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§1

Introduction

Let 2 ¢ R? be an open (unbounded) set and let d - a - d be a differential expression, where
a(-) is a locally integrable function on f2 with values in the strictly positive real symmetric
madtrices.

We consider at least three realizations of —d - a-d in L%(2): Ap, A;, A, - the Dirichlet,
intermediate Dirichlet and generalized Neumann symmetric Markov generators. It follows
from the Beurling-Deny criterion that there exist positivity preserving contraction consistent
semigroups on LP(12),1 < p < o0, with generators —A, such that A; = A, where A denotes
one of the operators Ap, A; or An.

We shall prove the spectral p-independence of A for all p € [1,00[ under the following
assumptions on «(-):

a(-) € LY(£2r) for some R < oo,
a(z)(1+ 2%~ In¥(1 + 2?) € L®(2\ 2g) for some v > 0,

where 25 =: {z € 2 : |z| < R}.

In the course of proof we show that Ap is local and that CJ(£2) is a form core of Ap + V,
assuming only that a(-) and 0 < V belong to L] .(£2).

Next, we consider the generalized Schrédinger operator A = A+ V.,V =V, —V_,Vy €
Li _(£2) with the form small negative part V_:

Vo< BA+ Vi +¢(B)forsome 0< B <1 and ¢(B) € R.

Now — A, can be defined as a generator of a strongly continuous consistent semigroup in LP(42)
only for pg < p < pp with appropriate 1 < py < 2. We shall prove that for all z € p(A2)
the resolvent (z — A2)™! can be extended by continuity to a bounded map on LP(£2) for all

P €lp(8), P(B)] where p(8) =: {——=5 - 35, d 2 3 and p(B) =: (P'(8)).
If {le=t2 f||,, < Me“!|fline, f € L% N LPo(R2) for some py €]p(B8),2[ (so that A, is well-

defined for all p € [pg, pj]) then p(Ag) = p(A,) for all p € [po,pp)- In particular, we shall

see that this is always the case for py = t(3) =: ?2\/1_?6' For the Schrodinger operator

A= -A+4V in L*(R?) we obtain the equality o(A;) = o(A,) for all p €]p(8),p'(B)] if, in
addition, V. = V" + V57, V™ € Ky, Vy € L42°(R%), d > 3 where

Kq= {f € Ligo(R?) : lim sup / |z — y|*~¢| f(y)| dy = 0}
e—fOIeRd

|z—y|<e

is the Kato class and L7% is a weak L9 space.



§ 1 Introduction

We should emphasize that there are fairly simple examples of potentials V = -V, €
L% R?) for which A — V cannot be defined as a generator of a strongly continuous semi-
group on LP(R?) if p < p(B) or p > p'(B). Therefore, Jp(8),p'(8)[ is the maximal interval of
“bounded solvability” for —A+V, and in this sense the very last statement on p-independence
of 6(A,) = €\ p(Ap) cannot be improved.

The stability of the LP-spectrum has been studied in [HV1-3], [Sh], [St1], [ScV], [Are], [D2].
The present work is based on ideas developed in [Are], [ScV] and [Se].

The problem of the equivalence of the Green functions G4 of A~! and G4 of A~! was
discussed by many authors (see [Pi], [Ra], [Zh] and papers quoted there). Our treatment
of the problem rests on applying the fact that the spectrum of A, is independent of p for a
wide class of coefficients and that the spectral bound of —A, and the growth bound of e~*4»
coinside ([Na], [W1]). Our approach leads to general and, more importantly, to natural for
unbounded £ conditions on V. In particular, the following will be proven. Let 2 = R? and
let A=-A4+V.

IfV e Kg,|[(—A4)"'Wy|loo < 00 and —8A + V > 0 for some 0 < 3 < 1 then there exists a
constant 0 < ¢ < 1 such that for all z,y € R?

CGO(fB, y) S GA(I7 y) S c_]GO(I) y)

where Go(z,y) = cqlz — y|*~4,d > 3.
It would be mentioned that we do not impose any “optimal” decay assumptions on V except
for “||(=A) V4 |leo < 00”. The latter is a necessary condition for V = V.
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Construction and properties of “free”
Markov generators

Let 2 C R% be an open set and let a : 2 — R% ® R? be a measurable, symmetric matrix-
valued function which satisfies the ellipticity condition

I<a(’) <ay() a. e forsomea,: 2 — R}
in the sense of non-negative definite matrices. Set

d
a3 a
du-a-do=: 3 as(e)gn g, () = [ 1 ds.
7

1,5=1

We will be assuming that a;;, ¢, € L}, (2).

Let us consider the family 7 of all closed, symmetric non-negative quadratic forms in L?(£2).
As a general reference we use [K1, Chapters VI, VIII]. If 7 € 7, then there exists the unique
self-adjoint operator T > 0 such that

rlu,o] = (T2, T%), D(r)=Q(T) x Q(T),
rlu,v] = (Tu,v), ueDT),veQT)=:D(TV?.

In this case we shall write T' « 7.

Let 7,7 € 7 and assume that D(n + 72) =: D(r1) N D(r2) is dense in L%({2), then
n+mn €T . UT, o7,v=12and if T & m + 7, then T is called the form sum of 77 and
T, and denoted by T1+T5.

Let P be a Cp-semigroup on L*(£2). We say that it is a Markov semigroup if for all ¢ > 0

0< P'u<1 a.e whenever u€ Lz(ﬂ),O <u<1la. e
We define
Tar = {7 € T : 7T is a symmetric Markov semigroup, T « 7}.
We put

elu,v] =1 {(d¥. a-dv),
D(e) = Co(£2)x Co(R)

and define

T(e)={reT:7 D¢}

4



§ 2 Construction and properties of “free” Markov generators

and
Tu(e)={r €Ty : 7 De}.

We say that 7 € Ty is local if
7[f,9] = 0 whenever 0< f,g,fAg=0 (f,g€ D(r)).
We then define the following extensions of e:

p = €~ (the closure of €),
D7, D(1) = D; x Dy, Dy = {u € H}(R2) : (du-a- du) < oo},
™~ D 7, D(7n) = Dy x DN, Dy = {u € ' (2) : {dT - a - du) < oo}

Lemma 2.1. 7p, 7, 78 € Ta(€) and are local.
Proof. Define )
a* () =1+ (a() - {1+ —au()) ", n € N.

Evidently I < a™(-) < (n+ 1)] and a™(-) < a™*'(:) < a(-) a. e. Let £ = HJ(2) or H(R2).
Let

™[u,v] = (du-a*-dv), D() = LEXE
eMu,v] =: (du-a*-dv), D(™) = D(e).

Then 7™ € Tpr(e™), mp € Tar(e) and 7™ are local (see [['u]). Define 7 by

Tlu,v] =: li£n ™ u,v],D(r) =D x D,
D = {ué€ E:supe™fu] < oo}.
n

Then 7 D €™ by definition, and 7 € T(¢) by the limit theorem for an increasing sequence
of closed, symmetric non-negative quadratic forms ([K1, Ch. VIiI, Th. 3.13}). The Markov
property of e7*4(A « 1) and the local property of 7 follow immediately. Since 7p C 7, one
concludes that 7p is local. a

It should be mentioned that 7p is the maximal element of Tps(¢) endowing with the semi-order
<2
1 <71 < D(n) D D(r2) and m{u] < mpful, u € D(r).

One can show (we will not do this here) that 7 is the minimal element of Tp(c) if ay(-) €
L(82). This is particulary known for a(-) = I [Fu]. Also, in the case H'(2) = H}(2) it
is natural to describe the class of a(-)’s for which the Markov uniqueness (7p = Tmin) holds
true.

Let 0 < V € Ll (2)and 7 € T(e). If A & 7 then Q(V)N Q(A) is dense in L*(2) and
A+V is well-defined. Tt is easy to see using the Trotter-Kato product formula [K2] that if

7 € Tp(e) then e=H4+Y) is a symmetric Markov semigroup. If 7 — 7,1 « I we write T < [
iff 7 <t




§3
Weights compatible with A+V

Definition 3.1. Let ¢: 2 — R} and

o(z) if 1/n<o(z)<n,
on(z)=4q n if o(z)2n, (n € N).
/n if 1/n2 e(z),

We say that a weight p and the operator /f = A+V are compatible if
a) 0,07" € Wio2*(2). (WHA(R2) = HY(92));
b) o~2%do-a-dp < coH + ¢; for some constants 0 < ¢g,¢1 < o0;

¢) v € Q(H) implies ug), € Q(H) and (H'%p7%u, H'/?olv) = (H'/*u, /%) — & -
k(oa)[,v], w,v € Q(H) for all § € R! and all n € N,

where k(g) = ku(e)+ ka(e) + 8ka(0), ka(o)[u,v] = (v, g~ do-a-dv), ka(e)[u, v] = ~kr(e)[v, W),
ks(e)lu, o) = (ug~2do - a- do, o), D(k(ea)) = D(k,(e(n) = QUT) x Q(IT), v = 1,2,3.

Lemma 3.2.

1. If A= Ap or A; then
a)+b) = c).

2. f A= Ay then
a)+b)+eq) = ¢c)
where

(en) (Co(2) N HY( D))z (a2 = H'(2).

Proof.
1. Let H = A;4+V. Since Q(4;) C H}(2) and oS € W*°(£2) one has

u € Q(H) implies gdu € HA(),

dobu = d(éu) = of du + 6upd~'do,

dofT - a-dobu < 2620 |u|?dp - a - do + 2n¥dT - a - du.
Hence by b)
(3.1) (doPu - a - dpbu) < (1+ cob?)2n 1 Y 20, HV %) 4 26,60 %P||u||2
so that pfu € Q(A4;) and

(4 g 417 anu) = (AP, AP0) = 6 b(en)lw, ], w0 € QU

Since u € Q(H) implies gu € Q(V), the case A = 4; is proved.
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§ 3 Weights compatible with A4V

2. The same proof works for A = An. We recall only that assumption (eg) is valid if c.
g. 12 has the extension property [Ste, p. 181].

3. Let H = Ap+V. Since Tp C 7, we need only to prove that « € Q(H) implies upl, €
Q(H). Taking into account the fact that H is a Markov generator and that & > n=1¥l >
0, without loss we restrict w € Q(H) to 0 < u € Q(H). Since plu € Q(V), we have only
to show that pdu € Q(Ap). To do this it is sufficient (K1, Ch. VI, Th. 1.16}) to find
v € Q(Ap) with

(3.2) sup 7plvm] < 00 and ||géu — vpls = 0 as m — oo
m

for 0 <u € Q(H).

Since 7p C 7, it is clear that glu € H}(R2) and dpfu - a - dpfu € L}(f2) and the same
is true for u A ¢,£ € IN. Moreover, since | H/?us||; < || H/?u||2, one obtains (see (3.1))

(3.3) sup(dobwy - a-dpdwy) < 0o and |[@d(u — wi)|la — 0 as k — oo,
k

where w, = ¢ A k.

Thus, it suffices to prove (3.2) for 0 < u € Q(H)N L*(§2). By the definition of rp for
such an u there exist u; € C}(£2) with

[w—u) =: Tplu — up) + |lu — ug||5 = 0 as k — co.

Since 7p € Tum(e), we may suppose without loss that u, are real. Then, since 7p is
local, one has [u— ux V 0] € 7plu — ug] + |lw — ux V 0|3 — 0 as & — oo. In particular,
supy Tpluf] < oo, uf = ux V 0. Again, since 7p € Tar(e), 7plu A uf] < 7plu] + oluf]
and ||[VY/2(u A uf)|l2 < ||V ?u|l;. Hence (see (3.1)) (3.3) holds with wy = u A uf. The
latter means that it suffices to prove (3.2) for 0 < u € Q(H) N LT (£2). Once more,
for such an u there exist f; € C3(£2) with fx = Re fy and [u— fi] > 0 as k — oco. If
|#]|oc = € then there exist hy € C1(R') with 0 < by < 24,0 < Al <1 and he(0) =0
such that hgo f € C3{(£2),0 < hgo fr < 2€and tplhxo fi] < 7p[u] and |[Ju—hgo fills = 0
as k — oco. Let up = (hg o f) - ¢, where ¢ € CA(92), ¢(z) = L il & € suppy,0< ¢ < 1.
Then Tplux] < 2r[u] + 8€2(de - a - dp). ||V ?urls < 2£||V/3¢||; and therefore (3.3)
holds with wy = u; € C3(£2). Thus, one needs only to prove (3.2) for 0 < u € C}(£2).
The latter can be checked easily. |

Remark 3.3. A slight change in the proof actually shows that C3(£2) is a form core of
H = Ap+V. (cf. [D1, Th. 1.8.1]).

We next prove the following proposition which will be a crucial ingredient in our analysis
of the spectral p-independence.

Propositon 3.4. Let a weight p and the operator I are compatible. Definc the quadratic
forms ¢, k, k,,» = 1,2,3in L%(2) by

tlu,v] = (HY %, HV%) - § - k[u,v],6 € RY,
k= ky 4 ky + 8k3,D(t) = D(k,) = Q(H) X Q(H),
k[u,v] =: k(o)[u, v}, ky[u, v] =: k,(0)[u,v] (see Def. 3.1.).

Assume that




§ 3 Weights compatible with A+V

b’) do-a-dp < 9*(co+ ¢, V') a. e. for some v €]0,1] and 0 < ¢g,¢; < 0.
Then the following assertions hold
(i) For any § € R' the form ¢ is quasi m-sectorial,
tu,v] = (Hosu,v),u € D(Hos) CQ(H),veE Q(H)
where I, 5 is quasi m-accretive operator associated with &.
(i) Fix 8g > 0, then fix Ag > 0 by the condition §ox < 1 where
k= [l(co+ eV A0+ V)220
For all § € R' with |6] < g there exists w = w(bo, Ag) > 0 such that |[(z+ Hz 5) 7|22 <
|z = Aof™, Jarg (2 — Ao)| £ T + w.

(ii) Let F' C p(—H) be compact, I3 connected, F' = F and Ap € F. There exist 51 €]0, 6o)
and a constant ¢, such that
F Co(—Ha ), (2 + Hy 5 )22 < 2
for all § € R! with |6] < §; and all z € F.
(iv) For all A > A and all § with |6] < &
A+ H)' T = (A4 Hag) T, S € Lion(9).
(v) If F and &y are given in (iii) then
Oz + H)'0™ [ = (24 H2s)7' ), [ € Ligum()
for all § with |6] < &y and all z € F.

Remarks 3.5.
1. The condition b’} has been introduced by T. Kato [K3].

2. Since ¥ # 0 in b*), imy—es [|(co + et VImNV2(A 4 V)~1/2||5p = 0.
3. Proposition 3.4 holds true in the case v = 0 with the following additional assum ptions:
in (i) 62 < 7!,

in (ii)-(v) 62 < et and Ag> coA 2.

The proof of Propositon 3.4. Define the (complex) Hilbert spaces Hy C L*(2) C H_
setting Hy = (Q(H), ||+ [|)s [ell+ = |(ho + H)Y?ulj2, H_ = (H4)*. Let u,v € Hy. One has
0 < kslu] < ll(co+ eV 2ullf < A2|lull3,
kifu, o)l = [ko[v,u]| < (Vdo-a-dee™"|ul,VdT-a- dv)
Iteo + 1 VI 2ullof | H Pofly < klulls - [[oll+,
[Jullf = 8%kalu] = Aollull3,
V=16 - (Fau] - kolu]),

Re t[u] + Aollull} < [jull3-

IA

Re t[u]
Im t[u]
(1= &)}

i

I

IA

8



§ 3 Weights compatible with A4V

The above proves (i) and (ii) (see (K1, Ch. VI}). It is clear also that (A ?u, H'?%) @u, v},
where T : Hy = H_and D(H) = {f € Hy : Hf €L, H|DH)=H, K,u, v] (K, u,v),
k[u v] = (Ku,v), Ix,,,]x My = H_, Hys = H - §K rD(Hzg) ‘D(H”) {f € Hy :
Hf- fo € L%}, Set B =: A+ H - 62 ng,)\ > Ao a.nd define B =: B H{feHy: Bf € L?} - the
form sum of A+ H and —62p~2dp - a- dp. Since xk*§* < 1, B“li'2 cH_o — LA, B2 12 5 H,.
Define ¢ =: —\/—_1B‘1/2(f\?1 + K7)B~ 1/2 g0 that & = ¢* : L2 — L2 and

(3.4) (A+ Hap)™' = B™Y%(1 - v=10)"' B2,

Although the assertions (iii) and (iv) follow from (3.4) it will be convenient to use a slight
modification of it.

(3.4") (A4 Hyg) ' = 5~ V31 - Y) 1872 A > X2 A,

where § = A+ /Y = §S-V2IS-1/2; X, is fixed by the condition ok < +/Z — 1, which
implies

[¥llamz = [8I1S™Y2(E + K + 6K3)S /2 ||azs
< 16l(2k+ 16|8%) < 1

By (3.4’) one has
IO+ )= (A Hos) lamz S NSV 1= (1= Y) Yzmz = 0

as |6| — 0.

The latter immediately yields (iii) with slightly different F' (Ao € F). See [K1, Ch. IV, Th.
2.2.5 and Remark 3.13]. To justify (iv) we note that (3.4), (3.4°) hold for Hys(en), B(0n),
Y (en) where Hj s(p) = Hy 5 etc. Given @,9 € L%(£2) one has

(Y1 = Y1(en))e, ¥} o~ 'd(o— o) - a-dS™/2p, §71/ %)
|25 205 - H\/d(e —on)-a-d(o—on)o” ST,

lipllz - 1(1 = Za)(co + ex V1) /251 2y

IA

IA

where I, is the indicator of the set {z € 2: % < o(z) < n}. Since (eg+ 1 V! —7)1/25—1/2¢ €
L?%(12) and p, p7! € L{2(12), one obtains

Yi=w-— L} - lim Yi(on)
and similarly Y, = w — L% = lim, Y, (o), ¥ = 2,3. Therefore, by (3.4")
(3.5) (A Hag)™ =w— I —im(A + Has(en)™", YA > Ao 2 Ao
Let t,{u, v] denote t[u, v]. Then (i), (ii) imply

toa(u,v] = (HY 2o 0u, H'?9lv), w,veH,,
t?n[u:v] = (HZ.J(QH)U‘:”>3 UGD(HZS(Qn)):UeH-{--
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Note that gfe=*p7%,1 > 0 is a Cp-semigroup on L*(2) and |[ele 7 p=¢||a—2 < 78|, Let
—TI' denote its generator. We claim that I' = Hys(0y.). Indeed for f € D(Has(0n)) C Hy
and g € M4 one has

t

[t 2 1 B g ds
0

— (H'?07% f,H'0%g) = (Has(en)f,9) ast— 0.

)

%((1 —obe o NV ,g) =

Hence I" [ D(H2,5(0n)) = Hes(on). Since both —I" and —H; s(pn) are generators and A €
o(—I)Np(—Has(on)) for A > Ag > 0, the last equality means that I" = I3 s(g,). In particular

(3.6) (24 Has(on)) ' = 05z + H) Y078, z€ o(—H) = o(—Has(0n))

Given f,g € L%,,(2), choose ng = no(suppf,suppg) such that
@A+ H)'0™’f,9) = (ea(A + H) 07’ £, 9)

for all A € o(—H) and n > ng (due to 0,07 € L (12)). Now (3.5) and (3.6) combined lead
to (iv) (for all A > Ag > Ag). We are now in a position to prove (v). First note that if A > Ao,
|6] < 6o then A € p(—Has) and by (3.4) [(A+ Ha—6)"']* = (A + Hz6)~". Let f,g € L% ().

By (iv) one has

(PA+H) %7 f,9) = (CO+H) 0,07 (A + H) )
= ((/\ + Hz,ﬁ)_l.f’ ()‘ + H?,-—&)_Tg> = (()\ -+ ]1‘2,5)_2f=g>'

Thus, o5(A4+ H)~%0=%f = (A + Ha,5)~"f for £ = 2 and hence for all £ € N. Finally, let A € I%,
ze{f e F:|6— Acg < 1},18| < 6;. Using (iii) yields

o0

((z+ Has) ' frg) = S ((z= A M+ Has) ™ frg)
k=0

STz = MM+ HY 070, 0%0) = ((z+ H) 078, 0%9)
k=0

(&%(z+ 1) " 078 f, g).

Il

I

Since F' is compact, (v) is proved. a

10



§ 4

(LP, L) estimates for “weighted”
resolvents

Before proving the crucial for the whole approach (LP, L7) estimates we need the following
technical lemma.

Lemma 4.1. Let 7 € Tps(g) be such one that
TOTOTD

or
™~ D7 D rp if the condition (en) of Lemma 3.2 holds.

If 0 < u,u?"! and uP/? belong to Q(H) for some p > 1, H = A4V, A & 7, then ru,u?"!] =
41’—;,11'[1/,”/2] and

— -2
(Y208 0, HV 28 uP~1) = 4’”?2[13’/2] + |{V1/Pu||£+2p—1;——6-k1[up/2] — 6%k3[u”?), 6 € R
where kq[v] = (v, 07 'dp,, - a - dv), k3[v] = (vp~%dp, - a - do, v).

Proof. We consider e. g. the case ; D 7 D mp. If a, € L*™(2) then the statements are

evident for v € C}(2) and, since H}(12) = (C[',(Q));‘Il(m, for u € H}(R2) too. Let 7™ k™, kT
0

be built by a™(-) (see the proof of Lemma 2.1). Because of 7 C 7; one has

rlu,v?™ = wfu, w7l = lim 77 [u, uP~h.
™ u,uP"l] = 41);—217'"‘[1;”/2], ™ [uP/?] = r[uPl?] = 7[uPl?),
K™, 0 4 k[, Y] = Qf%gk;ﬂ[upﬂ] S 2P ke,
EP[u, Pt = kPluP/?] — ka[uP?] as m — oo,
These completes the prove of the Lemma. a

Proposition 4.2. Let # = A4V, A = 7,5, D7 D 7p (or 75y D 7 D 1p if 12 satisfies (eg)).
Let the assumptions of Proposition 3.4 be hold. Forall 1 < p < g < co with 1/p—1/¢=2/d
and 0 < 1/p—1/q < 2/d if ¢ = oo there exist 0 < A,, 8, < oo such that the operator
S5(A+ HY o8 1 LR, (2) —» LL (), A > 0,6 € R', can be extended by continuity to a
bounded map from LP(2) into LI(§2) as soon as A > A, and |§] < &,.

Proof. Let u, = g5(\ + H)_l,g;‘sf,O < fe L% (M, A>0,6 e R Itis clear that

0 < u, € L®N LY) and, since etfrg = e g g € L' N L3(2), 1 £ 7 < o0, one has
(A + H) 078 f = 07%u,,. Therefore o;%u, € D(H,) and

(4.1) (A + Ho)opPun, 07 %ur ™) = (fug™h) V> L

11



§4 (LP,L9) estimates for “weighted” resolvents

We need now the following general result [LSe, Th. 2.1]. If B is a symmetric Markov generator
and if h € D(B,) for some 1 < r < oo then h|h|""2/2 € Q(B).

The above leads to (o7%ua)/? € Q(H). Putting consequently r = 2,2(v — 1), v with » > 3/2,

vf2

and using the fact that Q(H ) is invariant under multiplication by 05 one has up,,u¥™!, uy,

all belong to Q(H). Hence Lemma 4.1 is applicable to (4.1) so that

n

-1
= r[o]) + Allo|lZ + (v, Vo) = (f,ult) — 27

(0] + 6%ksf0]
where v =: u;ﬁ.
The inequality 2k;{v] < pksfv] + %T[’U] with g = Jl‘j"'Tflu|r5| and the condition ks[v] < col|v||3 +
c1{v, V1=70) give
-1
22 Do) + (A = coldla)lIB < (™) + exldls(o, VI70) — (v, V)

where s = || + ujz%zl.

1
By the Young inequality ¢;|8|sV1=7 < y(e(|6]s)V/7 + (1 — )V a. e., so that

(4.2) L+ = KWl < (fu ) — 70, V)

where A = ¢ob, (6, + uJ”—'—l) + (e16,(8, + y]__l))lf"r
Since (£, u5™1) < }f[l,lualls™, one has by (4.2)

(43) A =X )llunlls < IFls A > X0, 18] < 6,
Similarly,
(Frun™h) < IS lpllenlly < eile, QNI + (v, d)llually,
where 1 — L =2 4 f ,d > 3,p> 575 Now (4.2) and the Sobolev imbedding theorem
P vy =31 = 1=2 Zm

combined give

(4.4) lunlly; < (v, )| flp-

The case -g—;% <p< q<oo,}—)—
(3.5) to (4.3), (4.4) with A > A,
1<p

To treat the case p > 2,q = 00, we proceed as follows. Fix pg E]z,oo[ and let A > Apo SO
that ||wnlip, < (A - )\po) H filpo- Let p > po and jy = J—, so that 1 < 7; < j. By the Sobolev

imbedding theorem [+ V0[5 2 o, and b mequalites (£,71) < ol

=§ <p<q<oo l-~%§§rfollows now by applying
AoV Ap, 8] < 8 A ép. By duality the same holds for all

[unllb < |ltnlips - |[un|| (o 1) , we obtain from (4.2)

Ilunlli <c- (=) llpo - ““n”(p e,

where I' =1 4- }7 and ¢ = ¢(d, po, bp, ). Set ¢ = f,—. One has

0

-1

L
llnllp-1)py. < [C (p- 1)F||f||po] TNl pqypy -

12



§4 (LP,L%) estimates for “weighted” resolvents

The latter admits iteration on p. Putting consecutively p — 1 = pg — 1,(po — 1)¢,(po —
1)e?,...,(po— 1)v™ one has

Om
(4.5) ltnllpgimss < [e-(p= D" - e O
where .
m
. 1 Po — l)L
Gm = g 1+ (po — 1)eb1 H 1+ (po — 1)t
m—2 -1
N m—-k—-1 {po — 1) 7* m
fr = .Z T Go= D H T4 (o= Dot " T4 (o~ D
(Po ~ 1)
b =
" Po ']:E Po — 1

We then have

:Po po—1 =1

Let u = p®(A+ H) 'o~%f. Applying (3.5) to (4.5) yields

1
. o =
tlloo < lim [fullppemss < [e- (po = 1)) e || fllpg

Remarks 4.3.
1. Without further assumptions the resolvent (Z—".Hz'g)—l even if V' = 0 cannot be extended

by continuity to a bounded map on L'(£2) (or L%(12)) for some z € p(Haz ) and & # 0.

2. The above variant of Moser’s iteration process appeared in [Se] and then was applied
to related problems in Orlicz spaces in [LP].

We consider now the case of V =V, —V_,0 < V4 € L]
developed under the following condition on V_

(£2). L? theory of A+ V can be

loc

Vo < BA+ Vi + ¢(p) for some 8 < 1 and ¢(8) € R
in the sense that
(f,(Vona)f) S BULAL) + (L Vaf) + BN

forall f € Q(A)NQ(V}) and forall n € N.
Setting A5y = A+V, — V_ A n and using semiboundness of A(,) and (pointwise a. e.)
inequalities 0 < e~ |f} < e~*4n41)| f| (¢ > 0) one has:

Vi =:s— L? — lim e~
m

exists and determines a Cg-semigroup. For all p € [1(8),t'(8)] (¢(B) = 2/1+ VI =B, t'(B) =
2/1-/1=-0)

(4.6) Vi=: (V| [LQOLP])LP o

13



§4 (LP,L%) estimates for “weighted” resolvents

is a Cp-semigroup and
Vpllp—p < 0.

Let —A, denote the generator of Vi. Then for all p €]t(5),t'(6)[ and for all A > ¢(8) and
1<ihi<J

(4.7) A+ AT EP(2) = LPi(N2).

Moreover, (A + A,)~! is extended by continuity to a map from L% (f2) into LPi1({2), ql—l =
-,;}—1 + 31; The above facts can be easily extracted from the proof of Th. 3.2. in [LSe]. The
proof on Proposition 3.4 and 4.2 can be adapted to obtain the following
Proposition 4.4. Let Ht = A4V, satisfy the hypotheses of Proposition 4.2. In addition,
assume that

do-a-dp < coo® a. e, for some constant ¢p < 00,

Then for all p €]t(8),'(8)[ there exist 0 < Ay, &, < 0o such that the operator p®(A+4)"1p7%
LS (2) = Ll (2),)A > ¢(B),6 € R! can be extended by continuity to a bounded map

loc
from LP(£2) into LP1($2)

and
from L%(2) into LP/1(42), 1.1 + i
@1 Ph N
for all A > Ap and |§] < 6,.
We comment that one can state first all of the claims for A, (in order to have the fact:
(A Amy) Y078 F € L°NLY(R), f € LZy(£2)) and then taking the limit obtain the desized
for A.

14



§ 5

L? spectral independence

Definition 5.1. We say that ¢ : R? — R% is L'-regular if
1) |b(z) = ¥(y)| < L]z — y| for all z,y € R? and some constant I < co.

2) Foreache >0
sup Z e~ WE-¥0) = ¢, < 0.
keZy icZy

Lemma 5.2. Let 9 be L'-regular, § > 0 and 1 < p < ¢ < 0o0. For each linear operator
N L2 (2)— L}, () one has
W llry—rp < esgeY? sup [|E¥N el
[€1<60
foralp<r < <g.

Proof. We subdivide R? into cubes of unite size length as follows. For i € Z; define
Qi=:{zeQ:lz—1le <3} Let k,i € Zg, f € L®(R2), suppf C Q;. Putting

g =000 | o€ 0 ) w0
€ = o ITIEL (0 # 9(0) and € = 01 4(8) = U(3).
One has
“Nf”Qk,q = |Ie_EqpeE."bNe-c.‘bee'wf“Qk.q

ce VBt YN g - [165¥ i
eMe VY BIEY g,
M C Y| fllo. 0 < cEMeSoWR=PO ) fllo.

IA A IA

(where sup,eq, eb¥(k) L p=E¥(e) < eholivd _. e, M = SUP|¢)<s, ||e‘f"¢’Ne"€'¢’“p_.q). For arbi-
trary f € LS5,(12) one has

VA = > IVAIB, ., < X IVNAIG,
k

keZy

> (X We o)

k

s Y (Lol g,,) "

PR
chQMrz Z (Z e-Sul’f"(kJ—‘b(iN“f”Qt_ rl)fz
koM
MR £
(sce [DS, Ch. VI, 11.4] for the last step). w

IA

IA

IA

IA
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§ 5 LP spectral independence

Remark 5.3. Lemma 5.2 is a straightforward generalization of Proposition 3.2 in [ScV],
where it was considered the case ¥(z) = z and ry = 7.

Theorem 5.4. Let A = Ap, A; or Ay. (If A = Ay we suppose that 2 has the extension
property). Assume that

¥ R — R%is L'-regular,
d(a-¢)-a-d(a-9) < er(e) for all a € R with || <€, a.e. z € 2

where ¢1(¢) — 0 as € = 0. Then o(Ay) = 0(A),¥p € [1,00].

Proof. Since e~*4»[LP(2)] C LP(2) N L®(N2) C LIY(2),q > p, one has o(A4,) D o(A) (see
[HV1)).

Put o(:) =: ga(") = eﬁr"b('), a € R4\ {0}. It is easily scen that ¢ and A are compatible. Now
the resolvent equation

(24 A26)7 = (A4 Ag) ' H (A= 2)(z + Arg) T (A + Azg) T,

Proposition 3.4. (iii) and 4.2 imply
102+ Ae) " llpz < (1 + c2sup |2 = Al)e
z€F

for z,A € F,|6] < 6;,0< % - -;- < % Proposition 3.4. (v) and Lemma 5.2 yield

)
le’(z + 42)7 0 lip—p < 1V, 18] < 5
Repeating this procedure s times leads to the bound
§ -1, -6 (9) d
le®(z+ A) 07" [lpmp < ¥, s = i +1

for z € F,|6| < 6,,1 < p < 2 and by duality for all 1 < p < co. Since e~*4r are consistent, we
obtain the inclusion F C g(—A,) Vp > 1. O

Corollary 5.5. The spectral p-independence of Ay, 1 < p < oo holds if

ay € Ll .(92),

loc

ay(z) <c-(1+zH)In"Y(e+|z]) a e ze{ye:|y >R}
where v > 0, R < 00,0 < ¢ < oo are some constants.
Proof. Set ¢(z) = z(1 + i:z:l)‘lln"l(]j'?{l V1), n=%+1. 0
Remark 5.6. For H+ = A+V, the following is valid. If for all |z sufficiently large

< V+($),C >0,m >0,
ay(z) < (14 z/*™),8>0,p <2,

then cr(H;',“) =o(H*),Vp 2> 1.

16



§ 5 LP spectral independence

Theorem 5.7. Let A and 4 satisfy the hypotheses of Theorem 5.4. Then the following is
valid:

(I) Let A(V) = A. If for some k& > 1
le™ 4 ) [l < Me!(i £y, S € LN (R2)N LX)

then o(A,) = o(A), Vp € [1, c0].
Moreover, the resolvent (z — A)~! is an integral operator with

(53) Gz = 40) o = s sup ([ 1z = 27 (@) d2)” = 1= 1) lpen

ve
for all z € p(4) and p €]5, c0[.

(II) For all z € p(A) the resolvent (z — A)~! extendes to a bounded map on L7(2) for all
r €]p(B), P'(B)I.

(ITI) If for some po €]p(3),2(
Vafllpo < M| fllpy,  f € LA(2) N L7(R2)

then o(A,) = o(A), Vp € [po, Pol-
In particular the following is always true

o(Ap) = a(4), peliB),t'(B)}

Proof.

(I) In fact, the proof of Theorem 5.4 gives the bound

6%+ )y <8, ze RIS 8 [ 5]

Combining with the Dunford-Pettis theorem this yields (5.1) for A(0) = A. There
are many ways of deriving (LP, L9)-estimates for g5(A + A(V))™'p~¢ from the related
estimates for p®(A + A)~1p7% e. g. one can use the inequalities (6.2). After that the
proof of the equality ¢(A,) = o(A) can be carried out in the same manner as it has
been done for A,.

(IT) The proof follows directly from Proposition 3.4, 4.4 and Lemma 5.2.

(1IT) By virture of (IT) the proof of “g(A,) D p(A)" is straightforward. If py €]t(5), 2[ then by
(4.7) (2= Ap) Y LP(2)] C LY(R) for all z € p(—A,) and suitable ¢ > p, so p(A,) C o(A)
for all p € [po, pj]. Thus we have only to treat the case py €]p(8),¢(8)]. Lemma 5.2 with
r1 < 79 applied to A = (A 4 A)~! with A > ¢(8) sufficiently large and Proposition 4.4
yield (A + A)~' : LP — L7 for all p € [po, ph) and ¢ = g, > p. Thus, again p(4,) C o(A).
The last claim follows from (4.6). o

17
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§5 LP spectral independence

Remarks 5.8.

1. The hypotheses on V' of Theorem 5.7.1 can be checked for potentials which non-negative
parts belong to the Kato class

Rut*) = {1 € L @) i A+ A4V2) | fllo < 1
(see [LSe, § 5]). Highly oscillating potentials are considered in [St2)].
2. Under the assumptions of Theorem 5.7.1I the expected result on integral representability

of (z— A)™1,z € p(A) should be as follows.

If p €]p(B),p(8)[ and z € p(A) then the extension of (z — A)™! to a map on LP(2)
is an integral operator. At present the following is known. If p €)p(B),p(8)] and
Rez > s(—=A) =:sup{A € R' : A € o(—A)} then the extension of (2 4 4)~' on LP(R2)
is a regular integral operator.

To justify the claim we note that
[(z 4+ A)~'h| < (Rez+ A)7Y|h|, Rez > s(—A),
A+ )7 < [+ ARV)TUIF [+ AT, £ 20,0 > e(8) V0,
with &~ 1 E]O,%; — 1] sufficiently small. Thus, if fn, f € LP(2),|fa]l £ fand f, = 0 a.

e., one has 1
A+ Al S g [0+ Ap) 7l
where g% = (A + A(kV))~Lf.

Since (A + Ap)~! is integral, (A + Ap)~'|fu| — 0 a. e. The claim follows now from the
Bukhvalov criterium [Bu] (see also [ArB], [W2]) for A > ¢(8) v 0 and, hence, for all z
with Rez > s(—A).

Of course, the above arguments work for A,, p €]i(8),t'(B)[, with arbitrary a(-) >
I,ay € L} (92).

In applications it is usually needed more than the bare fact of integrability, e. g. in the
theory of eigenfunction expansion one needs Carleman’s property of (A + A)™* to hold
for some s (> ¢) and all A > 0 sufficiently large. One can show that in the conditions of
Theorem 5.7.11 the latter does hold (see also [Se], where considered a slightly different
situation).

3.Let 2 = R4,A=—AV_ =V, +Vy. fVy € Lio(RY),d > 3 with Vi llge <
2
2§(452)28,0 < p < 1,024 = |{z € R% |z| < 1}|, then according to [KPS]

™ =47V ), < Myl\fll, S € L2 01 12,9 €]p(8), H(B)].
By (6.2) one has
=24V fll, < Fye| 11, S € I 1 17, ¥p €lp(), ¥ (B)]

where V = V, — V_ V! € K4 Set pu(z) = elel® o € R \ {0}. Then all of the
assumptions of Theorem 5.7.I1 hold and hence o(4,) = a(A4), A= —A+V.

18



6

Equivalence of Green’s functions

Since local and/or global singularities of a(:) as well as local singularities of V_ such as
clz — 0|72, 20 € £ distroy the property of e~*4, e~ to admit an upper Gaussian bound,
there is not any deep link between this property and the spectral p-independence of Ay, 4,
as Theorems 5.4 and 5.7 show.

Nevertheless, we indicate one extremely useful application of Theorem 5.7 to the problem of
the equivalence of the Green functions G 4 and G 4, which shows that the question of spectral
independence presents not only academic value.

Theorem 8.1. Let A = Ap or A; satisfles the hypotheses of Theorem 5.4. Assume that for
some k > 1

(6.1) A(EV) > 0,
' lemt AVl Ly < Me*t (1> 0,w > 0,M > 1).

Then for any m € [1, k[ there exist finite numbers My, M; such that
le= 4 oy < My, e o < MEE (1> 0),

Furthermore, if
R=RY a,€L®N) and [[A" 'V |eo < o0

then there exists a constant 0 < ¢ < 1 such that

cle = y*~* < Ga(z,9) < Mz - y*, Vz,y € R
Proof. Fix m €]1, k[. The inequality

m k—m
(6.2) e—tA(mV}f S (e—tﬂ(kV)f)T s (e—tAf)-—k_ a. e 0 S f € Ll(g),
which is a consequence of the Trotter-Kato product formula (see [HS]), and (6.1) imply the
bound o
||€_1A(mv)||1_.1 < MEeFw

and hence by Theorem 5.7.1 a(A1(mV)) = a(A(m1V)) Ym, €]1,m[. Since A(mV) > 0, we
conclude that the type of e~t41(™1¥) is non-positive, so that

lle=t AtV Ly < My (220, M < ).
Since A(m1V) > &L A, one has
Q(A(muV)) € L¥(0).
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86 FEquivalence of Green’s functions

The latter is equivalent to the bound

(6.3) e MMV Loy < Mpt™% (> 0, My < 00)

(see [LSe, Th. 7.1] or [VSC, Ch. IIJ).
If a(-) € L°(R?) then due to [Aro] (see also [D1], [Str]) there exist constants 0 < Mg, co < 1

such that
z—y|? z—
(6.4) Mot"g'e" oot < e (z,y) < ﬂ/f{lt"%e"mj—ﬁi“
for all ¢ > 0 and z,y € RZ.
The R.H.S. of (6.4) combined with (6.3) and the inequality

1

e~ tHV) (5 ) < (e-‘A(m’V’(z,y))'"L‘ (e e,y) T

give the bound

-
{6.5) e~V (z,9) < Afglt'ge—c W (t>0,0<e,M3<1).
Now choose p; > 1 such that ||A™ WV |leo < p1 — 1. Put W = — 1 — V4, p > p. By [Vo]

the operator —(A; + W) defined on D(A;) generates a bounded Co- semlgroup on L1(£2) and
A(W) = A; + W. Next, A(kW) > 0 and ||e"*h W), < M with k = F > 1. Thus,
the preceding leads to (6.5) with W instead of V. The latter, the L.H.S. of (6.4) and the

inequality 1
(e @, )

o=

o) < (0 )

give the bound

T—y|?
(6.6) Mat~5e~5RE <Mz, y) (0 < My c< 1),
Now the equivalence G4 ~ G4 follows from (6.5), (6.6). a
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