3.13. Consider a vertex operator algebra V' freely strongly generated by homogeneous
states ¥* € V indexed by i € T (where T is a finite set), with respective conformal weights A; € Z.
Let A denote the associative algebra of modes of V.. Consider the left A-ideal Aso generated by i
forieZ and k>0. Then, Aso is a graded Lie subalgebra of L(A). Equivalently, when k, k' >0,

N
[k i ] = Z Z D (3.14)
for some f((il”,zg,(i,’k,) eA.

Proof. We have the following commutation relations which follow from the locality axiom/Bor-
cherds identity [40, Section 3.3.6]

’

RIS (:l)(vfmi')kw_m, (3.15)

m2>0

where k, k" > 0.

The assumption on strong generation implies that we can express each (*yfn*yi,) k+k/—m as a finite
linear combination of normal ordered monomials in the generators. Let us look at one of these
normally ordered terms

Vo Voo Vot (3.16)
This monomial could either annihilate the vacuum state |0) or not. Let us first consider the case
where it does. The normal ordering prescription implies that the term furthest to the right, i.e.
'pr annihilates the vacuum. In that case, we are done, as ’pr is an element of Aq.

Now, let us assume that the term ) does not annihilate the vacuum |0). Then py, < 0, and
due to the normal ordering prescription, this implies that all the modes appearing in are
negative modes We know that i [0) = 0 = fy,i’, |0) and hence [’y,i,fy,il,] |0) = 0. This means that
”yziyp 2 'yp L |0) must cancel with some other terms (whlch are also normally ordered products of
negative modes) in the sum on the right-hand side of (| after acting on the vacuum state |0).
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However this contradicts the assumption of free generation (which is that vectors of the form
7p1 fpr |0} where p; < 0 form a basis for V'), and hence cannot occur. O

3.3.3. The subalgebra A

We can now construct another interesting left ideal that is a graded Lie subalgebra of the Lie algebra
L(A). In this case, we consider all modes ~;, of the generators of a W algebra for k > A; -1, where
A; is the conformal weight of 7*. The construction is rather straightforward.

Proposition 3.14. Consider a vertex operator algebra V' strongly generated by homogeneous states
vt € V indexed by i € T where T is a finite set, with respective conformal weights A; € Z.. Let A
denote the associative algebra of modes. Then, the A-ideal Aan generated by ~i for i € T and
k> A;—-1is a graded Lie subalgebra of L(A). Equivalently, for k> A; -1 and k' > Ay -1, we have

R
P)/ka’Yk’ Z Z f((;]k; @, k/)’Yp (317)

Jj=1p2A;-1

Proof. Using the strong generation assumption, we can express the commutator (3.17) as sums of
normally ordered monomials of the form

i o (3.18)
where Y2 (p; = b; +1) = (k—= A; +1) + (K = Ay + 1) due to the conformal weight condition. As
k>A;—1and k' > Ay -1, we get

L L
Zpi > Z(bi -1), (3.19)

and hence at least one of the p; > b; — 1. Due to the normal ordering procedure, the last mode on
the right 722 will have this property. This gives the statement of the Lemma. O

3.3.4. The intermediate subalgebras

In fact we can construct many more subalgebras as intermediate cases interpolating between Asg
and Aa for the W(gly,,) algebras that we described in Example The particular form of the
strong generators, namely as elementary symmetric polynomials, is crucial for the construction.

In this subsection, we use a different convention for mode expansion of a field as we find it more
convenient. We shift the index of the modes by the conformal weight, i.e., when |v) has conformal
weight A,

Y([v),2) =) v P (3.20)
leZ
The correspondence between the two ways of indexing is v; = visa, 1.

Let us start with the setup. We aim to find one subalgebra in W(gly,,) for each partition of
r:=N+1. Solet A=(A1,..., ) be a fixed partition of r, that is the A; are positive integers such
that 7 = Ay + Ao + -+ + A, and we order them by size, i.e. A1 > Ay >...> A, > 1. Such a partition
defines good modes as follows.

Definition 3.15. We say that W¢
Aa) =min{s| A+ +As>a}.
Now fix a A-order on {1,...,r} x Z with the following properties

is A-good if A(a) —m >0 where

(1) (a,-m) > (b,—n) if W9, is A-good but W?, is not A\-good.
(2) (a,-m) > (b,-n) if W, and W’ are A\-good and both m,n >0 and a < b.
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(3) (a,-m) > (b,—n) if W, and W’ are A\-good and both m,n >0 and a = b and m < n.

Let I ={(a1,-m1) > (ag,—-ma) 2 ... > (az,—mys)} be an ordered set. Then we say that
Wi = WA W2 W

—mao —my
is an ordered element of the universal enveloping algebra of modes. We define the A-degree of a
mode to be
2a-1 if A(a) #m
d Wa = ’
egx(Wern) {2a if AM(a) =m

and extend this definition to ordered monomials as the sum of the A-degrees of the terms. The
A-degree of a ordered polynomial is then the maximal A-degree of its ordered summands. Note
that since W®  is a polynomial of degree a in the modes of the Heisenberg vertex algebra it
follows immediately that the A\-degree of any commutator [W%,  ,W?° ] is strictly smaller than
deg)\ (ng) + deg)\ (Win)

We will call a A-order simply an order whenever it is clear which A we are using.

Theorem 3.16. Let A be the mode algebra of W(gl,.) and X a partition of r, then the algebra of
A-good modes forms a graded Lie subalgebra of the Lie algebra of modes. In addition, there exists
a W(gl,.)-module My generated by a highest weight vector |\) such that W, |\) =0 if and only if
W¢e _ is a A-good mode.

Proof. We first consider the partition A = () of 7. The corresponding A-good modes are all non-
negative modes (W¢,,)m<o. Let v be a generic weight of the rank r Heisenberg vertex algebra Sy
so that via the embedding of W(gl,) in Sy the Fock module S, also becomes a W(gl,.)-module.
For generic weight v this is a simple W(gl,.)-module and so ordered words in the negative modes
acting on the highest weight vector |v,) of S, form a basis of S,

S, = spanC(W‘ffw---W‘_lim [vy,) | (ar,-m1) > (az,—ma) > > (ag,—my), my >0 forl=1,....0).

We now consider the vector space M with above graded PBW-basis but consider the weight as a
variable so that M can be analytically continued to a module of W(gl,.) over the polynomial ring
in 7 variables v1,...,v,.. Here the v; are the eigenvalues of the zero-modes of N strong generators
of the Heisenberg vertex algebra. Then specializing to any weight v defines a new module M,,. At
generic v this module will be simple while at special non-generic points it will be indecomposable
but reducible. We generically have M,, S, but for example Mg £ Sy. Denote the highest weight
vector of My by |0). By construction W?_ |0) = 0 if and only if W?,, is a A-good mode. In order
to prove that these A-good modes form a graded Lie subalgebra of the algebra of modes we have
to show that for any two A-good modes W¢,, and W?, the commutator [W?,,,W? ] is an ordered
polynomial in the modes and the right most term in each summand is A-good. Consider an ordered
set I ={(a1,-mq) > (ag,-mga) > -+ 2 (ag,—my)} so that

Wy = W2, o Wo2 W

—mao —m1
is an ordered element of the universal enveloping algebra of modes. We call W; a A\-good monomial
if W, is A-good and say that the index set I is A-good. The PBW-basis on M is then given

by all Wy |0) such that I is not a A-good index set. It follows that

[ng,Wén] ZZC[WII Z C]W[+ Z C]W[.
I I A-good I not A-good
Acting on |0) and since all A\-good modes annihilate |0) we have

0= Z C[W[ |0> .
I not A-good



HIGHER AIRY STRUCTURES, W ALGEBRAS AND TOPOLOGICAL RECURSION 31

Since the Wy |0) with I not a A-good index set form a basis of M, it follows that ¢; = 0 for I not
a A-good index set. We thus have proven the claim for the partition A = (7). We note that this is
precisely the result proved in Proposition

The general case is not much different and can be reduced to this case. We prove it by induction
for r. The base case r = 1 is trivial and just a special case of what we have just proven, since
W(gl,) is the rank one Heisenberg vertex algebra and the only partition of 1 is A = (1).

Let r > 1. The induction hypothesis is that the statement of the Theorem is true for all ' < r,
i.e. for all partitions p of W(gl,.) and in addition we require the existence of a W(gl,,)-module
M,, generated by a highest weight vector |u) that is annihilated by all p-good modes and the
Wy |p) with I not p-good form a basis of M,,. With this notation the module M is also denoted
by M,y and the highest weight vector |0) is denoted by |(r')).

Let A = (A1,...,A,) be a fixed partition of r, that is the A, are positive integers such that
N = X + X+ + X, and we order them by size, i.e. Ay > Ay > - > A, > 1. Further let
' =r— X, so that p = (A1,...,Ai-1) is a partition of r'. We consider the embedding W(gl,.) in
W(gl,) ® W(gl, ) and the module M, ® M,,). We want to prove that via this embedding as
W(gl,)-modules My = M, ® My ).

We denote the strong generators of W(gly) by (W?);_;, and the ones of W(gl,.) ® W(gl, ) by

(Zb)g’=1 and (Yc)i‘fl. Then due to the realization of the strong generators of the W algebras in
terms of normally ordered elementary symmetric polynomials of Heisenberg vertex algebra fields
we immediately have that

a—1
W (z) =2%(2) + Z 27N 2)YY2) + Y(2),
d=1
where we note that many of these terms on the right may not appear. For instance Z*(z) = 0 for
a>r"and Y*(z) =0 for a > A,. Hence

a-1
we =2% @1+ > z7v % oY +1eY?,,
d=1neZ
and of course Z%,, =0 for a >’ and Y* = 0_,, for a > \,. The p-degree of W(gl,.) lifts to a degree
map on W(gl,,) ® W(gl, ) by saying that the Y2, all have u-degree zero. Let |A) == |u) ® [(Ap))-

Then a straightforward verification tells us that
We A =0 if and only if W?, is A-good.

In particular, if W?  is not A-good then its leading degree summand is 2%, ® 1 if a < v’ and

Zi;\(a) ® Yf;:jrk(a) if @ > r'. In either case the leading degree summand does not annihilate |A)
which is equivalent to saying that Z%,, ® 1 if a < " is not p-good and Zf;\(a) and Yf;ﬁﬁk(a
neither p-good respectively (\p)-good if a > 7', Let I = {(a1,-m1) > (az,-m2) > > (ar,—my)}
be an ordered set with ordered monomial Wy := W2, ...-W22 W . Let s satisfy s = £ if ag <1”,
s=0if a; > 7" and otherwise defined such that a; <’ but asy1 > r’. It follows that the projection
of W; on leading u-degree, which we denote by Xy, is

X1 =2 oy Lor (o) Lo+ 2920, 20 @Y Sy e

—ma=-mq —metA(ae) | —mesi+A(ass1)

are
)

Looking back at our requirements on the order of modes we see that the first factor is p-ordered
and the second one is (A, )-ordered. Consider a polynomial of type

Z CIWI.

I not A-good
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Assume that it annihilates |[A). In particular, the leading p-degree summands annihilate [A) and
hence

0 = Z C]X[|>\>
I not A-good
= 2 2 D) Lo Lo L I ® YTy Y e A Gy [(A0)) -
I not A-good

By the induction hypothesis, non-good monomials acting on the highest weight vector form a basis
of M,, respectively M, ) and hence all ¢; = 0. We thus have constructed the claimed module
M.

It is now easy to show that for any two A\-good modes W%, and W®  the commutator [W?,,, W? ]
is an ordered polynomial in the modes and the right-most term in each summand is A-good. We
have

[ngvwlin] = Z crWr + Z crWr.
I A\-good I not A-good
Acting on |A) and since all A\-good modes annihilate |A) we have
0= Z C[W[ |)\> .

I not A-good

Since we just proved that all the Wy |A) where I is not a A-good index set form a basis of M}, it
follows that ¢y = 0 for I not a A\-good index set. This finishes the proof of the Theorem. O

3.4. Twisted modules

In preparation for the construction of higher quantum Airy structures in the next section, we now
introduce twisted modules for the Heisenberg VOAs. Those will restrict to interesting modules for
the W algebras realized as subalgebras of the Heisenberg VOAs.

3.4.1. Definitions

Let us define automorphisms of vertex operator algebras.

Definition 3.17. An automorphism o, of finite order r, of a vertex operator algebra V is an
automorphism o : V' — V on the (vector) space of states, with ¢” = idy, which preserves the
vacuum state |0) and the conformal state |w), and such that for any |v) € V it acts as

oY (jv),2)ot =Y (av),2).

Given such an automorphism, we define the notion of a twisted module.

Definition 3.18. A Z-graded o-twisted V -module W is a Z-graded vector space W = @,z W; such
that W; = 0 for [ sufficiently negative and dim W < oo for all [ € Z, with a linear map

V.  — End(W)[2Y/",27V"]

Yo('7z) : |’U> — YU(|U) ,Z) = Zle%Z uz"

-1

We require that the vacuum property, creation property and the Virasoro algebra condition
hold for W and Y, (:,2). In addition, we require the following conditions.

e The monodromy around z = 0 is given by the action of o, namely if o [v) = 279" |v) we
have

Vg =0 unless a € ¢fr+7Z. (3.21)
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. (YW(\U),Z))UGV is a local family of fields; i.e. for |u),|v) eV,

(21— 20) Ve [V (Ju), 21), Yo (J0), 22)] = 0 for some N, , € Z, . (3.22)
e We have a product formula
1 d* N
G @) Vo) Yo () ) o) }| = Y(unakle) ) ) (3.23)
. 1 Z1=22=Z

for all |u),|v) € V, |w) e W and where N = N, ,, is chosen from the locality axiom.

In the above definition if we set o = id, we get the usual notion of (untwisted) modules. The idea
of twisted modules is to introduce fields that have expansions in fractional powers of z. In physics
this formalizes the notion of orbifold CFTs. Intuitively, we are working on the branched covering
z = (", by rewriting the fields as expansions in ¢ (or fractional powers of z). However, we have
to be careful about the normal ordering in this context. In physics terms, the operator product
expansion (OPE) of the fields changes, and the product formula captures this precisely. This
product formula (and easy corollaries) will be very useful in our W algebra computations.

Remark 3.19. Note that since o(|w)) = |w), the conformal field has a mode expansion

Viv (lw),2) = > Ly 27t (3.24)
leZ

with only integer powers of z.

3.4.2. Twisted modules of the Heisenberg VOA

Given an automorphism o of , we define a o-twisted Sg-module as follows. We define the o-twisted
Heisenberg Lie algebra b, and define a h,-module called the twisted Fock module, denoted 7. The
latter carries the structure of a o-twisted module over the Heisenberg vertex operator algebra Sy.

Here is the detailed construction. Let ¢ be an automorphism of the Cartan subalgebra § c g of
finite order r

(0(&),0(m)=(&n), o' =idy.
Any such automorphism lifts to an automorphism of Sy which we also denote by 0. We note that
h admits an orthonormal basis of eigenstates for the action of o.

We extend the automorphism o to h[[t'/",t /"] ® CK as follows. Given £ € b, we use the
notation &, := £ ® t"" where n € %Z as before. The action of ¢ is then

o (&) =o(&) ® o(K) =K, leiZ.

The o-twisted Heisenberg algebra is the subspace of o-invariant elements
by = (I, Y T 0 CK)”
The algebra 60 is generated by the elements £ such that ¢ is diagonal under the action of o, and

the central element K, with the following Lie bracket relations
[€0m] = 1emo (€0 K, [K.bs]=0. (3.25)

We also introduce its negative part

6;: @ ho®tl~

lE%Z<0

Definition 3.20. Let 7 = Sym(h;)|0) be the hy-module such that K |0) = |0) and &0) = 0 for
Eehandl>0.
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We would like to give T the structure of a o-twisted module of the Heisenberg VOA S, as
follows. Let £ € h be a diagonal element, i.e. o(&) = e 2™¢ for some p € {0, %, e T;—l} Then the
state-field correspondence for the module is defined as follows

Yo’(|0> ) Z) = 1d'T7
Yo (571 |0> ) Z) = Z én z (326)
nep+7

It is easy to check that this gives 7 the structure of a o-twisted module over Sy.

Remark 3.21. The state-field correspondence for general elements in 7 can be computed using
the state-field correspondence for the states £_1[0) (3.26) and the product formula for twisted

modules (3.23).

3.5. Introducing A

From now on, it is convenient to rescale the Killing form by some formal parameter A'/2, and base
change to the field®| Cyu/2 := C[A71/2 h'/2]]. In other words, we have a new Heisenberg VOA (still
denoted Sp) in which the commutation relations read

[glv nm] =hl <§7 77) 6l+m,0 . (327)

The reason to write h'/2 instead of A is to match with the convention adopted in [50} 5] for
the partition functions of quantum Airy structures. The construction of Section [3.4.2| can still be
applied to define a o-twisted module again denoted 7. The only notable modification compared to
the previous sections is that in Propositions and a factor of A appears in the right-hand
side of the commutation relations, and that in the reconstruction of the state-field correspondence,
one should include a factor of A'/? per each 9. In particular, the Lie subalgebras constructed in
Section become graded Lie subalgebras.

In all our examples except Section [1.2] only integer powers of A will remain the end of the day
and we could effectively work with Cp, c Cpa/2.

3Here and in the following, we use the notation C[z~1,2]] to denote Laurent series in .
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4. HIGHER QUANTUM AIRY STRUCTURES FROM W ALGEBRAS

This section gives a general prescription to produce higher quantum Airy structures starting with
a Lie algebra g and an element o of the Weyl group of g.

(1) We construct a o-twisted module T of the Heisenberg VOA associated to the Cartan
subalgebra § of g.

(2) Upon restriction to the W algebra W(g) (which is a sub-VOA of the Heisenberg VOA),
the module becomes untwisted. The underlying vector space of 7T is the space of formal
series in countably many variables, and elements of W(g) act as differential operators (of
order at most rank(g)) in those variables.

(3) In Section we constructed a number of ideals that are graded Lie subalgebras of the
Lie algebra of modes. We pick one of these subalgebras from the algebra of modes of the
W algebra module 7. These modes fulfil the second (and hardest to check) condition to
be a higher quantum Airy structure.

(4) A further conjugation of these modes (a.k.a dilaton shift) allows us to realize the first
condition about degree 1 terms, thereby producing quantum rank(g)-Airy structures.

We apply this program in detail for gly,; (type Ax) and soan (type Dy) for different choices
of the Weyl group element o.

4.1. The W(gly,,) Airy structures
4.1.1. The twisted module T for the Heisenberg VOA

Recall Example The Cartan subalgebra b c gly,; has a basis given by x* where i € {0,..., N},
with the following bilinear form
(X x7) =i -
We shall focus on the automorphism o of the Cartan subalgebra b induced by the Coxeter element
of the Weyl group & y,1, namely
Oyl NV 0,

This automorphism has order
r=N+1.

2im/r

We define a primitive r-th root of unity 0 := e , which will appear throughout the section.
r—1

Applying a discrete Fourier transform, we can define a basis (v*)7_5 of b that is diagonal under
the action of o

N . .
0= Y 07! ae{0,...,r—1}. (4.1)
=0

Then we indeed have o(v®) = 0%v°®. Note that
(0", 0%) = PO sy (4.2)
where the notation d,, means 1if & is divisible by 7, and 0 otherwise. We observe that ve@t-e/Tkl
is invariant under o for k € Z. Hence we can represent the Sp(gly,1)-twisted module
T(9ln11) 2 Chape[a1, 22,23, ],
with the fields

v*(2) =Y, (v ]0),2) = Tz P
kea/r+Z

We also recall the differential operators defined in ({2.5))
V> 0, Jl = h&z“ J,l = ll‘l .
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Jo has not been defined before: we set it equal to a scalar Jy = Q. The differential operators J;
satisfy the expected bracket relations

[Jrks Jrr] = B16pjasy kOkenr 0 = h(v*, 0" kGpanro forkeafr+Zand K ea'fr+Z,

therefore we do have an equivalent description of the twisted module introduced in Section [3.4.2
We also stress that the normal ordering of the modes carries over to this realization as the standard
normal ordering on differential operators, with derivatives on the right and multiplication by
variables on the left.

Via restriction, we can now consider 7 as a module for the subvertex algebra W(gly,,) c
So(8ln41)-

Remark 4.1. Even though 7 is not a twisted module for the subvertex algebra W(gly,), we
will slightly abuse notation and still refer to the fields associated to the generators of W(gly,1)
as “twist fields”. We will use the notation

£(2) = Yo (6110),2) (4.3)
for the twist fields, where o is the automorphism of the Heisenberg VOA used to construct the
twisted module.

4.1.2. Computing the twist fields of the generators of W(gln,1)

From Example [3.9] we know that the elementary symmetric polynomials
ei(Xgla"'aX]—Vl)K))eSO iE{l,...7N+1}

are a set of strong generators for W(gly,1), and we are going to compute the modes of their twist
fields.

Let us introduce some notation and prove some essential lemmas now. We first want to express
the twist field corresponding to the state v*}v®%---v% [0) in terms of the twist fields v'(2). If
A= (a4 )§-=1 is a finite sequence, we use P(A) to denote the set of unordered, pairwise disjoint
subsequences of length 2 of A. If B € P(A), we use |B| to denote the number of pairs appearing in
B, and A\ B the subsequence of A where one has removed the elements that appear in the pairs

appearing in B. Of course |B| < |i/2]. For instance, the elements B of P(a1,as,as,aq) such that

|B| =2 are

{(0,170;2),(0/3,0/4)}, {(alaa3)7(a25a4)}a {(a17a4)a(a27a3)}-
Lemma 4.2. Let A = (ay)i_, where ay € {0,...,N}. The twist field Yy (v™ 0% 0™
expressed as the following normally ordered product

0),2)= Y. (hz"2)IBl I1 M: I1 vl (2):. (4.4)

BeP(A) {b1,b2}eB 2r leANB

0),2) can be

ai ,,az a;
Yg(v_lv_l---v_l

Proof. This is an application of the product formula (3.23)). If ¢ = 2 in the above expression, we
choose N =2 in the product formula to get
1d?

Yo (04010}, 2) = 5 T3 {(a1 - 2) 0" (2)v™ (22)
1

(4.5)

Z1=22=Z2
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We compute the OPE of the twist fields, i.e. we express their product in terms of the normally
ordered products
v (21)0%(22) = 0P (21)v%(22) + ), (vl vz ] 2R R Gy 0k <0
kieay [r+Z
kocas [r+Z
M (21)v"? (22): + Z hkl(val,v@)zl_kl_lzgl_l,

kleal/r+Z
k‘l>0

and the scalar product is given by (4.2). Notice that we can extend the sum to k1 = 0. Let us write
k1 =ay/r + k] for k} € Z. The condition k; > 0 is then equivalent to k] > 0. We therefore obtain

v (21)v%%(22) = 0" (21)0"(22) + Y. h(8ay,00a,0 + Oayran,r ) (a1 /7 + kY zl_al/T_l_kllzgl/Hkll_l
K20

ay/r
:Ual(Zl)”Uaz (22): + h((sal,o(sag,O + 5a1+a2,r)r az2((22/21)) !

21— %2

Inserting this result into (4.5)), we get

a1(r—a
Y, (v*0%%10),2) = 0" (2)v*?(2): +"(dar,00a5,0 + Oar+as,r) %
= " (2)v*(2): +hda,ranr hd
72122
The general formula follows from an easy induction argument. O

Definition 4.3. We introduce certain sums over r-th roots of unity which we encounter throughout
our computations

Y ma,.omg=0 \lI'=1 1=2j+1
miEM

) 1 r—1 J @rmarr -1+ Moy i Cmya
U (agjns-ha) = 0 ) H(G'mzl,_emmz_l)Z [T o7 . (4.6)

In the special case where j = 0, we drop the (0) i.e. U(ay,...,a;) =9 (ay,... a;).

Note that we prove several properties of these sums over roots of unity in Appendix [A]
Definition 4.4. We introduce the twist fields
Wi(z) = ri’lYg(ei(Xgl, .. ,val) |0) ,z) , ie{l,...,r}.

The scalar prefactor 77! is just a convenient normalization. Let us express the twist fields in
terms of the Heisenberg twist fields v!(z).

Proposition 4.5. We have for any i€ {1,...,r}
1 r=1

Wi(z) =~ >

0!

U9 (agji1,--a0)(h2) 2 [T 0™ (2):.

T aoj41,0;=0 27 j1(i - 25)! 1=25+1
Jjslif2]
Proof. We express the elementary symmetric polynomials ei(X%,...,x™) in terms of the basis
(v))IZ3 of b. Inverting (4.1]), we get
Xi — 1 Tz_:le—iava’
T a=0
and plugging it into the expression for the elementary symmetric polynomials gives
0 Nyl
ei(x .., X ):; Yo W(-ay,...,—a;) v 0

ai,...,a;=0
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We observe that U(-ay,...,-a;) = ¥(a,...,a;). Now, we use Lemma to compute the twist
fields associated to e;(x%,...,x™)|0).
W'(z) = - Z \I/(al, a;) Y, (v 0% 0% [0), 2)
1 = b1ba 6 r
=L Wanena) 3 (P[] == T WG) @)
,

ai,...,a;= BeP(as,...,a;) {b1,by}eB 2r lcA\B

We would like to separate the sums over the 2j indices appearing in the pairs and the others,
for j € {0,...,|i/2]}. As A is an ordered set, we first need to identify the subset J ¢ {1,...,7}
of cardmahty |7] = 25 which correspond the mdlces of elements of A that appear in B. For ﬁxed
7, there are m such Js and the corresponding terms in the sum are all equal. For
instance, they are equal to the case {1,...,2j}. B now corresponds to a choice of a pairing
between elements of J. The sum over the values ay, € {0,...,7—1} for k € J will not depend on the
choice of pairing B. There are (25 — 1)!! such pairings. It is enough to consider the single pairing
B={(1,2),(3,4),...,(2j - 1,25)} provided we multiply our sums by

7! . \ il
enfi-2ny H T g
Consequently,
, 1=t B2 g (he?)d I G121 Oayy,  +anr :
3 21'-1 21 . a
@=L 2 gy ) T or I

ai,...,a;=0 j=0 =1 1=2j+1

The claim follows by performing the sum over ai,...,az; using Lemma proved in Appendix

[Al O
Definition 4.6. We define the modes W} of the twist field W'(z) as

Wi (z) =Y Wiz,
keZ

We observe that the expression for the modes W} only involve integer powers of h

We extract the expression for the modes from Proposition

Corollary 4.7. We have

1 [i/2] iR ) i
Wy =~ YT U9 (poji1,pajin, - pi) - Jpi s (4.8)
g r ZE) 2]3!(1_23)! p2j+1;7PiGZ a " l=12;I+1 "

Zipi=r(k-i+l)
where for cases such that j =i/2 the condition Y;p; = r(k —i+ 1) is understood as the Kronecker
delta condition 6 ;1.

Proof. We start with Proposition and compute the residue

1 li/2] i\ B ) j .
) \I,(J)(QQJ.H’“,,%)]}_% (dzszJ : H vaz(z):)

Wi = Z

=

520 asgarimas=0 27 j1(i = 2j)! 1=2j+1
1 3/2] r—1 iV ] 7
= - Z — T Z \IJ(J)(Tij+1,...,T’ki) : H er .
T =0 agjs1,..,ai=0 27 j(i - 2j)! kiea, [r+Z 1=2j+1 l

¥, ki=k—i+1

To get to the second line, we used that ¥U) is a r-periodic function of each of its arguments,
because they appear as powers of r-th roots of unity. Summing over agj1i,...,a; amounts to
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summing over p; = rk; € Z with the only constraint Y, pg = r(k—i+1). Note that in the case where
j =1/2, the condition Y; p; = 7(k -4+ 1) becomes the delta condition that k =4 — 1. O

It is easy to compute the UU )(a2j+1, ...,a;) for low values of i (see Lemma . For instance,
we have the linear and quadratic operators for r > 2

W]i = Jk:ra (49)
1 r?2-1)h
Wk2 = 2 Z (T(;r\méﬂpz - 1) tIpyJpst = %5’%1 : (4.10)
P1,P2€Z

p1+p2=r(k-1)
For r > 3 we have the cubic operator

W,? T 6 Z (Tzérlpl(sﬂpz Orlps ~ TOrlpy ~ Tripy = TOrjp, + 2) “IpypaJpy
P1,p2,p3€L
p1+p2+p3=r(k-2)
r-2)(r-1)h
( );4 ) Tres) (4.11)

and so on.

4.1.3. The higher quantum Airy structures

We are ready to prove one of our main results. As noted in Example [3.9] we know that the
W(gly,1) vertex algebra with central charge ¢ = N + 1 is strongly freely generated by the states
ei(x%;, -, xN)|0). Thus we can use the construction of Section to obtain a number of left
ideals for the algebra of modes of the twist fields W%(z) that are graded Lie subalgebras. This
gives us the second condition that is required to obtain a higher quantum Airy structure. For the
first condition, we need to modify the modes W} so as to create a term of degree 1 of the form .J,
for some p > 0 — which acts as a derivation on T (gly,;). This can be achieved via the following
operation.

Definition 4.8. We define the dilaton shift as a conjugation of the differential operators W}

Hi=T,WiT, T, := exp(—J—;L). (4.12)
s

We note here that by the Baker-Campbell-Hausdorff formula, conjugating by T, is equivalent
to shifting J 3 - J_s — 1 in the modes W,é

We then construct the following class of higher quantum Airy structures

Theorem 4.9. Let r>2, and s€{1,...,r+1} be such that r =+1 mod s. Let

S

r
Assume Jy = Q =0. The family of differential operators
Hy =T W;T;'  ie{l,...,r}, k>0"+d;1, (4.13)

forms a quantum r-Airy structure on the vector space V = @50 C{x,) equipped with the basis of
linear coordinates (xp)ps0-

Proof. We note that the W} defined in is a differential operator on Cpi2[[21,x2, 3, .. ]]
which is a linear combination of terms of degree i + 25 for j € {0,...,|i/2]} using the notion of
degree introduced in . We need to check the two conditions of Deﬁnition for the differential
operators H.
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First, we note that the algebra of modes of a VOA-module has the same Lie algebraic structure
as the modes of the VOA itself. Further, conjugating by T, does not change the algebra of the
modes. Then, the graded Lie subalgebra condition for higher quantum Airy structures follows
directly from Section In the case s = r + 1, the indicated W,z form the graded Lie subalgebra
Asp; in the case s = 1, they form the graded Lie subalgebra A.g; and for the remaining values of
1 < s <r such that r +1 =0 mod s, we prove in Appendix [B| that we get a partition of r (as in
Section [3.3) - see Theorem [3.16), and they form a graded Lie subalgebra A(, o). The only subtlety
here is that in these subalgebras, the mode Wy = Q is always present; since it is a scalar, to be
part of a higher quantum Airy structure we must set @) = 0.

To check the second condition about the form of the operators H i, we need to identify the terms
of degree at most 1 in H}. We take s € Z arbitrary to start with. We first examine the terms
of degree 0. A term :Hf:QjH Jp, + will contribute if and only if j = 0 and p; = —s for all I. The
constraint on the sum of p imposes 7k + is = 0, which is not possible if s < 0 since we always have
at least k >0 and 7 > 1. Hence, we assume s >0 in the remainder of the proof.

We turn to the terms of degree 1. Clearly, since Jy = @Q =0, a term :H§=2j+1 Jp, + will contribute
if and only if j = 0 and there is some [y such that for any [ # [y we have p; = —s. The constraint on
the sum of ps imposes p;, = rk + (s —r)(i — 1). We therefore obtain using the r-periodicity of ¥ in
each argument

il i .
Hj = . (-1)"7"W(=s,-5,...,=8, (i = 1)8) Jrpa(s—ry(i-1) + O(2), (4.14)

————
i—1 times

where O(2) indicates terms of degree > 2. The prefactor involving ¥ is evaluated in Lemmas
and and shown to be never zero. In particular, for s coprime to r, we get

Hj = Jogi(s—ry(i-1) + O(2).

In general, we obtain '
H;c = ’YSJT]C‘F(S*T‘)(Z'*l) + 0(2) )
for some non-zero constant ~y,.

Let us introduce the set Z,. s = {(i,k) | 1 <i<7and k >0°+§; 1} and the map

T — Z

(i,k) — rk+(s-7)(E-1) ~
We obtain a higher quantum Airy structure if Il is a bijection onto Z,, i.e. if each J, = ho,,
with p > 0 appears exactly in one operator H. }C for (i,k) € Z, 5. It is easy to see that the non-empty
fibers of II; have cardinality d = ged(r, s). In other words, when r and s are not coprime, the same
ho,, will appear as degree one term in two different operators Hi’“7 which cannot happen in higher
quantum Airy structure. Let us now assume that r and s are coprime, so that II; is injective. We
can rewrite 7k + (s —7)(i = 1) > 0 as the condition k >i—~1~- 2(i - 1). For 4 = 1, this is k > 1.
For i > 2, since s is coprime with 7 and 2 <4 <, it follows that k >4 -1~ 2(i - 1) if and only if
k>i—1-|2D| Therefore I,(Z,.,) = Zs.

0, : (4.15)

O

From the last paragraph of the proof, we see that the first condition to be a higher quantum
Airy structure restricts the allowed values of s to be positive integers that are coprime to r. The
second condition to be a higher Airy structure, or equivalently the subalgebras of modes that we
identified in Section |3.3] imposes the stronger constraint that r = +1 mod s.

Remark 4.10. For completeness, we compute Fp 3 and Fj; for all these higher quantum Airy
structures in Appendix E In fact, we do a little bit more; we calculate Fy 3 for all choices of s
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that are coprime with r. The result is that Fy 3 is indeed well defined and symmetric for r = +1
mod s, as expected; however, it cannot be symmetric when r # £1 mod s (see Proposition [B.2]).
In other words, when r # +1 mod s, the H; cannot form a higher quantum Airy structure, since
a solution Z to the differential constraints H}Z = 0 does not exist. Given that for any s coprime
with r the H; have the right form to be a higher quantum Airy structure, it follows that the left
ideal generated by the H; is a graded Lie subalgebra if and only if » = +1 mod s.

4.1.4. Reduction to sly4q

The quantum r-Airy structures of Theorem always contain H ]1 = Jy, for k > 0. Hence their
partition function Z is independent of the variables xy, for k > 0. Let us define the reduced
operators by the formula

Wiked = Wils o kez
12 i : :
L — VD (pgjaryesp)t T] Tt (416)
() 2]3!(@—2.7)!p2j+1,..§ie2\rz ! 1=25+1 "
>y pi=r(k-i+l)

As the dilaton shift in Theorem does not affect the modes indexed by k divisible by r, we also
have _ o X '

H]lg|red = TSWIHredT:l = HIZC|Jp7‘:O pez -
Although we do not know a general reason for H}|eq to be a quantum Airy structure itself, for
this particular case we can check that it is indeed the case. We also reprove Lemma in this
particular case.

Lemma 4.11. Let us consider a quantum r-Airy structure from Theorem[{.9 Its partition function
is equivalently characterized by the constraints Ji.-Z =0 for any k>0 and

Jw-Z=0k>0, and  Hilea-Z=0, i€{2,...,7},  k>0"+d;,. (4.17)

Moreover, the family of operators H}|vea indezed by i€ {2,...,r} and k >0°+8; 1 forms a quantum
r-Airy structure on the vector space with basis of linear coordinates (Zp)peNrN-

Proof. As a preliminary, we are going to show that H ,’C can be expressed solely in terms of the
reduced operators. Since the dilaton shift does not affect the modes (Ji, )rez it is enough to prove
this property for W,z instead of H,; and the result will follow by conjugation. We can always
decompose , '

W]i = Z Z J—'r‘al"'J—rag T;g,ab JT'bl"'erm .

£,m>0 ai,...,ap>0
£+m<iby,...,b,>0

where the T?C’a’b do not involve the modes J,, for | € Z. Using the expressions (4.8)) for the
operators W,i, and using the r-periodicity of U with respect to any of its entries, we get:
i—0—m)/2 -
; _ 1 [(i—¢-m)/2] Z LY
*,a,b ro 25 j1(i =€ —m - 2j)!

j=0 DP2j 415+ sPiet-m €LNTL
Zl pl:T(k—i+1+zl al—zlr blr)

i——m

X\I’(j)(p2j+1""7pi_€_m7 0,...70): H Jpl:.
—— =2j+1
{+m times

We also used that J_,,,, are always on the left (resp. Jn,+ are on the right) of a normal ordered
expression, so we can remove them outside the normal ordering. The ¥U) with the Os in them is
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evaluated using the Lemma proved in the Appendix to get
1(r—i+l+m)! (i-L-m)!

%

kab = (r—1)! 7!
§ l(uiz)/ZJ Z il \p(j)(ijH’ e Dictem) -i—f_—Im o
j=0 P2je1sePintm €T 2010 —€-m=-25)! 570 n

Yipi=r(k—i+1+X, m—=3 nyr)
and therefore
H =Y

£,m>0 ai,...,ap>0 (r—1)!
l+m<iby,...,b;,>0

(r—i+£f+m)! imlmns
o v Toras B Gy s (b lred Ty by - (4.18)

Now consider the constraints H} -Z = 0 for i € {1,...,7} and k > 0° + 6;;. They contain
H% -Z = Jy.-Z =0 for all k > 0 so the partition function is independent of x,,, for m > 0. As

a result, for i > 2 and k > 0’, the coefficient of @y, -2, in Hj,- Z is proportional to T}, , ;- Z

m

therefore to Hlile(al—l)hed' Since m; > 0, we get the family of constraints
Hilea-Z=0, ie{2,....,r}, k>0, (4.19)
Conversely, the constraints together with J,x - Z = 0 for k > 0 imply, by reconstructing the
linear combinations (4.18)), that Hj-Z =0 for i {1,...,7} and k > 0" +d; 1.
For the last statement, let

V= @C(l‘p> Vred = @ (C<xp)7

p>0 peNNrN
and consider the Weyl algebras D%*de c Dgﬂw of differential operators on V,eq and V. Let J* be
the graded subalgebra of D%*V generated by the .J,,. for £p > 0. We have a canonical decomposition
Dg—'*v = j_D;l“*\/}cdj+7
and a natural projection p : D, — D%*Vred. By definition
Hli|red = p(H]’LC) .
We denote Hyeq — respectively H — the subspace spanned by Hj|ieq for i € {2,...,r}, respectively
ie€{l,...,r}) —and k > 0" + d; 1 over the field C[[h]]. The graded Lie subalgebra condition for
these H ,’C translates into
[H,H]=hDhk.,, - H.
Let us apply the projection p to this equation. We get on the right-hand side hD;E*V - Hreqa- On
the left-hand side, we have to take into account that if ji,j3 € J* and hq, hs € D%*de

(77 hadts g5 hodz | = 37 Ui ds Yhahagy = 53 (57 G2 Jhehajy = 5143 [has halit ja -
After applying p we find a result of the form
plit iy, ds hojs | = hehihg + he hihg = [h, hs],
for some ¢, ¢’ € C[[h]]. Therefore
[Hred, Hrea] = h Dy,

T

ed Hrcd )

which proves that the ideal generated by Hycq is a graded Lie subalgebra. As it is already clear
that for any p e N\ 7N there exists a unique (k,4) such that H}|ieq = 0., + O(2), this proves the
claim. ]
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4.1.5. Arbitrary dilaton shifts and changes of polarization

In this subsection, we will construct deformations of the quantum r-Airy structures of Theorem [.9]
by exploring more general conjugations. Although this may seem superfluous, these examples will
appear naturally in the next section when we study higher quantum Airy structures coming from
general spectral curves.

We first introduce more general dilaton shifts. We would like to conjugate the modes W} in
(4.8) by an operator of the form

~ 1 Tl
T:= exp( Jl) ,
h ZE) l
where 7; are scalars. This simultaneously shifts J_; — J_; + 7; for all [ > 0.

Proposition 4.12. Let r > 2. Denote

: -1
s=min{l>0|7 #0 and r 4 [}, Dzizi—l—[MJ

r
and assume that 1 <s<r+1 and r=+1 mod s. The family of differential operators
Hp = (-m )" TWET ie{l,...,r}, k2040, (4.20)

forms a quantum r-Airy structure up to a change of basis of linear coordinates.

Proof. We need to show that the two conditions in Definition 2.6 are satisfied. Since 7, # 0, we
define 7, as

Tq = Ts(0s,q +Tq)
so that 7, = 0 for ¢ < s. We compute as in the proof of Theorem that (up to rescaling by
constants)

i (_Ts)iilql(_qQV"a_qi,p) . ~
Hj = > . [1s,q +70) | o +O(2).
peZ, q2;---,qi2S \I/(—S,...,—S,S(’L—].)) =2 : :
p=r(k-i+1)+Y; s @
We have factored out the contribution of ¥(-s, -s,...,~s, (i—1)s) which is equal to (-1)""!r since
s is coprime to r (see Lemmas [A.4)). Therefore we can write
Hi =3 L, giky.p o+ O(2),
p=s

where II; was defined in (4.15) and is a bijection between the set of indices (¢,k) considered in
(4.20) and the set of positive integers. (Lq,b)q,b>0 1S & lower triangular matrix with diagonal entries
1. Let us perform the change of basis on linear coordinates

Yo = Z (_1)m Z [ﬁLal+1;al]xa7n .

m>0 b=ai1>as>...>Am-1>a,, >0 L I=1

For any b > 0 the right-hand side is well defined as it is a finite sum (using the lower-triangularity
of L). By construction we have

. 0
}I]lC = Z LHS(i,k),p h@xp + 0(2) = - + 0(2) .
p2s Y, (i,k)
Notice that these expressions make sense using the prescriptions for vector spaces of countable
dimension described in Section[2.1.4] i.e. 8yp are elements of V' and linear coordinates are elements
of the dual. We therefore have checked the first condition of Definition 2.6

The graded Lie subalgebra condition which holds for the operators of Theorem is preserved
after conjugation. Hence we obtain a higher quantum Airy structure. O
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Another conjugation that will appear in the next section is the change of polarization. We
would like to conjugate our modes with an operator of the form

@::exp(l Z Otm JlJm),

2h 1ms0 Im

where ¢; ., = ¢m, are scalars. Using the Baker-Campbell-Hausdorff formula, we see that it shifts
the modes as p

Va>0,  Ja—Ja+3 z’l Ji. (4.21)

>0
and leaves J, invariant if a > 0.

Proposition 4.13. Under the same conditions as in Proposition the family of differential
operators

Hi= (-1 )" @ TWiT &7, ie{l,...,r}, k>0 461,
forms a quantum r-Airy structure up to a change of basis of linear coordinates.

Proof. The graded Lie subalgebra condition is stable under conjugation. We are going to argue
that

S(TWT Y™ = (TWT™) +0(2). (4.22)
This will automatically imply that the (—7,)*~ &7 Wéf‘lé‘l satisfy the first condition in Defini-
tion 2.6] hence form a quantum r-Airy structure.

We observe that the operation respects the degree. It replaces J_;s by J,,s. If the result
is not normal ordered anymore, normal ordering creates a new term where two Js are replaced by
a h (which is still of the same degree). As there is no term of degree 1 of the form J_; with I >0
in Hi we get the claimed . |

4.2. W(gly,1) Airy structures for other automorphisms
4.2.1. The twisted module

We come back to the W(gly,;) algebra, but now we construct twisted modules for an arbitrary
automorphism o, consisting of d > 2 disjoint cycles of order 71,...,7r4 which sum to r:= N +1. We
relabel the basis elements of h

Y= T e e {1, d), ief{l,...,r.},
such that
O_(X;L,i) — Xy,,iJrl mod 7, )

We then introduce the basis of eigenvectors indexed by pe {1,...,d} and a € {0,...,r, -1}
ru—l

w.a _ —aj . ,J _ 2im/r
v’—ZHT‘Lx’, O, =M.
Jj=0

which are diagonal under the ¢ action
w,ay _ pa . p,a w,a , vby _
U(U ’ ) - QTMU 7a <U LU ) = 5u,u Tu 5ru|a+b .

Hence we can represent the Sp(gly,1)-twisted module

~ 1.2 d 1 2 d 1
T(g[N+1) :Ch1/2[1‘1,1‘1,...,xl,xz,xz,...,.%'2,1'3,...],

with the fields

’U“’a(z) — Z Jllcir“ Z_k_l,
kea/r, +Z
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and
haxtt >0
Jl“: Q+ =0
—l:r‘_Ll <0

where Q" now are arbitrary scalars. Upon restriction, it becomes an untwisted W(gly ., )-module.

Remark 4.14. In contrast to Section we have the freedom to take J& = Q" # 0 in our
construction of Airy structures, provided Q* is equal to 0 modulo terms of positive degree. Scalars
with this property in Cj12 must be O(2). Note that J; for [ # 0 are elements of D, of degree
1. It is therefore natural to replace the base field with Cj1/2 to allow scalars of degree 1. So we
construct crosscapped Airy structures as defined in Section rather than usual Airy structures.

We are going to compute the modes W} of the twist fields associated to the strong generators of
W(gln.1)- The result is expressed in terms of the modes W;"" of the W(gl, )-module constructed
in Section via twisting by the Coxeter element of gl,, , which are according to Corollary

S IR Y & - :
Wht=— 3% ————— > \II(J)(pQ‘ w2, pi) [ IR
k BVE . ]+17p23+27 s Di )
T i 25NE-20)0 L, T ez - 1=aje1
> pi=ru(k—i+1)
where we have use the notation \Ilﬁft ) for ¥\ to insist that we choose the r,-th roots of unity for
its definition.

Lemma 4.15. We have
1

i _ lLvi;L
wi- Y% 3 S (4.23)
Mc{1,...,d} 1<i, <ry, peM kezZM peM Ty
Y, iu=i X, ku=k+1-|M]|

Proof. We express the strong generators of the W(gly,;) by grouping the basis elements that
belong to the same cycle o together

d
ei(Xoa"'7XT_1): Z Heiu(xﬂ,l’.'.7xﬂynt).

01,400,020 p=1
T, it
Now we compute the fields associated to these generators in our twisted module. We note that the
modes corresponding to different ;1 commute, and for each p we recognize (up to the factor ri==1)
the fields associated with the gl, ~generators in Definitions @@ Therefore

d
, 1 .
W'(z) = Z H -1 Wit (z),
i1,0ria20 =1 T
> tu=i

where by convention W#0(z) = 1. Collecting the coefficient of z*~! entails the claim. O

4.2.2. Higher quantum Airy structures

It seems rather tedious to find all the dilaton shifts of (4.23)) that could lead to higher quantum
Airy structures. Instead, we focus on the case o is a cycle of length r — 1, that is

ri=r-1, ro=1.

According to Lemma we have
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Wi = Jp+ Ji (4.24)
W= W e Y W ded{2, ), (4.25)
k1,k2€Z
k1+k2=k‘*1
WE= Y W, (4.26)
k1,ko€Z
k‘1+k‘2=k*1
Let s € {1,...,7 + 1} with s coprime with r;. We perform a dilaton shift J!, — J! -1, i.e. we
define
. J ; J
Hj=ri"exp| - == |Wiexp| 2], 4.27
E=T1 XP( hs) L ( )

Theorem 4.16. Let s€{1,...,r} such that s|r, and let

aizzi—l—[s(i_l)J.

r—1
Let g € C and assume that Q' = hY?q = —-Q?. The family of operators
Hy+H_y ., = Jér—l)k +0(2) k=1
H; = Jgr—l)(k—i+1)+s(i—1)+O(2) k>0, ie{2,...,7r =1} .
_HIZ = Jk+s—r+1 + 0(2) k> (T - 8)

forms a crosscapped higher quantum Airy structure on @, ((C(zzla) ® (C(x%))

Proof. We first check the subalgebra property. In the case s = r; +1 = r, the indicated W,: form
the graded Lie subalgebra A,g; in the case s = 1, they form the graded Lie subalgebra A,q. For
the remaining values of 1 < s <71, we need to find for what values of (s,r;) do we get a partition
of r (as in Theorem . Using Proposition replacing r — r1, we know that the modes with
t1€{l,...,m} generate an ideal that is a graded Lie subalgebra if 1 = £1 mod s. What we need
to check is that the left ideal generated by adding the modes W} " owith k> ry +1—-sis still a
graded Lie subalgebra. For this to be the case, we need to show that the enlarged set of modes
still correspond to a partition.

For W;* and s <rq, the condition is k> 71 -1-s+[>]=(r; - 1) - (s—1). Moreover, for Wt
the condition that we want is k > 71 — (s—1). In the notation of Theorem this means that we
are adding one to the last part of the partition corresponding to the subalgebra generated by the
modes with 1 <4 <r;. This will remain an ordered partition only if all other parts of the original
partition are at least one larger than the last part. Looking again at Proposition we see that

this will be the case precisely when rq = 7's + 7" with 7" = s = 1. In other words, 71 = -1 mod s,
or equivalently s|r. Therefore we conclude that the left ideal generated by the modes W}, with
t1€{l,...,r1 +1} and satisfying the condition above, is a subalgebra if and only if s|r.

For all these cases, as the W} satisfy the graded Lie subalgebra condition, so do the HEF with
the same indices. Now as usual we need to be careful with zero modes. For ¢ =1 it is clear that

Hy=Wi=J +J;. (4.28)

The graded Lie subalgebras contain the mode Hg which is equal to the scalar Q' + Q. We must
assume Q! + Q? = 0 if we desire to have a higher quantum Airy structure. Due to the condition on
the degrees, we fix Q' = A/2q = ~Q? for some ¢ € C. We can drop the zero differential operator H}
and deduce that H}c forie{1,...,r} and k > 0" + &, 1 + 0;, still satisfy the graded Lie subalgebra
condition.
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It remains to check that the degree 1 condition holds. We start by computing the result of the
shift J_y - J_s—1in Wkl’l. Compared to Section the fact that Q' = h'/?¢ gives an extra
term

1,71 6r15+r1(k—i+1),0 + hl/Qq

i )
eXp(—axi)Wkl’ eXp(aaQ) == - e

Ok,00,1 + Jy}l(k-i+1)+s(z’—1) +0(2).

In particular for i <r; the degree 0 term (the first term) vanishes. We now consider i € {2,...,m}
and compute H; modulo O(2). We get from (|4.25))

i 5i,r 5s+k—i+1,0 1
Hy = —IT + Jp (hmist)yas(i-1) T O(2). (4.29)
For se{1,...r; + 1} coprime with 7; and k >0’ we see that the degree 0 term in (4.29) is absent.
Under these conditions, we have

Hj = Ty (sery (o1 +O0(2)
which involves a J with p > 0. Finally, we compute H;, modulo O(2) from (4.26) and find
Hl: = _‘]Iz+s—r1 + 0(2) .

For s e {1,...r1 + 1} coprime with 71 and k > r; +1 — s we see that k+ s - > 1, and hence the J
appearing there is a derivation. We then see that

HYvHY, Ly = JL,+0(2) k21
Hy, = J71-1(k—i+1)+s(i—1) +0(2) k>0, ie{2,...,m1} .
—Hy = Jiesr, +0(2) k2ri+1-s
forms a quantum r-Airy structure, which is the claim. O

We will discuss the enumerative geometry interpretation (through open intersection theory) of
the associated partition function in Section [6.3] Note that we can easily formulate and prove an
analog of Proposition to describe more general higher quantum Airy structures obtained from
the ones of Proposition by further dilaton shifts and changes of polarization.

4.3. The W(soay) Airy structures
4.3.1. The twisted module T

Recall Example The roots of the Lie algebra of Dy type can be described as (+x;+ ;) where
Xi is an orthonormal basis for CV. Let o be the Coxeter element of the Weyl group, defined by
the following action

X1 > Xz~ > XN-1=>-X1 > Xz~ —xn-1~>Xx1  and XN > -Xn-

This element has order 7 = 2(N —1). We define a basis (v!,v3,v%,...,0"71,%) of b that is diagonal
under the action of o as follows
£
2 .
v =2 Y 070 ae{l,3,5,...,r-1}, (4.30)
j=0

b=V2xN,

It has the property o(v®) = % and o(9) = -0, and the inner product for any a,b € {1,3,...,r-1}
(v, 0°) = 18,04, (B,0%) =0, (B,0)=2. (4.31)

‘We can therefore define

T (soon) = Cpape[[@1, 23,25, ..., %1, T3,...]]
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with _
v(z) = Y. Tz B (z)= > Ju P (4.32)
kea/r+Z kel/24Z
where we take for any odd [ >0
Ji=hdy,  Ja=lxzy,  J=hos,  J=1F.

The evaluation of the pairing (4.31)) shows that these assignments reproduce the desired commuta-
tion relations of the Heisenberg algebra. Thus T (soan) is a twisted Sp-module, which we restrict
to obtain a W(so0yx )-module.

4.3.2. Twist fields for the generators

W(s0on) is freely and strongly generated by v? for d € {2,4,6,...,2N -2} and #"V. The corre-
sponding fields can be computed using the following lemma.

Lemma 4.17. [10, Lemma 3.7] For alld>1,ie{l,...,N} and € € {-1,1}, we have

%

Y, ( ex’ —ext Ly d, pt? OF i 4
o e—d €1 ’Z) - Z ZZ C d—z(f‘?X az)a ( 33)
=0

where for any v e CN
1 n
Sp(v,2)=:1— (h1/232 +v(z)) 1:
n!
are the Faa di Bruno polynomials, and cs are scalars such that cz(o) =1.

The main ingredient of the proof in [I0] is the product formula . Our version only differs
by specialization to the orthonormal basis vectors x*, and inserting suitable powers of fi. These
merely keep track of the conformal weights. For instance, we would like 0, to have degree 1 and
hence we add a h'/2. The A%/? comes from the product formula.

Remark 4.18. Y (v%, 2) is a field of conformal weight d. The h grading keeps track of this weight.

In particular, the half-integer powers of i will vanish in Y, (v¢,z). This is easy to see using that

v? is invariant under x* - —x’.

We define the modes of the twist fields Y (v¢,2) and Y (#V, 2) by

Y, (v, 2) = > Wi+t Y, (7N, 2) = > W1,
keZ keZ

4.3.3. Higher quantum Airy structures

We can then apply Propositions and to get graded Lie subalgebras by considering the
ideals generated by certain subsets of the modes. As in the gly,; case, we need to perform a
dilaton shift in order to get a higher quantum Airy structure. In this section we will only consider
the subalgebras of Propositions and [3.14] since we have not constructed the more general
intermediate subalgebras analogous to Theorem for W(soan).

Definition 4.19. The dilaton shifted modes of the module T (s02y) are defined as follows
HY = g TWET? de{2,4,...,2(N-1)},
oY = A LW,
with constants
v =d 2N = 1)t gy = (<1) N DR29N-D/2 (N1

and we recall that T} = exp( - ‘;;S)
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For s =1 or r + 1, we obtain in this way quantum r-Airy structures.
Theorem 4.20. Let N >3, that is v =2(N - 1) >4. The family of differential operators
HY =5y Tr  WETZY de{2,4,....2(N-1)}, k>0,
HY =351 Trd WNTEY k>0
forms a quantum r-Airy structure on the vector space V = @pso C{xaps1) ® C{T2ps1). The same is
true for the family of differential operators
HY =y TyW 2T de{2,4,....2(N-1)}, k>d-1
HY =35y, TiWNT? E>N-1.

Proof. We first look at the modes of Y, (v%,2) for d € {2,4,...,2N -2} and study the terms that can
contribute in degree < 1 after a dilaton shift J_; — J_s + 1 for some s € 2Z + 1. From Lemma [£.17]
we see that

N-1
Yg(ud, z) = Z; (Xi(z))d +0(h).

Now, we implement the change of basis (3.12)). The inverse change of basis is

) 1 ) )
“_ - ea(z—l) ,Ua’ N_ Y )
X V2(N -1) 1g¢§71 X V2

a odd

We note that the modes W,f of v? are homogeneous differential operators of degree d. The mode
J_s = T5/s that appears in the dilaton shift is only present in a single v°(z) as coefficient of 251,

So
6—(1‘—1)5 Zs/r—l

T (2)T = —=———— +X'(2).
s x'(2) VAN D) X'(2)
Consequently, the terms of degree 0 and 1 will be
dH{
2d/2(N _ 1)d—1 + 0(2)
(s/r-1)d N-1
[ z Orls . d p-(-Ds(-1) L (s/r-1)(d=1) i )
2d/2(N _ 1)d—1 2(d—1)/2(N _ 1)d—1 =

d N-1 . )

_ —(k+1) 0(l—1)(a—s(d—1)) J —a/r-m-1 _(s/r-1)(d-1)

z a+rm % z
[ :| (2d/2(N - 1)d l:Zl 1Sa§“—1 ’rnZeZ "

a odd
A Jy(k-ds1)+(d-1)s
2d/2(N _ 1)d—1 ’
In the third line, we dropped the term 4, because s is odd and 7 is even. So there is no degree 0
term and we obtain Hfj = Jp(k-d+1)+(d-1)s +O(2). This explains the choice of the constant prefactor
in the definition of H,‘j.

Now, we consider the modes of the twist field Y, (#V,2). We use a similar argument as above,
using the product formula (3.23)) instead of Lemma [4.17]

(_1)—S(N—2)/2 ﬁz ~ N-1 e—s(i—l) zs/r—l
O Tk o) = [y T]
2V-DR(N - 1) i VA(N-1)
(_1)—5(N—2)/2 _
2(N_1)/2(N _ l)N_l JQk—S+T7

N Tam 2™+ 0(2)

mel/2+7Z

hence HY = Jop_sr + O(2).
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First, we consider the graded Lie subalgebra Aq corresponding to the modes k > 0 (see Propo-
sition . If we want these modes to contain each J, and J, (for p > 0 odd) exactly once, we
must choose s =7 + 1, and we do obtain a quantum r-Airy structure.

Second, if we focus on the graded Lie subalgebra Aa corresponding to the modes Hg with

k>d-1and HY with k> N -1 (see Proposition [3.14), the same condition forces us to choose
s =1 and we obtain a quantum r-Airy structure in this case as well.

As usual, we note that we can easily formulate and prove an analog of Proposition [4.13] to
describe more general higher quantum Airy structures obtained from the ones of Theorem [£.20] by
further dilaton shifts and changes of polarization.

4.4. The exceptional types
4.4.1. The twisted module

We consider the simple complex Lie algebra ey with N € {6,7,8}, together with a Coxeter element
of the Weyl group o. Its order is denoted by r. o acts on the Cartan subalgebra with simple
eigenvalues (9,‘?“_1 flv=1. We can always order 2 <dy <---<dy <r, and we have dyy1-q +dq =7+ 2

forany ae{1,...,N}. Let D={d; - 1,...,dy - 1}

N r dla-~-7dN

6 | 12 2,5,6,8,9,12

7 18] 2,6,8,10,12,14,18
8 |30 [ 2,8,12,14, 18,20, 24, 30

We can find a basis of eigenvectors (v*)X; such that

o(v®) = 0% y?, (0", 0°) = 70aspr -
We obtain a o-twisted module for the Heisenberg algebra

T(RN) = (Chl/2 [l:(xl)le]DHrN]]
by assigning
v(2) = > Jp 2 P71,
pe(de—1)/r+Z
where J; = hd,, for [ >0, Jy =0 and J; = —lz_; for [ < 0. Via restriction, we get an untwisted
W(ey)-module over Cpi/.

4.4.2. The generators and their twist fields

The VOA W(eyn) is strongly and freely generated by elements w; of conformal weight d; for
ie{l,...,N}. Although there is no canonical choice making the generators particularly simple,
we will rely on the following structural result.

Theorem 4.21. [39] and [52], Lemma 3.4] One can choose generators of the fornﬁ
d; .
w' = (M) N S (M) BT P (0l T
e
where P; 4 is a homogeneous polynomial of degree d; —d and w; belongs to the left ideal generated
by the x—p for x ebh and n > 2.

4The discrepancy with the notations in [52] comes from the fact that we use a dual basis.
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The fields associated to w; are denoted

Y, (w' z) =Y W} P
keZ

Remark 4.22. As ¢y is a subalgebra of soopn, and the generators of the W(sosy) algebra after
h-rescaling indicated in Section only involve integer powers of A (see Remark [4.18)), the same
must be true for the generators of W(ey).

Definition 4.23. The dilaton shifted modes of T (¢x) are defined as

[AWET, Tszexp(—f{s) ie{l,...,N}, kelZ.
S

For s =1 or r + 1 we obtain in this way quantum r-Airy structures. The one with s =7 + 1 was
anticipated in [52], while the one for s =1 is new.
Theorem 4.24. Let e € {0,1} and denote s:=1+er. The family of differential constraints
H ie{l,...,N}, k>(1-¢)(d; 1)

forms a quantum Airy structure on the vector space V = @fll B0 Clzrird;_, )-

Proof. The formulas (3.10)-(3.23) show that we have for ki,...,k, >0 and x,...,x €b
i i nodbtt
Ya(X_lkl'”X_’}gn |O>72) = (52j(kj—1),0 + h1/252j(kj—1),1) 111 WX "(2):+0(2),
j=

where the O(2) arises from terms involving 2™ with m > 1. Following Theorem the mode W}
is a sum of three parts, which we study them up to O(2). The first part is

di
Z 5( - (k +2- dz) + Z(p] + 1)) :Jdi—1+rp1 Jr—1+rp2"' J7'—1+7'Pdi Jdi—1+7‘1’di it 0(2) 5
j=1

P1;---,Pd; €L
where 6(n) := d,0 is the Kronecker delta. The second part is a sum, over m € {2,...,d;} and
ai,...,am €{1,..., N —1} of an expression which up to O(2) is proportional to
d: ™ d, d;
. .
Z d _(k+1+m_di)_*+z : +Z(pj+1) :Jda1—1+rp1"'Jdam—1+7"pm J’r‘—l+’r‘pm+1""]7'—1+7'pd. c.
P1y---sPd; €L LA A | ‘

The third part is a sum, over ¢ € {1,...,d; — 1}, b1,...,bp-1 > 0 and aq,...,a4 € {1,..., N} such
that if we set b, := 2 we have Z?Zl b; = d;, of an expression which up to O(2) is proportional to

Jdaj—1+ij 1+ 0(2).

do. -1
- Lodg, -1 ¢ T a]T +p;i+b;) A
p(di=0)/2 > 5(—(k;+1)+§ . +pj+bj)|| (daj—l J ]):_

PLypeel j=1 =1 1( +pj+1) j-1

Due to the power of & in prefactor, up to O(2), we only have to take into account the terms where
e:di—l andblz...:bdi_2:1.

For a fixed € € {0,1} we set s =1+ er and apply the shift J_s - J_g + 1 to obtain H}. We want
to identify the terms of degree 0 and 1. In degree 0, there is no contribution from the first and
second parts, because they do not come from a monomial of the form (vV(z))? for some ¢ > 0,
and since the third part has at least a power of 2'/? it does not contribute either. We now turn to
degree 1 terms. The first part contributes for ps = -+ =pg, = —(1 +€) and yields

Js(di-1)sr(ke1-a;) + O(2) .

r
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The second part remains O(2) since it is at least quadratic in the non-shifted J;. The third part
could contribute when £ = d; -1, by =--- = bg,—2 = 1 and (a;,p;) = (N,-1-¢) forall j e {1,...,d;-1}.
But the Kronecker delta would impose that r|(d; — 1) which is never possible. Hence

Hj = Jn,x) + 0(2), O,(i, k) :=s(d; = 1) +r(k+1-d;).

Let us denote
Se={(i,k) | ie{l,....N} and k> (1-¢)(d;-1)}  withs=1+re.
If s =r+1, we know from Lemma that the subset of modes W} indexed by (i,k) € Syi1
generate a graded Lie subalgebra Ag. Therefore, so do the corresponding H}. As we remark that
II, .1 is a bijection between S,.1 and D +rN, for each independent linear coordinate (zp)pep+rn 00
V we have a unique operator H ,’c containing the derivation hd,, as its degree 1 term. Therefore

we have obtained a quantum Airy structure. For s = 1 we reach a similar conclusion if we use
Lemma [3:14] and the graded Lie subalgebra A instead.

In fact, due to Remark we could have ignored the third part of the generators right from
the start, as it could only be a O(2).

O
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5. HIGHER QUANTUM AIRY STRUCTURES FROM HIGHER ABSTRACT LOOP EQUATIONS

In this section, we show that the Bouchard-Eynard topological recursion of [I5] [I6], I7] for ad-
missible spectral curves with arbitrary ramification yields higher quantum Airy structures. More
precisely, we study higher abstract loop equations (whose unique, polarized solution is constructed
by the Bouchard-Eynard topological recursion) and construct the associated higher quantum Airy
structures. We then show that they coincide with the general dilaton-shifted, polarization changed
modules for direct sums of W(gl,.) algebras. The precise dilaton shift and change of polarization
involved here is dictated by the local expansion of the spectral curve data around the ramification
points.

5.1. Geometry of local spectral curves
5.1.1. Local spectral curve with one component

Let us first introduce the notion of local spectral curves. We start with the complex vector space
V, = {w eClz7h, 2]ldz | E{Eg w(z) = O}, (5.1)
equipped with the symplectic pairing
Q:(dfr,dfo) = Res fi(z)dfa(2). (5:2)
Let V' be the Lagrangian subspace V" = C[[z]]dz c V.. Let us define a basis (d§;);so for V5 with
d¢ () = 27 tdz.

Definition 5.1. A local spectral curve with one component consists of the data of the symplectic
space V, over C, with a Lagrangian subspace V" and

e An integer r > 2. We use it to consider the group action G x V, - V, with G = Z/rZ and
r > 2, such that the generator p of G acts as
p-df(z) —df(0z),
where 0 = ¢ is a primitive r-th root of unity.
o A one-form wg; € V. We write its expansion as

wo,1(2) = iﬁ d&(2).

>0

2im/r

e A choice of polarization, i.e. a Lagrangian subspace V c V, complementary to V", with
basis (d&;)i<o such that

1
Vl, me Z#O N {0}7 Qz(dfla dgm) = 7 6l+m,0 .

Definition 5.2. We say that a local spectral curve is admissibld| if
s::min{l>0 | 7 +0 and TJrl}

satisfies 1 < s < r+1 and r = +1 mod s. Notice that this congruence implies that r and s are
coprime. If s =7+ 1, we say the spectral curve is regular, while it is irregular if s < r.

Remark 5.3. In the standard topological recursion formalism of Chekhov-Eynard-Orantin [31],
one would need to choose r = 2. This requirement was dropped in the Bouchard-Eynard topological
recursion [16}, [17].

5This admissibility requirement will become clear when we construct the associated higher quantum Airy struc-
tures. Remarkably, it turns out that the Bouchard-Eynard topological recursion constructs symmetric differentials
only for admissible spectral curves.
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Note that the basis d&;(z) for V' is an eigenvector (with eigenvalue ') for the action of the
generator of G, but it may not be the case for the polarization basis d¢_;(z).

The choice of polarization can be encoded in terms of a formal bidifferential. For [ > 0, we can
write

d m
déy(z) = Z% + ¥ ¢l—’d§m(2),

l
m>0
for some coefficients ¢; ,,,. The requirement that V is Lagrangian, namely

Vim>0,  Q.(d€(2),dEm(2)) =0

imposes that

d)l,m = ¢m,l .
We then introduce the formal bidifferential
dz; ® dzy
— md ® d&,, . 5.3
(21— 2)2 17;0@, &i(21) ® d&m(22) (5.3)
which is symmetric under exchange of z; and zo. This is not an element in V,, ® V,, but
dz; ® dzy

(21 —22)2

wo,2(21,22) =
wo,g(zl,ZQ)— E‘/;@‘/YZ_;

In any case, for any [ >0 we can write

dz
df—l(zl) = Qz (WO,Q(ZVZ,)’ ZZT)
z dz

where in the first line the symplectic pairing acts on the variable z. In other words, for |z1] < |22/,
we can write the expansion

w072(z1,zQ) R Zld&(zl) ®d£_l(2’2) .

[z1|<l22| ;50
Definition 5.4. We call standard polarization the choice of V= 27*C[27!]dz, with basis d¢_;(z2) =
27'"1dz. In this case, the bidifferential is simply
dz; ® dzs

W0,2(Zlaz2) = m .

5.1.2. Projection map
We will also need to define a few important maps associated to the group action. Pick an element
df € V,, and denote by G -df the orbit of df, that is
G-df(2) {9-df(2) | geG}
{df(2),df(8z),....,df (6" '2)}.

There is a natural averaging map
Mz - ‘/z - Vz
r—=1
Af(x)— Y dg(z)= Y df(e*).
dgeG-df k=0

We want to extend this map to tensor products of V,. Let us consider first the case of V,, ® V,.
There is a natural group action of G xG on V,,, ® V,,, with each factor of G acting individually on
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V., and V,, respectively, and a diagonal group action of G. Let us denote by G® = (GxG)\G
the set G x G minus the diagonal embedding of G. For w(z1,22) € V,, ® V,, let

G? .= {g-w | ger},
and define the averaging map

Mz 29 * ‘/21 ® ‘/;2 - VZl ® sz2

1 r—1
w(z,z2)— > Mz,z2) == Y, w(@™z,0M2).
AeG (). 2 m1,m2=0
mi+meo

We also define a specialization map
Uzl,zQ\t : ‘/21 ® ‘/22 - C[tilat]]
w(t,t)
— .
(d&,(t))
It is then easy to see that the composition, which we call “projection map”,

P217Z2|t = 0—21722\2 ° /1’21,22 : VZ1 ® ‘/;2 - C[tirvtr]]

w(z1,29) —

maps elements of V,, ® V,, to Laurent series that are invariant under the group action G.
The generalization to more than two variables straightforward.

Definition 5.5. Let z = (z;)i_,. For i€ {1,...,r} we define the averaging map

7 7
pet QVe — QV4
=1 =1

1 r—1

w(z) +— 5 Z w(@™zy,. 0™ ),
e mi,...,m;=0
myEmy

and the specialization map
i
Oglt * ®Vzl - (C[t_lvt]]
=1

w(t,... 1)

w8 ey

We define the projection map
i
Pz|t = O0glt O Mz ¢ ®Vtzz - (C[t_r7tr]] )
1=1
which maps elements of ®]_; V;, to Laurent series that are invariant under the group action.

We would like to extend this map to objects that involve the formal bidifferential wp o defined
in . wo,2(#1,22) does not live in V,, ® V,,, and in fact the specialization map 02,2t 18 NOL
well defined on wg 2(z1,22) due to the pole on the diagonal. However, it is easy to see that the
projection map P, ., is well defined on wq2(21,22). Similarly, the projection map P, is well
defined on objects that may involve factors of wg 2 (2, 21) for I # 1.

Remark 5.6. We notice that the projection map P, is invariant under permutations of 21, ..., z;.
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5.1.3. Local spectral curves with ¢ components

We can generalize the notion of local spectral curves by, roughly speaking, taking ¢ copies of the
symplectic space V,. Let V, be as in (5.1). For ¢ > 1, we define the larger symplectic space

V.=CeV,. (5.4)

We equip C¢ with a scalar product - such that the standard basis (e;)$_; is orthonormal, namely
e; -e; = 0; ;. We define the symplectic pairing on V, as being given by

Q. (ug ®dfi,ug ®dfa) = uy - us ljfg Ji(z)dfa(z2), (5.5)
where w1, ug € Cf. For ace {1,...,c}, we write V;Ea) =e,®V,cV,.

Let us define the Lagrangian subspace V; = C° ® C[[z]]dz c V., with basis d§, (z) with { >0
and a € {1,...,c} and given by

déa1(2) = eq ® A& (2) = eq ® 27 1d2. (5.6)

Definition 5.7. A local spectral curve with ¢ components consists of the data of the symplectic
space V, together with its Lagrangian subspace V], and

e A family of integers r, > 2 for @ € {1,...,¢}. We use them to consider the group action
GxV, >V, with G=Gy x...xGpand G, = Z[r,Z. Tt is such that the generator p, of
G, acts only on Vz(a) as

Pa* dfa,l(z) = dga,l(aaz) 5 (57)
where 0, is a primitive r,-th root of unity.
e A one-form wp € V;. We write its expansion as

wo,1( Z”Z(:)Tl déai(2).

e A choice of polarization, that is, a choice of Lagrangian subspace V; ¢V, complementary
to VI, with basis d¢, —;(2), with >0 and « € {1,...,c} such that

1
Va,Be{l,...,c}, VimeZ Qz(dgayl,dﬁgm):j

Definition 5.8. We say that a spectral curve is admissibile if for each av € {1,...,¢},
Sa ::min{l>0 | 7+0 and r, +l}

satisfies 1 < 54 <7 +1 and 7, = +1 mod s, (the sign could depend on «). We say that the spectral
curve is reqular at o if s, =74 + 1, while we say that it is irregular at « if s, < 74

6a,[351+m,0 .

As before, the choice of polarization is nicely encoded in terms of a formal bidifferential. For
I>0and ae{1,...,c}, we can write
a,B

ﬂi > T gy u(2).

for some coefficients d)l @8 The requirement that V; is Lagrangian imposes the symmetry ¢l =
(bm ;- We define the formal bidifferential

° (eq®dz1) ® (eq ®dz < o
W, z) = 3 o200 (Ca®dn) S paie G adgs (). (59)
a=1 (21— 22) a,B=11,m>0

€a ®dz

dga, l(z) =
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As before, wp 2(z1,22) is not in V,, ® V,,, but

(WO,z(zl,Zz) - Zi: (¢a

Then, for [ >0 and a€ {1,...,¢}, we can write

, , dz
déa—1(2") =Q, (UJ()’Q(Z7Z ),€a ® W) . (5.9)

®dz) ® (eq ®dzg)

(21 = 22)?

)eV;@V;“Z.

In other words, for |21 < |22/,
wo2(21,22)‘ Sl Zzldfal(zl)@’dfa “1(22)
Z1lsiZ2l o=11>0

Definition 5.9. We call standard polarization the choice of V; = C°® z7'C[27!]dz, with basis
dén,1(2) = e ® 27712 for [ > 0. In this case, the bidifferential is simply
€ (eqa ®dz1) ® (eq ® dzg)
wo,2(z1,22) =
o2(e1,%2) (;1 (21-22)°

5.1.4. Projection map
We can also generalize the construction of the averaging, specialization and projection maps for
each G,,.

Definition 5.10. Let z = (2;)i_,. For a € {1,...,c} and i € {1,...,7,}, we define the averaging
map

e ®Vzl — ®V(°‘)
i 7 1 r—1
(®eal)®w(z)»—>(néaha)e (z' > w(@;’“zl,...,&;’lizi)),
=1

=1 *mi,...,m;=0

myFmys

and the specialization map

ol ®v<a> —C[t™,1]]

z|t
w(t,...,t)
(déar, (1))

e® ®w(z) —
We define the projection map
a) . Q) . . “Ta 4Ta
Pz(lt —alt) G gl)vzl — C[tT ],

which maps elements of ®§:1 V., to Laurent series that are invariant under the group action G,.

As before, we observe that this projection map is well defined on wg 2(21,22). It is also invariant
under permutations of z1,..., z;.

5.1.5. Relation with global spectral curves

The topological recursion of Chekhov-Eynard-Orantin [31], and the Bouchard-Eynard topological
recursion [I5] [16], [I7], were not presented in terms of local spectral curves. Let us now briefly show
that the notion of spectral curves used in these papers — which we here call “global” — is a special
case of the local spectral curves defined above.
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Definition 5.11. A global spectral curve is a quadruple (C,x,y, B), where

e (C is a Riemann surface;

e 1z is a meromorphic function on C. We denote by R c C the set of ramification points of x
that are zeros of dz. For any p, € R, we let r, be its order. We assume R is finite;

e y is a meromorphic function on C.;

e B is a meromorphic symmetric bidifferential on C x C, whose only singularity is a double
pole on the diagonal with biresidue 1.

Definition 5.12. We say that a global spectral curve is admissible if for each p, € R, either y has
a pole of order 7, — s, With s € {1,...,7,—1} and r, = £1 mod s, (in which case we say that the
curve is irreqular at pa)lﬂ7 or y(pe) is finite and dy(p,) # 0 (in which case we say that the curve is
regular at pg).

To recover the structure of a local spectral curve, we first need to construct the symplectic space
V. Here, we consider the space of meromorphic residueless one-forms on C with poles only on R,
which takes the structure of V in (b.4)) after expanding in local coordinates near the critical points.

More precisely, we replace C by the union of small disks U, around the p, € R. On each U,, we
define a local coordinate ¢ such that

CTa
r

«

2y ()= S+ a(pa).

Then we can think of one-forms on C with poles on R as the sum of their formal Laurent expansions
on the U, in terms of the local coordinates ¢, and V then exhibits the structure in (5.4]) with z — .

The choice of one-form wp 1 € V is naturally given by wg1 = ydz, after expanding locally on
the U, in terms of (. The admissibility condition matches with the analogous condition in the
definition of local spectral curves.

The group actions G, xV — V indexed by a € {1,...,c} with G, = Z/r,Z, are naturally given
by the deck transformations ¢ = 6, in the local coordinates on each U,,.

Finally, the choice of polarization is given by the choice of bidifferential B. Indeed, if we define,
for a€{1,...,c} and I >0, the one-forms d&, —;(z) on C by

o= B ( f70) 50

we see that this has the same form as (5.9)) after expanding B(+,2’) in local coordinates such that
the expansion near 2z’ — pg gives the coefficient of eg.

Example 5.13. Perhaps the simplest regular spectral curve is the so-called r-Airy curve, which

corresponds to the choice
z" dz; ® dz
C=C, r=—, y=-z, B(z1,29) = ———2 22
r (21 — 22)

We observe that the corresponding local spectral curve has standard polarization.

Example 5.14. There is a natural family of irregular spectral curves, which we will call the (r, s)

spectral curves. They are indexed by an integer s € {1,...,r — 1} such that r = +1 mod s,
2" 1 dz1 ® dzg
c=C, r=—, =- , B(z1,20) = —————.
r Y= s (21,22) (21— 22)?

6Note that it implies that sq is coprime with 74, which is the condition for the plane curve
{@9)eC® | 3geC (2(0),y(0) = (&9)}
to be irreducible locally at q = pq.
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We call the extreme case s = 1 the r-Bessel curve. The corresponding local spectral curves again
have standard polarization.

Example 5.15. In fact, the more general spectral curve given by

z" i _ dz; ® dzg
c=C r=— y=S 7 B(z1,22) = ———,
) r ) Z(:) ) (Zl _ z2)2
with the condition that the first non-zero term (apart maybe from 7,.) in the expansion of y is
7s with s € {1,...,7 + 1} such that » = 1 mod s, corresponds to the general local spectral curve

with one component in standard polarization. The most general local spectral curve with one
component in arbitrary polarization is associated with the bidifferential of the form

dz; ® dZQ

B(z1,22) = Z qblmzl ! 3 ldz; @ dzsy .

(1_22 1,m>0

Global spectral curves are particular examples of local spectral curves. However, local spectral
curves are slightly more general. Since modules for W algebras naturally give rise to the more
general structure of local spectral curves, in the following we will reformulate the Bouchard-Eynard
topological recursion and higher abstract loop equations in the language of local spectral curves.

5.2. Bouchard-Eynard topological recursion and higher abstract loop equations

Let us now review the construction of the Bouchard-Eynard topological recursiorﬂ of [15] 16, [17]
and its relation with the higher analog of the abstract loop equations of [I4]. We will reformulate
everything now in the slightly more general language of local spectral curves. It should be clear to
the reader that the global formulation of [I5] [I6, [I7] is a particular case of the local formulation
given below.

5.2.1. Notation and definitions

Consider an admissible local spectral curve with ¢ components, as in Definition with symplectic
space V, = C° ® V,. The aim of topological recursion is to construct a sequence of “multilinear
differentials”

wgme@l};j g>0andn>1 such that 2g-2+n>0,
=1

which are invariant under the natural action of the permutation group &,,. In terms of the choice
of polarization basis d{, —;(z) indexed by a € {1,...,c} and [ > 0 for V™ (z), the wy , have an
expansion of the form

& n
wg,n(z) = Z Z Fyn [?11 ?22 ?:] ® (o (2m) (5.10)
a1y n=111,...,1p>0 m=1
with z=(21,...,2,). The Fy , [?11 i OZ’:] are scalar coefficients, which are symmetric under the

action of the permutation group &,. In general they encode interesting enumerative invariants,
see Section

To define topological recursion we also need to define wy,; and wp 2. We let wp 1 be the one-form
wo,1 € V7 given in the data of a local spectral curve, that is,

C

wo,1( Z ZTf‘dfa,l(z). (5.11)

a=11>0

"In these references it was called “generalized topological recursion”.
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We will also need to define formal Laurent series y,(z) as follows
Ya(z) = 2 72,
>0
so that we have the expansion when z — p,

woa(2) = z o (2)dEn s (2).

As for wy 2, we take it to be the bidifferential that encapsulates the choice of polarization

w072(z1, 22) _ i (ea ® le) ® (ea ® dZ2) i Z (bloj;fdéa,l(zl)dfﬂ,m(ZQ) ) (512)

a=1 (Zl _22)2 a,B=11,m>0

To define the Bouchard-Eynard topological recursion, we use the notation in Section [2:2.2] which
we recall here. Let A be a set of cardinality 7, and B a set of cardinality n—1. The notation L+ A
means that L is a set partition of A, i.e. a set of |L| non-empty subsets of A which are pairwise
disjoint and whose union is A. We denote generically by L the elements (sets) of the partition L.
A partition of B indexed by L is a map M : L — B(B) such that (M) are possibly empty,
pairwise disjoint subsets of B whose union is B. We summarize this notion with the notation
M -1 B.

Just as in Lemma we define the objects

Definition 5.16. Let A and B be finite sets of coordinates with cardinality ¢ and n—1 respectively.
Then we define

ESAL(AB) = 3 > > (®WhL,|L+|m|(L7ML))’
L-A h:L-N puLB \ LeL
i+ per hr=g+L|

In the tensor product here and below it is assumed that the corresponding tensor factors are put in

the place respecting the natural order in (C¢)’ ® (C°)®("~1) associated with A and B coordinates.
We also define

!
ROUB =T S 8 (@ ().
L-A h:L->N p-L B \ LeL
i+Y e, hr=g+|L|

where the prime over the summation symbol means that terms that include wp ; are excluded from
the sum. Finally, for future use, we define

"
RO(AB) = 3 > > (®th,|L|+uL(L,#L))v
LA h:L->N prLB \ LeL
i+ e ho=g+L|

where the double prime over the summation symbol means that terms with hz = 0, |uz| = 0 and
|L| < 2 are excluded from the sum. In other words, wp 1 does not appear in the sum, and wp 2 only
appears when one of the entry comes from A and the other one from B.

We first give two useful combinatorial lemmas relating these three objects. First, we want to
relate 59(121(A|B) and Rgzzb(A|B) by extracting the wg 1 contributions.
Lemma 5.17. [15] Lemma 3.18] For all g,i>0 and n > 1
EQAIB) - 3 3 (@enion) R (A 8).

j=0~ycA \I=1
[v=7
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Let us now relate RE,ZL(A|B) and ﬁg%(fHB) by extracting contributions from wg e with both
entries coming from A. We get by straightforward combinatorics

Lemma 5.18.
ROMAB) = Y Y| ¥ QuoaL)|RY, (ANA1B),
¢

,j20 ~HcA Ly  LeL
£42j=i |y]=2j \VLeL |L|=2

5.2.2. Bouchard-Eynard topological recursion

We can now state the Bouchard-Eynard topological recursion formula, which recursively constructs
the correlators wy ,, [15} 16} [17].

Definition 5.19. Let z = (29,...,2,). The correlators w, ,, are recursively defined by the Bou-
chard-FEynard topological recursion

c t Ta—1 (_1)i+1
wgn(z1,2) = Z Res(f (éa -w072)(-,z1)) Z n
a=1 -0 0 i=1 1.
el (f 1 20D RV (,0mt, .., Ot
x ) (TI i )e gn (L0200 05 02) g g
ma,...,ms=1 \l=1 (Ya(t) —ya(a''t)) (dfa,m )
myFmMys
where the scalar product with e only acts on the first (4 + 1)-tensor factors in Rgf;l)

Remark 5.20. Note that z; plays a special role in the higher topological recursion formula. It is a
priori not obvious that the correlators wy , constructed by are fully symmetric. Symmetry
was argued in [I5] indirectly, only for spectral curves that arise as limits of families of curves with
simple ramification points. It is however not clear to us which spectral curves precisely satisfy
this condition. A proof of symmetry directly from the Bouchard-Eynard recursion formula is at
the moment not known. As we will see, our identification of this recursive formula with higher
quantum Airy structures in fact implies symmetry of the correlators for all admissible spectral
curves (Definitions and as a corollary.

5.2.3. Higher abstract loop equations

Instead of extracting the higher quantum Airy structures corresponding to the Bouchard-Eynard
topological recursion directly from the recursion formula, in this section we will rather take as
starting point the higher abstract loop equations. As we will see, the loop equations give rise
directly to the W(gl,) quantum Airy structures constructed in Section

Let us consider as usual a local spectral curve with ¢ components.

Definition 5.21. Let z = (z1,...,2,) and w = (wy,...,w;). We call higher abstract loop equations
the statement that, for all g>0,n>1,29-2+n>0, a€{1,...,c} and i€ {1,...,7;},

P (650 (wlz)) et C[t @V, 8... @V, , (5.14)
where

Sal(i—1)
Ta J '

The key information here is that it is a formal series in t" with either no negative terms if the
spectral curve is regular at « (0%, = 0), or starting at t~"e% if the spectral curve is irregular at a.
It is also necessarily G,-invariant by construction, which is the reason why it is a series in t"~.

ol =i-1-|
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While the higher abstract loop equations do not appear to be recursive a priori, one can show
that if a solution that respects the polarization (that is, such that wy, € V, ®...®V_ for all
2g-2+n > 0) exists, then it is uniquely constructed by the Bouchard-Eynard topological recursion
of the previous subsection. The proof of this statement follows arguments similar to those presented
in [14] for r = 2, and in [I3] [16] for general r. For completeness, we provide a proof in Appendix
(Proposition [C.1)). Existence of a solution is however not obvious, but it will follow for admissible
spectral curves as a corollary of the results of this section.

Our goal for the rest of this section is to show that solving higher abstract loop equations is
equivalent to calculating the partition function of a higher quantum Airy structure, more precisely
of the form of the W(gl,.) Airy structures constructed in the previous section. To do so, we will
recast the loop equations in the form of the recursive structure in Section and construct the
corresponding differential operators. We then show that those are the same as the ones obtained
from the W(gl,.) modules of the previous section.

Remark 5.22. We could have started with the Bouchard-Eynard topological recursion of Defini-
tion [5.19 instead of the higher abstract loop equations, and recast them as being obtained by the
action of a sequence of differential operators acting on a partition function Z. This would have
been more in line with what was done in [5l [50]. However, to show that the differential system
thus obtained is a higher quantum Airy structure, one would then need to show that the left ideal
generated by the differential operators is a graded Lie subalgebra. This appears to be very diffi-
cult to prove in general. By starting with the higher abstract loop equations, we circumvent this
obstacle, since we can identify the differential operators that we obtain with the W(gl,.) modules
constructed in the previous section, and use the ideals constructed in Section to prove the
subalgebra property.

5.3. Local spectral curves with one component

Let us now focus on local spectral curves with one component for clarity. We will start with the
higher abstract loop equations and reconstruct the constraints it gives on the coefficients of wy , in
the form of a higher quantum Airy structure. We will then identify them with the W(gl,.) higher
quantum Airy structure of Proposition

5.3.1. Reconstructing the higher quantum Airy structure

Proposition 5.23. For any local spectral curve with one component, the higher abstract loop
equations for wg ,, € Sym" (V) with 2g—-2+n > 0 are equivalent to a system of differential equations

Vie{l,...,r}, Yk>0"+4;, He-Z=0,
with 0% =i -1~ [s(i_l)J, for the partition function

T

h9~1

Z=exp| ). ' > Fya[blay-as, |,
920, n21 T be(zo)n
2g-24+n>0
constructed from the coefficients of the expansion in (5.10). The differential operators read

M= X % g X DOl e oty
m=1 £,j>0 *' ae(Z.o)*
£+2j=m
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where
) 1 =4 ;
Di] [k|a] = 7' Z ( H Foﬁl[al])C(J)[Ma, ag+1,...7ai,2j:| 5 (515)
(= €=25) oy, farasezg \icts1
, £+2 4 J
) [kla] % BGS (dﬁr(ku) (t)Pw|t( QR dé_a, (wi) @ wo,2(wer2r-1, we+21'))) .(5.16)
! -0 =1 r=1

Proof. For local spectral curves with one component, the higher abstract loop equation is the
statement that ,
Py (E) (wWlz)) et ™ C[t @V, ®...0 V.,

forie{l,...,r}and o' =i-1- [@J This is equivalent to requiring that
[Res €0y () Pu (E2w12) | =0
for all k >0, b = (b,...,b,) € (Zso)"™ and 2g — 2 +n > 0. Here we introduced the notation [--]y,

which extracts the coefficient of the basis vector ®;',d¢ 4, (21) in ®, V.

Let us first evaluate

[Res a6y () (P (RS (w)) ]
with ﬁélzl(w|z) defined in Definition
Lemma 5.24.

o (7 1 —=(
[Res iy (1) Pa <Rg,z<w|z>>]b =5 Y Okl [ab),
S ae(Zzo)?

where _gfn[a|b] was defined in . Here, we introduced the coefficients

CO[kfa] = i Res (dg,.(k+1)(t)Pw|t( ®d§al(wl))) :
- =1
with a=(ay,...,a;).

Proof. Recall from Definition [5.16] that

"
RO(AB) = > > ( & Wi (L (L ML))
LA h:L—>N 1. B \ LeL
+YrerL hL:g*‘L|H "

where the double prime over the summation symbol means that terms with hz =0, |uz| = 0 and
|L| < 2 are excluded from the sum. For 2g — 2 +n > 0, we have an expansion

wgyn(z) = Z F ®d£ a; Zl

ae(Z>0)"
= Z Fla (X)dg_al 21),
ae(Zso)™
where in the second line we extended the summation to all non-zero integers by setting the coeffi-

cients to be zero whenever one of the a;s is negative.

For wy 2, since we are not including contribution where both entries come from A, after projection
with Py we know one of the entry of wg 2 must be found among the w;s, and thus project to z,
while the second must be found in the z;s. Thus we can use the following expansion for wy 2,

woolwi,z2) ~ > adée(w)®dé q(22),

lwil<lz2| ;30
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and a similar one when the role of 1 and 2 is exchanged. In both situations we can do the
replacement

woa(wi,z2) «— Y, Foplaldé s, (z1) ® dé g, (22),

ae(Zao)?
where we introduced the coefficients Fp 2[a1,az2] = |a1|0a;+a,0- With this notation, and recalling

(2.11), we can write
Ryn(wl) = 30 Zgalalb] @déa (un) & e, (2m)

aE(Z¢O)i
b€(Z¢0)“71

It thus follows that
[Resdér(km() w\t(R<>(w|z))] = Eg’;L[alb]Res(dgr<k+1>(t)Pwt(®d£al(wz)))7
t—0 b ae(Zo)' t—0 =1

and the lemma is proven. O

Let us now re-introduce contributions from wp 2 with the two entries coming from w.

Lemma 5.25.
) 1 -
[ggeosd@w(t)zﬂw.t(Rgf21<w|z>)].= > g n CUKalE? [ab],

J 2,520 Y ag(Z.o)*
0+25=i

with the coefficients defined as

CY[kla] = (6;22” Res (dfr(kﬂ)(t) Pw|t(®df a (wr) ® wo,2(Wes2m- 1>w2+2m))) (5.17)

Proof. Recall from Lemma that

7 = (£
RO(AB) = Y % ( > ®wo,z(L>) o R, (ANAIB).
£,j20 ~cA L~y  LeL
0+2j=i|y|=2j VLeL |L|=2

Thus

Puip (RO (Wlz)) = 3 Pu Z( > ®wo,2(L>)®R§f>M<ww|z>

2,520 yew Ly LeL
0+2j=i [v1=2j VLeL |L|=2
Since Py; is invariant under permutations of the w;s, the order of the w;s in this expression does
not matter. So all terms that only differ by permutations of the w;s will give the same result after
acting with the projection operator. So we can order the w;s once and for all. We simply need to
count the number of terms for a given j. We first need to pick a subsequence v of w of length 2j:
there are WL—%)' ways to do so. Then, we need to pick a set partition L of v with parts that

all have cardinality two. The number of ways of doing so is (25 -1)-(2j-3)--1= (QQJJ)' Thus we
end up with
i! ~ (¢ J
Py (Rg Zl(w|z)) = Z pru (Rg_)j7n(w1a s welz) ® Q) WO,Q(U)Z+2Z’—177~UZ+2Z’)) .
0,520 ©J =1

0+2j=i
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As before, we can write

= ? n
RO (i, wlz)= Y =20 Tab] @déq, (wr) @ dé,, (2m)-
ae(Z*o)Z =1 m=2
be(Z*O)n_l

Therefore,

Resd¢, t) (Pw ’R(QL w|z ] = — = [alb
I:t—>0 I3 (k+1)( )( |t( g, ( | ))) b 2,122:0 015129 aE(%;n)i g—J,n[ | ]
£+25=i

V4 J
x Res (dfr(k+1) () Pyt (® dé_q, (wl)) ®Q W0,2(wé+2l’—17wé+2l’)) :
- =1 =1

and the lemma is proven. O

i!

Finally we need to re-introduce the contributions from wp ;. Recall that we can write
wO,l(z) = Z Ta dfa(Z) =: Z FO,l[a] df_a(Z) ) (518)
a>0 a€Zxo

where we defined the coeflicients to be Fy1[a] =0 and Fy1[-a] = 7, for all @ > 0. Then
Lemma 5.26.

) ( 1 .
[lﬁfgd&wﬂ)(t)(lﬂwu(sgf,{(w|z)))]b:z_l > g X DPHalE?, [ab,

£,520 ae(Z.o)*t
0+2j5=m

where we defined the coefficients
i-2j

1 )
e e——— Fo’l[al])C(J)[kla,ag 1,...76Li,2':|. (519)
(i—£-2j5)! aprl,...,azi_ngZ*o (1_121 " !

Proof. Recall from Lemma that

ENAB) =Y Y (Hwo,l(m)®Rg%nm>(Aw|B>.
m=0 vcA \i=1
[vl=m

D [ka] =

Note that for 2g -2 +n > 0, the term with m =i does not contribute, so we can terminate the sum
over m at i — 1. Thus

Pa (£ 1)) = 3 Pu | 3 (@emao)) @ R (ol
m=0 yeEW \ =1
Ivl=m
As before, we use the argument that the projection operator is invariant under permutations of
the w;s to re-order the entries in the argument. Thus all terms contribute the same. The number
of terms is the number of ways to choose m elements in w, which is given by Wlm), So we get
i-1

Pyt (E;z%(w|z)) = Z ) Pyt (R!(;;lm)(wl, e Wiy |Z) ® é woyl(wl)) .

m=0 Tn"(Z -m): l=i-m+1

il
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Using Lemma we know that

w|t(R(l ™ (wi, .. wim|z) & wo,1(wl))

l=i-m+1
i—m)! ¢ J i
= ) (@7'23 wlt (R; )]n(wly--~7wé|z) & wo,2(weror-1, werar) & wo,1(wz)) :
£,5>0 -J =1 l=i-m+1
£+425=i-m

We now have as usual
¢ n
¢ —(¢
Ry jnCwnseswils) = 3 E0 [alb] @dé-a (wr) @ dén, (n).
=1 m=

ae(Z.0)*
be(Z.0)™ "

Therefore,
[Resd§ (t) Pupe () (wl2) )] Ty s 20 [
10 or (DAY Twlt {Eg.n b Ao (g0 mUjI2 G, T
0+2j=i-m

l+m
x Res (dfr(ml) (t) Pw)e (® dé_a, (w) @ wo,1(wyr) ® wo,2(Wesma2r-1, we+m+zz')))
1r=e+1
Expanding wg,; as in we can write

l+m
Res (dfr(k+1)(t)Pw|t( QR dé o, (w) @ wo(wir) ® wo,2 (Werma2r- 17w£+m+2l’)))

1"=0+1

l+m
- » (1 Fo,l[aw])geos(d@(m)(t)zﬂwh(®ds_m(wl)®wm(wmm,_hwe+m+2l,>))
amgz..,aum 1r=0+1 - =1 I'=1

=0

= Z (Zﬁ Fo,l[al"])j!zj - C(j)[k|a,ag+1,...,ag+m],
o1y Qeem \[7=0+1 (L+m+2j5)!
€Li%0

with a € (Z.0)" by definition of C) in (5.17). After introducing a new index m’ =i —m to rewrite
the sum over m € {0,...,i—1} as a sum over m’ € {1,...,i}, we obtain

, 1

Res d¢, £) Page (€ ] G-mHlel

[tfg &r 1) (8) Pt (€530 (W12)) mzl g;o (i —m") 0!
£+25=m’'

i—2j )
X Z E‘é{)j,n [a|b] Z ( H F())l[alu]) C(J)[I{?‘ZL Aps+1y--- ,ai_gj] .

ae(Zx0)* Api1yeen,@im2j€La0 \I'=0+1

We recognize the coefficients Dl(j ) introduced in (5.19) and the lemma is proven. O

We can now finish the proof of Theorem [5.23] From Lemmas [5.24] [5.25] and [5.26] we find that
the higher abstract loop equatlons for local spectral curves with one component hold if and only if

j —(£
> ¥ oY DYHalEY), [alb] -
m=1 £,520 ** ae(Z.0)*
0+2j=m

forie{l,...,r}, k>0 and b € (Zs)". Just as in Lemma this is equivalent to the claimed
system of differential equations. O
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5.3.2. Identification with the W(gl,) quantum Airy structure

We now relate the differential operators appearing in Proposition with the W(gl,.) quantum
Airy structure of Proposition [4.13]

Theorem 5.27. Under the conditions of Propositions we have for any i € {1,...,r} and
k>0"+6;1 the identification
Hi = TWiT b
Here, W} are defined in and we use the dilaton shift and change of polarization defined in
terms of the coefficients of expansion — of wo,1 and wp 2
. 1 Foil-a “ 1 m
T:exp(hZO’l[]Ja) , @zexp(%hz (flm JlJm) .

a>0 a m>0

In particular, for admissible spectral curves, where 1 < s <r+1 and r = £1 mod s, the 7-[}c form
a W(gl,) higher quantum Airy structure as in Proposition . The coefficients Fy ,, of the
partition function of this W(gl,.) higher quantum Airy structure in the basis (x;)1>0 coincide with
the coefficients of the expansion of the unique wgy,, € (V,)®" solution to the higher abstract

loop equations (5.14)).

Proof. We first concentrate on the case of standard polarization, that is
dz; ® dzy

(21— 22)%°

We are going to evaluate the coefficients C'V)[k|a] and ng )[k|a] and recognize the coefficients of
the higher quantum Airy structure of Proposition [£:12] Recall in particular from Definition [4.3|
the sums W) (aq,..., a;) over r-th roots of unity.

wo,2(21,22) =

Lemma 5.28. For a local spectral curve with one component in standard polarization,
< (C+25) (s
CY[kla] = T v (a) Op(042j—k-1)+5L ay,0>
with a € (Z;to)e.
Proof. Recall that

0+ 25)! ¢ J
_ (2! Res (d&«(kn) () Pyt (® dé_q, (wi) @ wo,2(weror-1, wZ+2l’))) .
-1 -1

J127 -0

oW [k|a]
For a curve in standard polarization, this simplifies to

, £+ 25)! : £ J 1 i
C9[kjm] = (;2]‘7) Res (t’(k+1)‘1dth|t (H w1 ] X dwl,,)) .
. =1

= =1 (w£+2l’—1 - w€+2l’)2 1=1

By definition of the projection operator and using Definition for U, we can write
(¢ +25)!
12
(¢ +25)!

LY ) (a) Or(0+2j-h-1)+5L a0

CD[kla] 7 (a) Res (trkwflfzf:l ar=r(£+2) dt)

We can then calculate the coefficients ng )[k:|a].
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Lemma 5.29. For a local spectral curve with one component in standard polarization,
il
(i—€-25)l4127
i-2j
X Z ( H Fo [al]) ‘I’(j)(& sty -5 @im2;) 5r(i—k—1)+z;’;ff a;,0°

Qpg1yesQi2€Lz0 \I=+1

D [kla] =

with a = (ay,...,ar) € (Zs)".

Proof. Recall that
i-2j

1 )
T F0,1[al])C(J)[k|a7ae 1yeees@im2j]
(i—€-2j)! a2+1,...§_zjez$0 (1_121 " !

Thus, using the previous Lemma,

D[] :=
i!
(i—€—2j5)!5129

i-2j )
X Z ( H FO,l[al])\I’(J)(av a’f+1="'7ai—2j)6r(i—k71)+2;:fj a;,0"

Apt1y--e5Qi-2€Lz0 \1=L+1

DYP[kla] =

O

Combining Proposition with the two previous lemmas, we find that

=1

BT S 0 (- -25)15120
£+25=m
i-2j _
% ( H Fovl[a’l]) \I/(j)(a) 5r(i—k—1)+zi_2j my,0° JayJa, b
ae(Z+o)+=27 \l=L+1

This can be simplified by writing the sum in a more symmetric way. Instead of extracting

(ags1,-..,ai-25), we can sum over all ways of extracting ¢ —2j — ¢ as out of the ¢ —2;j ones. We then
(i-2j-0)101

need to multiply by the factor =)

to avoid overcounting. We get

i

. 1l . i-m
Hi= L 3 vD@)| S ] Foaler] | T Ju,

K —
m=1 K,j?O (Z - 2])']' 2 ae(Zy) "2 cca [’=1
L+2j=m Zf;fj my=r(k—i+1) lef=i=m
where in the cases that ¢ = 2§ the condition Y; a; = r(k—4+1) is understood as the delta condition
Oki-1-

Let us now compare to the dilaton-shifted Wjs. Recall that conjugation by T is equivalent to
the shift J_, — J_, + Fo1[-a]. It results in that the coefficient of : J,, -+ J,, : in H} should be
the sum of all possible ways of starting with a term of the form :.J,, -+ J,,, + with ¢’ > £ in W,i, and
replacing the extra J,s by Fp1[a]. This is exactly what the formula for H}C does, up to a global
prefactor —r.

We now turn to the general polarization, i.e. we have a basis for V

d m
dé_(z) = szl + Zo P qe (2),

mso !
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for some symmetric coefficients ¢; ,,, and a formal bidifferential

dz; ® dz
wo2(21,22) = ———2 + > drmd&(21) ® & (22) -
(21— 22)? 1,m>0

Looking at the definition of D [kla], and following the same argument as for the case
of standard polarization, it is clear that the relation between the Dz(j )[k:|a] and the CY)[kla] is
given by the dilaton shift J_, - J_, + Fy1[—a]. Thus all we need to check here is the effect of the
change of polarization. Recall the conjugation by & amounts to the shift

Va>0, Jg—Ja+y %Jl . (5.20)
>0

Suppose that we start with the W,i and do a polarization conjugation. Let us denote the

coefficients of W} by C’s(tj ) [k|]a]. Every factor of J_, with a > 0 gets shifted as above. If we turn this
around this means that if we are calculating the coefficient of a term in the conjugated operator
®W; ! that has a factor of J,,, with m >0, say CW[k|.. ...], then this coefficient will get a
contribution of the form

' P1,m
COWl o ym, ]+ 3 2 COH. =1, ]
>0
Now, since CU)[k|...,m,...] comes with a factor of d¢_,,(w) in the residue definition, we see that

this change of coefficients is implemented by doing a change of basis

—m(w) > dén(w) + )] q:r;l dg(w),

>0
which is precisely what a change of polarization does. More precisely, if we start with the standard
polarization, for which d¢_,,(w) = w ™ 'dw, then this shift implements the basis definition for a
general polarization

Al (w) =w ™™ Ldw + Y Pl ge,(w)

>0
in the definition of the coefficients (5.16). However, one needs to be careful. After shifting as
in (5.20)), the Js may not be normal ordered anymore. Normal ordering thus will produce extra

contributions. This will happen whenever we are shifting the first factor in expressions of the form
J_aJ_p. After the shift, this becomes

Jeadop—> Jadp+ Y Gal

>0

JlJ—ba

which is not normal ordered anymore. Normal ordering produces an extra contribution

¢a,l

Joady —> Jadp+ Y

>0

1Jl J_bi + h¢b,a .

This means that the coefficient of, say, C[k|...] with j > 1, will get an extra contribution of
the form ¢y, ,CYD[k|...,~b,~a]. But since CUV[k|...,~b,~a] comes with a factor of d&,(w;)®
d&,(ws) in the residue definition, these extra contributions are precisely accounted for by replacing

the bidifferential d;1®d)2 in standard polarization by the new bidifferential

dz; ® dzg
W0,2(21722) = m

+ Z d)l,mdfl(zl)@dgm(zZ)

l,m>0

in the definition of the coefficients (5.16]). We conclude that the definition of the coefficients (5.16)
precisely implements a change of polarization from standard polarization to arbitrary polarization,
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hence the resulting operators are the result of conjugation by d. Combining with conjugation by
T (note that T" and ® commute), we obtain the statement of the theorem in full generality. O

5.4. Local spectral curves with several components

We now give the general result for local spectral curves with ¢ components. Let R = {1,...,c},
and define W, . to be copies indexed by a € R of the differential operators (4.8]) representing the
modes of the generators of the W(gl, ) algebra, involving variables (2q,q)as0-

Theorem 5.30. For any spectral curve with ¢ components as defined in Definition[5.7, the higher
abstract loop equations for wg , € Sym™ (V) with 2g-2+n > 0 is equivalent to a system of differential
equations

VaeR, ie{l,...,ra}, VE20 +d1, Hip Z=0,

where 0%, =i -1~ l%ﬁ;nj, for the partition function

Rt
Z =exp Z ' Z Z Fyn[B]%ar b Tag b, |
920, n21 "V qeRm be(Z.0)n
2g9-2+n>0

constructed from the coefficients of the expansion in (5.10). The differential operators read
i&,k =—Ta éTWé,kT71é71 5
where the dilaton shift and change of polarization are given by

7 exp( >y fouli] )

a=1a>0

Q/B
d = exp Z Jaidgm | -
aﬁ 11,m>0 Im

In particular, for admissible spectral curves, where 1 < so <74 +1 and r, = £1 mod s, these ’Hg’k
form a higher quantum Airy structure, isomorphic to those for the @, W(gl,_) algebra.

Proof. First, we consider the case of standard polarization, that is

&G (ea®dzy) ® (eq ®d2o)
wo,2(21, 22) —az::l (21— 22)?

(5.21)

Since the d&,(z) € Vﬁ‘*) for all [ € Z.;, we can really think of a local spectral curve with ¢

components in standard polarization as ¢ spectral curves with one component. The result then
follows directly from Theorem

For general polarization, the proof follows the exact same lines as for spectral curves with one
component, except that we have to keep track of multi-indices. We therefore omit it. O

Remark 5.31. It is straightforward to reformulate Theorem[5.30]as a Givental-like decomposition
formula for the partition function Z. This is presented in the statement of Theorem [G] in the
introduction.

One direct consequence of the identification between higher abstract loop equations and higher
quantum Airy structures is the symmetry of the meromorphic differentials constructed by the
Bouchard-Eynard topological recursion.



HIGHER AIRY STRUCTURES, W ALGEBRAS AND TOPOLOGICAL RECURSION 71

Theorem 5.32. For arbitrary admissible local spectral curves, as defined in Definitions and
the Bouchard-Eynard topological recursion from Definition [5.19 produces symmetric differen-
tials wy r,.

Proof. This follows directly from Appendix [C] There, we show that if a polarized solution to the
higher abstract loop equations exists, then it is uniquely constructed by the Bouchard-Eynard topo-
logical recursion. Thus a polarized solution exists if and only if the Bouchard-Eynard topological
recursion produces symmetric differentials. But Theorem [5.30] implies that a polarized solution to
the higher abstract loop equations does indeed exist for arbitrary admissible local spectral curves,
and hence the Bouchard-Eynard must produce symmetric wg 5. O

Remark 5.33. It should be emphasized here that the admissibility condition on s, and r, (see
Deﬁnition is crucial. In fact, unexpectedly, when this condition is not satisfied, the Bouchard-
Eynard topological recursion does not produce symmetric differentials. This is proven in Propo-
sition Indeed, for choices of s, and 7, that are coprime but such that r, # £1 mod s,,
our identification between the structure of the higher abstract loop equations and the differential
equations produced by the ’HQ i is still valid. The question is whether there exists a solution to
the differential constraints 7{27 . < =0, or, equivalently, a polarized solution to the higher abstract
loop equations. It turns out that the answer is no. It is argued in Proposition that there
cannot be a symmetric solution to the differential constraints. Correspondingly, this means that
the Bouchard-Eynard topological recursion cannot produce symmetric differentials in these casesﬂ
otherwise it would construct a polarized solution to the higher abstract loop equations. In the
context of higher quantum Airy structures, this implies that for those choices of s, and r, the left
ideal generated by the ’HQ i is not a graded Lie subalgebra.

8This can also be checked symbolically on Mathematica for various examples of spectral curves with ged(r, s) =1
that do not meet the admissibility requirement, the simplest ones being

(r,s) =(7,5),(8,5),(9,7),(10,7),(11,7), (11,8), etc.
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6. YW CONSTRAINTS AND ENUMERATIVE GEOMETRY

In this section, we review the currently known relations between W constraints and enumerative
geometry. We view their possible extension to new cases as a motivation to study higher quantum
Airy structures, and formulate new questions raised by our work. The leitmotiv is that for each
instance of generating series appearing in one of the following situations

(i) intersection numbers of interesting classes on ﬂg,n,
(i1) tau functions of integrable hierarchies,
(i74) matrix integrals,
(iv) higher quantum Airy structures and their partition functions,
(v) differential constraints and partition function obtained from periods on a spectral curve,

one can ask for an equivalent description in the four other contexts.

6.1. r-spin intersection numbers

The Witten r-spin partition function is one of the only example completely understood from the
five points of view. Its construction was sketched by Witten in [65], where he proposed several
conjectures which have been resolved since then.

(i) - Enumerative geometry

Let 7, g,n be nonnegative integers such that r>2, n>1and 29-2+n >0. Let ¢1,...,%, € Z such
that 2g -2 - Y7 ,(i; - 1) € rZ. An r-spin structure on a smooth curve C with punctures p1,...,p,
is the data of a line bundle L and an isomorphism

L® = K( - é(il - 1)101),

where K is the cotangent line bundle. Jarvis [47] constructed the compactified moduli stack
of (isomorphism classes of) r-spin structures My, (r;i). Polishchuk and Vaintrob [58, [59], and
later Chiodo [25] by a different method, constructed a Chow cohomology class Qg ,,(r,1) of pure
dimension in M, ,,(r;1) which has the basic properties expected by [65] and called it the Witten
r-spin class.

One can then introduce the r-spin partition function

h91 IR O
TN VI O S PG Yo ) ) o G SO
g—2+n>0 1<iq,..in < g,n T =1 =1
E1,eeoskn 20
on the formal variables ¢} indexed by k>0 and i € {1,...,r}. In fact, Q4 ,(r;i) is zero when one
of the 4; is equal to 7, so one could restrict to i€ {1,...,r - 1}.

In particular for » = 2, we only have to consider the value ¢ = 1 and we obtain the usual
intersection numbers of -classes on the moduli space of curves

ZQspin:eXp{ 3 hg"l > ([ ﬁ¢f!)§tkl}, (6.2)

29-24n>0 TV ky,kn20 \ I Mo i1
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(ii) - Integrability

Zrspin 18 a tau function of the r-KdV (also called r-Gelfand-Dickey) hierarchy with respect to the
times

(=D,
iv/7 Mg (m+ 1)
For r = 2, this is a famous theorem of Kontsevich [49]. For general r, it was established via a less
direct path. Adler and van Moerbeke proved in [I] the existence of a unique tau function Z,tay,
of the r-KdV hierarchy solving the string equation (it is unique up to a constant prefactor, which
can be set equal to 1 and will not be mentioned anymore). Givental showed in [44] that the total
descendent potential of the A,_j-singularity has the same property, and therefore coincides with
Zrtau. Later, Faber, Shadrin and Zvonkine established in [33] that Z,.qpin is equal to the total
descendent potential of the A,_;-singularity, as application of their proof that the Givental group
preserves the notion of cohomological field theories in all genera. Therefore Z,spin = Zrtau-

(6.3)

LTrk+i-1 =

(iii) - Formal matriz integrals

In [ it is proved that Z,t,, admits a matrix model representation as follows. To be more precise,
let H be the space of hermitian matrices of size N, and Y € Hy. We first introduce the formal
matrix integral

Sogrormar M DT [=V (Y4 M)+V (M)+Y V' (M)]

Zﬁé\;‘)l: forms . ’ (6.4)
fHorma dMe_h—lﬂTrVZ(Y,M)

where
V(M) = IT\/FIMT”, Va(Y, M) = % }: Y™ MY
T

m=0

It is possible to define the N — oo limit of (6.4)) as a formal series in the variables
h1/2

- Y ", k>0,

Tk =

which takes the form

g-1
Drtau = €xp ( Z h

2g-2+n>0 n!

S E (ke k) H%).
Fyvei im0 =1

(iv) - W constraints

Another side result of [I] says that Z,(., satisfies W(gl,.) constraints determining it uniquely As
a matter of fact, these constraints coincide with the differential operators of Theorem [4.9] with
s=r+1, and Zrtau = Z(rr+1) the partition function of this quantum 7r-Airy structure.

(v) - Periods

The W constraints for the total descendent potential of the A,_; singularity were expressed in
terms of period computations by Bakalov and Milanov [9]. Milanov [53] later established their
equivalence with the Bouchard-Eynard topological recursion on the r-Airy spectral curve y = —z,
T = % In our context, the theorem of Milanov is equivalent to the identification of the higher
quantum Airy structure of Theorem [4.9) with s = 7 + 1 with the Bouchard-Eynard topologlcal

recursion as in Theorem |5.27} for the particular case of the r-Airy spectral curve y = -z, x = =-.
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6.2. Brézin-Gross-Witten theory

Consider the formal matrix integral introduced in [I8], [46]

(N) f?iolimal dM (det M)™N eh™/? ThlY M+ ]

"BOW T Dt 12(ZQy /20 1/2) (det Y )NIT b I YT

Mmli-r

1-
r=1

(6.5)

where Qy is the Hessian of M — Tr Ale at the point Y ~/", seen as an endomorphism in Hy. It is

possible to define the large N limit of (6.5)) as a formal series Z,paw in the times xj, = %/2 TrYy -+,
which takes the form

hgfl n
ZrBGW = exp Z _ Z F;’EGW(kl,...,kn)kal .
2g-2+n>0 n: k1,...,kn>0 =1
The work of [54] proves that Z.pgw is a tau function of the KdV hierarchy with respect to the

times xj = %TrY‘k/T'.

If we focus on Zopgw, [04] proves that it satisfies Virasoro constraints (see also [3]). These
constraints are equivalent to the statement that

n (2kl+1)”dzl
wBWV (2, )= Y F;,%Gw(kl"”’k")nw
k1,.oorkn>0 =17

is computed by the Chekhov-Eynard-Orantin topological recursion for the Bessel spectral curve
[56]

2

x(z):i, y(z):_lv WO,Q(ZhZQ):ﬁ'

2 z (21— 22)?
This is also equivalent [5] to saying that Zspgw is the partition function of a quantum Airy
structure. Here it corresponds to the W(sly) quantum Airy structure associated with the dilaton
shift xy - x1 — 1, i.e. after reduction of t0 Zom = 0 for m > 0 (see Section . In the
notation of Theorem @ this means Zogaw = Z(2,1)-

Norbury [55] constructed a cohomology class O, € H*9~4*2" (M, ) such that
ook
F2BOW (k) = fﬂ O 01" (6.6)

—(2
His construction starts with the moduli space of spin structures Mfﬂ)l =My n(2,(0,...,0)). One

constructs a vector bundle E ,, over Mf,)l whose fiber at a smooth point is H'(L")" where v

indicates the dual. In abstract terms, one looks at the universal curve 7 : C — M,gQ% and the
bundle of the universal spin structure £ over C, and take E,, = R'm.&,,. This is a bundle of
rank 2g — 2+ n and one can consider its Euler class and push it forward through the forgetful map

— (2 JE—
p: M((J,)L —> M, . This is up to a normalization the desired class

eg,n = (_2)np*c2g—2+n(Eg,n) y
where ¢; is the i-th Chern class. For g = 0 it coincides with the definition of the Witten class
Q0.n(2;(2,...,2)) which in fact vanishes.

Therefore, we have a description of Zoggw from the five points of view. It is natural to ask if
the same understanding can be obtained for the partition function of the W(sl,.) quantum Airy
structure associated with the dilaton shift z; - x; — 1. By Theorems and we know that

it is computed by the Bouchard-Eynard topological recursion on the r-Bessel curve
z" 1 dz1dzo
x(z) = —, z)=—-———, woo(z1,22) = ——.
(?) . y(2) g 0,2(21,22) 1 — )2
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Thus we already have the link between (iv) and (v). Z,Bgw is a natural candidate for its matrix
integral/tau function representation. It is indeed known that Z,pgw satisfies a set of W con-
straints. However they are not easy to write down explicitly, and should be compared to (4.13]) to
complete the identification. Di Yang and Chunhui Zhou informed us that they matched the two,
hence Z,aw = Z(y,1). As for the link with enumerative geometry,

Question 6.1. Can one generalize Norbury’s construction and get a class @(TT)L € H'(./\/lgm) such
that the generating series of its intersection with -classes is Z,paw ¢

We can ask the same question for the higher quantum Airy structured based on the W(gl,)-

module obtained by twisting by a Coxeter element and the dilaton shift z, - z, —  for s €
{2,...,7 =1} coprime with r and such that r = +1 mod s. We know that its partition functlon is
computed by the topological recursion for the (r,s)-spectral curve
27 1 dz1dzs
x(z) = —, z)=- wo2(21,22) = ———.
(2) = y(#) =-— 0,2(21,22) 1)

Question 6.2. s there a matrixz model description of the partition function for the (r,s)-spectral
curve? Can one find a 93:;:) € H*(M, ) whose intersection with v-classes is encoded by the F, ,
(or wgn)?

6.3. Open intersection theory

Open intersection theory studies the enumerative geometry of bordered Riemann surfaces with
marked points on the boundaries and in the interior, possibly carrying r-spin structures. Pand-
haripande, Solomon and Tessler first proposed in [57] an appropriate construction of this moduli
space and associated numerical invariants in genus 0 for r =2 (i.e. in absence of spin structures).
The definition to all genera for r = 2 was announced in [63], some details of which already appeared
in [64, Section 2]. The case r > 2 for genus 0 was settled by [21] together with conjectures about
the integrability property of the (yet not constructed) partition function at all genera. We refer
to those articles for precise statements about the state of the art, and will continue so to speak as
if all the desired constructions had already been established.

Let us focus on r = 2 to start with. One considers, for 2g — 2 + m + 2n > 0, the moduli space
Mg p,m of bordered Riemann surfaces with m marked points on the boundary, n marked points
in the interior, such that the genus of the double is g. This moduli space is a real orbifold of
dimension 3¢ — 3 + m + 2n, which admits a compactification M, ,, . There exists cotangent line
bundles L; at the interior punctures p; for which relative orientations and boundary conditions can
be constructed. Therefore they admit relative Euler classes and one can define a partition function
for open intersection numbers as follows

Rla-1)/2 X B
Zonen = Zelosed * - [ Lk B Byt (6.
op closed eXp{ Z min! kl,,;cnzo ( ‘/-Mg,n,m ( )) H ) (6 7)

2g-2+m+2n>0 =1

where Zglgsed = Zospin 18 . It was conjectured in [57] that Zypen is a tau function of the open
KdV hierarchy. Buryak and Tessler proved this conjecture [22] based on a combinatorial model for
the moduli space of bordered Riemann surface developed in [64], while [I9] showed the equivalence
between the open KdV equations with suitable initial data and a set of open Virasoro constraints
(previously conjectured by [57]). In fact, Zopen is the specialization at SE =0 for k>0 of a
partition function Z$%;, depending on all variables (t2,5P) k>0 and which is a tau function for a
larger integrable hierarchy [20], later identified [2] with the modified KdV hierarchy. According
o [63], the variables SE for k > 2 have an enumerative interpretation as insertions of boundary

descendent classes, paralleling the fact that tf are coupled to insertions of ¥*.
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Alexandrov studied the formal hermitian matrix integral, called the Kontsevich-Penner matrix
model

Y2M]

(detY)? [ dM (det M)~ h 2 T[22+

2 3
[ M P T

Zomen, (v (@) = 7 (6.8)

It is possible to define the N — oo limit of as a formal series in t; = %/2 Y=F for k>0
which has the form

Tr
n

2558 (0) = exp( 5 SR gk Ht,ﬁ) |
=1

oh-27ns0 ! k1. skn>0
heN/2

h-1

He proves in [2] that for ¢ = 1 it is a tau function of the modified KAV hierarchy [27] which coincides
with the open extended partition function of Buryak with identification

tB = (2k+ D tgpyr,  s2 =21 (k+ 1) tgpsn.
For general ¢ Alexandrov derives in [4] a set of W(sl3) constraints annihilating Z5x¢,(¢). Safmuk
gave in [62] an equivalent description in terms of periods on the spectral curve x = %, Y= -z,

which is an unusual modification of the Bouchard-Eynard topological recursion [I5] that involves
half-integer genera. Our work in fact reproduces Alexandrov’s constraints.

Proposition 6.3. Zggzn(q) is the partition function of the higher Airy structure of Proposi-
tion with r =3 and s = 3 considered as a function of ty = ), for k > 0 with the identification
Jg =h'2q.

Proof. To make the comparison, we perform the reduction from W(gl;) to W(sl3) by formally
setting W}l = Jg, + J? equal to 0 for k > 0. We introduce the notation Jj := J! = —JZ. The
operators described in (4.27) become

3
le = Jops1 - Z (5
a+b=k-1

1 h
aJ oY 2a— ) )
Jog Jop + 2J2 1J2b+1) g Okl

h
HY = Jogso=2 Y, Jopridac+ 2. (Jaa-1Jas1Joe — J2aJavdoc) + ZJ2(k—2) .

b+c=k-1 a+btc=k-2
With the identifications

J Zla/t22; ]]z - 8 J { hatzku k>0
2k = =0, 2k+1 = - ;
%t_Qk k<0 (1 Qk)tl,Qk k<0

and N = ¢ we recognize H? = ~2L and H{ = 4 MY in the notation of [4]. Our uniqueness result
for the partition function (2.18]) gives the statement of the Proposition. O

It is natural to speculate about higher r.

Question 6.4. Consider the partition function associated with the higher quantum Airy structure
based on W(gl,.) with automorphism o = (1 -1 -1) and dilaton shift x, - x, — = (see Proposi-

tion[{.16| with s =r).

e for q =1, does it coincide with the tau function of the extended open (r—1)-KdV hierarchy
constructed by Bertola and Yang [11] ¢

o forq=1, can it be expressed in terms of the generating function of (extended) open (r—1)-
spin intersection theory as constructed (in genus 0) by [21] ¢

e for arbitrary q, does it have a formal matrixz integral representation generalizing ?
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The two last questions can also be asked for the dilaton shifts s - =5 — % with s e {1,...,7 -1}
such that s|r. In particular, for s = 1 this should give an open r-spin generalization of Norbury’s
class.

6.4. Fan-Jarvis-Ruan theories

Let W ¢ C[z1,...,2;] be a quasi-homogeneous polynomial, i.e. there exist positive integers
d,v, ..., for which

VYieC¥, WA 2y, A 2) = NAW (2, ... ).

Assume that W is non-degenerate, i.e. W = 0 has an isolated singularity at 0 and 7; = v;/d are
uniquely determined by W. Then one can always assume that d,vq,...,v; are minimal. This
assumption implies that the group of diagonal symmetries of W

= {a e (CH" | W(aizy,...,apx) = W(xq,... ,xt)}

is finite. Let us decompose W into monomials

¢
W(zy,...,2¢) =Y ¢ [[ b
1% u=1

Fan, Jarvis and Ruan [35] constructed a compactified moduli stack of twisted spin curves, which

describe isomorphism classes of orbifold curves C equipped with n punctures pi,...,p, and line
bundles L, ..., L; together with isomorphisms
t n
bu: Q Lyt — KC( sz)
u=1 i=1

They also describe a virtual fundamental class on this moduli stack. After pushforward to M, ,,

it yields a cohomological field theory with Frobenius algebra given by the Jacobi ring
Clz1,...,2¢]

(OW,...,oW)

Polishchuk and Vaintrob gave another, more algebraic construction of this cohomological field

theory from the category of matrix factorizations of W [60}, 61]. We denote ZW the generating
series of its intersection numbers with the 1)-classes.

Jac(W) =

The most fundamental examples of such hypersurfaces {W = 0} are given by the simple singu-
larities, of type ADE. Their total descendent potential are tau functions of an integrable hierarchy
[45], [41], and satisfy W constraints [I0]. These constraints coincide with the W(g) quantum Airy
structure associated with the dilaton shift z,.1 = x,.1— ﬁll described in Section The uniqueness
of their solution was proved in [52]. The r-spin partition function of Section corresponds to the
A,_1 case. The total descendent potential of the ADE singularity {Wapg = 0} in fact coincides
with the Fan-Jarvis-Ruan partition function ZWare [34].

Question 6.5. For any non degenerate quasihomogeneous polynomsial in n variables W, can one
write down a higher quantum Airy structure (based on W algebras) associated with W whose
partition function encodes the correlators of the cohomological field theory constructed by Fan-
Jarvis-Ruan?

Question 6.6. Can the partition functions in Theorem [[.20 for Dn-type and Theorem [.27) for
En-type in the case s =1 receive an interpretation in terms of Fan-Jarvis-Ruan theories ¢
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APPENDIX A. SUMS OVER ROOTS OF UNITY

We encountered in Definition the following sums for i € {1,...,r}
1 r—1

\I/(ah cen ,ai) = 5 Z f[e_mlal , (Al)

C M., m;=01=1

where 0 = 27/7

j€{0,...,1i/2]}

\If(j)(agj+1, .. .,ai) =

is a primitive r-th root of unity. This is the j = 0 case of the more general sum for

r=1 ( 4 @rmar—1+tmay

L : -myay
il Z H (9”21’ —9m2l'—1)2 H 0 ) ’ (A.2)

*ma,...,m;=0 \1’'=1 1=2j5+1
myFmys

This appendix is devoted to the proof of several properties of these functions used in Section [d] and
an explicit computation of W(©).

Lemma A.1. For any j€{0,...,|i/2]}, we have

r=1 J asyr—_1a /5 , , .
S U(ay,...a) [ 2 S = U D g, ). (A.3)
A1 yenny az;= I'=1 T
Proof. The left hand side of (A.3) is equal to
1 r—1 r—1 7 %
= Z Z H (M2 —may_1)az_y H g-mar (A.4)
it mi,...,m;=0 ai,as,...,a2;-1=010'=1 1=2j+1
myFmys

We compute the sum
“ta(r-a)z® _x((r-Dx-(r+1))z"+(r+z-(r-1)

2

o 2r 2r(x-1)3
Setting x = #™1 72 for distinct mq,ms € {0,...,r — 1} gives
r—1 a(r _ a)ai(ml—mg) grmi-ma grma+ma
o 2 = (97n1—m2 _ 1)2 = (eml — gme )2 ’
Using this formula to perform the sum over ai,as,...,a2j-1 = 0 in (A.4)) entails the claim. |

We can get rid of zero entries in W) in a simple way.

Lemma A.2.

. p— )] —1 |
\Ij(j)(a2j+17-~'aai—€70a"'70) = (Z g) (T Z+€)
- 1 (r—2)!
£ times

\I/(j)(a2j+1a~--aai—€)~

Proof. Tn the sum (A-2) defining U9 (ag41,...,ai¢,0,...,0), the terms only depend on
m=(my,...,Mi_g)
and the as. Therefore, we can perform the sum over the ordered j-tuple (ml)li:i_z 41 of pairwise

disjoint integers in {0,...,r — 1} N\ {my,...,m;_¢} and get a global factor of (z;f:f,)' We then

recognize W) (ag;41,...,a;_¢) up to another global factor —(i;f)!. 0
Lemma A.3. We have iV(r—1,...,7-1,i-1) = (=1)"1r.

——
i—1 times
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Proof. Let us denote for m € {0,...,r -1}
6=(1,0,6%....,0"%),  G[m]=6~0m.
Coming back to the definition of ¥ = ¥(®) we can write

r—1 —
iU(r-1,...,r=1,i-1)= % 9""(”‘1)( 3 [167'C" 1)) 15 Z e, 1 (0[m]),
—_— m=0 Le{0,...,r=1}\{m} leL

~.

m=0
i—1 times |L|=i-1

(A.5)
where e; is the j-th elementary symmetric polynomial. Since —0 are the simple roots of the
polynomial 1+ (-=1)"t" we get

r—1 r—1

S er(f) = [J(1+107) =1+ (-1)"t",
k=0 a=0

from which we deduce that eg(f) = g for k € {1,...,7 —1}. On the other hand we have by
inclusion-exclusion

ex(6) = Gmek_l(é[m]) +ep(0[m]).
So we deduce by induction that
Vike{l,...,r—1},  en(8[m]) = (-1)*6™*.
Inserting this result in (A.5)) gives

r—1
iU(r=1,...,r=1,i-1)= > (-1)"tgmEDgm=h = (_1)ity,

e e — m=0
i—1 times
O
Lemma A.4. More generally for any s >0, let us introduce d = ged(r, s) and r' :=r[d. We have
’L'\I/(—S,...,—S, (Z—].)S) ( 1)2 17"7/1( 1)T (liilj’d)a
———
i—1 times

where 1, (k,d) is defined for 0 <k <d-1 and never vanishing

vty =3 (D), vy = X7,

J=0

Proof. The strategy is similar. We have

r—1 r—1
iU(-s,...,-s,(i-1)s)= Y. O_m(i_l)s( > I1 GlS) => o Dse, 1 (6°[m]),
_— m=0 Le{0,...,r=1}x{m} leL m=0
i—1 times |L|=i-1
where 65 = (1°,6%,...,6°C""D) and 6°[m] is the sequence 6° with §™* omitted. We write by
inclusion-exclusion
ei(6°) = 0™ ;i1 (6°[m]) + ei(6°[m]),
with the convention e_; = 0. We multiply this identity by 6~ and sum over m € {0,...,7 -1} to
find B
T5r|is ei(es) = ’(/}Ls + wi+17s s (AG)
where d,, is equal to 1 is alb and 0 otherwise. With the value ¢y , = r we will obtain by induction
on ¢ a formula for ¢, ;, provided we can compute ei(és ). For this purpose we observe that s
contains each 7’ := r/d root of unity, with multiplicity d. Thus

1 . d .
Se(f )t =1+t =Y (d) Tl
i=0 J

7=0
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therefore p p
T(Sr\is ei(es) = r(sis\r(sr/d\i (i/’l”) = T(Sr’\i (i/T”) : (A7)
Solving the recursion (A.6) with (A.7)) as left-hand side yields
(R B
P0( s s (- 1)s) = (C)r S (1) ( )
—_——— ]

J=0
i—1 times

Recall that d > 2. For € = +1, we denote

k
Wk, d) = ;(_1)1'(;5), ke{o,.. d-1},

so that

’L\I/( —S8,...,—S, (Z - 1)8) = (_1)1._17477&(71)7" (li;,l J7 d) .
——
i—1 times

¥, (k,d) is always positive, but we do not have a simpler expression to propose for it. On the other
hand, we can explicitly compute ©_(k, d) as follows. We observe that

v (k) - p-(=1,0) = (-D¥(}). (A3)

which is also valid for k = 0 with the convention ¢_(-1,d) = 0. But Pascal’s identity
()- (%))
= + s
k k k-1

w—(kvd):w—(k7d_1)_w—(k_1ad_1)a (Ag)
with the convention that (fll) =0. Combining (A.9) and (A.8]) we find

vy = (-0F (1),

implies that

Now we focus on the evaluation of these sums for small values of 1.

Lemma A.5. Forr>1 we have ¥(a1) = r0yq,. For r>2 we have

1
\I/(al, a2) = §(r25r|a15r\a2 - 7'57“|a1+a2) )
2
v (g) _% .

For r >3 we have

1, .
3 2 2
\Il(ala az, a3) 6( T 57‘|a1 5r|a2 57"(13 -r 57"(11 6r\a2+a3 -r 57‘|a2 57‘|a1 +as

_r26r|a3 5r\a1+a2 + 2r6r|a1+a2+a3)
_r(r- 2)(r? - 1)

7™ (a3) ™

Orlas -
Proof. We have for i=1and j=0

r—1
U(ar) = 3 07" =1, . (A.10)
m=0
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For ¢ =2, 5 can take the two values 0 or 1. We have

1 r—1 1 r—1 r—1
\I/(al,ag) - = Z g~mia1—maaz _ 5 Z _ Z f~mia1—mzaz
ml,m2=0 ml,m2=0 m1=m2=0
mi+mso

1
= §(T2(5r|al 6T|¢12 - T5T|a1+a2) .

Using Lemma and the formula we just proved, we compute

r—1 1 r—1 T(T2 _ 1)
\Ij(l)g = \IJ I’ w(s = - — =,
( ) al’aZQ:O (al @2) o ai+az,r 4 alz:o &1(7’ al) 7
For i = 3, we apply the same strategy
— 17'_1 —nai = —ma2az2—ms3as
V(a,az,a3) = >0 S 6
6 720 mo,m3z=0
ma¥ms
Mo *N
i 1 Ti:l (tg_nalQ\I}Q(@2 a3) _e_n(a1+a2) Ti:l g3 — 9‘”(‘“+“3) Ti:l 9_7"2@2)
6 720 im0 e
maFn ma#n

1
= g(r(sf'\al 2@2(0427 a3) - T257'|a1 +ag 57’\(13 - rzér\al +as 57‘|¢12 + 2r57‘|a1 +a2+a3)

1
_ 3 2 2
= 7(7“ 6r|a1§r\a25r\a3 -T 57”\(11 5r|a2+a3 -r 6r|a25r|a1+a3

6
_r2§r\a35r\a1+a2 + 2r5r|a1+a2+a3) ’
(A.11)
after using the result just found for ¢ = 2. Using Lemma we further compute
r—1 _
UM (ag) = > Lg ) U(a,r-a,as).
a=0 r

The three first terms in (A.11) do not give any contribution as they force the prefactor a(r —a) to
vanish. We obtain for the two last terms

1=t alr-a r(r-2)(r2-1
v (a5) = : » % (27”—7"2)5r\a3 - _% Orlas -
a=0

O

We can give a general formula for ¥(ay,...,a;), which involve the following notations. We
denote L + (ay,...,a;) when L is an unordered set of || L|| non-empty, pairwise disjoint subsequences
of (a1,...,a,) whose concatenation is equal to (aq,...,a,). The length of a subsequence L € L is
denoted |L|. These notations agree with the ones used in Section [2.2.2]

Lemma A.6. For generali€{1,...,r} and ay,...,a, € Z we have the formula
i1 9(ar,. )= 3 A E)TENTTOL - 1165, 0 -
Lk(al ..... ai) LeL

In particular, ¥(ay,...,a;) € rZ.
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Proof. We continue with the strategy of the proof of Lemma and find by successive inclusion-
exclusion

= i — |L| - DYL|!
U(ay,...,a;) = Z Z G_n(aﬁzldal)(_l)‘mM\I’((al’)o&(Lu{l}))
n=0 Le{2,...,i} v
(i [L]-DL]!
=T Z (_1)‘L| - a4 \I’((al’)M(LU{l})) Orlar+Eier ar »
Le(2,....) v

where for L = {2,...,n} there appears ¥(@) which is by convention equal to 1. This is a recursive
formula for i! U(ay,...,a;) onie{l,...,r}, which is solved by the claimed formula. O

Corollary A.7. Letie{l,...,r} and a € Z coprime with r. Then, for any be{0,...,i-1}

S (~1)1 if b=0
¥(0,...,0,a,...,a) = 0 ifbe{l,...,i-1}
— 1 ifb=i

b times i—b times

Proof. The case b = ¢ is obvious from the definition For b = 0, since a is coprime with r,
we gave 0,5, o, = Op||Lla = Orjz|- Therefore, the only non-zero contribution in the formula of
Lemma occurs when ¢ = r and for the unique term which corresponds to L being the partition
consisting of a single set, i.e. ||L|| = 1. With be {1,...,i -1} we first get rid of the zeroes thanks

to Lemma [A72] and use the previous result to find that the expression evaluates to 0. O
Corollary A.8. For any i € {1,...,r} and j € {0,...,]i/2]}, ¥ (agjs1,...,a;) € Z vanishes
unless there exists L = (agji1,...,a;) such that the partial sums Y. a; are divisible by r for any
LeL.

Proof. For j >0, we insert the formula of Lemma [A-6] in Lemma [A7]]

-1 J asyr—1a9110
a4 1,() ) N 20 =142 0ay;r_ 1 +aqr,r
AR (a2]+1,...,a2) = Z Z CL 5?”\21;1,&[ H 2% ’
ai,...,a2;=0L+(ay,...,a;) =1

where ‘
L = THLII(_l)l—IILH [T1(L|-1).
LeL
We first focus on the sum over the first ordered pair (a1,as) such that a; + as = r, and meet two
types of terms. If a; and as are in the same subsequence L, we will have a contribution of the
form

r—1 _ 2 _ 1
-, =D
oo 12
while if they are in two different subsequences, we rather have a contribution of the form
r=1
a(r - a) (01)(b2)
I;J o 5’r|b1+a6r|b2—a = o 67‘\b1+b2 5
where (b1 ) is the unique integer in {0,...,r—1} such that b;—(b;) € rZ. Considering successively the

sums over the other pairs (agy—1, asy), we observe a similar phenomenon and obtain the claim. [

For instance, we obtain for ¢ =4 and r > 4 the following formulas
24\1’(0117 az,as, a4) = T(T36r|a16r|a26r|a35r\a4 - r2(6r|a1+a25r|a36r\a4 + ) + r((sr\a1+a26r|ag+a4 + )

+2T(5r|a1+a2+a35r|a4 + ) -6 5T|a1+a2+a3+a4) )
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where the --- indicate other terms necessary to enforce symmetry under permutation of ay,as, as, as.
Furthermore, exploiting the method sketched in the proof of Corollary we find

C(r+ Dr2(r-1)(r-4)

240V (a3,a4) = 5 OrlasOras (A.12)
+ ((r + 1)7“(7"1; 1)(r-6) N T(ag)(a4))(5m3+a4 ’ (A.13)
24\1/(2)(@) (7°+1)T(r—1)(T7;()2)(r—3)(5r+7) . (A.14)

It would be interesting to find a closed formula generalizing Lemma [A.6] to all j € {0,...,|i/2]}.

APPENDIX B. CHARACTERIZATION OF ADMISSIBLE (7,s)

B.1. The values of s corresponding to the intermediate subalgebras

In Section we showed that for any partition A\; > -+ > X\, > 1 such that Z§=1 Aj =7, the left

ideal generated by the modes W} of the W(gl,) algebra indexed by (i,k) € Sy is a graded Lie
subalgebra. The set Sy consists of the pairs (i,k) with i€ {1,...,r} and

k>i-A(i),  A®) ::min{m>0‘ i)\jZi}. (B.1)

Besides, for any s € {1,...,r+ IN} coprime with r, we showed in the proof of Theorem that the
family W,z indexed by (i,k) € Ss after dilaton shift x5 -z — % satisfies the degree 1 condition of
Definition The set S, consists of the pairs (4,k) with i € {1,...,r} and
r(k-i+1)+(i-1)s>0. (B.2)
This section is devoted to a characterization of the values of s for which can be equivalently

described as (B.I). For us this implies that the W, indexed by such (i,k) € Ss form a higher
quantum Airy structure (Theorem |4.13)).

Proposition B.1. Let s € {1,...,r+ 1} coprime with r > 2. There exists a partition \ such that
Ss =Sy if and only if r = £1 mod s. In this case, we can decompose r =r's+r" withr" e {1,s-1}
and the partition is given by

)\1 :...:)\T,,:r,+17 )\T”+1 :...:)\S:r,

ifs+tr+1, and by A=(1,...,1) if s=r+1.

Proof. Equation is equivalent to k >7i-1- [@J so we are asking for the characterization of

S appearing as
-1
AG@) =1+ [uJ ’
r
where A is a partition. In the case s =7+ 1, we have

(i_l)SJ:i,

Vie{l,...,r}, 1+[
"

and it is clear that it arises with A = (1,...,1). In the case s = 1, we have

Vie{l,...,r}, 1+[(i_T1)SJ:1,
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and it is clear that it arises with A = (r). In the remaining of the proof we treat the cases
s€{2,...,7—1}. Let us decompose

r=r's+r", re{l,...,s-1}, r'>0.
We can assume that 7' # 0 since ged(r,s) =1 and r' > 0 since s € {2,...,r - 1}.
Assume that we are given a weakly increasing function p : {1,...,7} — N such that u(1) =1

and p(i+1) — p(i) € {0,1}. Let us write down the complete list of integers for which p jumps,
namely
1S/€1<...<I€p_1<7', [L(lij‘i-l):‘u,(lij)"-l, (B3)
and adopt the convention ko =0 and k, = r. If we set
)\j:h}j—lij,h jE{l,...,p},

we get a p-tuple of positive integers such that 25:1 A; =7 and by construction
m
(%) = min {m ‘ YA z} (B.4)
j=1

We however stress that (\; )le may not be weakly decreasing.

We apply this construction to

(i) =1+ [(i _rl)sj, (B.5)

which clearly satisfies pu(1) =1 and p(i+1)—pu(i) € {0,1}. We compute from the definition u(r) = s
and comparing to we conclude that p = s. To make the proof more transparent, we keep the
letter p to indicate the length of the sequence (\;);. We are going to compute the sequence k.
Since p(r’+1) =1 and p(r’ +2) = 2 we deduce that k1 = Ay =r’'+ 1. Forany je {1,...,p-1} we
can decompose
K;s = BT +7;, v; €{0,...,s -1}, Bj eN.

For instance we have y; = s —r”. Notice that (x; +7")s = (8; + 1)r +~; —r". If v; <7 we deduce

(kj+7)s< (B +D)r < (kj+r"+1)s,
and thus kj.1 = k; + 7'+ 1 which implies A\j,1 =7 +1 and ;.1 =7; +s—r". If v; > r” we rather
have

(kj+r" =1)s< (B +1)r<(k;+1")s,
and thus ;.1 = k; +r’ which implies Aj,; = r" and 7;41 = v; —r”. To summarize, we always have
Aj e {r’,r"+1}. We start with Ay =7’ +1 and 71 = s —r". Let £ > 0 be the minimum integer such
that Agy1 = 7', It means that v, > r”". According to the previous rules, we have

v =j(s=r"), je{l,.... 0},
and .
r
(= =] (B.6)
Assume that ();); is weakly decreasing. It is equivalent to the existence of £ € {1,...,p} such
that
)+l ifj<t,
Aj‘{ r if j>¢. (B.7)

We can compute

p
r=>N=0"+1)l+(p-Or =pr' + L.
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Remembering that p = s it shows that £=7". So yields

"

=[] (B.8)

s—r"

The latter is equivalent to
1T+ =1)(s=r")<r" <" (s=r").
The upper bound always holds, while the lower bound can be rewritten as
(r"-1)(s-r"-1)<0.

So (B.8) is equivalent to 7" = 1 or 7" = s — 1. This shows that v € {1,s—-1} is a necessary condition
for A to be of the form (B.7]).

Conversely, if we assume that " € {1,s - 1}, the equivalence we just stressed shows that (B.8))
holds, so that ¢ defined in is equal to r”’. Then, for any j € {¢,...,s—1} we have

’YZ_(j_é)T":T" 5_j) 27,_//7

hence 7; = v, —jr" > 7" and we must have Aj4; = r'. This shows that ();); is of the form (B.7)), in
particular it is weakly decreasing. ]

B.2. Computation of Fj 3 and characterization of symmetry

We consider the modes W} of the W(gl,.) algebra using the twist by the Coxeter element whose

expression is given in (4.8). For s € {1,...,r+1} coprime with 7, we are going to evaluate
o1
Hp == 3 COqi| - g2.-a3] Jgy gy + hCO[qu|@] + -+
92,493

where --- includes monomials which are different from the ones emphasized here, and we remind
that the correspondence between positive integers g and indices (4, k) € Sy for the mode W,i equal
to J, + O(2) is

q=1,(,k)=r(k-i+1)+s(i; - 1), (B.9)
and the set S, consists precisely of those (i, k) that yields a positive ¢ = II5(4, k). The notation we
use is g =I5 (4;, k;).

It (H,?1 ) (ir k1 )es, forms a higher quantum Airy structure, then

Fosla1,q2,03] = 0203 C 1| - g2, —g3] (B.10)

must be invariant under permutation of (qi,¢2,¢g3). On the one hand, the representation theo-
retic arguments in Section allowed us in Theorem the conclusion that if » = +1 mod s,
(H,i)(i7k)e s, is indeed a higher quantum Airy structure, so is a priori fully symmetric. Here
we compute explicitly Fp 3 and indeed check that it is fully symmetric. On the other hand, when
r # +1 mod s, our explicit computation shows that the right-hand side of is not fully sym-
metric. Therefore, the left ideal generated by the (H})(; k)es, is not a graded Lie subalgebra and
the results of Section [3.3] are in this sense optimal.

Proposition B.2. Let s€{1,...,r+1} be coprime with r.

o Ifr=r's+s-1 forr >0, we have Fy3[q1,42,93] = —(r" +1)¢1G243 0gy +ga+gs,s-
L4 If?“ = 7“/8 +1 fOT‘ 7'/ 2 O; we have F0,3[(I17 q2, Q3] = T’Q1Q2(J3 6q1+qQ+q3,s'
e In all other cases, there exists q1,q2,qs > 0 such that

2203 Cq1| - 42, -43] # 0103 OV [ga| - @1, 03] -
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Proof. Starting from the expression (4.8]) for the differential operators W,i, due to the dilaton shift
we must get (i —2) variables pjs equal to —s and the two last ps must be equal to ¢; and g2. So

i (-1)" iy (i1 - 1)
H,! = > )

3 go+qa+(i1-2)s+r(k—i1+1),0 Y(q2,43, 8,...,8 ) J gy J gy +
T —_——
11—2 times

q2,93>0

Remember that H ;11 = Jg, +O(2). So the Kronecker delta imposes

G1+q2+qs=s. (B.11)
Since ¢; > 0 for j € {1,2,3} and 1 < s <r+1 this imposes ¢; < . Let us evaluate ¥ under this
condition using Lemma Since s and r are coprime, r cannot divide sm for m e {1,...,4i; — 2}
therefore the only partitions L that contribute are those for which each L € L contains ¢g; or ¢
(-1t
\I/(q27 g3, S,...,8 ) = 5r|q2+q3+(i1—2)s (Blz)
N—— 11
11—2 times

(il - 2)' (—l)il_Q 7‘2 mg!m;g'

+ - 57“ ) .
g2+mos9r|gz+mss
ma,ms>0 m2!m3! 21!
m2+m3=i1—2
. . i1-2)! . s
The extra combinatorial factor fy:i,mi, is the number of ways of splitting the sequence (s, ...,s)

of length 41 — 2 into two subsequences of length m; and msy. If there exists two mg and m) in
{0,...,41 — 2} such that r|gs + mas and 7|gs + mbs, then r|(mg —mb). Since i1 —2 < r we must have
ms =mb. Therefore, the sum over msy contains at most one term, and if it contains one term it is

equal to 1. Under the condition (B.11)), we have for any m € Z
—(k1—-i1+1)r=(ga+ms)+ (g3 + (i1 —-2-m)s).

Therefore, we can omit the factor d,j4,4m,s in . Finally, notice that we can write g2 + s(r -
iog+1)=r(ka—ig+1+s) withr—ig+1e{1,...,r}. So the existence of by >0 and mg > 0 such that
bar = ga + smq with mo <41 — 2 is equivalent to io — 1 =r —mg > r — (i1 — 2) that is i1 + i > r + 3.
As a consequence

COlg1| - g2, -g3] = (= (ir=1) +re(q1,42,a3)) Ogy+qarqas » (B.13)
where €(q1,¢2,q3) =1if g1 + g2 + g3 = s and i1 +i2 —3 > 7, and €(q1, g2, g3) = 0 otherwise.
o If s =1 we always have Fj 3 =0.

e Assume s = r + 1. It is not possible for g2 < s —2 < r to be divisible by r so €(q1,¢2,493) = 0.
Likewise q; < r so we must have k1 =0 and i1 — 1 = ¢;. Therefore

COUq1|~ g2,~03] = ~q1 041 +gp+qs.5 »
and Fy 3[q1,92,93] = —q192G3 0, +gs-+¢s,s» Which is manifestly symmetric.
We now turn to the values se {2,...,r-1}.
o Assume 7 =1's +s -1 with ' > 0. We multiply by ¢; and get
a=qa((r'+1)s-r)=-rqg + (" +1qs.
Thus ¢; corresponds to i1 = (r' +1)q; + 1 and k1 = r’¢;. In particular 41 — 1 = (+' + 1)q;. Assume

there exists by > 0 and mq € {0,...,4; — 2} such that rbs = g2 + mas. Since go = —rgs + (r' + 1)qgas,
there must exist [l € Z such that

b2 =—Qq2 + lQS, mo = —(7“, + 1)q2 + lg?“.
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Since q1 + g2 +q3 = s with g3 > 0, we have ¢; + g2 < s-1, hence i1 -2 < (7' +1)(s - 1-¢2). Together
with 0 < mqy <41 —2 it leads to the inequality
0<(r+ D)@ <lor<(r+1)(s-1-q)+ (" +1)ga=(0"+1)(s-1)=r-1r"<r,

which contradicts the existence of . Hence there are no such mgy, meaning that €(q1,¢2,q3) = 0.
Consequently

C(O) [QI| — g2, _Q3] = _(il - 1) 6Q1+Q2+q378 = _(T, + 1)(]1 5Q1+(J2+QS15 )
and Fy 3(q1,92,q3] = —(r' + 1)q1¢243 04y +g2+45,s, Which is manifestly symmetric.
e Assume 7 = 1's+ 1 with ' > 0. We see that

s—qr=s+q(r's—r)=-rq +(r'q. +1)s,

so g1 corresponds to i1 —1=7(s—q1)+1=r—-7'qy and k1 = (s—q1)(+' - 1) + 1. We deduce that
i1-2=71"(g2+q3). Since g2 +7'q2s = rqo is divisible by r, the choice m = r'qo satisfies 0 < m < i1 -2
and therefore €(q1,¢q2,q3) = 1. We deduce that

C(O) [CI1| —q2, _q53:| = ( - (il - 1) + T)6q1+q2+q3,s = r,ql 5111+¢12+Q3,S .
This implies that Fo 3[q1,92,93] = 7'¢14293 0g, +qs+¢s,s, Which is manifestly symmetric.

e Now assume that " € {2,...,s5-2}. We are going to show that assuming the symmetry

0COa| - g2,-a3] = 1.C Vo] - 41, ~a3] (B.14)
for any q1,q2,q3 > 0 such that ¢; + g2 + g3 = s leads to a contradiction. We first remark from the
definition that €(q1,¢2,q3) = €(g2,41,¢3) in . We set ¢; = 1, which we decompose as usual
q1 = (k1 -1 +1)r+ (i1 - 1)s for some 41 € {1,...,7r}. Choosing g2 = s — "' corresponds to iz =1’ +2
and we can take q3 = s— (g1 +¢g2) =" —1> 0. Denoting € = e(1,s—r",r" — 1), the condition
implies

(s=r"YA—iy+er)=-1-1r"+er.
Choosing ¢o = 7" corresponds to is =7 — 7' + 1 and we can take ¢g3 =s—(q1 +¢q2) =s—-r"-1>0.
Denoting ¢’ = ¢(1,7"”,s =" = 1) the condition implies
r"(1—iy+e'r)=-r+r' +&'r.

Summing the two equations gives

s(I-iy+er)+1=r((e+e' -1)+r"(e-¢€")). (B.15)
From the definition we have that
_ 1 if’hZ’l".—T’%-l,7 o= 1 ifi127“.,+2,' (Blﬁ)
0 otherwise 0 otherwise

Since r ="' +1-(r'+2) =7'(s=2) +r"”" =1 > 0, we see that the only possible values of (g,&’) are
(1,1), (0,0) and (0,1). In the two first cases, reducing (B.15) modulo s gives

" =+1 mod s,

which is impossible since we assumed 2 < r” < s -2 from the beginning. So we must be in the case
(g,¢') = (0,1), which means that

r+1<ip-1<r—r"-1. (B.17)

The equation (B.15)) then implies
1=(iy-1)s—-rr". (B.18)

Now we express the symmetry
30O q1| - g3, ~¢2] = 1.COgs| - @1, 2], (B.19)
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with the choice (q1,q2,¢3) = (1,s—7r",7"" —1). We can write
" =1=r—r's—((i1-Ds-r")=(r-r"=(i1-1))s+r(r" +1-5s).
Due to the upper bound in (B.17) we have r —r' — (i; — 1) > 0 therefore i3 -1 =r—7" - (i; - 1).
Notice that i1 +i3 =2+ r —r' <7+ 3 thus e(q1,93,¢2) = €(g3,¢1,92) = 0. Using (B.13)), the equality
(B.19) becomes
r'+ (-1 -r=0"-1)(1-4),

that is ’b = r —7’. If we use this result when multiplying by r”, we find that r"” =
rs—(r—r")—rr"”. This implies " = s — 1, but this contradicts the starting assumption r’ < s — 2.
In other words, we have proved that if " € {2,...,s-2}, we cannot have the symmetry for
all q1,q2,q3 > 0. O

B.3. Computation of F ;

Let us compute Fj; for the quantum Airy structure of Theorem — that is, assuming r =
+1 mod s.

Lemma B.3. We have Fy 1[q] = _% Og,s-

Proof. We need to isolate the term
H} = hFyq[T(i, k)] + -

where F 1[q] is a scalar, IL;(¢, k) is given in and - represent the other monomials which we
are not interested in. We recall that Hj is obtained from the generators W} given in after
the shift J_y - J_s — 1. The only contribution to this term comes from j = 1 and p; = —s for all
le{3,...,i} such that —s(i —2) =r(k—i+1). Since r and s are coprime, such a contribution can
only appear for ¢ =2 and k = 1, and in that case II5(2,1) = s. So we have

1
Fiilq] = - v (o) g, »

which is equal to —% g, Using Lemma to evaluate W(1), 0

APPENDIX C. PROOF OF UNIQUENESS OF THE SOLUTION TO THE HIGHER ABSTRACT
LOOP EQUATIONS

In this appendix we show that if a solution to the higher abstract loop equations that respects the
polarization exists, then it is uniquely constructed by the Bouchard-Eynard topological recursion
of [I5, 7). The argument follows along similar lines to what was presented in [I4}, [I6]. For
clarity we will only present the proof here for local spectral curves with one component, but it is
straightforward to generalize it to local spectral curves with £ components.

Consider a spectral curve with one component, as defined in Definition Let
wo,1(2) = ). md&(2) = y(2)dé (2),

>0
where y(2) = Y55y 712", Let us assume that the spectral curve is admissible (Definition , that
is, 1<s<r+1andr=2+1mod s with
s::min{l>0 | 7+#0 and rJrl}.

Let wp 2(z1,22) be the formal bidifferential that encodes the choice of polarization

dzn®dz >, Gmd&i(z1) ® dm(z2) .

Wo,2(21,22) = (Z1 _ 22)2 el
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Then the following result holds.

Proposition C.1. Fiz an admissibld] local spectral curve with one component. Assume there
ezists a sequence of formal symmetric differentials wy n € @7 V2, satisfying the higher abstract
loop equations _

Pyt (ES0(wlz)) et ™ C[[t' @V, ®...0 V.,
forallg>0,n>1,29-2+n>0, and i€ {1,...,r}, where z = (22,...,2,) and w = (wy,...,w;).
Here, 0" =i—1- [@J and Eg(f%(A|B) was introduced in Deﬁnition and the projection map
Pyye in Definition .

Then, this sequence of formal symmetric differentials is constructed by the Bouchard-Eynard
topological recursion formula

t r—1 1
Wg.n(21,2) = 1;{_)65 (fo wo,2(+, 21)) Z(_l)lﬂﬂ
i=1 :
r—1 4 1 ) Réi:zl)(tagaltw' .’eaitz)
" ’ . (Ca
W (mH (w(t) —y (0= 1)) (d&(D)F (1)
AmFa;

Proof. Suppose that there exists a sequence of wy , € ®;L=1 VZ; such that

w\t (6( )(W|Z)) €

Let us now argue that the expression

"MeV,®...0V,

Zn *

a&, (1) . .
1) (W0 Puge (EG(wl2) ©2)
o1 (y(t) = y(6m1)) ; ¢ (&5, )
lives in C[[t]ldt® V_ ®...® V_ . On the one hand, if y(t) € C[[t]], then this is clear as long as

y'(0) # 0, that is 7,41 # 0. This is the regular case. In the irregular case, let us suppose that 75 # 0
with s € {1,...,7 —1}. Then y(t) ~ 7,¢°™" when ¢ - 0. Assume that s is coprime with r. We

rewrite 0° =i —1- [3(’:1)] =i- [1“(:_1) ]. We have when t - 0

- dgr(t) o Tsl—r t(7‘—1)(r—s+1)dt7
[T (y() -y (0™1))

(y())" " Py (€S0 (wlz))  ~

7_51—7’ t(r—i)(s—r) ,7_81—7"

tT(i_[1+sE:i—1)]) = t(S )

with 1 1
5:7.i_r[w]_(r_i)(s_r)3(7«_1)(r-s+1),

and the result follows.

r

We can rewrite this statement as a residue condition
t dgr(t) r ) » .
Res([ wo,g(-,zl)) — ( (1) y(t)"™" Pyys E(lr)L(w|z) ):
t=03Jo 21 (y () - y(6m1)) ; v ( . )
Now let us manipulate this expression a little bit, by writing down the projection map explicitly.
By definition,

> (1) (01 P (52 wl) - 3

)’ O i
t r—1i g,m ) 74
F (o) W @Dy

z).

9To be precise, in the proof here we only need the requirement that s is coprime with r, we do not need the
stronger admissibility requirement that » = +1 mod s.
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We can extract the wp 1 contributions out of the é’g(f% (w|z) using Lemma We get

T

21 (1) Pugy (E50(wl2)

i=1

T 7

=20 b

i=1 ai,...,a;=07j= 1]'(Z

R (0%1¢,...,0%t|z)
(dé-(1))!

T l(Hy(ew))

amFa
r (= R (9™, .. 0mit|z)
- 1y o (Tt ) R
Z » Ew ] I @& )
am;hal
r—1 r r—l (_1)£+m . (m R(QL(GMt ...,0%t|z)
= —y t r—£-—m y oagHt ) g, 9 9
R R0 YDy s LACHIN 1§ LG ey Frv 31

amFag

~ r—1 r ( 1)4 r—¢ o (Z) (ealt 9a2t|z)
T Bt ([low-weon) G

r=1 T T (&) ai ae-1
2 Z%(ﬁ(w) y(@““”t)))Rg’”(t’e Lo 0T,

al,...,#ar_lzl /=1 (E_ 1)'( (dgr(t))z
Then
dff’(t) C r 7 g wlz
T O ) 2D ) P (5 wl)
L () (il 1 R (t,09, ... 0% 1|z)
=40 _1)|a1,-~‘§1 1= 1(H (y(t) - y('9‘”t))) (d&-(¢))!

Thus the higher abstract loop equations imply that

s 1)1 r—1 i—1 1
([ ento) 57, 2 (Tomyem)

R (1,091, ,0%11|z)
(d&,(1))it

=0.
Now we can take out the term with ¢ = 1, which is equal to

-Res(fotww(.,zl))wgm(t,z).

t—0

Assuming that w, ., € ®,V_, the residue simply replaces the terms with £ ;(2) with the same
terms but with £_;(z1). Thus

t
_]}—?g (/(; wO,Z('azl))wg,n(taz) = _wg,n(zlaz)v

and we get the topological recursion

t r—1 (_1)i+1
wg,n(Zj’Z) - ]i:{fos (-[0 wO,Q(.’ Zl)) i=1 7/'
E:l (li[ 1 ) RV (¢, 00t 6 1]z)
ar,aim1 \im1 (y(8) —y(011)) (d&: (1)) ’
a;#Fam

which uniquely determines the wy . O
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Remark C.2. To prove existence of a (polarized) solution to the higher abstract loop equations,
one could follow the proof above step-by-step in reverse. However, for this to work one would
need to prove initially that the Bouchard-Eynard topological recursion produces symmetric wyg, .
This is known from [I5] for spectral curves that appear as a limit of a family of curves with
simple ramification points, by an indirect argument. It is however not clear to us which spectral
curves satisfy this condition. Since in Section [5| we identify the higher abstract loop equations with
higher quantum Airy structures for admissible spectral curves, it implies via Theorem that
the solution to the higher loop equations exists, in the case when 1 < s<r+1 and r =1 mod s.
Hence we have a new, more direct (and perhaps more general) proof that the Bouchard-Eynard
topological recursion produces symmetric wyg , for all admissible spectral curves, independently of
the arguments of [I5], as stated in Theorem [5.32]
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