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A Symbol Algebra for Pseudodifferential Boundary
Value Problems on Manifolds with Edges

ELMAR SCHROHE AND BERT-WOLFGANG SCHULZE

We introduce a symbol algebra for pseudodifferential boundary value problems on
manifolds with edges. The elements in this algebra consist of (i) a Mellin part with a
holomorphic Mellin symbol near the edge, (ii) a pseudodifferential part slightly away
from the edge, and (ili} a residual term, a so-called Green operator.

Introduction

Following upon earlier work [15], [16], this paper is part of a series of arti-
cles devoted to the construction of an operator-valued symbolic structure for
pseudodifferential boundary value problems on manifolds with edges. Our in-
vestigations here focus on a symbol algebra for the non-smoothing part of the
operators, induced by the edge-degenerate symbols in the interior. It will be
completed to the full algebra by adding the smoothing elements with asymp-
totics treated in [16].

A wedge in our terminology is an object of the form C x RY, where C =
X x [0,00)/X x {0} is an infinite cone over a smooth compact manifold with
boundary, X. Following the general approach, we consider symbols which
coincide with the usual elements in Boutet de Monvel’s calculus away from the
edge; near the edge they are described in terms of operator-valued symbols on
RY taking values in operators on the cone.

We show, in particular, that the approach to a wedge pseudodifferential calcu-
lus developed in [17, 18, 19] for the case of boundaryless X applies in a similar
form to the case of boundary value problems. At the same time we further
develop the technique of using operator-valued symbols and give a new concise
description of the nonsmoothing contribution to the edge symbol algebra.
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1 Pseudodifferential Boundary Value Problems

In this section we review the basic elements we need for the construction of
a calculus, namely on one hand a parameter-dependent version of Boutet de
Monvel’s calculus based on the concept of operator-valued symbols and, on the
other, the notion of wedge Sobolev spaces.

We start with the definition of parameter-dependent operator-valued symbols.
The point in this construction is the special kind of estimates involving a
group action. We proceed by introducing weighted Mellin Sobolev spaces,
holomorphic Mellin symbols, and the associated operators. We review the
definition of edge symbols, show how they can be considered as operator-valued
symbols and how one can link pseudodifferential and Mellin edge operators by
a process called Mellin quantization.

The exposition here is necessarily concise; all details may be found in the papers
[13], {14], and, mainly, [15].

Group Actions and Operator-Valued Symbols

1.1 Operator-valued symbols. A strongly continuous group action on a
Banach space F is a family k = {«) : A € R} of isomorphisms in £{F) such
that, for e € E, the mapping A = &)e is continuous and sk, = Kx,.

There are constants ¢ and M with ||k, || zz) < cmax{), A71}M.

We next fix a smooth positive function [-] : R? — R.. with [] = |n| for large
|n|. Peetre’s inequality states that, for each s € R there is a constant C, with

I+ € < CnPe).

H*(R) is the usual Sobolev space on R, while H*(R4) = {u|r, : v € H*(R)}
and H§(R,) is the set of all « € H*(R) whose support is contained in R..
Furthermore, H**(Ry) = {[r]"*u : u € H*(R.)}, and H'(Ry) = {[r]tu :
u € H§(R4)}; here r is the variable in R4, Finally, S(RY) = {u|R1 tu €
S(R%)}.

For all Sobolev spaces on R and Ry, we will use the group action

(k2 f) (r) = ATF(Ar). (L.1)

This action extends to distributions by xyu(p) = u(ky-1¢). On E = C' use
the trivial group action &) = id.

Let E, F be Banach spaces with strongly continuous group actions «, &, let 2 C
R¥, a0 € C®(QxRY, L(E, F)), and s € R. We shall write a € S#(Q,R%; E, F),
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provided that, for every K CC 2 and all multi-indices e, 8, there is a constant
C = C(K,a, ) with

|&gg1-1 D2 DEaly, mxglleee,ry < Cll*~1el. (1.2)

The space S#(Q,RY;, E,F) is Fréchet topologized by the choice of the best
constants C. The intersection S™°(Q,RY E, F) = N,S*(Q,RY E, F) is inde-
pendent of the choice of k and &.
The space S#(2, R9; C*, C") coincides with the (I x k matrix-valued) elements
of Hérmander’s class S#(Q2, R9).
Asymptotic summation: Given a sequence {a;} with a; € S#/(Q,R%; E, F) and
pj = —oo, there is an a € S¥(Q,RY E, F), p = max{u;} such that a ~ 3 aj;
a is unique modulo §~*°(Q,R% E, F).
A symbol a € §#(Q,RY; E, F) is said to be classical, if it has an asymptotic
expansion a ~ 322, a; witha; € $4-1(Q, R9; E, F) satisfying the homogeneity
relation .

aj(y, An) = MRy a;(y,n) sy (1.3)

forall A > 1, |n| > R with a suitable constant R. We write a € §4(Q, R%, E, F).
For E = C*, F = C! we recover the standard notion.

There is an extension to projective and inductive limits: Let E, F be Banach
spaces with group actions. If F} <« F, + ... and By — E; — ... are
sequences of Banach spaces with the same group action, and F' = proj — lim Fy,
E = ind — lim E, then let

SH(Q,RYGE, F) = proj—limS*(,RY; E, Fi);
SH(Q,R%G E,F) = proj — lim,S#(Q, RY; By, F);

S*(Q,RYLE, F) = proj— limy ;S*(Q,RY; Ey, F).

Example 1.2. Let 7; : S(Ry) = C be defined by v;f = lim. 0+ 8 f(r).
Then, for all s > j +1/2 , we can consider +; as a (y,n)-independent symbol
in §7+1/2(RY x RY; H*(R, ), C).

In fact, all we have to check is that ||&py-1vjkpll = O([7)7+1/2) for the group
actions & on C and k on H*(R,). Since the group action on C is the identity,
that on H*(R.) is given by (1.2), everything follows from the observation that

a2 f (Inlr) He=o = [P +'728£(0).

The following statement is obvious.

f?:-x-v-. .



4 Elmar Schrohe and Bert-Wolfgang Schulze

Lemma 1.3. For a € S¥(QQ,RY, E, F) and b € S¥(Q,R%; F, G}, the symbol c
defined by c(y,n) = b(y,n)e(y,n) (pointwise composition of operators) belongs
to S¥+(Q,RY; B, G), while D¢DYa € S#~1el(Q, RY; E, F).

Lemma 1.4. [15, Lemma 1.4] Let a = a(y,n) € C®(Q2 x RY, L(E, F)), and
suppose that a(y,An) = MEya(y,n)kx-1 for all A > 1,|n| = R. Then a €
SH(Q,R™ E, F), and the symbol semi-norms for a can be estimated in terms
of the semi-norms for a in C*°(Q x RY, L(E, F)).

Definition 1.5. Let 2 C R? be open and a € S*(Q x Q,R? x R; E, F). The
parameter-dependent pseudodifferential operator opa is the operator family
{opa()) : A € R'} defined by

opa(N ) = [ & Ma(y, 5,1, 2/ ()i (14)

f € C(Q, E),y € Q. This reduces to (opa(A)f)(y) = [ e¥Ma(y,n)f (n)dn for

symbols that are independent of y'. Here, f(n) = Fyonf(n) = [e 11 (y)dy
is the vector-valued Fourier transform of f, and dn = (27)%dn.

Definition 1.6. Let E,x be asin 1.1, g € N, s € R. The wedge Sobolev space
W*(RY, E) is the completion of S(RY, E) = S(RY)®,E in the norm

1
ey = ([ 11 Byt an)

It is a subset of S'(RY,F). There are a few straightforward general-
izations: If {Fx} is a sequence of Banach spaces, Exy; — Ei, E =
proj — limFE}, and the group action coincides on all spaces, we let W*(RY, E) =
proj — limW?*(RY, Ey). Similarly we treat inductive limits. For @ C RY open
we shall write u € Wi, (£, E), if there is a function ¢ € C§°(f) such that
u = pu, and say u € W _(Q, E), if u € D'(Q, E) and pu € W!(RY, E) for all
¢ € CP(R).

1.7 Elementary properties of wedge Sobolev spaces (see [9]).
(a) W*(RY, H*(Ry)) = HY(RSH).

(b) W*(RY, Hi(R.)) = H§(RTH).
(c) W(RY,C) = H*(RY), using the trivial group action s, = id.

Theorem 1.8. [19, Section 3.2.1] Let a be as in Definition 1.5. Then

opa(A) : Wi, (Q, E) — W H(Q, F)
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is bounded for every A € R'. If a is independent of y and §, then we may omit
the subscripts ‘comp’ and ‘loc’. The mapping op : symbol s  operator
s continuous in the corresponding topologies for all s € R.

Definition 1.9. Let E, F be Fréchet spaces and suppose both are continuously
embedded in the same Hausdorff vector space. The direct sum E@ F is Fréchet
and has the closed subspace N' = {(a,—a) : a € EN F}. The non-direct sum
of E and F then is the Fréchet space E+ F:= E® F/N.

1.10 Boutet de Monvel’s Algebra. Let X be an n-dimensional C® man-
ifold with boundary Y, embedded in an n-dimensional manifold G without
boundary, all not necessarily compact. In the following we shall denote by X
the open interior of X, while X denotes the closure. Let Vi, V5, ..., be vector
bundles over G and let Wy, Wa,. .., be vector bundles over Y.

Given p € Z, d € N, we denote by B*4(X; R9) the Fréchet space of parameter-
dependent elements of order i and type d in Boutet de Monvel’s calculus, acting
between vector bundles in the usual way:

Ce(X, V1) C*®(X, V)
A(AN) : 23] — @ . (1.5)
Cgo(Y, Wl) c> (Yv W2)

We write BZ’d(X ; R7) for the subspace of classical operators. The elements of
Bﬁ’d (X; RY) have two principal symbols, namely the interior principal pseudod-
ifferential symbol ai;(A) and the (operator-valued) boundary symbol o§(A).
For an introduction to the parameter-dependent version of Boutet de Monvel’s
calculus see [13, Section 2}; short accounts were given in [14] and [15]. In {14],
the principal boundary symbol was denoted o%. The elements of Boutet de
Monvel’s calculus form an algebra in the following sense:

Proposition 1.11. [11, Section 2.3.3.2) Let A € B*YX;RY), B €
B4 (X;RY), and o, B € C. Then

(a) ad + BB € B*" ¥ (X;RI) for i = max{y,y'}, d" = max{d,d'}.

(b) Ao B € B4 (X;R?) for " = {u+ '}, &' = max{y' +d,d'}.

We assume here that the vector bundles A and B act on are such that the
addition and composition make sense.

Example 1.12. The Dirichlet problem (fﬂ) is an operator in Boutet de

Monvel’s calculus of order 2 and type 1. In fact, the Laplacian A is a
differential operator of order 2, while according to Example 1.2, the op-
erator of evaluation at the boundary, <, is an operator-valued symbol in
SY2(R7 1 R"1 H5(R.), C), provided s > 1/2; it is well-known to be of

-

E R A
A3
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type 1. The Dirichlet problem is independent of any parameter, but since it is
a differential boundary value problem, we may also consider it as a parameter-
dependent element. Since the order of vy only is 1/2, we may even replace ¥y
by A<, where A is a (parameter-dependent) order reduction of order 3/2, and
still have order 2.

Here, the vector bundle W, is zero, while Vi, Vo, Wy can be taken trivial one-
dimensional.

Wedge Sobolev Spaces

We use the notation G, X, Y of 1.10, but from now on we assume G, X, and
Y to be compact. Let G* =G xRy, X" =X xR, Y =Y xRy.

1.13 Parameter-dependent order reductions on G. For each gy € R
there is a pseudodifferential operator A# with local parameter-dependent ellip-
tic symbols of order g, depending on the parameter 7 € R, such that

A¥(7): H*(G,V) = H*H(G,V)

is an isomorphism for all 7.

One can construct such an operator for example starting from symbols of the
form [(¢, 7, C)]* € S¥(R", RE; R;) with a large constant C' > 0 and patching
them together to an operator on the manifold G.

Definition 1.14. For § € R, I'g denotes the vertical line {z € C: Rez = G}.
The Mellin transform Mu of a C§°(R...)-function « is

(Mu)(z) = fo = lu() dt. (1.6)

M extends to an isomorphism M : L*(Ry) — L*(T';s). Of course, (1) also
makes sense for functions with values in a Fréchet space E. The fact that
Mulr,,,_ (2) = My (177u)(2z + ) for u € C§°(R4) motivates the definition
of the weighted Mellin transform M,:

Mou(z) = M, (tu)(z +7), 6 € CP(Ry, E).

For a Hilbert space E, the inverse of M, is given by (M, L) (2) =
QLW:IFI/J—#' t*h(z)dz.

1.15 Totally characteristic Sobolev spaces. [13, Section 3.1] (a) Let {A#:
it € R} be a family of parameter-dependent order reductions as in 1.13. For

{Tr——
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5,7 € R, the space H*7(G") is the closure of C§°(G") in the norm

lwll3ger(ary = {f
r
-

Recall that n is the dimension of X and G. The space H*7(G") is independent
of the particular choice of the order reducing family.

1/2
14 @n ) Mu(a) oyl } - (1)

(b) For s =1 € N we obtain the alternative description
we H(GY) iff t*7(t8,)f Du(z,t) € LH(GN)

for all k¥ < ! and all differential operators D of order < ! — k on G, cf. [19,
Section 2.1.1, Proposition 2].

(c) We let H*(X") = {flxa : f € H*(G")}, endowed with the quotient
norm: {jull3erxry = inf{||fllasvigry : f € HY(GM), flxr = u}.

(d) H> (XY € H (X)), where the subscript ‘loc’ refers to the t-variable
only. Moreover, H*7(X") = tTH*O(XA); HOO(XN) = t—/2L2(XN).

(e) H%%(X") has a natural inner product

(u,v)g0.0(xA) = Lf (Mu(z), Mv(z))12(x) dz.

2m r‘,_,_a__l
(f) If ¢ is the restriction to X" of a function in S(G x R) = S(R, C*(G)),
then the operator M, of multiplication by ¢, M, : H*7(X") = H*T(XM),
is bounded for all s,v € R, and the mapping ¢ — M, is continuous in the
corresponding topology.

1.16 The spaces HZ,,.. Let {G;}{_, be a finite covering of G by open
sets, x; : G; = Uj the coordinate maps onto bounded open sets in R", and
{¥5} J{=1 a subordinate partition of unity. The maps &; induce a push-forward

of functions and distributions: For a function u on G
(sjsu)(z) = u(kj'(z), =€ Uj; (1.8)

for a distribution u ask that (kj.u)(p) = u{pok;), ¢ € C§°(U;). For
3 =1,...,J, consider the diffeomorphism

x; : Uj x R = {(z[t},t) : x € U;,t € R} =: C; ¢ R*!

given by x;(z,t) = (z[t],t). Its inverse is xj_l(y,t) = (y/[t],t). For s € R
we define HZ, (G x R) as the set of all u € Hj (G x R) such that, for
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j = 1,...,J, the push-forward (x;#;)«(®ju}), which may be regarded as a
distribution on R**+! after extension by zero, is an element of H*(R"*!). The
space H,..(G x R) is endowed with the corresponding Hilbert space topology.
We let

Hgone(XA) = {ulXxR+ ‘U Hgmc(G X R)}

For more details see Schrohe&Schulze [14, Section 4.2]. The subscript “cone”
is motivated by the fact that, away from zero, these are the Sobolev spaces for
an infinite cone with center at the origin and cross-section X. In particular, the
space HS .(S™ x Ry) coincides with H*(R"*!\ {0}) outside a neighborhood
of zero.

Definition 1.17. For 5,7 € R and w € C{°(Ry) with w(r) = 1 near r = 0,
let

K (XM) = {u € D'(X") : wu € HW(XM), (1 —w)u € HY, (XM} (1.9)

The definition is independent of w by 1.15(f). We endow K*7(X") with the
Banach space topology [[ullcs(xr) = lwtllaeaixay + (1 — w)uligs, . (xa)- In
fact, this is a Hilbert topology with the inner product inherited from H*7 and
HS,,... By 1.15(d), K00(X ") = HOO(X M) = t="/2L2(XN).

Theorem 1.18. For s > 1/2 and vy € R the restriction you = u|ya of u to
Y induces a continuous operator v : K*7(X") = K3—1/27-1/2(yA),

By r denote the normal coordinate in a neighborhood of Y. Then the operutors
v; : u > Olu|ya define continuous mappings K7 (X)) — K*—I-V2r-1/2(y Ay,
This can be deduced from the trace theorem for the usual Sobolev spaces. The
shift in the weight v — v — 1/2 is due to the fact that dimY =n — 1.

The lemma, below, is lenghty but straigthforward to prove.

Lemma 1.19. A strongly continuous group action s) can be defined on
K37 (XM by

(k2 f)(@,t) = AT f(z, M), f € K*(XM), s> 0.

This action is unitary on KO%(X"). It naturally extends to distributions in
K"1(X"), s,y €R.

Remark 1.20. The definitions of the spaces H*” and KX*” also make sense
for functions and distributions taking values in a vector bundle V. We shall
then write H*7(X", V) and K*7(X", V), respectively. In later constructions



Boundary Value Problems on Manifolds with Edges 9

we will often have to deal with direct sums K*7(X?, V)@ K~1/27-1/2(Y N W)
for vector bundles V and W over X and Y, respectively. On these spaces we

use the group action s (u,v) = (AT u(-, A), AFu(-, 1))

Proposition 1.21. [15, Theorem 2.12] For all s > 1/2, the restriction operator
Yo tnduces a continuous map

Yo : Wa(Rq,}Cs,'y(XA)) - WS_I/Q(Rq,)CS_I/Q'T_UQ(YA)).

Proposition 1.22. [15, Proposition 2.13] Let p € S(X" xRY). Then the oper-
ator of multiplication by ¢ furnishes a bounded operator on W*(RY, K#7 (X))

for all s,y € R. Its norm depends continuously on the semi-norms for ¢ in
SX" x RY).

Operator-Valued Mellin Symbols

Convention: In the following we fix 4 € Z and d € N. Whenever we write
w,@,wy, ..., without further specification or refer to a function as a cut-off
function we mean an element of C§°(R ) which is equal to one near the origin.

Definition 1.23. (a) M&%(X;RY) is the space of all a € A(C, B*9(X;RY))
such that, for all ¢; < ¢ in R,

a(B +i7) € BHY(X;R? x R,), (1.10)

uniformly for all 8 € [¢;, ¢z]. We call the elements of Mg’d(X : R?) holomorphic
Mellin symbols of order z and type d. We are assuming that the vector bundles
a(z) is acting on are independent of z.

The topology of MS’d (X;RY) is given by the semi-norm systems for the topol-
ogy of A(C,B*4(X;RY)) and, for families {ag : B8 € R}, the topology of
uniform convergence on compact subsets of Rg in B#4(X;R9 x R,;). Clearly,
M%%(X;R9) is a Fréchet space with this topology.

(b) M54 (X;RY) is the corresponding space with B“¢(X;R?) replaced by
B44(X;R9).

Example 1.24. Let A € B¥%4(X), k = 0,..., u, be differential boundary
value problems. Then a(z) = Sh_, Agz* € Mg’d(X; RY).

1.25 Mellin symbols and operators. Let f € C®(R,. xR, B#4(X; L1/2-4))-
For each fixed (t,t', z) € Ry xRy xI'y/5_,, we have a boundary value problem

Ce X, 1) C®(X, V)

ft,t,2): @ — @
C§o(Y, W) Co(Y, Wa)



10 Elmar Schrohe and Bert-Wolfgang Schulze

in Boutet de Monvel’s calculus.
For u € C(X™, W) ® C(Y", W) = CP(R4, C®(X, Vi) @ C®(Y, W;)) we
define the Mellin operator op}, f by

1 00
7 t =_,/ / /) TE (L, 2)u(t)dt [t dz.
Yt =g [ [ e

If f is independent of ', then op},(f)u(t) = 5 Jr, o TSt 2)Mu(z)dz.
It is easy to see the continuity of

CeX ) (X W)

opr(f) : ® - ® .
C§e(Y ", W) C®(YH, Ws)

For f € C*°(Ry x Ry, B*%(X;T/,—,)) we obtain a bounded extension

o7 (XA, V) CRTTE (XN, V)
wiopie(fwe : & - G? (1.11)
TR AW KRR (v, W)

provided s > d — 1/2. A proof is given in [14, Proposition 2.1.5].
Definition 1.26. In the following we shall use the abbreviation

IC;"Y — )C3'7+%(XA,V}) ® ’Cs,':i'i"nT_l(YA’Wj) i=12,....

The following proposition follows immediately from Proposition 1.11.

Proposition 1.27. Given u,u' € Z and d,d € N, let 4’ = pu+ i and
d" = max{y’ +d,d'}. Then there is a continuous multiplication

MEY(X;RY) x ME (X;RY) » ME Y (X;RY)

given by the pointwise composition in Boutet de Monvel’s calculus: (a,b) — ¢
with c(z,m) = a(z,1) o b(z,7).

1.28 Theorem: Operator-valued Mellin symbols. ([15, Corollary 3.9])
Letye R, QCRY, and f € C®(R, x Q,B“‘d(X;I‘I/Q_., x R%)). Recall that [*]
18 a smooth positive function on RY coinciding with |- | outside a neighborhood
of zero and define

a(y,n) = w1t} opy;(f (¢, y, 2, 1n))wa(t[n])-
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By (1.11) this furnishes an L(K]7, K377 #)-valued function a on Q@ x RY for
all s > d—1/2. Moreover, a € S¥(Q,R%; K7, K5 H77#).
We then deduce from Theorem 1.8 that the operator

opa: Wgomp(g’ K‘;’T) - wlso:”(Qs ,CZ—#"T—“)

is continuous for all s > d —1/2.

Lemma 1.29. {15, Lemma 3.11}] We use the above notation and let § € R.
Then

wi(tm)ophs (f(t.y, 2, tm))wa (L)t = wi (tn))tPop}r” (T=PF (¢, y, 2, tm)wa (t[n]).

In case f even is an element in C®(Ry x Q,Mg’d(X; R?)) we also have

wi{t[])opls (f (8, v, 2, tn))w2 (t[])t? = wi(t[n))tPopl (TP £ (2, y, 2, tn))wa(t[n]).

Here we consider both sides as operators on C{°(R,,C®(X)); T~7 is the
translation operator defined by TP f(t,y,2,1n) = f(t,y,z — B, tn).

Mellin Quantization and Kernel Cut-Off

Definition 1.30. A symbol p = p(t,y,7,7) in C®(R4 x Q, B44(X; R, x RY))
is called edge-degenerate, if there is a symbol 7 in C®(R, x Q, B*4(X; R, x
R{)) with p(t,y,7,7) = p(t, y, i, tn).

Given an edge-degenerate symbol we can find a Mellin symbol which induces
the same operator up to a smoothing perturbation and vice versa. This is the
contents of the following assertion, proven in [15, Theorems 3.17, 3.19].
Theorem 1.31. Let p € C®(R; x Q,B*4(X;R x RY)) be edge-degenerate
and v € R. Then there is an f, € C®(Ry x Q,B“'d(X;Fllg_., x R})) with

opep(t,y,7,1m) = 0piefy(t,y,i7,tn) mod  CP(Q,B~4XNRY)). (1.12)

Conversely, given f, € C®(Ry X Q,Bﬂ'd(X;Fl/g_,Y x RY)), there is an edge-
degenerate boundary value problem p such that relation (1.12) holds.
The same statement holds for classical symbols, i.e., for B*% replaced by Bz'd.

Kernel cut-off is a simple way to switch from an arbitrary Mellin symbol to a
holomorphic Mellin symbol, up to a smoothing error. The proof of the theorem,
below, was given in [15, Theorems 3.20, 3.21].
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Theorem 1.32. Let f € C®(R, x Q, B*4(X; Ty x R9)), choose p € CP(R..)
and 1 € C§°(R4) with ¢(p) = 1 near p = 1. Then the operator-valued function

foo defined by
folt,y,2,m) = Mpmzp(0)My 5 o, S (Y, €,)
is an element of C® (R4 x Q, M4%(X;RY)), while fi_y defined by
Fiog(t,,2,m) = Mposo (1 = () M5, F(,4,¢,m)

is an element of C®(Ry x Q,B~4(X;Ty x RY)). Moreover, the mapping
(¢, f) = f, is separately continuous CP(R,) x C® (R, x Q, B44(X;To xR7))
- C®(R; x 9, Mg’d(X; R%)), and (¥, f) — fi-y is separately continuous
CP(R4) xC® (R4 xQ, B44(X; T xRY)) = C (R, xQ, B~24(X; g x RY)).
Notice that upon starting with a holomorphic Mellin symbol, kernel cut-off
with a function i satisfying ¥(p) = 1 near p = 1 produces the same symbol
up to an error which is regularizing and holomorphic:

Theorem 1.33. ([15, Theorems 3.29]) Given h € C®(R,. X Q,Mg’d(X; RY))
and ¥ € C§°(Ry.) with ¥(p) = 1 near p = 1, the difference h—hy is an element
of C®(Ry x Q, Mz %(X;R9)).

2 Operator-Valued Edge Symbols

In this section we shall first analyze the behavior of edge-degenerate pseu-
dodifferential operators on cone Sobolev spaces, then we shall focus on Green
symbols with trivial asymptotics,

Parameter-Dependent Boundary Value Problems on Cone Sobo-
lev Spaces

Theorem 2.1. For p € C(Q,B*4(X;R11) and an ezcision function { €
C*(RY) vanishing near zero and equal to 1 near infinity define

a(y,n) = {1 — w(t[n))op (™ #p(y, t7, tn)) (1 — wi(t[n]))-

Then a € SL(Q,RY KT, K374 77#) whenever s > d — 1/2. The symbol esti-
mates for a depend continuously on those for p.

The subscript ¢ with op indicates that the action is with respect to this variable
only. Note that p is assumed to be independent of ¢; the covariable associated
with £ is 7.
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2.2 Outline. The proof of the theorem is rather long and the full details will
be given elsewhere. In order to keep the exposition transparent let us sketch
the following steps leading to the conclusion. For simplicity let us assume that
V1 and V5 are trivial one-dimensional while Wy, Wy vanish.

Step 1. Suppose we know that, for A € B#4(X;R!*9) and fixed n € R7\ {0},
(1—w(tm))op (™ A(tr, tn)) (1 — w1 (t[n}) € L{H one(X "), Hoge (X)), (2.1)

s > d —1/2, and that the associated mapping is continuous. Whenever |n| is
large, @ is homogeneous in 7 of degree i in the sense of (1.3). Indeed, let |7|
be so large that [n] = || and let u € C§°(R4, C*®(X)). Then, in the notation
of 2.1,

wx{aly, mra-1u}(t) (2.2)
= ma{ATCFD2(1 — w(tfn)))e

x [ &Iy, tr, ) (1 - wltl)u(h ¢)dtdr} 1)
= (=)™ [ 6P ply, thr tn)(1 - wa(s'nl)u(sAds'dr
= Aaly, n)u(o).

If (2.1) holds then we know that, for each fixed choice of y and n # 0, the
operator a(y,n) is an element of L{K]7,K57"7#). Via the excision function ¢
we also cover the case 7 = 0; we obtain that a € C®(QxRI, L{K]7, K3 #7T7HY),
since the mapping from B*¢(X;R1+9) to L(K]7, K5 #77#) given via (2.1) is
continuous. So Lemma 1.4 gives the assertion.

Step 2. We are now reduced to showing (2.1). Since the normal derivative
induces a bounded operator H2, . (X") — H2.1(X"), linearity allows us to
assume d = 0. A parameter-dependent element A € B*0(X; R119) is given as
a finite sum of terms induced by local symbols supported arbitrarily close to
the diagonal, plus a term which is an integral operator with a smooth kernel
over X x X, rapidly decreasing with respect to (7,7}, cf. 1.10.

Step 3. Suppose r € S(R!9,C®(X x X)). Then the formula

Knu(z, t) =.///e‘(‘_")7t'-"r(tf, tn, z, 2’ Yu(z', t')dz'dt'dr (2.3)
RR; X

defines an element Ky, of L(HZ,,,.(X"), Hene(X ")) for each choice of 5,5’ € R,
depending smoothly on 7 5% 0. In order to see this, consider the integral kernel
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kn(z,t,2',t') = [ &t (tr, tn, 2, 2')d7, reduce the task to the L2-case, and
apply Schur’s lemma.

Step 4. Next we consider the local terms. Let U be a coordinate neighborhood
for X, and let q = g(z,z',€,7,1) € SL(U x U, R?:’;”) be a pseudodifferential
symbol with the transmission property. Boundedness on cone Sobolev spaces
corresponds to boundedness on the usual Sobolev spaces under via the push-
forward under the mapping (z,t) = (z[t],t). We may compute explicitly the

push-forward on the symbol level. For s > —1/2 we then obtain
{op;tt_”q(m, a' &,tr,1n) :n € RI} C L(HE, (XN, HIZE(XM)),

depending smoothly on 7.

A corresponding result holds for the singular Green part: Let U c R
be open and g € S#(U x U,RE;;;S'(R.,.),S(R”). Then we get a family of
bounded operators

{op #,:t *g(&, %, &,t7,tn) : 1 € RT} C L(Hpno(X™), HIZE(XM))

depending smoothly on 7.

Green Symbols with Trivial Asymptotics

In the following let {2 denote an open set in R?, 4 € Z, and d € N, while g is
the weight datum g = (v 4+ n/2,6 +n/2,(—k,0]); here 7,6 €R, 0 < k € N.

Definition 2.3. Given v € R and the integer k in the weight datum g we let
S85(X™) denote the space of all functions f on X” such that, for all ¢ < k and
every cut-off function w, we have wf € H®¢(X") and (1 — w)f € S(X").
Similarly, for f € Sg'l’/z(Y") we require that wf € HOT~1/Z+e(YA) and
(1 —w)f € S(Y"). The notation carries over to functions taking values in the
vector bundles Vi, V3, ..., over X and Wi, Wy, ..., over Y. Following Definition
1.26 we now set

o n=1
Slo =851 (xXNV) @ SHTT (YAW), i=12.... (2.4)

The spaces S;-Y,O are Fréchet spaces with the canonical topology of a non-direct
sum of Fréchet spaces. Moreover, it is easily seen that they may be written as
projective limits of suitable Hilbert spaces, cf. e.g. [16, Lemma 1.20].

Definition 2.4. (a) RE°(Q2 x 2 x RY,g)o,0 is the space of all operator-valued
symbols
g=gwy,me [ SHEQxQRGT, K5
02>—1/2
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with the following property: For each s > —1/2, the symbol g yields an element
of S4(9 x Q,R% K7, 8 ), while the pointwise formal adjoint g*, defined by

g*(y,y'n) = g(y,¢/,n)", yields an element of S, (2 x QRGPS 81.0)-
(b) ’R:'(‘;'d(ﬂ x 2 x RY,g)o,0 is the space of all operator-valued symbols

ge [ SHQxQ,RY K5, Km0y
s>d—1/2

4
0 0
'R,‘c‘,'j'o(ﬂ x  x R9,g)o,0. The matrix refers to the decompositions of the
spaces as in (2.4). The space 'Rfé’o(ﬂ x Q2 xRY, g)o,0 clearly is a Fréchet space,
’R’é’d(Q x 2 x RY,g)o,0 is topologized as a non-direct sum of Fréchet spaces.

which can be written in the form g = gg + Z}ngj [ & 0 ] with g; €

Definition 2.4 is a special case of [16, Definition 2.2]. For the present purposes
we need neither the asymptotics nor the trace/potential contributions from the
boundary. We collect a few basic results, see [16, Proposition 2.4, 2.5, 2.6].

Proposition 2.5. Let g; € ’Rg'd(ﬂ x Q2 xRI,gloo and g3 € R’(‘;'dl (2 x 2 x
RY,g)o,0- Then

(2) D2DP g1 € RETTM(Q x @ x RY,g)00.

(b) The pointwise composition g9z is an element of’}'\’fc‘f"”‘f (O@xOQxRI, g)o,0-
(c) If d = 0, then the pointwise adjoint is an element of'Ré'O(Q xQxRI,g)o,0.
(d) Given g; € RE4(Q x Q x R, g)0,0 with po > p1... = —o0, there is a
g € REYQ x Q@ x RY,g)o,0 with g ~ T2 9.

(e) For 11,1 € N we have t2g1t" € RE™ 7240 x Q x RY, g)o 0-

(f) For ¢ € S(R..) the symbols pg1, gre, ©(:[n))g1, and g1p(-[n]) all are ele-
ments of R%%(Q x Q x R, g)o,0-

In (e) we understand t** as the operator of multiplication by the diagonal
matrix diag {t*1,t"1}; a similar interpretation applies to t*? and ¢ in (f), while
@(*[n]) is the corresponding n-dependent multiplier.

The following theorem is immediate from Theorem 1.8. It motivates the defi-
nition of the corresponding space of operators.

Theorem 2.6. Let g € R’C‘jd(ﬂ x Q2 xR, g)o,0. Then
0P g : Wiomp(SL,K37) = Wi, K37)

is continuous for all s > d—1/2. In fact the result also holds for & replaced by
& + k — g, whenever € > 0 and k is the integer in the weight datum.
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Definition 2.7. Y(‘;"d(ﬂ x X", g)o,0 is the space of all operators of the form
d .
& 0
G=opg+j§0Gj[ 0 Il, (2.5)

where g € 'R’(‘;’d(ﬂ x @ x R, g)o,0, and, for each j =0,...,d, s > —1/2, and
¢ < k, the operators G and their formal adjoints G; yield continuous maps

G+ Wimp(@KTT) = Win(@,K5*°)  and (2.6)
Gyt Weomp(,K57%) = Win(@, K77™°). (27)
We let Y4 X" x ©,8)0,0 = M, Y&U(X" x 0,8)0,0-

Remark 2.8. Yé"d(X " x ,g)o,0 18 a Fréchet space with the topologies

inherited from R4 x Q x RY,g)0,0 and from properties (2.5), (2.6), and
(2.7).

Proposition 2.9. Let g € 'R’&’d(ﬂ x 2 x R, g)o,0. Then there exists a left
symbol g1, = gr(y,n) such that

opg =opgr modY (X" x Q,g)o,0-
Similarly there is a right symbol gr = gr(v',n) such that
opg = opggr mod Y_°°(XA x £, 8)o,0:

We have the asymptotic expansions

1
ou(:m) ~ > —=Dydg(y v n)ly=y, (2.8)
= a!
’ (_1)|C'I a ’
gr(y'\m) ~ E _"a!_Dy a#g(ya y vﬂ)ly:y’i (2.9)
Proof. Proceed just as in the standard case. 0

Corollary 2.10. Let ¢1,p2 € C$°(Q) with suppy; Nsuppys = @, and let
Ge Yg’d(ﬂ X XA,g)o,o. Then p1Gps € Y_oo’d(XA X Q,g)o,o.

Here we consider ¢; and ¢ as the operators of multiplication by the corre-
sponding functions.

Proof. Let G = opg + Gp with Gy € Y4 X" x Q,g)0,0 and g € RE“'(Q X
2 xR?,g)0,0. Then the mapping properties show that ;Gowe € Y =4 X" x



Boundary Value Problems on Manifolds with Edges 17

,8)o,0, while p1{op glpz = opg with §(y, v/, 1) = 01(y)9(y, v, Me2(y). We
conclude from Proposition 2.9, in particular (2.8), that ¢ [op g]ws € Y ~0¢( XA

x$,g)o,0- )

Theorem 2.11. Let g1 = (v + n/2,§ + n/2,(—k,0)),82 = (6 + n/2,0 +
n/2,(—k,0]), and g3 = (v + n/2,0 + n/2,(~k,0]), be weight data. Choose
w € C§°(2). Since ¢ maps Wi (Q, IC;”) to Weomp(€2, IC;”) for every choice of
s and v, the composition (Ga, G) — GopG is defined; it induces a continuous
mapping

YEUXM x Q,g2)0,0 X Y& ¥ (XM x Q81)0,0 = Y4 (X" x Q,83)0,0
and has continuous restrictions

Y=o XA x Q,g2)0,0 X YE U (XM x Q,g1)00 = YO0 (XM x Q,g3)0.0,
YEHXN % Q,82)0,0 X Y4 (XM x Qg1)00 — Y™ (X" x Q,83)0.0.

Proof. The mapping properties of the elements in Y ~°¢(X" x 2, g) 0,0 imme-
diately yield the last two relations. So we may assume that G; = opg;,j = 1,2

with g; € REY(Q x @ x R%,g))0,0 and g2 € REY(Q x © x RY,g3)0,0. In
view of Corollary 2.10 we find a left symbol g, for g; and right symbol gg for
©(¥)g2(y, ¥, m). Then grgr € RE¥(Q2 x @ x RY, g3)0,0 by Proposition 2.5,
and
[op g2]0fop g1] = opgrgr mod Y % (X x 0, g3)0,0-

a
" Definition 2.12. Let G =opg+ Gy € Yc';"d(X" x 2, g)o,0 with a left symbol
g € R’(‘;'d(ﬂ x R9,g)0,0 and Gy € Y24 X" x Q,g)0.0. Moreover let g ~
27209u—j be the asymptotic expansion of g into homogeneous terms. Then
we define the edge symbol of G, or, also of g, by

UA(G) = ak(g) = gpa

the homogeneous principal symbol of g.

3 The Symbol Algebra near the Edge
"Proposition 3.1. Let'p € C®(R, X Ri X Q, B4 X;R9)). Define

a(y,m) = w(t)(1 — wi(t[]))op [t p(t, ¢, y, iy tm) (1 — wa(E[n))@(t).
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Then a € 5#(Q2, RY; }Ci"ﬁ, ]C;—#n—-p)_

Proof. In view of the factors w and @ we may assume that p vanishes for large
t,t'. We shall first show that, for every fixed choice of (y,n), the operator

w(t)(1 —wit[n))op (tp(t, ', y,t7, )1 — w2(tl))@()  (3.1)

is an element of L(K]", K;7#77") and that, moreover, this operator depends
smoothly on (y,n). It is no restriction to suppose that the vector bundles V;
and V; are trivial one-dimensional, while W; and W5 vanish.

Since 7 is fixed, we may also assume that p vanishes for small ¢,¢' > 0 and the
task reduces to showing that the operator in (3.1) belongs to L{HZ, .(X"),
HEZL(XM). |

We know from [13, Lemma 4.2.2] that H?,..(X) < [t]H*(X") forv = —n/2+
max{0,s + 1} while [¢]""2H*"#(X") < HZ;%(X"). Here, H*(X") consists
of the restrictions of elements in the usual Sobolev space H*(X x R) to X".
The powers of ¢ need not worry us, since the symbol has compact support on
R in both ¢t and #. So all we have to show is that we obtain an element
of L(H*(X"), H¥~#{X")). This, however, is an immediate consequence of the
usual boundedness result for elements in Boutet de Monvel’s calculus.

In addition, we know that the mapping that associates operators to symbols is
continuous with respect to the parameters, hence we conclude that

a € C®(Q x RY, LK, K57HT7H). (3.2)
Next we apply Theorem 2.1. Pick an excision function . Since
w(t)p(t,t, 7, m)@(t) € CP(R4)&-CC(R4)S-BH*(X; R

we may write w(t)p(t,t', 7, n)@ (') = £720 Aj0; (895 (#)pi(y, 7, n) with {A;} €
I' and null sequences {p;} in C®(, B*4(X;R™*9)), {p;}, {¥;} in C®(R4).
Since we may multiply from the left and the right by cut-off functions without
changing the operator, we may assume that {p;},{4;} are null sequences in
Co(R,). Let

a;(y,m) = ¢ — wiltn]))op (t7#p;(y, try tn))(1 — wa(t[n])).

By Theorem 2.1 the a; form a null sequence in $#(, R7; K77, K37#*77#). What
about the operators of multiplication by ¢; and 1;? We shall consider them
as operator-valued symbols independent of ¥ and n and show that they form

- ————
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null sequences in S°(Q,R7; KC3~"77# K37*77#) and S%(Q,R% K7, KT7), re-
spectively: Clearly, multiplication by ¢; is bounded on K37*77#; the oper-
ator norm can be estimated via the semi-norms in S(Ry), cf. 1.15(f). So
p; € C®(Q x R, K771 K7HT7H); moreover, k1055 = @;([n]71).
Since the semi-norms of ¢;{[n]~!") in S(R4) can be estimated uniformly in
terms of those for ;, we obtain the desired statement for ¢;; for ¢; an analo-
gous argument applies.

This shows that (a € S¥(Q2, R%; K7, K37 77#). Together with relation (3.2)
the proof is complete. 0O

Convention: In the following we fix 4 € Z, d,k € N, v € R, and the weight
data g = (y+n/2,y +n/2 — u,(—k,0)).

3.2 The symbol algebra. Given h € C®(R, x Q, MS"‘;(X;R")), p e
C®(R4 x,BLYX; RITY)) let

h(t,y,2,m) = h(t,y,z,tn) and p(t,y,7,7) = p(t,y, t7,tn)

be the corresponding edge-degenerate symbols. We assume additionally that
h and p induce the same operators in the interior modulo smoothing terms:

op¢(h)(y,m) = op e(p)(y, 1) mod C2(Q, B~ (X" REL). (3.3)

This is possible by Mellin quantization, see Theorem 1.31. Here opj,(h)(y,7) is

the operator resulting from op},h(t,y, z,1), while op (p)(y,n) = op p(t,y, 7, 7).

Next we let g € Rg‘d(ﬂ x RY,g)o,0, and let w, @, w;,ws,ws be cut-off func-

tions satisfying wywe = wy,ww3 = w3. We shall consider the operator-valued
" symbols of the form ~~- - - - -~ o e

a(y,n) = w(t) {w1(t[n)t " op},(h){y, mwa(tn]) (3.4)
+(1 — wi(En]))t~Hop () (y, M1 — walt[n])} @(t) + gy, ).

Here we interpret w,@, w;(-[n}) and ¢~# as operators of multiplication by the
corresponding functions. It follows from Theorem 1.28, Proposition 3.1, and
Definition 2.4 that indeed a(y,n) € S#(Q,RYGKY7,K37*77#) for all s > d —
1/2. In the following we shall see that the symbols of this type form an algebra
under pointwise composition. This requires some preliminary work.

- -~Lemma-3:3. Let ¢-=-c(y,n)- € E(QB°4(X N RY)), v, € CP(RS).
Then
o)) e (tn) € RZZHO x R, g)o,0-
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Here we consider ¢(t[n]), ¥(t[n]) operators of multiplication by (:[n]), ¥(:[n]).

Proof. For simplicity of the notation let us assume that Vi, V5 are trivial
one-dimensional while W, Wy vanish. Since ¢, commute with the nor-
mal derivative on X we may assume that d = 0. The assumption implies
that ¢(y,n) is an integral operator on X" with a kernel k(y,n;z,t,2',t) €
C®()@S(RINS,C®(X" x X"). So p(tln])ey(tln]) has the kernel o([n])
k(y,n;z,t,2',t)(t'[n]). For each fixed y,n we therefore obtain an element in
LT, Ko M77F) provided s > —1/2. The operator xiy-1(t[n]) c(tn])rpy

has the kernel @(t)k(y, n;z,¢/[n], 2, ¢' /) ()]~

Its operator norm clearly is O([n]~%) for arbitrary K. The same is true for
derivatives with respect to y and 7, so

p(t)ep(tn]) € ST2(Q,RL KT, KT, s> -1/2.

Considering once more the kernel, the fact that ¢ and ¢ belong to C§°(R)
implies that, for fixed y and 7, the operators (t[n])c(y, n)¥(t[n]) map K77 to
Sr;,",a” , while the adjoint maps K3*77 to S, 3. As before, the operator semi-

norms are O{[n]~%) for arbitrary K. Hence o(t[n])cy(t[n]) € S~=(Q,RY;
K17, 53’,5“), while its adjoint belongs to S™°(Q2, R9; K3, Sl_.g,) O

Lemma 3.4. Let p,p, h be as in 3.2 and ¢ € C§°(R4). Then
(a) If suppw N suppy = @ then

aly,n) = o)t opl(h)(y,Mw(tn]) and
@21 = wtl)t ™ opi(h)(y, ne(n])

are elements of Rg’d(ﬂ x R%,g)o0.

(b) If supp (1 —w) N suppp = @ then
g3(un) = wi(®)(1 —w(tfn))op " p)(y, Me(tn)wz(t) and
94(y,m) = wi(t)e(tin)op (¢7p)(y, n){1 — w(t[n)))wa(t)

are elements of R’(‘;‘d(ﬂ x R%,g8)o.0-

(c) Let ¢ be an excision function. If supp(l — w) N suppy = @ and § is
independent of £, then

gs(y,m) = () (L —w(tn))op t™*p)(y,Me(tn)) and
g6(y,n = Cmetn)op (t7p) (¥, n) (1 — w(t[n)))

are elements of 'R"&’d(ﬂ x R, g)oo.

————
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Proof. Since the normal derivative on X commutes with multiplication by
functions of {n], we may assume that d = 0.

(a) We know that g, and g; are elements of S*(Q, R%; K7, K57#7™*). Fix
y,7, and let us show that

an(n), e : Ky = 8104 (3.5)
aly,m* ely,n)® KT = 8. (3.6)

Let us first consider g1 (y,7). In view of the fact that ¢ and w have disjoint sup-
port, we may replace h by a Mellin symbol of arbitrarily negative order. Hence
gi(y,m) : K7 — K377#. Moreover, let k be the integer in the weight datum
g, and write g1 (y,n) = t*(¢%g,(y,7)). For fixed 5, the function ¢t~*ip(t[7]) is in
C§°(R+). Thus g1(y,n) satisfies relation (3.5). For g2(y,n) we know as before
that it maps K77 to K37 ™%, We recall that

opy,(h)tF = tFop],(T~*h).

Together with the fact that t~*p(t[n]) € CP(R4), we get relation (3.5). The
relations in (3.6) follow by duality from those in (3.5).

Next we show that g; and g, are classical symbols in S (Q,R% K77, 8] 5")
while their adjoints belong to S (2, R%; K3*77, Sl':g). For arbitrary N € N,

_ N-ly i
h(t,y,z,m) = o h(0,y,2,m) +tVha(t,,2,7)

-

I

.
It
[=]

LY

F

= tjﬁj(y, Z, 7]) +th1N(t)y1 zaﬂ)’

B T T T Lo O

with the obvious notation and hy € COR, xQ, Mg’d(X; RY)). Let h;(...,n)
= h;(...,tn), and denote by gi; the symbols g, k = 1,2, with h replaced by k;.
Forj =0,...,N—1, we see that gx; is homogeneous of degree p in  in the sense
of (1.3); the computation is analogous to that in (2.2). The above consideration
shows that gx;(y,n) is an element of £1; = L(K]7,8]¢"), while gx;(y,n)*
belongs to Lo = L(IC;’“_",S; g)) Moreover, the operator semi-norms in £;9
and Lo depend continuously on the symbol semi-norms for the h;; those in
turn vary smoothly with y,7. By Lemma 1.4, gi; € R‘C‘;d(ﬂ x R g)o,0, so
/gy, € 'Rg_J'd(Q x R%,g)o,0.

" In order to complete the proof let us show that, for ¥ = 1,2, and s > —1/2,

.
1l
o

gkv € SR KYT,S7),  gkw € SH(Q,RE KT, S 6); (3-7)

By
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the factor t¥ will then improve to order to g — N. Any possible non-classical
contribution therefore has to be negligible. Consider gy first, starting with the
case where hy is independent of t; then the assertion follows by homogeneity
and Lemma 1.4. In case Ay depends on ¢ we may assume it to vanish for large ¢
due to the multiplication by w. Since hy € C°(R)&,C°(Q, M5*(X;RY))
we can write Ay (t,y,2,1) = 720 Aj;()3;(y, z,7) with null sequences {i;}
in C*(R+), {g;} in C®(9, Mg’d(X;R")) and {);} € I*. Multiplication by ¢;
is bounded on S 5%; the semi-norms can be estimated in terms of semi-norms
for ¢; in C°(R.+). Hence we get (3.7) from the t-independent case. For g}y
we argue in the same way.

(b) is proven in the same spirit. First treat the t-independent case, then apply
a Taylor expansion into powers of ¢.

(c) The symbols are homogeneous of degree u in 7 for large |n|. For every
fixed choice of (y,n), 7 # 0, we see, similarly as in the proof of Theorem 2.1,

that the operator gs(y,7) is an element of £L(K]7,87 ). Assuming without

loss of generality that d = 0, the adjoint for the same reason is an element of
L(K3*77,874). An application of Lemma 1.4 completes the argument for gs;
the one for gg is analogous. a

Proposition 3.5. We use the notation of 3.2, and define a as in (3.4). Now
we choose cut-off functions @y, 9, W3, with e = @y, 0103 = @3, and define b
by replacing in equation (3.4) the w; by 5,5 =1,2,3. Thena—~b€ REHQ x
RQ’ g)0,0 ’

Proof. Since we might compare to a third operator, we can assume that @ywy =
@ and 3wy = @3. Write A = w(t)op),(R)@(t), B = w(t)op¢(t~*p)o(t). In
the following we shall omit the variables (f[n])} with the w;,®;, and denote
congruence modulo R‘é’d(ﬂ x Rg)o,0 by =. Then

a6 —b=wAws+ (1 —w)B(1l —&3) + (1 — wy)B(w3 — @&3)

—@1Awy — (1 - &1)B(1 — @3) + &1 A(wg — @)

(w1 — @1)Awy — (w) — &1)B(1 — @3)

(w1 — @1){Aws(1 — @3) + Awedz — Bua(l — @3) — B(1 ~ wo)(1 —~ @3)}
(wl - 5)1){.{1&)2(1 - 513) - ng(l - 03)} =0.

Hom

Here the first two congruences are due to Lemma 3.4, since supp (w3 — @3) N
supp (1—~w;) = supp w1 Nsupp (wa —@y) = supp (w1 —@1)Nsupp &y = supp (w; —
@1)Nsupp (1—wsq) = @. Note that (1—wq)(1—&3) = 1—ws. The final congruence
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is due to Lemma 3.3 together with (3.3). ‘ ]
Lemma 3.6. Let a be as in (3.4). Then

a(y,n) — t *op (p)(y,n) € C®(Q, B~ X" RY)).
Proof. It follows from (3.3) that

a(y,n) — t#op¢(p)(y,n) — 9(y,n) € CP(Q, B~ X" RY)).

For arbitrary K we write g = t~%tKg € t”K’Rfé'K’d(Q x R% g)o,0. Hence g
induces an element in C®(Q, B~°¢(X"; R%)), and the proof is complete. O

3.7 Symbols. We use the notation of 3.2; moreover, we let ho{t,y,2,1m) =
h(0,y, z,t1), polt,y, z,m) = H(0,y, t7,tn), and recall that o’{(g) is the principal
edge symbol of ¢ as introduced in Definition 2.12. For y € Q,n # 0 we define
the principal edge symbol ok (a) of a as the operator

ok(a)(y,n) = witin))t " op}, (ho)(y, nwa(tinl) (3.8)
+ (1 = witin)))op (7 po) (w, ) (1 — wa(tn])) + ok(g).

By Theorem 2.1, oh{a)(y,n) € LK}, K5 #7™#). We obtain the relation

ah(a)(y, An) = Mryoh(a)(y,n)kr-1, Y€, #0,A>0.

According to Lemma 3.6 we also have for a the symbol p = p(t,y,7,1) €
C®(R4 x £, Bﬁ’d(X";Rq“)). This enables us to associate to a also the
. mar == emnwointerior. principal .pseudodiﬂerential.symbol_Jff,(a) .and the principal boundary

symbol o4(a), both being defined as the corresponding terms for p in the sense
of 1.10:

ol(a) = ol(p), and op(a) = a5(p).

For each 7 # 0 we can associate to oh(a) the symbol py which again has a prin-
cipal pseudodifferential symbol, namely crf‘;(crﬁ(a)) = aﬁ,(po), and a principal
boundary symbol, namely o(ch(a)) = a5 (po).

3.8 Facts from the cone calculus. The space c;j;ic(x A g)o,o consists of
all operators of the form

S
A=wt ™) top},(h;)d+ G,
o
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where w,@ are cut-off functions, h; € M5°°’d(X ), and G is a Green oper-

ator in C&(X",g)0,0, in other words, G = Go + ):3{:1 G; [ 30-,7 g l with

Gj € Mys—172 £(KYT, K37#77¥) having, for all s > —1/2 and j = 0,...,d,
continuous extensions

Gj: Ky = SIS and G K3 - 813 (3.9)

A classical element A of order y and type d in the cone calculus belongs to
Cﬁ}‘iG(X N, g)o,0 if and only if the igterior symbol is regularizing.

The so-called conormal symbols 0#77(A) = h; are uniquely determined; h; is
the coefficient of #/ in a Taylor expansion of an arbitrary Mellin symbol for A
at ¢t = 0. The conormal symbols obey the composition rule

oI (AB) = ¥ [T 64P(4)] o T(B).
p+a=3
For details see [13, 3.3.1, 4.3.1, 4.3.7, 4.3.10] and [14, 3.1.27, 3.1.29(c)].
3.9 Compositions. Consider two symbols a,& in the sense of 3.2:
a(y,n) = w(t) {wi(t[n])t™"op},(A)(y, mwa (tn]) (3.10)
+ (1= wit[n]))op e (t7#p) (y, n)(L — wa(t[n])) } &(t) + gy, ),

and

a(y,m) = walt) {@ () op I () (y, m)a () (3.11)
+ (1= n(tlm))op (™ ), M) (1 — @a(tl)) } @4 () + 5, 7).
For a we use the notation of 3.2, while & has corresponding properties. Explic-
ity,
(i) (8,5, 2,m) = F(t,9,2tn) and f € C®(Ry x Q, ME 4 (X;RY));
(ii) q(t,y,7,m) = d(t,y, t7,tn) and § € CX(Ry x Q, B4 (XA RIT));

(iii) the compatibility condition is satisfied:

op 37 *(f) (¥, 1) = op+(g)(y, n) mod C(Q, B~ (X" RITT)).

(iv) We assume that @ is associated with the weight datum g; = (v — ¢ +
n/2,y —p—p' +n/2,(—k,0]) and acts between vector bundles V3, V3 over X
and Wy, W3 over Y
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(v) § € RET(Q xR, g1)o0- |

(vi) In order to simplify the computation we shall assume that ws&4 = wy,
@W4w = @4, and ww = w. This is no restriction since f, h, g, and p depend on .
We then know that & € S* (QR%G KT K37 ) for s > d — 1/2,
so that we may form b(y,n) = a(y,n)a(y,n) in the sense of operator-valued
symbols and get b = aa € S## (Q, RY; K37, IC;‘“_”""'-”_“’).

We shall now show that b has a decomposition analogous to that of a and a
in (3.10),(3.11) associated with the weight datum go = (y +n/2,y —p—pu' +
n/2,(—k,0}). In fact we shall do the following:

(vii) First we define r by t=#~#'r ~ t~¥ g#,t Pp, where #, is the Leibniz
product with respect to £, 7. We shall see in Lemma 3.10, below, that then
(viii) (¢, y, 7, 7) = 7(t,y, tr, tn) for suitable # € C®(Ry xQ, B ¥'(X; R1+1)),
d" = max{u + d', d}. Moreover, 7 will be independent of ¢ for large ¢ provided
this is the case for § and 4.

(ix) By Mellin quantization with respect to the weight v define k(t,y, z,7) =
k(t,y, 2,tn) with k € C®(Ry x , M4 ;" (X;RY)).

(x) By construction the compatibility condition holds:

opl; (k) (y,n) = op e(r)(y,n) € CP(Q, B~>% (X, R1H9)).
(xi) For fixed (y,n) we may consider the difference

wa(t) { opY* () (y, n)t 0P} (B)(y,m) — ™ op} (k) (y,m) } &(2). (3.12)

Here, wy, @ are the functions in the definition of @ and a respectively. Since
ok arose-as -the -Mellin.quantization of the op;-composition, the (full) interior
symbol of this operator is regularizing. So the difference is an element of
Cf,":{‘é’d“ (X", 82)0,0- Since the symbols involved have the arguments (¢, z,tn)
and the conormal symbols are just the Taylor coefficients at ¢ = 0, they are of
the form hj(2,7) = Tjac; hjalt® 5 = 0,..., k=1, with hjq € M5 (X). We
replace k by k + Zf;g, Xlal<j hjan®t=lols(n). Here s € S(RY) is an arbitrary
function with s(n) = 1 for 7 near zero. Since k(t, z,1) = k(t, z, 1), the Taylor
coefficients of k are such that all conormal symbols for the difference (3.12)
vanish. The change in k is an element of C“(ﬁ+,M5°°’d" (X;R9)), hence
the compatibility condition in relation (x) remains satisfied. Note also that a
« weewwo s mesrochange'in the cut=off functions-ws~and & in (3:12) results in an error which is, for
each fixed (y,7), an element of Cg;" (X", 82)0,0; in that sense the construction
is independent of the choice of the cut-off.
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(xi1) We then let

c(y,m) = wa{wi(tf))t™** op}k(y, n)wa ()
+(1 = wi(tfn]))op (74 r)(y, m)(1 — w(tln]) } &.

By construction, this is an element of the symbol algebra introduced in 3.2.
(xiii) We will then show that ¢ — da is an element of R%™ Y x RY, £2)0,0-
The details can be found in Propositions 3.11 and 3.12, below. Apart from the
technical facts the proof then is complete.
Lemma 3.10. Let § € CP(Ry x Q,B4%X;R*1Y)) and § € C°Ry x
Q,ij’d’(X;R“l)). Then all the homogeneous terms in the asymptotic ez-
pansion of

t7# op §(t, y, t7, tn) #e £ Popp(t, y, tr, t) (3.13)
have the form t=#=#'7((t,y, tr, tn) with7 € C®(R;x Q, Bﬁ"”"_l’d"(X; R1t9)),
d" = max{u + d',d}. In particular, we may sum these terms asymptotically in

— i

C®(Ry x @, B4 4 (X;RIt9)).

Proof. Let §; and gk, j,k = 0,1,..., denote the homogeneous terms in the
asymptotic expansions of §# and ¢, respectively. The terms in the asymptotic
expansion for (3.13) are of the form

or{a(t, y, tr, tn) } DI {B; (L, v, t, 1), (3.14)

hence the assertion follows by iteration from the fact that, for m = 1, the
product in (3.14) is

(a’rgk) (ti Y, tT, tn){(tDtﬁj)(ts y, i, t'?)

q
+tT(DTﬁJ‘) (t) Y, tT! f’?) + Z tﬂv(Dnuﬁj)(t, Y, tTa t’?)}

v=1

0

We shall deal in Proposition 3.11, below, with the compositions involving g
and §. We know already from Proposition 2.5 that

g € REM4Q x RY, £2)0,0,

8o this term needs no special attention.
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Proposition 3.11. We use the notation introduced in 3.9. The following
compositions furnish elements of RET 40 x RY, g9)0,0:

(a) {@1 ()t op 17 (F)ae(tn))}g

(b) g{wi (tln])t~*opj, (h)wa(t[n)}

() {wa(®)(1 = an(t[n]))op (t7 @) (1 — @s(t[n]))@4(t)}g

(d) gw(t){(1 = wi(t[n))op (¢7#p)(1 — wa(t[n)))@(2)}

The same statement holds for {wa(t)@1(t[n))t=* op Ic ¥ (f)@(t[n))@4(t)}g and

§{w(t)on (¢}t oply(R)wn(tlm)()} by Proposition 2.5(f).

Proof. (a) Let F = @ (¢[n])t~* op T *(f)@a(t[n]). Suppose first that f is
independent of ¢. Then F' is homogeneous of degree p in 7 for large |5, hence
an element of S% (@, R%; K3™*77# K377 ) for all s > d' — 1/2. By linearity
we may assume d' = (. Hence ‘

Fg e SEFH (R K37, KgHwrs—i) (3.15)
whenever s > —1/2, noting that g(y,n) maps into X*7™#. We want to show

Fg e S5 (Q,R% K37, 87547, (3.16)

Close to zero, the space Sj “H=H coincides with ((,50 K37 F 7 H57¢ where k
is the integer in gg. For arbitrary € > 0 use Lemma 1.29 and write
Fg = F(In)**([n]t)**g = (n}t)*“ Fe([n)t)**g

with F. = & (¢[n])t~* op 12Tk fo(t[n]). Multiplication by {[5]t)¢~* is an
element of S3(2, R% 875", K3°7™"); the symbol ([n]t)*~w)(t{n]) belongs to

S%(Q,RY; K:gorr—#—u’, IC;O"Y"“H—E). Hence
Fg € () SEM (Q,RY K37, KPT#—w+E=e), (3.17)
&
Next choose ws with @yws = &, so that ws(t{n])F = F. Multiplication by
ws(t[7]) is an element of S (2, RI; KC3T7H7# Hhoe [t]‘lng""_'u_‘“'%_E) for arbi-

trary ! and s, so (3.16) follows from (3.17).
Our next task is the relation

(Fg)* € SET(Q,RGK#H7,877). (3.18)

- wosSince the normal derivative composed with g-furnishes an element of R‘é"’l’d(ﬂ X

RY,g)o,0 we may also assume that d = 0. Then (Fg)* = ¢*F”*, and (3.18) is
immediate. We therefore know that Fg € R‘&+“”d(ﬂ x RY,g2)0,0

g
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It remains to consider the case where f depends on ¢. Then we use a Taylor
expansion: For ¥ € N,

N—
143 . -
ay’ E _’]— 0 ¥, 2, ’7) thN(t,yaZ,fl)-

We let F; = @ (t[n]) -qt“‘ ‘op 78] £(0,y, z, tn)a(¢[n]). From the above result

for the t-independent case we know that Fjg € 'R%ﬂ‘ ’d(Q x RY%; g2). Apply-
ing Proposition 2.5(e), we conclude that t/F;g € R#¥ -34(Q x R, g3). We
therefore obtain the beginning of an asymptotic expansion. Finally we let

Fy = o (tn))t ™ op T *(Fu(t, v, 2, tn))an(t[n)).

We can now proceed just like in the t-independent case, except for the fact
that
Fy € S""""(Q,Rq;}C;"’_",ICQ’"""")

is not obviously a classical symbol. Hence we get relations (3.15), (3.16), (3.18)
with F' replaced by Fxn and the subscript “cl” omitted. The crucial point
now is that we still have the factor ¢V. It lowers all orders by N. Hence the
possible non-classical contribution is of arbitrarily negative order and therefore
negligible. So (a) is proven.

The proof of (b) is virtually the same as that of (a). Finally (c) and (d) follow
in an analogous way. Here, the mapping is nice near ¢ = 0; we only have to
take a closer look for large t. Write (1 w1 (¢[])) = t~%(1 —w (t[n]))t*. Noting
that [t,0p +q] = —Drgq, we may commute powers of ¢ to the right, where we can
make use of the mapping properties of g. a

Proposition 3.12. We use the notation of 3.9. Then
c—aa€ 'R.g‘*'“"d’ (@ xR% g2)o,0-

Proof. In order to avoid notational complications let us assume that d = d' =
d' =0.

Step 1. The pointwise constideration. We know from the cone calculus that for
fixed y and n, the operator

w(t)(1 — wi(t[n])) {t™#op}s (h)(y,n) — t™ ope(p)(y, M)} (1 — wa(tln]))@(t)

by 3.9(xi) is an element of C(X",g)0,0. Hence we can write

a(y,n) = w(t)t Hopi(h)(y, n@(t) + Gy (3.19)

e
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with G € C&(X",g)o,0- Similarly, @(y,n) = wa(t)t™*op} (f) (¥, M@a(t) + G2
for some G2 in C&(X",g1)0,0. Denoting congruence modulo C (X", g2)0,0
by = and using that &4w = @4, we have

ay,ma(y,n) = (wat ™ op}*(f) (y, n)@s) (Wt ope(h) (y, 1))

wat™ oply P () (y, m)t Hoply (h) (¥, )@
= wat™H” #OpM(k)(yi n _c(y, )

the last identity stems from 3.9(xi); the second congruence is due to the fact
that

wat ™ op}r A (£) (w,m) (1 — @a)t"Hop}s (W) (y, M@ € CE(X", 82)0,0,

and the last congruence is the analog of (3.19) for c¢(y,n). The continuous
dependence of the operators on the symbols shows that the construction is
smooth in ¥ and 7, hence

¢ —da € C®(Q x RY, L(K7, 87547). (3.20)

Similarly,
(c—aa)* € C°(Q x RY, L(KSHH 7,87 o)) (3.21)

Step 2. The case of t-independent symbols. Assume next that the symbols
h,p and f ,§ involved in the definition of ¢ and & are independent of . By
construction, this then is true for #. Employing the formula for the asymp-
totic expansion of &, [15, Proposition 3.14] or [14, Theorem 2.4.13], also k is
independent of ¢ before the modification in 3.9(xi). Using the notation of 3.9,
the resulting change in k is a finite linear combination of terms of the form
hiat?~%(tn)*s(tn), hence homogeneous of degree |a| — j in the sense of (1.3)
for large |n]. Choose excision functions {; and ¢ and abbreviate

ap = wi(tn))t ™ op}(R)(y, w2 (t[n])
+(1 - wl(t[n]))op e(t "‘p)(y, (1 — w3(tn]));
G = ot opTr*(f) Y, M@ (tn])

+(1 = & (tn)) om(t“"Q)(y,n)(l ~ @3(tm)));
co = wi(tf))t™ opk(k)(y, nwa(tln])
+(1 = wi(E{n)))op (E™H ¥ r)y, n)(L - wa(t[n)).

We first consider the difference (1dpCaap — (1(2co- By 1.28 and 2.1, this is an
element of SAH4 (Q, RY; K37, K3~ HH77#7#)) for s > —1/2. Moreover, it is a
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finite sum of terms that are homogeneous in 7 for large |n| in the sense of (1.3).
Hence it is classical.

We havé to show that
Clgz{(w,;&od'u)(waoa)) — wycps} € R‘g—l"’o(ﬂ X Rq,gg)o,o. (3.22)

Since we have homogeneity, it suffices to prove that

(iCo{doan —co} € SHH(QRGK]Y, ST ) and  (3.23)
(1¢2{d@oao — co}” € SH“’(Q:RQ;’C;’“W’_TaSl_:g)- (3.24)

Indeed, suppose this holds. Then (;{2{(wsdo)(ao@) — wycow} is an element
of R"C',+””O(Q x RY,g2)0,0. Moreover, we argue that {)(wsao(l — &4)apw €
Raw’o(ﬂ, x RY,g2)0,0: In view of the fact that supp (1 — @4) Nsuppws = @ we
may replace the Mellin symbol A by a symbol tYhy, N € N with hx(t,2,7) =
hn(t,2,tn) and hy € C°(R, x Q, MS,—dN (X;RY)) without changing the op-
erator and then apply Theorem 1.28. So we deduce (3.22) from (3.20) and
(3.21).

Next we focus on (3.23). Choose cut-off functions ws,ws,w? with

(1 -—w3)w5 = 0, (1 - wﬁ)wl =0 s (1 - (:13)(4)7 = 0, (3.25)
supp (we — wy) N suppws = 0. (3.26)

This is possible, provided ws and wy have support in a sufficiently small neigh-
borhood of zero, while wrws = ws. In particular (1 —~ @3)ws = 0. Without loss
of generality we also assume that Ojw3 = ws.

In th(:: following few lines of computation we denote by = congruence modulo
R‘C',."’“ (2 x RY, g2)0,0. Abbreviate M; = Dl(t[n])t‘“'op'ﬂ”(f)‘(y, n)az(tn]),
M, = wi(t[n])t~*op)s(h)(y,m@2(t[n]), and M, = w;(t[n))t~*~* op},(k){y,n)
wa(t[n]). Also omit, just for the moment, the argument (¢[n]} of the cut-off
functions for better legibility. The first two equalities, below, are immediate
from (3.25).

(1¢2{@oao — clws = (1{2{@0 M, — M }ws
= GlfaowsMa — M }ws = (1{2{dowr My — M }ws
= l{MawriM, — M }ws
= GG{@nt™ opl*(F) (v, m)t Popl(h) (y, ws — Mc}ws
= Clafwit™ op} * () (y, Mt op}y (R) (y, M)ws — Mclws = 0.

e .
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The first congruence follows from (3.26) together with Lemma 3.4(a). For the
second we use the same lemma in connection with the fact that d»(1 — w7)w,
is a function in C®°(R.,) whose support is disjoint to that of ws. The third
congruence comes from replacing @, by wy; this is justified again by the lemma
together with the fact that supp (wy — @) Nsuppws = @. The final congruence
is slightly more subtle: By construction, the expression between the braces is,
for fixed (y,7), an element of CL(X", g2)0,0. We may therefore first employ
(3.9) in order to obtain the pointwise mapping properties required for elements
in R‘é‘"“"o(ﬂ x RY g2)0,0 and then homogeneity in connection with Lemma
1.4 for the conclusion.

What about (1¢2{@pao — c}(1 — ws(t[n]))? We may change w, @,..., at the
expense of an operator in R4™%(Q x RY, g)0,0. Invoking Lemma 3.4(c) we
can therefore show — just as above — that the term in question is congruent
modulo R‘é"’”l'o(ﬂ x RY,g2)0,0 to

¢1¢2(1 — wi){op (¢7¥ q)op (t*p) —op (T# ¥ 1) }(1 — ws)(1 —ws);  (3.27)

both (y,n) and (t[n]) have been omitted. The pseudodifferential operator be-
tween the braces is regularizing, hence given by an integral operator with a
kernel that is rapidly decreasing in ¢5). For small |5|, the excision function van-
ishes. For 77 away from zero, it yields an element in £(K]7, 8] 6‘“““’) for fixed
(y,7m); moreover, the estimates in the sense of (1.2) are O((t[7])~N) = O([t]™)
for arbitrary N. Hence (3.27) defines an element of S~V (Q,R%; K], Sg’g‘ ) for
each N. Applying a similar argument to the adjoint, we conclude that (3.27)
is a symbol in Rg™°(Q x R, g2)0,0-

So the case of t-independent symbols is proven.

Step 3. The t-dependent case. In case the symbols do depend on ¢, we use
a Taylor expansion up to order N. According to the above consideration the

polynomial part furnishes elements in R‘é"’“l’o(ﬂ x R7,g2)0,0. So we can con-
fine ourselves to the case where the symbols have compact support in ¢ and we
have an additional factor t¥. As in the proof of Proposition 3.11 the resulting
term then induces an element

gy € STN(QRI IV KRR, s> —1/2
with the additional properties
gv € STN(Q,R%LKT, 87T,
gy € STN(QRGKYTHTSTT).
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Since N is arbitrary, this completes the proof. D
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