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A RESTRICTED WREATH PRODUCT WITH THE PROPERTY R,
EVGENILJ TROITSKY

ABSTRACT. We prove that for any automorphism ¢ of the restricted wreath product ZywrZ?
the Reidemeister number R(¢) is infinite.

INTRODUCTION

The Reidemeister number R(¢) of an automorphism ¢ of a (countable discrete) group G
is the number of its Reidemeister or twisted conjugacy classes, i.e. the classes of the twisted
conjugacy equivalence relation: g ~ hgop(h™'), h,g € G. Denote by {g}4 the class of g.

The following two interrelated problems are in the mainstream of the study of Reidemeister
numbers.

The first one is the following conjecture by A.Fel’shtyn and R.Hill [9]: R(¢) is equal to the
number of fixed points of the associated homeomorphism g/b\ of the unitary dual G (the set
of equivalence classes of irreducible unitary representations of ), if one of these numbers

is finite. The action of gg on the class of a representation p is defined as [p] — [p o @]
This conjecture is called TBFT (twisted Burnside-Frobenius theorem). In fact it generalizes
to infinite groups and to the twisted case the classical Burnside-Frobenius theorem: the
number of conjugacy classes of a finite group is equal to the number of equivalence classes
of its irreducible representations.

Some later by A.Fel'shtyn and co-authors the second problem was formulated (see [11]
for a historical overview): the problem of description of the class of groups having the R
property. A group has the R, property if R(¢) = oo for any automorphism ¢ : G — G.
Evidently, the second problem is in some sence complementary to the first one: the question
about TBFT has no sense for R, groups (formally having a positive answer).

The TBFT conjecture (more precisely some its modification) was proved for polycyclic-
by-finite groups in [13, 21]. Preliminary and related results, examples and counter-examples
can be found in [9, 12, 14, 10, 40, 19, 23, 41].

The property R, was studied very intensively during the last years and was proved and
disproved for many groups (see, in particular [8, 31, 15, 16, 38, 28, 11, 1, 25, 2, 17, 30, 32, 34,
33, 5, 18, 26, 27, 36, 6, 4, 20] and the literature therein). For Jiang type spaces the property
R+ has some direct topological consequences (see e.g. [27]). Concerning applications of
Reidemeister numbers in Dynamics we refer to [29, 7].

In the present paper we prove that the group Zy wr Z* = (Z/2Z) wr (Z @ Z) has the
property Ro.

The R, property was proved for some wreath products by Z and their generalizations in
(39, 37]. The case of Z& Z is much more complicated, because Z has only one automorphism
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2 EVGENIJ TROITSKY

with finite Reidemeister number, namely — Id, and its square has infinite Reidemeister num-
ber. For Z @ Z we have a lot of automorphisms with finite Reidemeister numbers, and many
of them have finite Reidemeister numbers for all their iterations.
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1. PRELIMINARIES
The following easy statement is well known:

Proposition 1.1. Suppose, H is a ¢-invariant normal subgroup of G and ¢ : G/H — G/H
is the induced automorphism. Then ¢ induces an epimorphism of each Reidemeister class of
¢ onto some Reidemeister class of ¢. In particular, one has R(¢) < R(¢).

Denote by C(¢) the fixed point subgroup. The following much more non-trivial statement
can be extracted from [24] (see also [13]):

Lemma 1.2. In the above situation R(¢|z) < R(¢) - |C(9)].
It is well known (see [12]) the following.

Lemma 1.3. For an abelian group G the Reidemeister class of the unit element is a subgroup,
and the other classes are corresponding cosets.

The following statement is very useful in the field.

Lemma 1.4. A right shift by g € G maps Reidemeister classes of ¢ onto Reidemeister
classes of T,-1 o p, where T, is the inner automorphism: 1,(x) = gxg~'. In particular,

R(7g0¢) = R(¢).
Proof. Indeed,

zye(z™)g = x(yg)g 'e(z)g = x(yg) (T4~ 0 ) (a").

Also we need the following statement ([22], [19, Prop. 3.4)):

Lemma 1.5. Let ¢ : G — G be an automorphism of a finitely generated residually finite
group G with R(¢) < oo (in particular, G can be a finitely generated abelian group). Then
the subgroup of fized elements is finite: |C(¢)| < oo.

Note, that this is not correct for infinitely generated groups, see [41].

2. THE MAIN RESULT

Let I' := Zy wr Z? be the restricted wreath product. In other words,
I'= @(m.k)€Z2 (Z2)(m,k) N Z27 (ZQ)(m,k) = Z2a Oé(S, t) (5m,k) ‘= Omts,k+t)

where (s,t) € Z* and d,,, is a unique non-trivial element of (Z3)(m k). The direct sum
supposes only finitely many non-trivial components for each element (in contrast with the
direct product corresponding to the (unrestricted) wreath product).

The group I is a finitely generated metabelian group, in particular, residually finite (see

e.g. [35]).
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Let ¢ : I' — I' be an automorphism. We will prove that R(¢) = oco. Denote ¥ :=

D(m.k)ez? (Z2)(m ) CI'. Then X is a characteristic subgroup as the torsion subgroup. Denote
the restriction of ¢ by ¢’ : ¥ — ¥, and the quotient automorphism by ¢ : Z? — Z2.

If R(¢) < oo, then R(¢) < oo by Proposition 1.1; and by Lemma 1.5, ¢ has finitely many
fixed elements. Thus, by Lemma 1.2, R(¢') < oo. Hence, to prove that R(¢) = oo, it is
sufficient to verify that R(¢") = oo.

Since Y is abelian, the results of e.g. [3] imply that

(1) ¢'(a(g)(h) = a(d(g))(#'(h), hex, geZ
Any element of ¥ is a finite sum of some elements 9d,, ;. Let
(2) ¢'(00,0) = 0i(1),i(1) +*** + Gi(n),j(n)-

Lemma 2.1. In (2) one has n = 1. Moreover, ¢' is a permutation of 0y, ’s.

Proof. First of all, apply (1) to h = g0, g = (m, k). We have:
(3) ¢ (Om) = ¢'(alg)(h)) = a(d(9)) (¢ (50,0))-
Thus, for any (m,n) € Z?, the element ¢/(d,,,) is obtained by the appropriate shift of
indexes in the right side expression in (2).
Consider

p: Y — ZQ, p(dm,k) =1.

Its kernel L is a subgroup of index 2. Suppose, n is even. Then the image of ¢’ is contained
in L, by the definition. But ¢ is an isomorphism. A contradiction.

Now suppose that n is odd, n # 1, and ¢'(h) = 6o for some h = 6,1y s(1) + -+ + r(1),s(0)-
Let

1t Bmryezz(Z2) mp) = Omez(Za)m), T2t Dmkyez2(ZL2) mp) — Drez(Za) k)

be natural epimorphisms (vertical and horizontal summation). The images 71 (¢’ (0r(w),s(u)))
u=1,...,t, have the same odd number of non-zero summands (and moreover, these images
can be obtained from each other by index shifts over Z). The same is true for m,. At least
for one of m; and my this odd number is > 1, e.g. for m;. After cancellation of equal images
this means that there is several distinct elements 71 (¢’ (dr(u),s(u))), Obtained from each other
by index shifts over Z, and having dy = m;(dp0) as their sum. In particular, they have all
left-end elements distinct and all right-end elements distinct. Thus, their sum needs to have
at least two non-trivial components (the most left of the left ends and the most right of the
right ends). So, it cannot be equal to Jy.

Thus, n = 1. Together with the argument at the beginning of the proof, this gives the
second statement. U

By this lemma, we can define (g, o) by ¢'(60,0) =: 62,4, The equation (3) can be written
now as

(4) ¢/(5m,k> = 5m/,k’a (mlv k/) = E(ma k) + (x07 yO) € ZQ'
Lemma 2.2. If6,, ,, and d,,,, belong to the same Reidemeister class of ¢, then

(5) at(xlayl) +$71<$0, Yo) + -+ + &0, yo) + (20, %) = (22, 92)

for some integer t.
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Proof. By Lemma 1.3, the elements d,, ,, and d,,,, belong to the same Reidemeister class
of ¢' if and only if 04, 4, — 02y, = b — ¢'(h) for some h € ¥. Representing h as h =
Su(1)w(1) + - + Su@)we (with distinct summands) and applying (4) one has

t

Saran = O = h = &'(1) = _[Bu(iy () — Sutiywtiy)-

Jj=1

So one of §’s with "4 on the right should be equal to d,, 4, , one of §’s with ”-” on the right
should be equal to d,,,, (or vice versa), and the remaining ¢’s should annihilate. Since all
du(j)w(y) are distinct, all d,(;y () are distinct too, by Lemma 2.1. So the cancellation can be
only as dy(j),u(j) = 5u(l yw(y- Thus, after the appropriate renumbering of 1,...,¢, we have:

(l’uyl) = (u(1),v(1)),  (u(1),v(1)) = (u(2),v(2)),
(u(t = 1), 0(t = 1)) = (u(t), v(t)),  (u@)',v(t)) = (z2,92),

5(171,91) ($0,y0) = (u(2),v(2)),
& (w1, 01) + B(z0,90) + (T0,90) = (u(2),0(2)') = (w(3),v(3)),
5($1,y1)+€$2($0,y0) E(xo,yo) (fo,yo) = (u(3)',v(3)'):(u(4),v(4)),
G (@r,y)+ 0 (2o, y0) + - + B(@o, 00) + (z0,90) = (w(t),v(t)) = (22, 15).

Theorem 2.3. The group I' = Z* wr Z* has the property R..

Proof. One can reduce the proof of R(¢) = oo to the case (xg,yo) = (0,0). Indeed, consider
the element w := (—x9, —y) € Z*> C I" and the corresponding inner automorphism 7, : ' —
['. Then by Lemma 1.4, R(7, o ¢) = R(¢). On the other hand,

(Tw © 9)'(00,0) = a(w)(¢'(d0,0)) = a(—20, =Y0)(Vzg.50) = J0,0-

So, suppose (g, ¥o) = (0,0). Then (5) takes the form Et(xl, Y1) = (x2,ys) for some integer
t. Thus, it is sufficient to prove that ¢ : Z? — Z? has infinitely many orbits.

For this purpose denote by A € G'Ly(Z) the matrix of ¢. Let us show that each orbit
intersects the first coordinate axis not more than in 2 points. Denote by (x,0), x # 0, one
point from the intersection and suppose that

*(5)=(5)

is the next intersection. Evidently, z # 0, and

n_ [ a b
v (i)

with integer entries and det A” = 4+1. Thus, a = £1. Hence, for a = 1 we have only
one intersection point, namely (z,0), and for « = —1 we have two intersection points:
(£x,0). O
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Remark 2.4. In fact, it was sufficient for our purposes to use the following well-known
exercise-level fact: the set {(x,0) | x € Z, © > 1} parametrize orbits of the entire G Ly(Z)
on Z & Z because for any matrix B € GLy(Z) the greatest common divisor of coordinates

of B ( v ) is equal to x.
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