
ON BEAUVILLE STRUCTURES FOR PSL(2, q)

SHELLY GARION

Abstract. We characterize Beauville surfaces of unmixed type with
group either PSL(2, pe) or PGL(2, pe), thus extending previous results
of Bauer, Catanese and Grunewald, Fuertes and Jones, and Penegini
and the author.

1. Introduction

1.1. Beauville structures. A Beauville surface S (over C) is a particular
kind of surface isogenous to a higher product of curves, i.e., S = (C1×C2)/G
is a quotient of a product of two smooth curves C1 and C2 of genera at
least two, modulo a free action of a finite group G, which acts faithfully on
each curve. For Beauville surfaces the quotients Ci/G are isomorphic to P1

and both projections Ci → Ci/G ∼= P1 are coverings branched over three
points. A Beauville surface is in particular a minimal surface of general
type. Beauville surfaces were introduced by F. Catanese in [4], inspired by
a construction of A. Beauville (see [3]).

We have two cases: the mixed case where the action of G exchanges the
two factors (and then C1 and C2 are isomorphic), and the unmixed case
where G acts diagonally on their product. In the following we shall consider
only the unmixed case.

Working out the definition of an unmixed Beauville surface one sees that
there is a purely group theoretical criterion which characterizes the groups
of unmixed Beauville surfaces: the existence of what in [2] is called an
“unmixed Beauville structure”.

Definition 1.1. An unmixed Beauville structure for a finite group G consists
of two triples (a1, b1, c1) and (a2, b2, c2) of elements in G which satisfy

(i) a1b1c1 = 1 and a2b2c2 = 1,
(ii) 〈a1, b1〉 = G and 〈a2, b2〉 = G,
(iii) Σ(a1, b1, c1) ∩ Σ(a2, b2, c2) = {1}, where

Σ(ai, bi, ci) :=
⋃
g∈G

∞⋃
j=1

{gaj
ig
−1, gbj

ig
−1, gcj

ig
−1} for i = 1, 2.

Moreover, τi := (ord(ai), ord(bi), ord(ci)) is called the type of (ai, bi, ci) (for
i = 1, 2), and a type which satisfies the condition 1

ord(ai)
+ 1

ord(bi)
+ 1

ord(ci)
< 1

is called hyperbolic.
In this case, we say that G admits an unmixed Beauville structure of type

(τ1, τ2).
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2 SHELLY GARION

It is known that the following finite almost simple groups admit an un-
mixed Beauville structure:

(a) The symmetric group Sn, if and only if n ≥ 5 [2];
(b) The alternating group An, if and only if n ≥ 6 [2, 11];
(c) PSL(2, q), where q = pe is a prime power, if and only if q ≥ 7

[2, 10, 12];
(d) Suzuki groups Sz(q), where q = 22e+1, and Ree groups R(q), where

q = 32e+1 [12];
(e) Some other finite simple groups G(q) of Lie type of low Lie rank, such

as PSL(3, q) and PSU(3, q), provided that q = pe is large enough [10].

Moreover, in [10] it is proved that if (r1, s1, t1) and (r2, s2, t2) are two
hyperbolic types, then almost all alternating groups An admit an unmixed
Beauville structure of type

(
(r1, s1, t1), (r2, s2, t2)

)
. This was previously con-

jectured by Bauer, Catanese and Grunewald in [2].
Analogously for PSL(2, q), where q = pe is a prime power, the aim of

this paper is to generalize the results given in [10, 12], and characterize the
possible types of an unmixed Beauville structure for the group PSL(2, q).

The question of which finite groups admit an unmixed Beauville structure
is deeply related to the question of which finite groups are quotients of
certain triangle groups. Indeed, conditions (i) and (ii) of Definition 1.1 are
equivalent to the condition that G is a quotient of each of the triangle groups
∆(ord(ai), ord(bi), ord(ci)) for i = 1, 2 with torsion-free kernel. Therefore,
we shall now recall some results regarding finite quotients of triangle groups.
Note that it is condition (iii) of Definition 1.1 which makes the existence of
an unmixed Beauville structure for G a more delicate issue.

1.2. Triangle groups and their finite quotients. Starting with three
positive integers r, s, t, consider the group ∆(r, s, t) presented by the gener-
ators and relations

∆(r, s, t) = 〈x, y : xr = ys = (xy)t = 1〉,

known as a triangle group.
The triple (r, s, t) is hyperbolic if 1

r + 1
s + 1

t < 1. In this case, the cor-
responding triangle group ∆(r, s, t) is also called hyperbolic. Hyperbolic
triangle groups are infinite. It is therefore interesting to study their finite
quotients, particularly the simple ones therein.

Among all hyperbolic triples (r, s, t), the triple (2, 3, 7) attains the smallest
positive value of 1−

(
1
r + 1

s + 1
t

)
. Therefore, the study of the group ∆(2, 3, 7),

known as the Hurwitz triangle group, and its finite quotients, known as
Hurwitz groups, has attracted much attention, see for example [6] for a
historical survey, and [7, 22] and the references therein for the current state
of the art.

It was shown by Conder [5] (following Higman) that the alternating group
An is a Hurwitz group if n ≥ 168. Concerning the group PSL(2, pe),
Macbeath [16] has shown that it is a Hurwitz group if and only if either
e = 1 and p ≡ 0,±1 (mod 7), or e = 3 and p ≡ ±2,±3 (mod 7).

We thus see different behaviors for the different families of simple groups.
Namely, any large enough alternating group is a Hurwitz group, whereas for
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PSL(2, pe), the prime p determines a unique exponent e such that PSL(2, pe)
is a Hurwitz group.

More generally, Higman had already conjectured in the late 1960s that
every hyperbolic triangle group has all but finitely many alternating groups
as quotients. This was eventually proved by Everitt [9]. Later, Liebeck and
Shalev [15] gave an alternative proof based on probabilistic group theory.

Langer and Rosenberger [13] and Levin and Rosenberger [14] had general-
ized the above result of Macbeath, and determined, for a given prime power
q = pe, all the triples (r, s, t) such that PSL(2, q) is a quotient of ∆(r, s, t),
with torsion-free kernel. It follows that if (r, s, t) is hyperbolic, then for
almost all primes p, there is precisely one group of the form PSL(2, pe)
or PGL(2, pe) which is a homomorphic image of ∆(r, s, t) with torsion-free
kernel.

This result will be described in detail is Section 2.1. We note that it can
also be obtained by using other techniques. Firstly, Marion [17] has recently
provided a proof for the case where r, s, t are primes relying on probabilistic
group theoretical methods. Secondly, it also follows from the representation
theoretic arguments of Vincent and Zalesski [24]. Such methods can be
used for dealing with other families of finite simple groups of Lie type, see
for example [18, 19, 21, 24].

1.3. Organization. This paper is organized as follows. Section 2 presents
the main Theorems in detail. In Section 3 we present some of the basic
properties of the groups PSL(2, q) and PGL(2, q) that are needed later for
the proofs. The proofs themselves are presented in Section 4.

Acknowledgement. I would like to thank Ingrid Bauer, Fabrizio Catanese
and Fritz Grunewald for introducing me to the fascinating world of Beauville
structures and for many useful discussions. I am very thankful to Alexandre
Zalesski for his interesting comments. I am grateful to Claude Marion for
kindly providing me with his recent preprints, and to Matteo Penegini for
many interesting discussions and for his remarks on this manuscript.

2. Main Theorems

2.1. Which triangle groups surject onto PSL(2, q)?

Notation 2.1. For a prime p and n ∈ N such that gcd(n, p) = 1, define
(i) µPGL(p, n) = min

{
f > 0 : pf ≡ ±1 (mod n)

}
;

(ii) µPSL(p, n) =

{
min

{
f > 0 : pf ≡ ±1 (mod n)

}
if n is odd

min
{
f > 0 : pf ≡ ±1 (mod 2n)

}
if n is even

;

(iii) We also set µPGL(p, p) = 1 and µPSL(p, p) = 1.

Note that µPGL(p, n) (respectively µPSL(p, n)) is equal to the minimal
integer e such that PGL(2, pe) (respectively PSL(2, pe)) contains an element
of order n.

Notation 2.2. For a prime p and integers n1, . . . , nk, such that each of
them is either relatively prime to p or equal to p, define

(i) µPGL(p;n1, . . . , nk) = lcm
(
µPGL(p, n1), . . . , µPGL(p, nk)

)
.

(ii) µPSL(p;n1, . . . , nk) = lcm
(
µPSL(p, n1), . . . , µPSL(p, nk)

)
.
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Note that µPGL(p;n1, . . . , nk) (respectively µPSL(p;n1, . . . , nk)) is equal to
the minimal integer e such that PGL(2, pe) (respectively PSL(2, pe)) contains
k elements of orders n1, . . . , nk.

When q is odd, one needs to distinguish triples (r, s, t) of orders of elements
that generate PSL(2, q) from the ones that generate PGL(2, q). The latter
triples are called irregular (see [16, §9] and [13, Lemma 3.5]), and contain
exactly two orders of elements in PGL(2, q) \ PSL(2, q) and one order of an
element in PSL(2, q). More precisely, they are defined as follows.

Definition 2.3. Let p be an odd prime, and let (r, s, t) be a hyperbolic
triple such that each of r, s, t is either relatively prime to p or equal to p.
We say that (r, s, t) is irregular if there is a permutation (r′, s′, t′) of (r, s, t)
such that one of the following cases occurs.

Case (α):
• r′, s′, t′ > 2,
• r′, s′ and e = µPSL(p; r′, s′, t′) are all even,
• both µPGL(p, r′) and µPGL(p, s′) divide e

2 ,
• both µPSL(p, r′) and µPSL(p, s′) do not divide e

2 ,
• µPSL(p, t′) divides e

2 .
Case (β):

• r′, s′ > 2 and t′ = 2,
• r′, s′ and e = µPSL(p; r′, s′) are all even,
• both µPGL(p, r′) and µPGL(p, s′) divide e

2 ,
• both µPSL(p, r′) and µPSL(p, s′) do not divide e

2 .
Case (γ):

• r′, s′ > 2, and t′ = 2,
• r′ and e = µPSL(p; r′, s′) are even,
• µPGL(p, r′) divides e

2 ,
• µPSL(p, r′) does not divide e

2 ,
• µPSL(p, s′) divides e

2 .

The following theorems summarize the results in [13, Theorems 4.1 and
4.2] and [14, Theorems 1 and 2].

Theorem A. [13, 14]. Let p be a prime and assume that q = pe is at least
7. Let r, s, t ∈ N. Then PSL(2, q) is a quotient of ∆(r, s, t) with torsion-free
kernel if and only if (r, s, t) is hyperbolic and satisfies one of the conditions
in the following table:

p (r, s, t) e further conditions
p ≥ 5 (p, p, p) 1 -
p ≥ 3 permutation of (p, p, t′) µPSL(p, t′) -

gcd(t′, p) = 1
p ≥ 3 permutation of (p, s′, t′) µPSL(p; s′, t′) either at most one of r, s, t is even,

gcd(s′ · t′, p) = 1 or:
p ≥ 3 gcd(r · s · t, p) = 1 µPSL(p; r, s, t) if at least two of r, s, t are even,

then none of (α), (β), (γ) occurs
p = 2 - µPSL(2; r, s, t) -
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Theorem B. [13, 14]. Let p be an odd prime and assume that q = pe is
at least 5. Let r, s, t ∈ N. Then PGL(2, q) is a quotient of ∆(r, s, t) with
torsion-free kernel if and only if (r, s, t) is hyperbolic and satisfies one of the
conditions in the following table:

(r, s, t) e further conditions

permutation of (p, s′, t′) µPSL(p;s′,t′)
2 at least two of r, s, t are even,

gcd(s′ · t′, p) = 1 and
gcd(r · s · t, p) = 1 µPSL(p;r,s,t)

2 one of (α), (β), (γ) occurs

The following corollary follows immediately from Theorems A and B.

Corollary C. Let p be a prime and let (r, s, t) be a hyperbolic triple such
that each of r, s, t is either relatively prime to p or equal to p. Then there
exist a unique exponent e and a unique G ∈ {PSL,PGL} such that G(2, pe)
is a quotient of ∆(r, s, t) with torsion-free kernel, namely

(a) PSL(2, pe) where e = µPSL(p; r, s, t), if (r, s, t) satisfies the conditions
of Theorem A.

(b) PGL(2, pe) where e = µPSL(p;r,s,t)
2 , if (r, s, t) satisfies the conditions

of Theorem B.

Remark 2.4. For completeness, we list below the results for PSL(2, q) where
q < 7 and for PGL(2, q) where q < 5.

For each group in the table below, we list all the triples r ≤ s ≤ t such
that ∆(r, s, t) maps onto it with torsion-free kernel (see also [16, §8]).

group triple(s)
PSL(2, 2) ∼= S3 (2, 2, 3)
PSL(2, 3) ∼= A4 (2, 3, 3), (3, 3, 3)
PGL(2, 3) ∼= S4 (2, 3, 4), (3, 4, 4)

PSL(2, 4) ∼= PSL(2, 5) ∼= A5 (2, 3, 5), (2, 5, 5), (3, 3, 5), (3, 5, 5), (5, 5, 5)

2.2. Beauville Structures for PSL(2, q) and PGL(2, q). We present here
our result concerning the possible types of unmixed Beauville structures for
PSL(2, q).

Theorem D. Let p be a prime and assume that q = pe is at least 7. Let
(r1, s1, t1) and (r2, s2, t2) be two triples of integers. Then the following condi-
tions are sufficient to guarantee that the group PSL(2, q) admits an unmixed
Beauville structure of type

(
(r1, s1, t1), (r2, s2, t2)

)
:

(i) (r1, s1, t1) and (r2, s2, t2) are hyperbolic.
(ii) Each of (r1, s1, t1) and (r2, s2, t2) satisfy one of the conditions of

Theorem A.
(iii) r1 · s1 · t1 is relatively prime to r2 · s2 · t2.
These conditions are also necessary if either p = 2 or p is odd and e

is odd. When p is odd and e is even, conditions (i),(ii) together with the
following condition (iii’) are necessary.

(iii’) gcd(r1 · s1 · t1, r2 · s2 · t2) divides p2.
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Note that Beauville structures for PSL(2, pe) of type
(
(p, p, t1), (p, p, t2)

)
do occur (when p is odd and e is even), hence condition (iii’) cannot be
improved (see Lemma 4.5).

Our next result characterizes the possible unmixed Beauville structures
for PGL(2, q).

Theorem E. Let p be a prime and assume that q = pe is at least 5. Let
(r1, s1, t1) and (r2, s2, t2) be two triples of integers. Then the group PGL(2, q)
admits an unmixed Beauville structure of type

(
(r1, s1, t1), (r2, s2, t2)

)
if and

only if the following conditions hold:
(i) (r1, s1, t1) and (r2, s2, t2) are hyperbolic.
(ii) Each of (r1, s1, t1) and (r2, s2, t2) satisfy one of the conditions of

Theorem B.
(iii) Each of the numbers

gcd(r1, r2), gcd(r1, s2), gcd(r1, t2),

gcd(s1, r2), gcd(s1, s2), gcd(s1, t2),

gcd(t1, r2), gcd(t1, s2), gcd(t1, t2)

equals 1 or 2.
(iv) All even elements in one of the triples divide q − 1, while all even

elements in the other triple divide q + 1.
(v) If one of the triples contains an element t′ = 2, then this triple must

contain an even element r′ > 2 and a third element s′ > 2, and
moreover:
(a) If q ≡ 1 (mod 4) and r′ divides q − 1, then Case (β) holds;
(b) If q ≡ 1 (mod 4) and r′ divides q + 1, then Case (γ) holds;
(c) If q ≡ 3 (mod 4) and r′ divides q − 1, then Case (γ) holds;
(d) If q ≡ 3 (mod 4) and r′ divides q + 1, then Case (β) holds.

3. Preliminaries

In this section we shall describe some well-known properties of the groups
PSL(2, q) and PGL(2, q) (see for example [20, §6]).

3.1. Definition. Let K be a field. Recall that GL(2,K) is the group of
invertible 2× 2 matrices over K, and SL(2,K) is the subgroup of GL(2,K)
comprising the matrices with determinant 1. Then PGL(2,K) and PSL(2,K)
are the quotients of GL(2,K) and SL(2,K) by their respective centers.

Let q = pe, where p is a prime and e ≥ 1. We denote the finite field of
size q by Fq. The algebraic closure of Fp (which is equal to the algebraic
closure of Fq) will be denoted by Fp.

For simplicity, we shall denote by GL(2, q), SL(2, q), PGL(2, q) and PSL(2, q)
the groups GL(2, Fq), SL(2, Fq), PGL(2, Fq) and PSL(2, Fq), respectively.

When q is even, then one can identify PSL(2, q) with SL(2, q) and also
with PGL(2, q), and so its order is q(q − 1)(q + 1). When q is odd, the
orders of PGL(2, q) and PSL(2, q) are q(q − 1)(q + 1) and 1

2q(q − 1)(q + 1)
respectively, and therefore we can identify PSL(2, q) with a normal subgroup
of index 2 in PGL(2, q). Moreover, PSL(2, q) and PGL(2, q) can be viewed
as subgroups of PSL(2, Fp). Recall that PSL(2, q) is simple for q 6= 2, 3.
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3.2. Group elements. One can classify the elements of PSL(2, q) according
to the possible Jordan forms of their pre-images in SL(2, q). The following
table lists the three types of elements, according to whether the character-
istic polynomial P (λ) := λ2 −αλ + 1 of the matrix A ∈ SL(2, q) (where α is
the trace of A) has 0, 1 or 2 distinct roots in Fq.

element roots canonical form in order conjugacy classes
type of P (λ) SL(2, Fp)

two conjugacy classes

unipotent 1 root
(
±1 1
0 ±1

)
p in PSL(2, q), which

α = ±2 unite in PGL(2, q)

split 2 roots
(

a 0
0 a−1

)
divides 1

d(q − 1) for each α:

where a ∈ F∗q d = 1 for q even one conjugacy class
and a + a−1 = α d = 2 for q odd in PSL(2, q)

non-split no roots
(

a 0
0 aq

)
divides 1

d(q + 1) for each α:

where a ∈ F∗q2 \ F∗q d = 1 for q even one conjugacy class
aq+1 = 1 d = 2 for q odd in PSL(2, q)

and a + aq = α

Recall that if p is odd and q = pe, then any element in PGL(2, q) is
either of order p (“unipotent”) or of order dividing q − 1 (“split”), or of
order dividing q + 1 (“non-split”). Moreover, any element which belongs to
PGL(2, q) but not to PSL(2, q) has an even order dividing either q − 1 but
not q−1

2 or q + 1 but not q+1
2 .

3.3. Elements of order 2. Note that all elements of order 2 in PSL(2, q)

are conjugate to the image of the matrix
(

0 1
−1 0

)
. They are unipotent if

p = 2, split if q ≡ 1 (mod 4), and non-split if p ≡ 3 (mod 4).
Moreover, if q is an odd prime power, then PGL(2, q) always contains

elements of order 2 which are not contained in PSL(2, q). These elements
are split if q ≡ 3 (mod 4), and non-split if q ≡ 1 (mod 4).

Therefore, if q is odd, then an element of order 2 in a hyperbolic irregular
triple satisfies exactly one of the following:

q ≡ 1 (mod 4) q ≡ 3 (mod 4)
Case (β) 2 is split 2 is non-split
Case (γ) 2 is non-split 2 is split

4. Beauville Structures for PSL(2, q) and PGL(2, q)

In this Section we prove Theorems D and E.
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4.1. Cyclic groups. The following easy Lemma is needed for the proof of
Theorems D and E.

Lemma 4.1. Let C be a finite cyclic group, and let x and y be non-trivial
elements in C. If the orders of x and y are not relatively prime, then there
exist some integers k and l such that xk = yl 6= 1.

Proof. Denote the orders of x and y by a and b respectively, then, by as-
sumption, gcd(a, b) = d 6= 1, and so one can write a = a′d and b = b′d,
where gcd(a′, b′) = 1. Hence, xa′

and yb′
are of exact order d.

Observe that C has only one cyclic subgroup of order d, and let z be a
generator of this subgroup. Thus,

〈xa′〉 = 〈z〉 = 〈yb′〉.
Therefore, there exist some integers k and l such that

xa′k = z = yb′l.

�

4.2. Elements and conjugacy classes in PSL(2, q) and PGL(2, q).

Notation 4.2. For a finite group G and a1, . . . , an ∈ G, define

Σ(a1, . . . , an) =
⋃
g∈G

∞⋃
j=1

{gaj
1g
−1, . . . , gaj

ng−1}.

Note that for n = 3 this notation coincides with the one given in Defini-
tion 1.1(iii).

Observe that for a1, . . . , an, b1, . . . , bm the condition

Σ(a1, . . . , an) ∩ Σ(b1, . . . , bm) = {1}
is equivalent to the condition that

Σ(ai) ∩ Σ(bj) = {1} for every 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Lemma 4.3. Let q = pe be a prime power and let A1, A2 ∈ PSL(2, q). Then
Σ(A1) ∩ Σ(A2) = {1} if and only if one of the following occurs:

(1) The orders of A1 and A2 are relatively prime;
(2) p is odd, e is even, ord(A1) = p = ord(A2) and A1, A2 are not

conjugate in PSL(2, q).

Proof. If the orders of A1 and A2 are relatively prime then every two non-
trivial powers Ai

1 and Aj
2 have different orders, thus

{g1A
i
1g
−1
1 }g1,i ∩ {g2A

j
2g
−1
2 }g2,j = {1},

as needed.
Now, assume that the orders of A1 and A2 are not relatively prime.
If there exists some prime r 6= p which divides the orders of A1 and A2,

then r divides exactly one of q−1
d or q+1

d , where d = 1 if p = 2 and d = 2
if p is odd, since q−1

d and q+1
d are relatively prime. Hence, the orders of

A1 and A2 both divide exactly one of q−1
d or q+1

d , and so A1 and A2 can
be conjugated in PSL(2, q) to two elements which belong to the same cyclic
group (either of order q−1

d or of order q+1
d ). Lemma 4.1 now implies that
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there exist some integers i and j such that Ai
1 and Aj

2 are conjugate in
PSL(2, q), and so Σ(A1) ∩ Σ(A2) 6= {1}.

If ord(A1) = p = ord(A2) then A1 and A2 are unipotents, and so, for
k = 1, 2, Ak can be conjugated in PSL(2, q) to the image of some matrix

A′
k =

(
1 ak

0 1

)
, where a1, a2 ∈ F∗q .

Recall that if q = 2e then A′
1 and A′

2 are always conjugate in PSL(2, q),
and if q = pe is odd, then A′

1 and A′
2 are conjugate in PSL(2, q) if and only

if either both a1 and a2 are squares in Fq or both of them are non-squares.
Note that if p is odd and e is even then all the elements {k : 1 ≤ k ≤

p− 1} are squares in Fq. If p is odd and e is odd, then half of the elements
{k : 1 ≤ k ≤ p− 1} are squares in Fq and half are non-squares.

Therefore, if q = 2e, then A′
1 and A′

2 are necessarily conjugate, and so
Σ(A1) ∩ Σ(A2) 6= {1}.

If p is odd and e is even, then for any 1 ≤ i, j ≤ p − 1, Ai
1 is conjugate

to
(

1 ia1

0 1

)
, which is conjugate to A′

1, and Aj
2 is conjugate to

(
1 ja2

0 1

)
,

which is conjugate to A′
2. Hence, Σ(A1) ∩ Σ(A2) 6= {1} if and only if either

both a1 and a2 are squares in Fq or both of them are non-squares, namely,
if and only if A′

1 and A′
2 are conjugate.

If p is odd and e is odd, we can choose 1 ≤ i, j ≤ p− 1 as follows:

i = 1 if a1 is a square, and i is a non-square in Fq otherwise,

j = 1 if a2 is a square, and j is a non-square in Fq otherwise,

and so, both Ai
1 and Aj

2 are conjugate in PSL(2, q) to the image of
(

1 1
0 1

)
,

implying that Σ(A1) ∩ Σ(A2) 6= {1}. �

Lemma 4.4. Let q = pe be an odd prime power and let A1, A2 ∈ PGL(2, q).
Then Σ(A1) ∩ Σ(A2) = {1} if and only if one of the following occurs:

(1) gcd(ord(A1), ord(A2)) = 1;
(2) A1 is split, A2 is non-split and gcd(ord(A1), ord(A2)) = 2;
(3) A1 is non-split, A2 is split and gcd(ord(A1), ord(A2)) = 2.

Proof. If gcd(ord(A1), ord(A2)) = 1 then every two non-trivial powers Ai
1

and Aj
2 have different orders, thus Σ(A1) ∩ Σ(A2) = {1}, as needed.

If A1 is split and A2 is non-split, then necessarily gcd(ord(A1), ord(A2)) ≤
2, since gcd(q − 1, q + 1) = 2. In this case, any non-trivial power of A1 is a
split element, while any non-trivial power of A2 is a non-split element, and
so they are not conjugated in PGL(2, q), implying that Σ(A1)∩Σ(A2) = {1}
as needed.

If gcd(ord(A1), ord(A2)) = 2 and both A1 and A2 are split (resp. non-
split), then A1 and A2 can be conjugated in PGL(2, q) to two elements which
belong to the same cyclic group of order q − 1 (resp. q + 1). Lemma 4.1
now implies that there exist some integers i and j such that Ai

1 and Aj
2 are

conjugate in PGL(2, q), and so Σ(A1) ∩ Σ(A2) 6= {1}.
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If ord(A1) = p = ord(A2), then A1 and A2 are unipotents, and so they

can be conjugated in PGL(2, q) to the image of the matrix
(

1 1
0 1

)
, implying

that Σ(A1) ∩ Σ(A2) 6= {1}.
Otherwise, gcd(ord(A1), ord(A2)) = r, where r > 2 and (r, p) = 1, and so

r divides exactly one of q − 1 or q + 1, since gcd(q − 1, q + 1) = 2, implying
that ord(A1) and ord(A2) both divide exactly one of q − 1 or q + 1. Hence,
A1 and A2 can be conjugated in PGL(2, q) to two elements which belong to
the same cyclic group (either of order q − 1 or of order q + 1). Lemma 4.1
now implies that there exist some integers i and j such that Ai

1 and Aj
2 are

conjugate in PGL(2, q), and so Σ(A1) ∩ Σ(A2) 6= {1}. �

4.3. Proof of Theorem D.

The conditions are sufficient. Let (r1, s1, t1) and (r2, s2, t2) be two triples
of integers. Assume that PSL(2, q) is a quotient of the triangle groups
∆(r1, s1, t1) and ∆(r2, s2, t2) with torsion-free kernel. Then one can find
elements A1, B1, C1, A2, B2, C2 ∈ PSL(2, q) of orders r1, s1, t1, r2, s2, t2 re-
spectively, such that A1B1C1 = I = A2B2C2 and 〈A1, B1〉 = PSL(2, q) =
〈A2, B2〉, and so conditions (i) and (ii) of Definition 1.1 are fulfilled. More-
over, the condition that r1 ·s1 · t1 is relatively prime to r2 ·s2 · t2 implies that
each of r1, s1, t1 is relatively prime to each of r2, s2, t2, and so by Lemma 4.3,
Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}, hence condition (iii) of Definition 1.1
is fulfilled. Therefore, PSL(2, q) admits an unmixed Beauville structure of
type

(
(r1, s1, t1), (r2, t2, s2)

)
.

The conditions are necessary. Assume that the group PSL(2, q) admits an
unmixed Beauville structure of type

(
(r1, s1, t1), (r2, t2, s2)

)
. Then there

exist A1, B1, C1, A2, B2, C2 ∈ PSL(2, q) of orders r1, s1, t1, r2, s2, t2 respec-
tively, such that A1B1C1 = I = A2B2C2 and 〈A1, B1〉 = PSL(2, q) =
〈A2, B2〉, implying that PSL(2, q) is a quotient of the triangle groups ∆(r1, s1, t1)
and ∆(r2, s2, t2) with torsion-free kernel, and so conditions (i) and (ii) are
necessary.

Moreover, Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}, and so by Lemma 4.3, if
either p = 2 or p is odd and e is odd, then each of r1, s1, t1 is necessarily
relatively prime to each of r2, s2, t2, implying that r1 · s1 · t1 is relatively
prime to r2 · s2 · t2.

If p is odd and e is even then, by Lemma 4.3, gcd(r1, r2) = 1 or p,
gcd(r1, s2) = 1 or p, gcd(r1, t2) = 1 or p, gcd(s1, r2) = 1 or p, gcd(s1, s2) =
1 or p, gcd(s1, t2) = 1 or p, gcd(t1, r2) = 1 or p, gcd(t1, s2) = 1 or p,
and gcd(t1, t2) = 1 or p. Moreover, it is not possible that (r1, s1, t1) =
(p, p, p) = (r2, s2, t2), since in this case e = 1 (by Theorem A). Thus,
gcd(r1 · s1 · t1, r2 · s2 · t2) divides p2.

The following Lemma shows that in case p odd and e even, the condition
that gcd(r1 · s1 · t1, r2 · s2 · t2) divides p2 cannot be improved.

Lemma 4.5. Let p be an odd prime and let q = pe. Then the group
PSL(2, q2) admits an unmixed Beauville structure of type

(
(p, p, t1), (p, p, t2)

)
where t1 | q2−1

2 and t2 | q2+1
2 .
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Proof. Observe that the set

D := {a2 − 4 : a ∈ Fq2 , a2 ∈ Fq2 \ Fq}

contains both squares and non-squares in Fq2 . Hence, there exist b, c ∈ Fq2

such that b2, c2 ∈ Fq2 \ Fq, c2 − 4 is a square and b2 − 4 is a non-square.
Let x be a generator of the multiplicative group F∗q2 and let d = b/x.
Define the following matrices

A1 =
(

1 1
0 1

)
, A2 =

(
1 x
0 1

)
,

g1 =
(

1 0
c 1

)
, g2 =

(
1 0
d 1

)
,

B1 = gA1g
−1 =

(
−c + 1 1
−c2 c + 1

)
, B2 = gA1g

−1 =
(
−dx + 1 x
−d2x dx + 1

)
,

C1 = (A1B1)−1 =
(

c + 1 −c− 2
c2 −c2 − c + 1

)
, C2 = (A2B2)−1 =

(
dx + 1 −dx2 − 2x
d2x −d2x2 − dx + 1

)
.

Now, one needs to verify that
(
(Ā1, B̄1, C̄1), (Ā2, B̄2, C̄2)

)
, where Ā1, B̄1, C̄1,

Ā2, B̄2, C̄2 are the images of A1, B1, C1, A2, B2, C2 in PSL(2, q2), is an un-
mixed Beauville structure for PSL(2, q2).

(i) A1B1C1 = 1 = A2B2C2 and so Ā1B̄1C̄1 = 1 = Ā2B̄2C̄2.
(ii) trC1 = 2 − c2 and trC2 = 2 − d2x2 both belong to Fq2 \ Fq, as

c2 and b2 = d2x2 both belong to Fq2 \ Fq. Hence, C̄1 and C̄2 do
not belong to PSL(2, q). Moreover, Ā1 and B̄1 do not commute
and Ā2 and B̄2 do not commute. Therefore by [16, Theorem 4],
〈Ā1, B̄1〉 = PSL(2, q2) = 〈Ā2, B̄2〉.

(iii) The characteristic polynomial of C1 is λ2 − (2 − c2) + 1, and its
discriminant equals c2(c2 − 4), which is a square in Fq2 , thus C̄1

is split and so its order divides q2−1
2 . Similarly, the characteristic

polynomial of C2 is λ2 − (2 − b2) + 1, and its discriminant equals
b2(b2 − 4), which is a non-square in Fq2 , thus C̄2 is non-split and so
its order divides q2+1

2 .
By Lemma 4.3, Σ(Ā1, B̄1, C̄1) ∩ Σ(Ā2, B̄2, C̄2) = {1}, since the

orders of C̄1 and C̄2 are relatively prime, and Ā1 and Ā2 are not
conjugate in PSL(2, q2).

�

4.4. Proof of Theorem E.

The conditions are necessary. Assume that the group PGL(2, q) admits an
unmixed Beauville structure of type

(
(r1, s1, t1), (r2, t2, s2)

)
. Then there

exist A1, B1, C1, A2, B2, C2 ∈ PGL(2, q) of orders r1, s1, t1, r2, s2, t2 respec-
tively, such that A1B1C1 = I = A2B2C2 and 〈A1, B1〉 = PGL(2, q) =
〈A2, B2〉, implying that PGL(2, q) is a quotient of the triangle groups ∆(r1, s1, t1)
and ∆(r2, s2, t2) with torsion-free kernel, and so conditions (i) and (ii) are
necessary.
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Therefore, we may assume that (r1, s1, t1) and (r2, s2, t2) are hyperbolic
and irregular, namely that they satisfy one of the Cases (α), (β), (γ) of
Definition 2.3.

If, for example, gcd(r1, r2) > 2, then Lemma 4.4 implies that Σ(A1) ∩
Σ(A2) is non-trivial, contradicting Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}.
Hence, condition (iii) is necessary.

Since (r1, s1, t1) and (r2, s2, t2) are hyperbolic and irregular, then both of
them must contain at least two even numbers, one of which is greater than
2. Hence, we may assume that r1, r2 are even and that r1, r2 > 2. If both
r1, r2 divide q − 1 (resp. q + 1) then both A1, A2 are split (resp. non-split)
and by Lemma 4.4, Σ(A1) ∩ Σ(A2) 6= {1}, yielding a contradiction.

Hence, we may assume that r1 divides q − 1 and r2 divides q + 1, and
so A1 is split and A2 is non-split. If one of s1, t1 is even and not divides
q − 1, then it is necessarily an even integer greater than 2, thus it must
divide q + 1, and so either B1 or C1 is non-split. Lemma 4.4 now implies
again that either Σ(B1) ∩ Σ(A2) 6= {1} or Σ(C1) ∩ Σ(A2) 6= {1}, yielding a
contradiction. Hence, condition (iv) is necessary.

Moreover, if either B1 or C1 has order 2, then the above argument shows
that it is necessarily split. Hence, by §3.3, if q ≡ 1 (mod 4), then Case (β)
holds, and if q ≡ 3 (mod 4), then Case (γ) holds. Similarly, if either B2 or
C2 has order 2, then the above argument shows that it is necessarily non-
split. Hence, by §3.3, if q ≡ 1 (mod 4), then Case (γ) holds, and if q ≡ 3
(mod 4), then Case (β) holds. Hence, condition (v) is necessary.

The conditions are sufficient. Let (r1, s1, t1) and (r2, s2, t2) be two triples
of integers. Assume that PGL(2, q) is a quotient of the triangle groups
∆(r1, s1, t1) and ∆(r2, s2, t2) with torsion-free kernel. Then one can find
elements A1, B1, C1, A2, B2, C2 ∈ PGL(2, q) of orders r1, s1, t1, r2, s2, t2 re-
spectively, such that A1B1C1 = I = A2B2C2 and 〈A1, B1〉 = PGL(2, q) =
〈A2, B2〉, and so conditions (i) and (ii) of Definition 1.1 are fulfilled.

Since, by Theorem B, (r1, s1, t1) and (r2, s2, t2) are hyperbolic and irreg-
ular, they must contain at least two even numbers. Hence, we may assume
that r1, r2, s1, s2 are even, that r1, r2 > 2, that µPSL(p, r1) and µPSL(p, r2)
do not divide e

2 , and that µPSL(p, t1) and µPSL(p, t2) both divide e
2 .

The condition that gcd(r1, r2) ≤ 2 now implies that one of r1, r2 divides
q − 1 and the other divides q + 1. We may assume that r1 | q − 1 and
r2 | q + 1, and so A1 is split and A2 is non-split. Lemma 4.4 now implies
that Σ(A1) ∩ Σ(A2) = {1}.

If s1 is greater than 2, then the condition that s1 | q − 1 implies that B1

is split, and if s1 = 2 then Case (γ) holds, and so q ≡ 3 (mod 4), thus again
B1 is split. Lemma 4.4 implies again that Σ(B1) ∩ Σ(A2) = {1}.

If s2 is greater than 2, then the condition that s2 | q + 1 implies that B2

is non-split, and if s2 = 2 then Case (γ) holds, and so q ≡ 1 (mod 4), thus
again B2 is non-split. Lemma 4.4 implies again that Σ(A1) ∩ Σ(B2) = {1}
and Σ(B1) ∩ Σ(B2) = {1}.

If t1 is even and greater than 2, then the condition that t1 | q − 1 implies
that C1 is split, and if t1 = 2 then Case (β) holds, and so q ≡ 1 (mod 4),
thus again C1 is split. Lemma 4.4 implies again that Σ(C1) ∩ Σ(A2) = {1}
and Σ(C1) ∩ Σ(B2) = {1}. If t1 is odd, then necessarily gcd(t1, r2) = 1
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and gcd(t1, s2) = 1, and Lemma 4.4 implies that Σ(C1) ∩ Σ(A2) = {1} and
Σ(C1) ∩ Σ(B2) = {1}.

Similarly, if t2 is even and greater than 2, then the condition that t2 |
q + 1 implies that C2 is non-split, and if t2 = 2 then Case (β) holds, and
so q ≡ 3 (mod 4), thus again C2 is non-split. Lemma 4.4 implies again
that Σ(A1) ∩ Σ(C2) = {1} and Σ(B1) ∩ Σ(C2) = {1}. If t2 is odd, then
necessarily gcd(r1, t2) = 1 and gcd(s1, t2) = 1, and Lemma 4.4 implies
that Σ(A1) ∩ Σ(C2) = {1} and Σ(B1) ∩ Σ(C2) = {1}. Moreover, either
gcd(t1, t2) = 1, or gcd(t1, t2) = 2 and C1 is split while C2 is non-split, and
so, by Lemma 4.4, Σ(C1) ∩ Σ(C2) = {1}.

To conclude, Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}, hence condition (iii)
of Definition 1.1 is fulfilled.
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