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A Symbol Algebra for Pseudodifferential Boundary

Value Problems on Manifolds with Edges

ELMAR SCHROHE AND BERT-WOLFGANG SCHULZE

We introduce a symbol algebra for pseudodifferential boundary value problems on
manifolds with edges. The elements in this algebra consist of (i) a Mellin part with a
holomorphic Mellin symbol near the edge, (ii) a pseudodifferential part slightly away
from the edge, and (iii) a residual term, a so-called Green operator.

Introduction

Following upon earlier work [15], [16], this paper is part of aseries of arti­
des devoted to the construetion of an operator-valued symbolic structure for
pseudodifferential boundary value problems on manifolds with edges. Our in-
vestigations here foeus on a symbol algebra for the non-smoothing part of the ~,

operators, induced by the edge-degenerate symbols in the interior. It will be (;.
completed to the full algebra by adding the smoothing elements with asymp--
totics treated in [16].

A wedge in our terminology is an object of the form C X Rq, where C =
X X [0,00)/X x {O} is an infinite cone over a smooth compact manifold with
boundary, X. Following the general approach, we consider symbols wmch
coincide with the usuaI elements in Boutet de Monvel's calculus away from the
edge; near the edge they are described in terms of operator-valued symbols on
Rq taking values in operators on the cone.

We show, in particular, that the approach to a wedge pseudodifferential calcu­
lus developed in [17, 18, 19] for the case of boundaryless X applies in a similar
form to the case of boundary value problems. At the same time we further
develop the technique of using operator-valued symbols and give a new concise
description of the nonsmoothing contribution to the edge symbol algebra.
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1 Pseudodifferential Boundary Value Problems

In this section we review the basic elements we need for the construction of
a calculus, namelyon one hand a pararneter-dependent version of Boutet de
Monvel's calculus based on the concept of operator-valued symbols and, on the
other, the notion of wedge Sobolev spaces.

We start with the definition of parameter-dependent operator-valued symbols.
The point in this construction is the speeial kind of estimates involving a
group action. We proceed by introducing weighted Mellin Sobolev spaces,
holomorphic Mellin symbols, and the assoeiated operators. We review the
definition of edge symbols, show how they can be considered as operator-valued
symbols and how one can link pseudodifferential and Mellin edge operators by
a process called Mellin quantization.

The exposition here is necessarily coneise; all details may be found in the papers
[13], [14]' and, mainly, [15].

Group Actions aod Operator-Valued Symbols

1.1 Operator-valued symbols. A strongly continuous group action on a
Banach space E is a family K. = {K.).. : A E R+} of isomorphisms in .c(E) such
that, for e E E, the mapping .-\ t-t K.),.e is continuous alld K,),.K./l = K.)..w

There are constallts c and M with 11K.>.II.c(E) ::; cmax{.-\, A-1}M.
We next fix a smooth positive function [.] : Rq -t R.r with [17] = 1171 for large
1171. Peetre's inequality states that, for each s E R there is a constaut C~ with

H~ (R) is the usual Sobolev space on R, while H~ (R+) = {ulß.+ : U E H~ (R)}
and H8(R+) is the set of all tL E HS(R) whose support is contained in R+.
Furthermore, H~lt(R+) = ([r]-tu : U E HS(R+)}, alld Hg,t(~) = {[r]-tu :
U E H&(R+)}; here r is the variable in~. Finally, S(R~) = {ulRq : u E

+
S(Rq)}.

For all Sobolev spaces on Rand R+, we will use the group action

L

1
(K.),.f) (r) = .-\2f(.-\r). (1.1)

This action extellds to distributions by K.),.u(ep) = U(K.>.-lep). On E = C' use
the trivial group action K.>. = id.

Let E, F be Banach spaces with strongly continuous group actions K., K, let !1 S;
R k , a E C OO (!1 x Rq,.c(E, F)), and t-' E R. We shall write a E S/l(!1, Rq; E, F),
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provided that, for every K ce ,0 and a11 multi-indices Ct, ß, there is a constant
G = G(K, Ct, ß) with

(1.2)

Tbe space sl-l(n, Rq; E, F) is Frechet topologized by the choice of the best
constants C. The intersection S-oo(n, Rqj E, F) = nl-lSI-l(n, Rqj E, F) is inde­
pendent of the choice of t\, and K,.

The space Sl-l (,0, Rqj C k , Cl) coincides with the (l x k matrix-valued) elements
of Hörmander's dass SI-l(n, Rq).

Asymptotic summation: Given a sequence {aj} with aj E SPj (,0, Rq jE, F) and
J1.j -t -00, there is an a E SP(n, Rq; E, F), J1. = max{J1.j} such that a '" E ajj
a is unique modulo S-oo(n, Rqj E, F).

A symbol a E SP(n, Rqj E, F) is said to be classical, if it has an asymptotic
expansion a '" E~o aj with aj E sIJ-j(n, Rqj E, F) satisfying the homogeneity
relation

aj(Y, A77) = AIJ-j~,\ aj(Y,1J) "",\-1 (1.3)

for a11 A 2: 1, 11J1 2: R with a suitable constant R. We write a E S~(n, Rq; E, F).
For E = C k , F = Cl we recover the standard notion.

There is an extension to projective and inductive limits: Let E, F be Banach
spaces with group actions. Ir F1 f---J F2 f---J .•• and EI '---+ ~ '---+ •.• are
sequences of Banach spaces with the same group action, and F = proj - Um Fk ,

E = ind - Um Ek , then let

sIJ(n, Rq; E, F)

sIJ(n, Rq; E, F)

SIJ(!1, Rqj E, F) =

proj - lilnkSIJ(n, Rqj E, Fk)j

proj - limkSIJ(fl, Rqj Ek , F)j

proj - limk,lSIJ(n, Rqj Ek, Fl)'

Example 1.2. Let 'Yj : S(R+) -t C be defined by Tjf = liIl1y.-4o+ ß/.f(r).
Then, for a11 8 > j + 1/2 , we can consider 'Yj as a (y, f])-independent symbol
in Sj+l/2(Rq x Rqj Hß(~),C).

In fact, a11 we have to check is that IIK[711-1TjK[71111 = 0([1J]1+1/2) for the group
actions K, on C and K. on Hß(~). Since the group action on C is the identity,
that on Hß(R+) is given by (1.2), everything fo11ows from the observation that

&t{[f]P/2 f([TJ]r)}!r=O = [1J]i+ 1/ 2&tf(O).

The following statement is obvious.
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Lemma 1.3. For a E S~(!1, Rqj E, F) and b E SII(!1, Rqj F, G), the symbol c
defined by C(Y,17) = b(Y,1J)a(y, 1]) (pointwise composition 0/ operators) belongs
to s~+V(n Rq· E G) while nonßa E S~-Iol(n Rq· E F)

J , " T1 Y , , , •

Lemma 1.4. [15, Lemma 1.4] Let a = a(y,1]) E COO(n x Rq ,.t(E, F)), and
suppose that a(y, ).1]) = ).JjK,>. a(y,1J) ~>.-1 /or all ). 2:: 1, 11]1 ~ R. Then a E
S~ (n,Rn jE, F), and the symbol semi-norms for a can be estimated in terms
of the semi-norms for a in COO (n X R q , .t(E, F) ).

Definition 1.5. Let n ~ Rq be open and a E S~(n x n, Rq x R'j E, F). The
parameter·dependent pseudodifferential operator op a is the operator family
{op a().) : ). E R'} defined by

(ap a(A)f)(y) = Jei (Y-ii)T1 a(y, ii, '7, A)f(iJ)dya1], (1.4)

f E C~(n, E), yEn. This reduces to (opa().)f)(y) = JeiYT1 a(y, 1])j(1])d1J for
symbols that are independent of y'. Here, j(1]) = Fy-+ T1 f(f/) = Je-iYT1f (y)dy
is the vector·valued Fourier transform of /, and d1] = (27f)-qdf/.

Definition 1.6. Let E, K. be as in 1.1, q E N, 8 E R. The wedge Sobolev 8pace
W"(Rq, E) is the completion of S(Rq, E) = S(Rq)®'lrE in the norm

1

lIu llw'(Rq,E) = (J [1/Y'II"'[QI-lJ'"y-+qu(1/)1I1d1/) , .

It is a subset of S'(Rq, E). There are a few straightforward general­
izations: Ir {Ek } is a sequence of Banach spaces, Ek+l t-t Ek, E =
proj -limEk, and the group action coincides on all spaces, we let W 8 (Rq, E) =
proj -limWS(Rq, Ek ). Similarly we treat inductive limits. For 0 ~ Rq open
we shall write ti E W~p(!1,E), if there is a function cp E C~(O) such that
u = tpU, and say 11 E W!oc(O, E), if u E 'D'(O, E) and tp'U E W"(Rq, E) for an
cp E Cr(Rq).

1.7 Elementary properties of wedge Sobolev spaces (see [9]).
(a) W"(Rq, H"(R+)) =H8(R++1

).

(b) WS(Rq, Hü(R+)) = H8(R++1
).

(c) W"(Rq, C) = H 8 (Rq), using the trivial group action K.>.. = id.

Theorem 1.8. [19, Section 3.2.1] Let a be as in Definition 1.5. Then
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is bounded Jor every ,\ E R l . 1J a is independent oJ y and ii, then we may omit
the subscripts (camp' and 'loe '. The mapping op : symbol f---t opemtor
is continuous in the corresponding topologies Jor all s E R.

Definition 1.9. Let E, F be Frechet spaces and suppose both are continuously
embedded in tbe same Hausdorff vector space. Tbe direct surn E E9 F is Frechet
and bas the closed subspace N = {(a, -a) : a E E n F}. The non~direct sum
of E and F then is the Fnkhet space E + F := E (J) F/N.

1.10 Bautet de Monvel's Algebra. Let X be an n-dimensional 0 00 man­
ifold with boundary Y, embedded in an n-dimensional manifold G without
boundary, all not necessar~ly compact. In the following we shall denote by X
the open interior of X, wbile X denotes the closure. Let VI, V2 , •.• , be vector
bundles over G and let W I , W2, ... , be vector bundles over Y.

Given jJ. E Z, dEN, we denote by ßJj,d(Xj Rq) the Fnkhet space ofparameter­
dependent elements of order J-1> and type d in Boutet de Monvel's calculus, acting
between vector bundles in the usual way:

Cö'(X, Vt}
A('\) : (J) -7

Cf)(Y, Wl)

COO(X, V2 )

(J)

COO(Y, W2 )

(1.5)

We write ß~,d(XjRq) for the subspace of classical operators. The elements of

B~,d(XjRq) have two principal symbols, namely the interior principal pseudod·
ifferential symbol a~(A) and the (operator-valued) boundary symbol a~(A).

For an introduction to the parameter-dependent version of Boutet de Monvel's
calculus see [13, Section 2]; short accounts were given in [14] and [15]. In [14]' r.
the principal boundary symbol was denoted a~. The elements of Boutet de St~

Monvel's calculus form an algebra in the following sense:

Proposition 1.11. [11, Section 2.3.3.2] Let A E BJj,d(Xj Rq), B E
BJjl,tf (Xj Rq), and Ci, ß E C. Then
(a) aA + ßB E Btll/ ,cf

l
(X; Rq) Jor IJ" = max{IJ, /-L'}, d" = max{d, d'}.

(b) A 0 B E Btll/,tfl (Xj Rq) Jor IJ" = {IJ + /,'}, dU = IUax{jJ.' + d, d/}.
We assume here that the vector bundles A and B act on are such that the
addition and composition make sense.

Example 1.12. The Dirichlet problem (~) is an operator in Boutet de
Monvel's calculus of order 2 and type 1. In fact, the Laplacian ß is a
differential operator of order 2, while according to Example 1.2, the op­
erator of evaluation at the boundary, ')'0, is an operator~valued symbol in
Sl/2(Rn- l , Rn-i; H 8 (R+), C), providcds > 1/2; it is well-known to be of
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type 1. The Dirichlet problem is independent of any parameter, but since it is
a differential boundary value problem, we may also conaider it as a paralneter­
dependent element. Since the order of ,0 ooly is 1/2, we may even replace ,0
by A,o, where A is a (parameter-dependent) order reduction of order 3/2, and
still have order 2.

Here, the vector bundle W I is zero, while VI, V2 , W2 can be taken trivial ooe­
dimensional.

Wedge Sobolev Spaces
We use the notation C, X, Y of 1.10, but from oow 00 we assume C, X, and
Y to be compact. Let GI\. = C x R+, XI\. = X X R+, yl\. = Y X R+.

1.13 Parameter-dependent order reductions on G. For each p. E R
there is a pseudodifferential operator AJIo with local parameter-dependent ellip­
tic symbols af order p, depending on the parameter 'T E R, such that

is an isomorphism far all 'T.

One can construct such an operator for example starting from symbols af the
form [(~, 'T, G)]1l E SIl(Rn , R~; R,.) with a large constant G > 0 and patching
them tagether to an operator on the manifold C.

Definition 1.14. For ß E R, r ß denotes the verticalline {z E C : Rez = ß}.
The Mellin transform M tL cf a eoo (R+ )-function u ia

(Mu)(z) = fa'JO tZ-1u(t) dt. (1.6)

M extends to an isomorphism M : L2 (R+) -r L2(r 1/ 2). Of course, (1) also
makes sense for functions with values in a Frechet space E. The fact that
Mulr1/:I_"'(z) = Mt-+z(t-'u)(z + ,) for tL E eOO(R+) motivates the definition
of the weighted Mellin tmnsform M-y:

M-yu(z) = Mt-+z(t--Yu)(z + ')'), U E eo(~, E).

For a Hilbert space E, the inverse of M, ia given by (M..yIh)(z) =
;;.-,'2:. .hr t- Z h(z)dz.
". 1/:1-."

1.15 Totally characteristic Sobolev spaces. [13, Section 3.1] (a) Let {All :
J-L E R} be a family of parameter-dependent order reductioos as in 1.13. Für
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8" E R, the space 1-{3('((GI\) is the closure of cgo (GI\) in the norm

7

lI u ll1l"''"(GA) = { r IIAS(hnz)Mu(z) III:Z(G) Idzl}1/2. (1.7)
Jrn+l---,--- -.,

Recall that n is the dilnension of X and G. The space 1-{3('((GI\) is independent
of the particular choice of the order reducing family.

(b) For 8 = 1E N we obtain the alternative description

for all k :::; land all differential operators D of order:::; 1 - k on G, cf. [19,
Section 2.1.1, Proposition 2].
(c) We let 1-{3"(XI\) = {fIxA : f E 1i3"(GI\)}, endowed with tbe quotient
norm: llull1l.,'"(XA) = inf{llfll1l.''"(GA) : f E 1-{S,7(GI\) , fixA = u}.
(d) 1i317 (XI\) ~ Htoc(XI\) , where the subscript tloe' refers to the t~variable

only. Moreover, 1iS ,7(XI\) = t71-{s,O(X/\); 1-{o,O(X/\) = t-n / 2L2 (X/\).

(e) 1{O,O(X/\) has a natural inner product

(u, v)1l0,O(XA) = 2
1

. r (Mu(z), MV(Z))L:Z(X) dz.
7rt Jr~

(f) Ir <p is the restriction to X/\ of a function in S(G x R) = S(R, COO(G)),
then the operator M I.p of multiplication by €{J, M I.p : 1{S,7 (X /\) ---+ 1{S,7(X /\ ),
is bounded for all 8, / E R, and the mapping <p t-T MIj) is continuous in the ~.~

corresponding topology. ~

1.16 The spaces H~one' Let {Gj};=l be a finite covering of G by open
sets, K.j : Gj ---+ Uj the coordinate maps onto bounded open sets in Rn, and
{<pj };=l a subordinate partition of unity. The maps K.j induce a push-forward
of functions and distributions: For a function 'U on Gj

(1.8)

for a distribution u ask that (K.j. tL)(<p) = u{ €(J 0 K.j), <p E Cgo (Uj ). For
j = 1, ... ,J, consider the diffeomorphism

Xj: Uj x R ---+ {(x(t],t): x E Uj,t E R} =: Cj C R n +l

given by Xj{x, t) = (x(t], t). Its inverse is Xjl (y, t) = (y/[t], t). For 8 E R
we define H~e(G x R) as the set of all u E Htoc(G x R) such that, for
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j = 1, ... , J, tbe pusb-forward (Xjl'~j).(CPju), which may be regarded as a
distribution 00 R n +1 after extellBion by zero, is an element of H.'I(Rn+1 ). The
8pace H~e(G x R) is endowed with the corresponding Hilbert space topology.
We let

For more details see Schrohe&Schulze [14, Section 4.2]. The subscript "cone"
is motivated by the fact that, away from zero, these are tbe Sobolev spaces for
an infinite cone with center at tbe origin and cross-section X. In particular, the
space Hgone(sn x R+) coincides with H S(Rn+1

\ {O}) outside a neighborhood
of zero.

Definition 1.17. For s, / E R aod w E Ctf(R+) with w(r) ;;:: 1 near r = 0,
let

KS{Y(X") = {u E V'(X") : wu E lls ,,(X"), (1- w) u E H~e(X")}. (1.9)

The definition is independent of w by 1.15(f). We endow KS'''/(X'') with thc
Banach space topology Ilull.~:.''7(XA) = Ilwull1l~''7(xA) + 11(1 - w)uIlHgone(XA). In
fact, this is a Hilbert topology with the inner product inherited from 1[S I"/ and
H:one' By 1.15(d), KO,O(X") = ?-l0'O(X") = t-n/2L2(X").

Theorem 1.18. For 8 > 1/2 and / E R the restriction 1'ou = UIYA 0/ u to
y" induccs a contintWU8 opemtor 1'0 : J(.'I,'Y(X") -+ }C.'I-l/2,,,/-1/2(y"),

By r denote the normal coordinate in a neighborhood 01 Y. Then the opemtors
1'j : U H atulYA define continuous mappings KSl"/(X") -+ K.'I-j -l/2,,-1/2(y").

This can be deduced from the trace theorem for the usual Sobolev spaces. The
shift in the weight l' ~ l' - 1/2 is due to the fact that dirn Y = n - 1.

The lemma, below, is lenghty but straigthforward to prove.

Lemma 1.19. A strongly continuous group action K.).. can be defined on
KS,,(X") by

.!!±!. "(K.>./)(x, t) = A 2 f(x, At), 1 E KIl,,(X ), S ~ o.

This action is unitary on KO,a (X" ) . It naturally extends to distributions in

K Il" (X"), 8, l' E R.

Remark 1.20. The definitiollB of the spaces ?-ls" and KS" also make sense
for functions and distributions taking values in a vector bundle V. We shall
then write 1is,"I(X" l V) and KS"(x,, 1 V), respectively. In later constructions
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we will often have to deal with direct sums K,s,'Y(Xt.., V) EB.K:s - 1/2,,-1/2(y", W)
for vector bundles V and W over X and Y, respectively. On these spaces we

. !!.±! 11
use the group actlOn ~A(U, v) = (,X 2 U(', 'x'),'x:l v(', ,x.)).

Proposition 1.21. [15, Theorem 2.12] For all s > 1/2, the restriction operator
,0 induces a continuous map

TO: W"(Rq,Jes,,(X")) -t WS-l/2(Rq,}CS-l/2,,-1/2(y")).

Proposition 1.22. [15, Proposition 2.13] Let cp E S(X" xRq). Then the oper­
ator 0/ multiplication by cp /umishes a bounded operator on WS(Rq, Jes,,(X"))
/or all S,T E R. fts norm depends continuously on the semi-norms /or cp in
S(X" x Rq).

Operator-Valued Mellin Symbols
Convention: In the following we fix J-.L E Z and dEN. Whenever we write
W, W, WI, ••. , without further specification or refer to a function as a cut-off
function we mean an element of Cgo(R+) which is equal to one near the origin.

Definition 1.23. (a) Mb,d(X iRq) is the space of all a E A(C, B~,d(X;Rq))
such that, for all Cl < C2 in R,

a(ß + ir) E BJJ·d(Xj Rq x Rr), (1.10)

uniformly for all ß E [Cl, C2]. We call the elements of Mb,d(X; Rq) holomorphic
Mellin symbols of order J.l. and type d. We are assuming that the vector bundles
a(z) is acting on are independent of z.

The topology of Mb,d(Xj Rq) is given by the semi-norm systems for the topol- k." .

ogy of A(C, BJJ,d(X; Rq)) and, for famHies {aß : ß ER}, the topology of ~
uniform convergence on compact subsets of Rß in B~,d(X;Rq x Rr). Clearly,
Mb,d(X; Rq) is a Frechet space with this topology.

(b) Mb'~(Xj Rq) is the corresponding space with BJJ·d(X; Rq) replaced by

B~,d(Xj'Rq).

Example 1.24. Let Ak E BJJ-k,d(X), k = 0, ... , J-.L, be differential boundary
value problems. Then a(z) = L~=o Akzk E Mb,d(Xj Rq).

1.25 Mellin symbols and operators. Let / E COO (R+ x R+, B/-"d(X j r 1/2-, )).
For each fixed (t, t' , z) E~ x~ x r 1/2-" we have a boundary value problem

Cgo (X, Vd
/(t,t',z): EB -t

C~(Y,WI )

Coo(X, V2)
EB

Coo(Y, W2)
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in Boutet de Monvel's calculUB.
-A -A -

For u E C[f(X ,VI) EB C[f(Y ,W1) = G~(R+, COO(X, VI) EB GOO(Y, Wt}) we
define the Mellin operator op'1 f by

op'1(f)u(t) =~ { {CO (t/t')-Z f(t, t', z)u(t')dt' /t'dz.
21r1 Jrl / 2 _., Ja

If f iB independent of t', then op'M(f)u(t) = -21 ·};r t-Z f(t, z)Mu(z)dz.
7l"I 1/:iI-"(

It is easy to see the continuity of

CJf(X
A

, Vd
op1(f) : EB ~

C~(yA,WI)

COO(X", V2 )

EB
COO(yA, W2 )

For f E COO(~ XR+, B~,d(Xj f 1/2-,)) we obtain a bounded extension

,("'''+~ (XA
, Vd

wlop'1(f)W2: EB
K 8 ,,+ n;l (Y\ Wd

K:"-I',,+~ (X A , V2)
-t EB

,(8-1',,+ n;l (yA, W
2

)

(1.11)

provided 8 > d - 1/2. A proof is given in [14, Proposition 2.1.5].

Definition 1.26. In the following we shall use the abbreviation

}Ci" = KS"+g. (X\ lf;) EB }C""+ n;l (yA, Wj) j = 1,2, ....

(.
The followiIlg proposition follows immediately from Proposition 1.11. l

Proposition 1.27. Given 1',1" E Z and d, d' E N, let 1''' = J..' + p.' and
d" = max{jl + d, d'}. Then there is a continuous multiplication

given by the pointwise composition in Boutet de Monvel's calculus: (a, b) t-t c
with c(z,1]) = a(z,1]) 0 b(z,1]).

1.28 Theorem: Operator-valued Mellin symbols. ([15, Corollary 3.9])
Let, E R, n ~ Rq, and f E COO(R+ X 0, BI',d(Xj f 1/ 2-, X Rq)). Recall that [.]
iB a smooth positive /unction on Rq coinciding with 1·1 outside a neighborhood
0/ zero and define
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By (1.11) this furnishes an .c(.K:r" , K.;-~"-~)-valued function a on 11 x Rq for
all 8 > d - 1/2. Moreover, a E S~(11, Rq; K.~", K;-~"-~).

We then deduce from Theorem 1.8 that the operator

opa . W~ (11 K.~l') ~ W"-P (11 y6-~.'-~). camp , 1 loc' ''''2

is continuous for all s > d - 1/2.

Lemma 1.29. [15, Lemma 3.11J We use the above notation and let ß E R.
Then

In case f even is an element in COO(R+ x 11, Mß,d(X; Rq)) we also haue

Here we consider both sides as operators on Cgo(R+, COO(X)); T-ß is the
translation operntor defined by T-ß f (t, y, z, try) = f (t, y, z - ß, try).

Mellin Quantization and Kernel Cut-Off

Definition 1.30. A symbol p = p(t, 1), T, ry) in COO(R+ x f!, B~·d(X;R.r x~))
is called edge-degenemte, if there is a symbol ß in COO(R+ x 11, B~·d(X; ~ x
R~)) with p(t, y, T, ry) = p(t, y, tr, t1J).

Given an edge-degenerate symbol we can find a Mellin symbol which induces
the same operator up to a smoothing perturbation and vice versa. This is the
contents of the following assertion, proven in [15, Theorems 3.17, 3.19].

Theorem 1.31. Let p E COO(R+ x 11, B~·d(X; R x ~)) be edge-degenerate

and"'l E R. Then there is an f, E COO(R+ x 11, B~·d(Xj f 1/ 2-, X ~)) with

Conversely, giuen f, E COO(R+ x 11, B~·d(X; f 1/ 2-, x ~)), there is an edge­
degenemte boundary value problem p such that relation (1.12) holds.

The same statement holds for classical symbols, i. e., for B~ld replaced by ß~·d.

Kernel cut-off is a simple way to switch from an arbitrary Mellin symbol to a
holomorphic Mellin symbol, up to a smoothing error. The proof of the theorem,
below, was given in [15, Theorems 3.20, 3.21].

, ,"
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Theorem 1.32. Let I E COO(~ x f2, ßJj,d(X; r o x Rq)), choose cp E C[f(~)

and 1jJ E Cr(R+) with t/J(p) == 1 near p = 1. Then the operator-valued function
Iv> defined by

is an element of COO(R+ x !1, Mb,d(X; Rq)), while fl-T/J defined by

is an element of COO(R+ x !1, ß-oo,d(Xj r o x Rq)). Moreover, the mapping
(cp,/) f--ot Iv> is separately continuous Cr(~)xCOO (R+xf2,B/-"d(XjroxRq))
~ COO(R+ x f2, Mb,d(Xj Rq)), and (tP, I) f--ot fl-T/J is separately continuous
C~(R+) x COO(R+ x f!, ß/-"d(X; r o x Rq)) -+ COO(R+ x f!, ß-oo,d(Xj r ox Rq)).

Notice that upon starting with a holomorphic Mellin symbol, kernel cut-off
with a function t/J satisfying tP(p) == 1 near p = 1 produces the same symbol
up to an error wruch is regularizing and holomorphic:

- JjdTheorem 1.33. ([15, Theorems 3.29]) Given h E COO(R+ x O,Mo' (XjRq))
and'l/J E C[f(R+) with 1jJ(p) == 1 noor p = 1, the difference h-h1jJ is an element
of COO(R+ x f!, Möoo,d(Xj Rq)).

2 Operator-Valued Edge Symbols
In this section we shall first analyze the behavior of edge-degenerate pseu­
dodifferential operators on cone Sobolev spaces, then we shall focus on Green
symbols with trivial asymptotics.

Parameter-Dependent Boundary Value Problems on Cone Sobo­
lev Spaces

Theorem 2.1. Far P E COO(!1, ß!-"d(Xj R}~q) and an excision function ( E
COO(Rq) vanishing near zero and equal to 1 near infinity define

Then a E S~(f!, Rqj Krt'}', K:~-Jl,i-Jj) whenever s > d - 1/2. The symbol esti­
mates for a depend continuously an thase for p.

The subscript t with op indicates that the action is with respect to this variable
only. Note that p is assumed to be independent of tj the covariable associated
with t is r.
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2.2 Outline. The proof of the theorem is rather long and the full details will
be given elsewhere. In order to keep the exposition transparent let üB sketch
the following steps leading to the conelusion. For simplicity let us assume that
VI and V2 are trivial one-dimensional while W1, W2 vanish.

Step 1. Suppose we know that, for A E Bll,d(X; R1+q) and fixed fJ E Rq \ {O},

s > d - 1/2, and that the associated mapping is continuous. Whenever IfJl is
large, a is homogeneous in fJ of degree J.1 in the sense of (1.3). Indeed, let IfJl
be so large that [fJ) = 17]1 and let u E C~(~, COO(X)). Then, in the notation
of 2.1,

K,,{a(y,7])"'>,-lU}(t) (2.2)
= K>.{>.-(n+I)/2(1 - w(tlfJl))t-ll

x Jei(t-t')rp(y, tT, t7])(1 - w(t'lfJl) )u(>.-1 t')dt'dT }(t)

(1 - w(tl>'7]I))( >.t) -J1 Jei(t-ß')>'Tp(y l t>'T, t7])(l - Wl (s' 1>''71) )u(s' )>'ds'dT

= >.-lla(y, >'1])u(t).

If (2.1) holds then we know that, for each fixed choice of y and '7 #- 0, the
operator a (y, 1]) is an element of .c(K~" , .K:;-J1.'- J1). Via the excision function (
we also eover the case 11 = 0; we obtain that a E COO (!1xRq, .c(.K:~,i, .K:~-ll,'-/.I)),

sinee the mapping from BJ1,d(X; R1+q) to .c(.K:~''"Y l K~-ll,'"Y-ll) given via (2.1) is
eontinuous. So Lemma 1.4 gives the assertion.

Step 2. We are now reduced to showing (2.1). Sinee the normal derivative
induces a bounded operator H~e(XA) -+ H~~~(XI\), linearity allows us to
assume d = o. A parameter~dependent element A E Bll,O(X; R 1+q) is given as
a finite surn of terms induced by loeal symbols supported arbitrarily elose to
the diagonal, plUB a term which is an integral operator with a smooth kernel
over X x X, rapidly deereasing with respect to (T, 1]), cf. 1.10.

Step 3. Suppose rES (RI +q , COO (X x X)). Then the formula

K'1u(x, t) = JJJei(t-t')Tt"711r (tT, t1], x, x')u(x', t')dx'dt'dT (2.3)

RR+X

defines an element Kf/ of .c(H~one(XI\),H~e(XI\)) for each choice of s,s' E R,
depending smoothly on 11 =I O. In order to see this, consider the integral kernel

"



14 Elmar Schrohe and Bert-Wolfgang Schulze

kl1 (x,t,x',t') = Jei (t-t' )'Tr (tr,t1],x,x')dr, reduce the task to the L 2-case, and
apply Schur's lemma.

Step 4. Next we consider the loeal terms. Let U be a coordinate neighborhood
for X, and let q = q(x,x',~,r,'7) E Sf:.(U x U,R{,~,~+q) be a pseudodifferential
symbol with the transmission property. Boundedness on cone Sobolev spaces
corresponds to boundedness on the lisual Sobolev spaces under via the push­
forward under the mapping (x, t) I--t (x[tJ, t). We may compute explicitly the
push-forward on the symbol level. For s > -1/2 we then obtain

{op ~,tt-f.'q(x,x', ~,tr, t1J) : 1] E Rq} s; .c(H~ne(XI\), H~(XI\)),

depending smootWy on 1].

A corresponding result holels for the singular Green part: Let U ~ Rn-l

be open and 9 E Sf.'(Ü x Ü,R~+q ;S'(R+),S(R+)). Then we get a family of
.. ,'T,11

bounded operators

{op x,tt-f.'g(x, x', e, tr, t1]) : 1] E Rq} s; .c(H:one(XI\) ,H~(XI\))

depending smoothly on 7].

Green Symbols with Trivial Asymptotics
In the following let n denote an open set in Rq, J.L E Z, and dEN, while g is
the weight datum g = (/ + n/2, c5 + n/2, (-k, 0]); here /, c5 E R, 0 < k E N.

Definition 2.3. Given, E Rand the integer k in the weight datum g we let
S'6(XI\) denote the space of all functions f on XI\ such that, for all c < k and
every cut-off function w, we have wJ E 1{oo,'Y+C(XI\) and (1 - w)f E S(XI\).
Similarly, for f E S;j-l/2(yl\) we require that wJ E 1{OO,'Y-1/ 2+c(yl\) and
(1 - w)f E S(yl\). Thc notation carries over to functions taking values in the
vector bundles VI, V2, ... , over X and Wb W2, ... , over Y. Following Definition
1.26 we now set

SI - S'Y+~ (XI\ V·) ffi S'Y+ n;l (y/\ W·) . 1 2
J,O - 0 , J WO' J' J = , , .... (2.4)

The 8paces SIo are Frechet spaces with the canonical topology of a non-direct
sum of Frechet spaces. Moreover, it is easily seen that they may be written as
projective limits of suitable Hilbert spaces, cf. e.g. [16, Lemma 1.20J.

Definition 2.4. (a) R~O(n x n x Rq, g)o,o is the space of all operator-valued
symbols

9 = g(y,y',1]) E n S~(n x n,Rq;}C~''Y,K:~-f.''O)
6>-1/2
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with the following property: For each s > -1/2, the symbol 9 yields an element
of S~(n x 0, Rqj Kr''Y, sg,o) , while the pointwise formal adjoint g*, defined by

g* (y, y'1]) =g(y, y' ,1])*, yields an element of S~(O x 0, Rq; K;'-o, S;6)',
(b) R~/(n x 0 x Rq, g)o,o is the space of all operator-valued symbols

gEn S~(o x n, Rqj JC~,'Y, K~-Jl,O)

~>d-1/2

which can be written in the form 9 = 90 + E1;\ 9j [~ ~] with 9j E

'R6-j ,o(0 x 0 x Rq, g)o,o. The matrix refers to the decompositions of the

spaces as in (2.4). The space R'd° (0 x 0 x Rq, g)o,o c1early is a Frechet space,

'R'dd(O x 0 x Rq, g)o,o is topologized as a non-direct surn of Frechet spaces.

Definition 2.4 is a special case of [16, Definition 2.2]. For the present purposes
we need neither the asymptotics nor the trace/potential contributions from the
boundary. We collect a few basic results, see [16, Proposition 2.4, 2.5, 2.6].

Proposition 2.5. Let g1 E 'R.~/(n x n x Rq, g)o,o and g2 E 'R.~,ff (f! x n x
Rq, g)o,o. Then

(a) D~D~,y'91 E 'R.6- lo1 ,d(O x n x Rq,g)o,o.

(b) The pointwise composition 9192 is an element of 'R.6+Jl',<f (0 x nx Rq, g)o,o·
(c) 1f d = 0, then the pointwise adjoint is an element of 'R.'d0 (0 x nx Rq, g)o,o.
(d) Given gj E 'R.~,d(n x n x Rq, g)o,o with J-lo > J.l1 ..• ~ -00, there is a

9 E 'R~,d(n x n x Rq, g)o,o with 9 ,...., Ei=o 9j'

(e) For v1,lJ2 E N we have tY2g1tYl E 'R.6-YI
-

Y:J,d(n x n x Rq,g)o,o,
(f) For cp E S(I4) the symbols fp91, 91 fp,. fp (. [1]])91, and 91 fp( . [1]]) all are ele­

ments of 'R.'dd(n x n x Rq, g)o,o.

In (e) we understand tYI as the operator of multiplication by the diagonal
matrix diag {tYI

, tYI
}; a similar interpretation applies to tV'J and fp in (f), while

<p( .[1]]) is the corresponding 1]-dependent rnul tiplier.

The following theorem is immediate from Theorem 1.8. It motivates the defi­
nition of the corresponding space of operators.

Theorem 2.6. Let 9 E 'R~/(n x n x Rq, g)o,o. Then

opg : W~p(n, JC~;'Y) ~ wt~Jl(n, K2°O'O)

is continuous for all s > d - 1/2. In fact the result also holds for 8 replaced by
6 + k - c, whenever c > 0 and k is the integer in the weight datum.

r.
l'
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Definition 2.7. Yd,d(O X X", g)o,o is the space of all operators of the form

d [at 0]G=opg+~Gj 0" I '
J=O

(2.5)

where 9 E 'R~/(o x 0 x Rq, g)o,o, and, for each j = 0, ... ,d, 8 > -1/2, and
c < k, the operators Gj and their formal adjoints Gj yield continuous maps

WS (0 JCß,"I) -7 Woo (0 JCoo,6+c) and
comp , 1 loc' 2

Ws (0 JCs,-6) -+ Woo (0 JCoo,-"I+C )
comp , 2 loe '1 .

(2.6)

(2.7)

We let y-oo,d(X" X 0, g}o,o = njl Y3,d(X" x 0, g}o,o.

Remark 2.8. Y3,d(X" x 0, g}o,o is a Fnkhet space with the topologies

inherited from n~/(O x 0 x Rq, g)o,o and from properties (2.5), (2.6), and
(2.7).

Proposition 2.9. Let 9 E nr;d(O x n x Rq, g)o,o. Then there exists a left
symbol gL = 9L(Y, 7]) such that

op 9 :::: op 9L mod y-oo (X/\ x 0, g)o,o.

Similarly there is a nght symbol 9R = 9R (y' , 11) such that

op 9 :::: op 9n mod y-OO(X" x 0, g)o,o:

Wehave the asymptotic expansions

(2.8)

(2.9)

Proof. Proceed just as in the standard case. o

Corollary 2.10. Let «JI, CfJ2 E Cgo(O) with SUPP«JI n BUPP«J2 = 0, and let
d .

G E y~' (0 X X/\, g)o,o. Then «JI G«J2 E y-oo,d(X" x 0, g)o,o.

Here we consider «JI and «J2 as the operators of multiplication by the corre­
sponding functions.

P roof. Let G = op 9 + Go with Go E y-oo,d(X" X 0, g)o,o and 9 E nr;d(O x
o x R q , g)0,0. Then the mapping properties show that «JI Go CfJ2 E y-oo,d(X /\ X
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0, g)O,O, while CPl [op g]1.p2 = op 9 with g(y, y', 1]) = cPt{y)g(y, y', 1])1.p2 (y'). We
conclude from Proposition 2.9, in particular (2.8), that CPl [op g]1.p2 E y-oo,d(X"
xO,g)o,o. 0

Theorem 2.11. Let gl = (, + n/2, 8 + n/2, (-k, 0]), g2 = (8 + n/2, a +
n/2, (-k, 0]), and g3 = (, + n/2, a + n/2, (-k, 0]), be weight data. Choose
cP E Cax'(O). Since cP maps wtoc(O, K:j") to W~omp(O, JCj''Y) Jor every choice oJ
sand " the composition (G2, GI) ~ G2CPG1 is defined; it induces a continuous
mappin9

and has continuous restrietions

y-oo,d(X" X 0, g2)O,O X y~' ,ft (X" x 0, gdo,o -t y-oo,tf (X" x 0, g3)O,O,

Yd,d(X" X 0, g2)O,O x y-oo,ft (X" X 0, gdo,o -t y-oo,d' (X" X 0, g3)O,O.

P roof. The mapping properties of the elenlents in y-oo,d(X" x [2, g)o,o imme­
diately yield the last two relations. So we may assume that Gj = op gj, j = 1, 2

'~ dwith 91 E 'RJ~' (0 X °X Rq, gdo,o and g2 E n'/:} (0 x °x Rq, g2)O,O. In
view of Corollary 2.10 we find a left symbol gL for 91 and right symbol 9R for
CP(Y)92(Y, Y',7J)' Then 9L9R E 'R.d+JJ',d' (0 x °X Rq, g3)O.o by Proposition 2.5,
and

o
.. 'Definition 2.12-. Let G ~ ·op 9 + Go E" y/;,d(X" x 0, g)o,o with a left symbol

9 E n'dd(O x Rq, g)o,o and Go E y-oo,d(X" x 0, g)o,o. Moreover let 9 I"V

'E~o 9JJ-j be the asymptotic expansion of 9 into homogeneous terms. Then
we define the edge symbol oJ G, or, also of g, by

the homogeneous principal sYlnbol of g.

3 The Symbol Algebra near the Edge

·Proposition "3.J .. Let"p' E COO(R+·xR';' ·x· 0, BIt,d(X; R 1+q)). Define

a(y,1]) = w(t)(l - Wl (t[7J]) )op t(t-~p(t, t', V, tr, t17)) (1 - W2(t[1J]) )w(t).
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ProoL In view of the factors wand wwe mayassume that p vanishes for large
t, t!: We shaH first' show that, for every fixed choice of (y, 77), the operator

w(t)(l - Wl(t[TJ]))op t(t- Ilp(t, t', y, tr, tTJ))(l - W2(t[1]]))w(t) (3.1)

is an element of .c(K:,'Y,K~-Il,'-I-')and that, moreover, this operator depends
smootWy on (y, TJ). It is no restrietion to suppose that the vector bundles Vl

and V2 are trivial one-dimensional, while WI and W2 vanish.

Since 1] is fixed, we may also assume that p vanishes for small t, t' > 0 and the
task reduces to showing that the operator in (3.1) belongs to .c(H~one(X"),

H~(X")).

We know from (13, Lemma 4.2.2] that H~one(X) y [t]lI HS(X") for v = -n/2+
max{O, ~ + I} while [t]-n/2H"-Il(X") y H~~(X"). Here, H 8 (X") consists
of the restrietions of elements in the usual Sobolev space H" (X x R) to X".
The powers of t need not worry us, since the symbol has compact support on
~ in both t and t'. So all we have to show is that we obtain an element
of .c(H8(X"), HS-I-'(X")). This, however, is an immediate consequence of the
usual boundedness result for elements in Boutet de Monvel's calculus.

In addition, we know that the mapping that associates operators to symbols is
continuous with respect to the parameters, hence we conclude that

(3.2)

Next we apply Theorem 2.1. Pick an excision function (. Since

W(t )p(t, t' , T, TJ )w(tl) E 0 00 (R+ )®1l" 0 00 (R+)®:rr Bll,d(X j R 1+q)

we may write w(t)p(t, t', T, 1])w(t') = 'L/j=o Aj'Pj (t)1j;j (t')Pj (y, T, 77) with {Aj} E
II and null sequences {Pj} in Coo(!l, BI-',d(Xj Rl+q)), {'Pj},{tPj} in Ooo(R+).
Since we may multiply from the left and the right by cut-off functions without
changing the operator, we mayassurne that {'Pj}, {'t/Jj} are null sequences in
CQ'(R+). Let

aj(Y, TJ) = ((77)(1 - WI (t[77]))OP t(t-JjPj(Y, tr, tTJ))(l - W2(t[77]))·

By Theorem 2.1 the aj form a null sequence in SJj(!l, Rqj }C~'l, K:~-P,'-Il). What
about the operators of multiplication by 'Pj and tPj? We shall consider them
as operator-valued symbols independent of y and 77 and show that they form

lI '
I
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null sequences in SO(!1 Rq· K~-~"-~ JC~-~"-~) and nO(!1 Rq· K,8" y"8,,) re-, '2 , 2 ~ - , , 1 , 1\,..1 ,

spectively: Clearly, multiplication by 'Pj is bounded on K;-~"-~; the oper­
ator norm can be estimated via the semi-norms in S(~), cf. 1.15(f). So

0 00((") Rq y~-~ "Y-~ y"~-~ "Y-~) ([ ]-1 )'Pj E H X ,,"'2' , 1\...2' j moreover, K:['1]-1 'PjK:['1l = 'Pj 1] '.
Since the semi-norms of 'Pj([1]]-I.) in S(R+) can be estimated uniformly in
terms of those for 'Pj, we obtain the desired statement for I{Jj; for 'l/Jj an analo­
gous argument applies.

This shows that Ca E S~{!1, Rq; K~'''Y, .K:~-Jl,"Y-~). Together with relation (3.2)
the proof is complete. 0

Convention: In the following we fix Jj E Z, d, k E N, / E R, and the weight
data g = (/ + n/2, / + n/2 - J-l, (-k, 0]).

- - d3.2 The symbol algebra. Given h E Coo{R+ x !1,Mb'cl(XjRq)), P E

Coo(R+ x!1, ß~,d(Xj Rq+l)) let ·

h(t, VI Z, 1]) = h(t, y, z, t7J) and p(t, y, 1',7J) = p(t, V, t1', t1])

be the corresponding edge-degenerate symbols. We assume additionally that
h and p induce the same operators in the interior modulo smoothing terms:

This is possible by Mellin quantization, see Theorem 1.31. Here oplt (h)(y, 7J) is
the operator resulting from op1h(t, V, Z,1]), while op (P)(V,1]) = op tp(t, V, 1',1]).
Next we let 9 E n~d(!1 x Rq, g)o,o, and let W, w,Wl, W2, W3 be cut·off func­
tions satisfying WIW2 = Wl , WlW3 = W3. We shall consider the operator-valued

-. . .... '. symbols of the form- 0 •••••••• ,. - •• '. '" -, -

a(y,1]) = w(t) {wdt [1]]) t-J'oPlt (h)(V, 1])W2(t[1])) (3.4)

+(1 - wt{t[1]]) )t-J'op (P)(y,1])(l - W3 (t[7J])} w(t) + g(y, 1]).

Here we interpret w1 W, Wj (. [7]]) and t- J' as operators of multiplication by the
corresponding functions. It follows from Theorem 1.28, Proposition 3.1, and
Definition 2.4 that indeed a{y,1]) E SJ'{!1, Rqj .K:~,"Y, JC~-lll"Y-J') for all 8 > d ­
1/2. In the following we shall see that the symbols of this type form an algebra
under pointwise composition. This requires sorne preliminary work.

, .. ~ •.~ ... 'u Lemma"3;-3'.·~Let c" = ··C(V,1])· E" GOO(nj'ß-;-oo,d(XI'; Rq)), I{J, 'ljJ E Clf(R+).
Then
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Here we consider cp(t[7J]),1/J(t[7J]) opemtors 01 multiplication by cp('[1]]),1/J(.['1]).

Proof. For simplicity of the notation let us assume that VI, V2 are trivial
one-dimensional while W 1, W2 vanish. Sinee cp, 'IjJ eommute with the nor­
mal derivative on X we may assume that d = O. The assumption implies
that c(y, '1) is an integral operator on X" with a kernel k(y, '7j X, t, x', t') E
COO(fl)01tS(Rq)01tCoo(XA X X A). So cp(t['7])et/J(t['1]) has the kernel cp(t['1])
k(y, '1; x, t, x', t')1/J(t'['1]). For each fixed y, '1 we therefore obtain an element in
L:(K~'''Y, X:~-Jl,"Y-Il) provided 8 > -1/2. The operator ~[11J-lcp(t['7])c1/J(t['1])~[11]

has the kernel cp(t)k(y, '7; x, t/['1], x', t' /['1])1/J(t')['1}-I.
Hs operator norm clearly is O(['1}-K) for arbitrary K. The same is true for
derivatives with respeet to y and '1, 80

Considering onee more the kernei, the fact that cp and VJ belong to G~(~)
implies that, for fixed y and 11, the operators CP(t[11J)c(Y,11)7j;(t['1D map K~'''Y to
S'lCi, while the adjoint maps K~"~-"Y to S:;6' As before, the operator semi-
no~ms are O([7J]-K) for arbitrary K. He~ee cp(t[7JJ)et/J(t[7JJ) E S-oo(O, Rqj
Kf'')', S'{Ci), while its adjoint belongs to 8-00 (0, Rqj,q, S~6)' 0

Lemma 3.4. Let p,p, h be as in 3.2 and cp E G~(R+). Then
(a) /1 supp W n supp cp = 0 then

91 (y,1]) = cp(t['1J)t- llop1(h)(y, 7J)w(t[1]}) and

92 (V, 1]) = w(t[ry})t-Jlop1-(h )(y, '1 )cp(t[1]})

are elements 01 'R.~d(n x Rq, g)o,o.
(b) 11 supp (1 - w) n suppcp = 0 then

93(V,1]) = wdt)(1 - w(t[1]J))op (t-Jlp)(y, 1])cp(t[1]})W2(t) and

94 (V, 1]) = Wl(t)cp(t[1]})op (t-Jlp)(y, '1)(1 - w(t(1]}))W2(t)

are elements oln~d(n x Rq,g)o,o.
(c) Let ( be an excision function. /1 supp (1 - w) n supp cp = 0 and ß is
independent 01 t, then

9s(y,1]) = (1])(1 - w(t[1]}))op (t-Jlp)(y, 1])cp(t[ry}) and

96 (y, '7) = (1])cp(t[1]])op (t- llp)(y, 1])(1 - w(t[T}]))
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P roof. Since the normal derivative on X commutes with multiplication by
functions of t[7J] , we may assume that d = O.
(a) We know that 91 and 92 are elements of SJ'(f2, Rq; K~';, K~-J',;-J'). Fix
y, Tl, and let us show that

9dY, 7]),92 (y, Tl)

91 (y, Tl)· ,92(Y, 7])*

(3.5)

(3.6)

Let us first consider 91 (y, Tl)' In view of the fact that cp and w have disjoint sup­
port, we may replace h by a Mellin symbol of arbitrarily negative order. Hence
9dY, Tl) : K~'; -t !Cf,;-J'. Moreover, let k be the integer in the weight datum
g, and write 91 (y, Tl) = tk (t- k9t (YI1J)). For fixed 7], the function t- k ep(t[1]]) is in
Ctf(R+). Thus 91 (y, '7) satisfies relation (3.5). For 92(y, '7) we know as before
that it maps K~'; to K~';-J'. We recall that

op1(h)tk = tk op1(T-k h).

Together with the fact that t-kcp(t[1J]) E Cgo(R+), we get relation (3.5). The
relations in (3.6) follow by duality from those in (3.5).

Next we show that 91 and 92 are classical symbols in S~(n, Rqj Kr';, SJ,d)
while their adjoints belong to S~(n,Rqj K;'J'-;, S~6). For arbitrary N E N,

N-l .- "tJ
'- N-h(t,y,z,1J) = LJ "7j8l h(O,y,Z,1J) +t hN(t,y,Z,'7)

j=O J.

N-l

= L tjhj(Y,z, '7) +tNhN(t,y,Z,1J),
.. ~ __ . ~_ '., ., _ _ j~.o._ ._ ".. ~ ..

with the obvious notation and hN E COO(R+ x n, Mb,d(X; Rq)). Let hj ( .•. , '7)
= hj ( ••• , t1}), aod denote by 9kj the symbols 9k, k = 1,2, with h replaced by hj .

For j = 0, ... , N -1, we see that 9kj is homogeneous of degree J.l in '7 in the sense
of (1.3); the computation is analogous to that in (2.2). The above consideration
shows that 9kj(Y, '7) is an elmuent of .c12 = .c(K~';, SJ,öJ'), while 9kj(Y,7J)*

belongs to .c21 = .c(K~'J'-;, 5;2». Moreover, the operator semi-norms in .c12
and .c21 depend continuously ~n the symbol semi-norms for the hj ; those in
turn vary smoothly with Y,1}. By Lemma 1.4, 9kj E n~d(f! x Rq, g)o,O, so
tj 9kj E 'R.d-i,d(f! x Rq, g)o,o.

'. 'in' order~tö"c6ülplete nie proof lel üS"sh6w 'that, for k = 1,2, and s > -1/2,

E S 1J(rto Rq· K~'; SI-I')9kN H" 1 , 2,0 ,
* SI'(rto Rq K~ 1'-; S-IJ)

9kN E H, ; 2' '1 ° ;, (3.7)
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theJactor tN will then improve to order to p. - N. Any possible non-classical
contributiOl:ltherefore has to be negligible. Consider YkN first, starting with the
case where hN is independent of tj then the assertion follows by homogeneity
and Lemma 1.4. In case hN depends on t we may assume it to vanish for large t
due to the multiplication by Wl. Since hN E COO (R+)011"Coo (0, Mb,d(Xj Rq))
we can write hN (t, Y, Z,1J) = 'L/j=o ApPj (t)Yj (y, Z,1J) with null sequences {cpj}
in C~(R+), {Yj} in COO(O, Mb,d(Xj Rq)) and {Aj} Ei l . Multiplication by CPj
is bounded on Sl.,d j the semi-norms can be estimated in terms of semi·norms

für cPj' in Cr(R+). Hence we get (3.7) from the t-independent case. For YkN
we argue in the same way.

(b) is proven in the same spirit. First treat the t-independent case, then apply
a Taylor expansion into powers of t.
(c) The symbols are hümogeneous of degree jj in 1J for large 1171. For every
fixed choice of (Y,1]), 1J ~ 0, we see, similarly as in the proof of Theorem 2.1,
that the operator 9s(Y,TJ) is an element of .c(K1'''(, SJ,(j). Assuming without
loss of generality that d = 0, the adjoint for the same reason is an element of
.c(K~,IJ-"Y,S;-6). An application of Lemma 1.4 completes the argument for 95j

the one for 96 is analogous. 0

Proposition 3.5. We use the notation 0/3.2, and define a as in (3.4). Now
we choose cu.t-off functions Wl,W~hWa, with Wl~ = Wl,WIWa = wa, and dcfne b
by replacing in equation (3.4) the Wj by Wj,j = 1,2,3.. Then a - b E nl() (0 x
Rq,g)o,o ' .

Proof. Since we might compare to a third operator, we can assume that WIW2 = ,I.
Wl and W3Wl = wa. Write A = w(t)op1(h)w(t),B = w(t)oPt(t-lJp)w(t). In \
the following we shall omit the variables (t[1]]) with the Wj, Wj, and denüte

congruence modulo 'R.~/(O x Rqg)o,o by ==. Then

a - b = WIAW2 + (1 - wdB(1 - wa) + (1 - wdB(W3 - W3)

- WIAw2 - (1 - wl)B(l - W3) + WIA(W2 - W2)

- (Wl - wdAW2 - (Wl - wt}B(l- W3)

= (Wl - Wt}{AW2(1 - wa) + AW2W3 - BW2(1 - wa) - B(1 - W2)(1 - wa)}

- (Wl - wt}{AW2(1 - W3) - BW2(1- wa)} == O.

Here the first two congruences are due to Lemma 3.4, since sUPP (wa - W3) n
supp (1-Wl) = supp Wl nsupp (W2 - W2) = supp (Wl - Wl) nsupp W3 = supp (Wl ­
Wl )nsupp (1-W2) = 0. Note that (1-W2) (l-wa) = 1-W2. The final congruence
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is due to Lemma 3.3 together with (3.3).

Lemma 3.6. Let a be as in (3.4). Then

Proof. It follows from (3.3) that

23
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For arbitrary K we write 9 = t-K tK9 E t-Kn~-K,d(n X Rq, g)o,o. Hence 9
induces an element in Coo(n, B-OO,d(XI\; Rq)), and the proof is complete. 0

3.7 Symbols. We use the notation of 3.2; moreover, we let ho(t, y, z, 1]) =
h(O, y, z, t1]), po(t, y, Z,f]) = p(O, y, tr, t1]), and recall that a~(g) is the principal
edge symbol of 9 as introduced in Definition 2.12. For YEn, f] # 0 we define
the principal edge symbol a~ (a) of a as the operator

aÄ(a)(y, 1]) = wdtl1]l)t-~opA1 (ho)(y, 17)W2 (tl1]1) (3.8)

+ (1 - wl(tl1]l))op (t-~po)(Y, 17)(1 - w3(tl1]l)) + aÄ(g}.

By Theorem 2.1, aÄ (a)(y, 1]) E [,(K:'\ K~-JJ,'Y-JJ). We obtain the relation

According to Lemma 3.6 we also have for a the symbol p = p(t, y, r,1]) E

COO(R+ x 0., B~,d(XI\; Rq+l)). This enables us to assodate to a also the
_'.. ~ .. _.~ .......~interior.principaLpseudodifferentiaLsymbol.a~(a) ,and the principal boundary

symbol a~(a), both being defined as the corresponding terms for p in the sense
of 1.10:

a~(a} = a~(p), and a~(a) = a~(p).

For each 7J # 0 we can assodate to aÄ(a} the symbol Po which again has a prin·
cipal pseudodifferential symbol, namely a~(aÄ(a)) = a~(po), and a principal
boundary symbol, namely a~(aÄ(a)) = a~(po).

3.8 Facts from the cone calculus. The space ct~G(XI\, g}o,o consists of
all operators of the form

. - .. , .. -.. ··--k·":"·l" ~......•• ,

A = wt-JJ L t j op1-(hj }w + G,
j=O

.~
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where w, w are cut-off functions, hj E MÖOO,d(X) , and G is a Green oper­

ator in C~(X",g)o,o, in other words, G = Go + 'L,1=1 Gj [~ ~] with

Gj E n,,>-1/2 .((K::'')', K:~-J.l,'Y-J.l) having, for all s > -1/2 and j = 0, ... , d,
continuous extensions

G · . v",'Y -----.l.. S')'-J.l and G~' Y",J.l-,), -----.l.. S-')'
J . 1\...1 -----r 2,0 J . 1\...2 -----r 1,0' (3.9)

A classical element A of order J..L and type d in the cone calculUB belongs to
C~~G(X",g)o,o if and only if the interior symbol ia regularizing.

The so-called conormal symbols uIJ-j(A) = hj are uniquely determinedj hj is
the coefficient of tj in a Taylor expansion of an arbitrary Mellin symbol for A
at"t = O. The 'conormal symbols obey the composition rule

u~+J.l'-j(AB) = L [TJ.l'-q ~MP(A)] a~-q(B).
p+q=j

For details see [13, 3.3.1, 4.3.1, 4.3.7, 4.3.10] and [14, 3.1.27, 3.1.29(c)].

3.9 Compositions. Consider two symbols a, a in the sense of 3.2:

a(y, 1]) = w(t) {Wdt[17])t- IJOP1(h)(Yl 1])W2 (t[1]]) (3.10)

+ (1 - W1(t[7J]))op t(t-IJp)(y, 1])(1 - W3(t[1]]))} w(t) + g(Y,1]),

and

ä(y, 7]) = W4 (t) {w1(t[71])t- IJ'op AiIJ(j) (V, 71)W2(t[1]]) (3.11)

+ (1 - W1 (t[1]]))op t(t-J.l' q) (y, 71) (1 - W3(t[7]])) } W4(t) + g(y,1]).

For a we use the notation of 3.2, while ahas corresponding properties. Explic­
ity,

- - - '(/
(i) j(t, y, z, 7]) = j(t, y, z, t71} and j E COO(R+ x 0, Mß,cl (Xi Rq))j

(ii) q(t, y, T, 1]) = ij(t, y, tT, t1]) and ij E COO(R+ x 0, B~'d' (X"j Rq+1))j
(iii) the compatibility condition is satisfied:

op jiJ.l (j) (V, 71) ;:;; op t(q) (y, 1]) lood COO(O, B-oo,d" (X"j n.;.~q)).

(iv) We assume that a is associated with the weight datum g1 = er - p. +
n/2, 'Y - P. - p.' + n/2, (-k, 0]) and acts between vector bundles V2, V3 over X
and W2, Wa over Yj

i

L
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'd'(v) 9 E n~' (!1 x Rq,gdo,o. .
(vi) In order to simplify the computation we shall assume that W4W4 = W4,

W4W = W4, and WW = w. This is no restriction since !, h, q, and p depend on t.
, "We then know that ä E SJl (f!, Rqj K~,'Y-Jl, K;-JlI'Y-Jl-Jl) for s > d' - 1/2,

so that we may form b(y,1]) = ä(y,1])a(y, 1]) in the sense of operator-valued
, "symbols and get b = äa E SJl+Jl (!1, Rq; K1''Y, K;-IJ-P,'Y-P-IJ ).

We shall now show that b has a decomposition analogous to that of a and ä
in (3.10),(3.11) associated with the weight datum g2 = (, + n/2" - I-l - I-l' +
n/2, (-k, 0]). In faet we shall do the following:

(vii) First we define r by t-P- P' r f'V t- p' q#t t-Pp, where #t is the Leibniz
product with respect to t, r. We shall see in Lemma 3.10, below, that then

(viii) r(t, y, r,1]) = r(t, y, tr, t1]) for suitable f E Coo(R+ xf!, B~+IJ'ltf'(X j R l+q)),
d" = max{J-i + d', d}. Moreover, r will be independent of t for large t provided
this is tbe case for p and ij.

(ix) By Mellin quantization with respect to the weight , define k(t, y, z, 1J) =
- ~ - IJ" d"k(t, y, z, t1]) with k E Coo(R+ x f!, MO,d (Xj Rq)).
(x) By construction the compatibility condition holds:

op1-(k)(y,1J) - op t(r)(y, 1]) E Coo(f!, B-oo,d" (X/\; R l+q)).

(xi) For fixed (y,1]) we may eonsider the difference

W4(t) {t- IJ'opj,;Jl(!)(y,1])t- Jl op1(h)(y,1]) - tJl - Jl' op1(k)(y,1])} w(t). (3.12)

Here, W4, Ware the functions in the definition of ä and a respectively. Sinee
.' ...k arose· as .tbe -Mellin .quantization of the op t-eomposition, the (full) interior

symbol of this operator is regularizing. So the differenee is an element of
+ ' d/l

C~:d (X/\, g2)OP. Sinee the symbols involved have the arguments (t, z, t1J)
and the conormal symbols are just the Taylor coefficients at t = 0, they are of

the form hj(z, 1]) = Llol:5j hj,01]°, j = 0, ... ,k-1, with hj,o E Möoo,d" (X). We

replace k by k + L~:J Llol:5j hj,01]°tj-lols(1]). Here S E S(Rq) is an arbitrary

function with s('7) === 1 for 1] near zero. Since k(t, z, 1]) = k(t, z, t1J), the Taylor
coefficients of k are such that all conormal symbols for the difference (3.12)

vanish. The change in k is an element of COO(R+, Möoo,d" (X; Rq)), hence
the eompatibility condition in relation (x) remains satisfied. Note also that a

~ , ."". , .. , .. 0,,' ",........... "'change'in the'cu~offfunctions'w4"and W' in (3'.12) results in an error whieh is, for
each fixed (Y,1J), an element of C&' (X/\, g2)Op; in that sense the construetion
is independent of the choice of the cut-off.
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(xii) We then let
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c(y, '7) = W4 {Wdt[11])t-~-~' op1k (y, f})W2(t['7])

+(1 - wdt[fl]))OP (t-tl-tl' r)(y, 11)(1 - W3(t['7]))} w.

By construction, this is an element of the symbol algebra illtroduced in 3.2.

(xiii) We will then show that c - äa is an element of 'R1Q+tl' ,(/' (0 x Rq, g2)O,O.
The details can be found in Propositions 3.11 and 3.12, below. Apart from the
technical facts the proof then is complete.

Lemma 3.10. Let jj E GOO(R+ x O,B~,d(XjRq+l)) and q E COO(R+ x

0, B~'(/ (Xj Rq+l )). Then all the homogeneous terms in the asymptotic ex­

pansion 0/
t-tl'op q(t, y, tT, t11) #t t-tlop jj(t, y, tT, tf]) (3.13)

have the form t-tl-IJ.'Tl(t, y, tT, tf}) with rt E COO(R+ x 0, B~+IJ.'-l,dll(X; R l+q)),
d" = maxi/-' + d', d}. In particular, we may sum these terms asymptotically in
COO(R+ x 0, B~+IJ.'Id" (Xj R1+q)).

Proof. Let Pi and qk, j, k = 0,1, ... , denote the homogeneous terms in the
asymptotic expansions of Pa.nd q, respectively. The terms in the asymptotic
expansion for (3.13) are of the form

(3.14)

hence the assertion follows by iteration from the fact that, for m = 1, the
product in (3.14) is

(8".qk)(t, y, tT, t11){(tDt Pi)(t, y, tT, t11)
q

+tT (D".jii) (t, Y, tT, tf}) + L t'7v (D1/~ jii )(t, y, tT, t7J) }.
v=l

o

We shall deal in Proposition 3.11, below, with the compositions involving 9
and g. We know already from Proposition 2.5 that

so this term needs no special attention.
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Proposition 3.11. We use the notation introduced in 3.9. The Jollowing
compositions Jumish elements oJ 'Rd+ tl' ,d{n x Rq 1 g2)O,O:

(a) {wdt(1]])t-tl' op 1ftl{J)W2{t[1}])}g
(b) g{Wl (t[ry])t-tlop1{h)W2{t[1}])}
(c) {w4{t)(1 - wdt[1]]))op (t-tl' q)(1 - W3{t[1}]))W4{t)}g
(d) gw{t){ {1 - wdt[1}]))op (t-tlp)(1 - W3 {t[1}]))w (t)}
The same statement holds Jor {w4{t)wdt['f}])t-tl' op 1ftl{J)~{t[1]])W4{t)}9 and
g{W{t)Wl (t[1}])t-tlop1{h)W2{t[1}])w{t)} by Proposition 2.5{f).

P roof. (a) Let F = Wl (t[1}])t-tl' op 1ftl(J)~(t[1}]). Suppose first that i is
independent of t. Then F is homogeneous of degree I-l in 1} for large !1}I, heuce
an element of S~' (n, Rqj K;-tl,-Y-tl, K~,'Y-tl-tl') for all s > d' - 1/2. By linearity
we may assume d' = O. Hence .

(3.15)

whenever s > -1/2, noting that g{y,1}) maps into KC;"y-tl. We want to show

+ I ,

Fg E s~ tl (O,Rq;K~",SJ:6-tl). (3.16)

Glose to zero, the space SJet-tll coincides with ne>o Kf,,-Jl-tl'+k-E 1 where k
is the integer in g2. For arhitrary c > 0 use Lemma 1.29 and write

Fg = F([1}]t)k-e([1]]t)e-kg = ([1}]t)k-e Fe ([1]]t)e-k g

with FE = Wl (t[1]])t-tl' Op Iitl(Te- kJ)~(t['f}]). Multiplication by ([1]]t)E-k is an
element of S~(O,Rqj Si,d, KC;,,-/l)j the symbol ({1}]t)k-Ewdt[1}]) belongs to
nO (0 Rq· Koot'y-tl-tl' Koo,l-tl+k- E) Hence""cl , '3 , 3 .

Fg E nS~+tlf (0, Rqj Kr'I, K~,..r-tl-tl'+k-E). (3.17)
E

Next choose Ws with WIW5 = Wl, so that ws(t[1]])F = P. Multiplication by
ws(t['f}]) is an element of~ (0, Rq; K;,I-tl-tl'+k-E, [t]-l K;,,-tl-tl'+k-e) for arbi-
trary 1 and s, so (3.16) follows from (3.17).

Our next task is the relation

( -

',"

(3.18)

.......... ",,"·Since,the·normal derivative composed with g·furnishes an element of 'Rd+1,d(0 x
Rq 1 g)o,o we may also assume that d = O. Then (Fgt = g*P*, and (3.18) is

immediate. We therefore know that Fg E R~+tl' ,d(O X Rq, g2)O,O.
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It remains to consider the case where j depends on t. Then we use a Taylor
expansion: For N E N,

- ~l t j . - N-
f(t,y,z,7J) = ~ lalf(O,y,z,1J) +t IN(t,y,Z,1J).

j=o J

We let Fj = wdt[1J])~t-Jl'op 1{Jlaf j(O, y, z, t1J)~(t[1J]). From the above result

for the t-independent case we know that Fj 9 E 'R~+Jl' ,d(O X Rqj g2). Apply­
ing Proposition 2.5(e), we conclude that ti Fj 9 E 'RJl+P' -i,d(O x Rq, g2)' We
therefore obtain the beginning of an asymptotie expansion. Finally we let

We ean now proceed just like in the t-independent case, except for the fact
that

FN E SJ.1.+J.1.' (0 Rq· KS"-P a-Jl - Jl )
, '2 '3

is not obviously a classical symbol. Hence we get relations (3.15), (3.16), (3.18)
with F replaced by FN and the subseript "cl" omitted. The crucial point
now is that we still have the factor t N • It lowers all orders by N. Hence the
possible non-dassical eontribution is of arbitrarily negative order and therefore
negligible. So (a) is proven.

The proof of (b) is virtually the same as that of (a). Finally (c) and (d) follow
in an analogous way. Here, the mapping is niee near t = Oj we only have to
take a doser look for large t. Write (l-wdt[1]])) = t-k (l-wdt[1J]))tk . Noting
that [t, op tq] = -DTq, we may commute powers of t to the right, where we ean
make use of the mapping properties of g. 0

Proposition 3.12. We use the notation 013.9. Then

+'d'c - äa E n~ Jl, (0 X Rq, g2)O,O.

Proof. In order to avoid notational complications let us assume that d = d' =
d" = O.

Step 1. The pointwise consideration. We know from the cone calculus that for
fixed Y and 1], the operator

W(t)(l-Wl(t[1J])) {t-Jlopl(h)(y,1J) -t-J.1.oPt(P)(Y,1J)} (1- W3(t[1]]))w(t)

by 3.9(xi) is an element of cg(X/\, g)o,o. Henee we can write

I·

h·
t~r

(3.19)
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with GI E C&(X/\ g)op. Similarly, Ci(Y,1]) = W4(t)t-~op1(I)(Y, 1])W4 (t) + G2

for some G2 in cg(X", gdo,o. Denoting congruence modulo cg(X", g2)O,O

by == and using that W4W = W4, we have

ä(y,1])a(y, TJ) - (W4t-~1 op1:i~(I)(Y, TJ)w4)(wt-~op1-(h)(y, TJ)w)

= w4t-~1op1i~(f)(Y, 1])t-~op1(h)(y, TJ)w

= w4t-~_~1opl(k)(y, TJ)w == C(y, 1]);

the last identity sterns from 3.9(xi); the second congruence is due to the fact
that

and the last congruence is the analog of (3.19) for c(y, TJ). The continuous
dependence of the operators on the symbols shows that tbe construction is
smooth in Y and 1], hence

Similarly,

(3.20)

(3.21)

Step 2. The case 01 t-independent symbols. Assume next that the symbols
h, p and j, Ci involved in the definition of a and Ci are independent of t. By
construction, tbis then is true for f. Employing tbe formula for thc asymp­
totic expansion of k, [15, Proposition 3.14] Of [14, Theorem 2.4.13], also k is
independent of t before the modification in 3.9(xi). Using the notation of 3.9, {. '
tbe resulting change in k is a finite linear combination of terms of the form
hi,ati-a(t1])as(tTJ), hence homogeneous of degree 10'1 - j in the sense of (1.3)
for large 11]1. Choose excision functions (1 and (2 and abbreviate

aO = wdt[1]])t-~op1- (h)(y, 1])W2 (t[1]])

+(1 - WI (t[1]]))op t(t-~p)(y, 1])(1 - W3(t[1]]));

ao = wdt[1]])t-~1 op 1i~(I)(Y,TJ)~(t[1]])

+(1 - Wl (t[1]]))op t(t-~I q)(y,1])(l - W3(t[1]]));

CO wdt[1]])t-~_~' op1-(k)(y, 1])W2(t[1]])

+ (1 - Wl (t(1]]) )op (t-~_~Ir )(y, 1])(1 - W3 (t[1]])).

We first consider tbe difference (lao(2ao - (1(2CO. Ey 1.28 and 2.1, this is an
element of S~+~' (0, Rq; K~''"r, K;_~_~I ..)'_~_~I) for s > -1/2. Moreover, it is a
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finite sum of tenns that are homogeneous in 1] for large 11]1 in the sense of (1.3).
Hence it is classical.

We' have to show that

Since we have homogeneity, it suffices to prove that

, ,
(1(2{Üoao - CO} E SJj+Jj (0, Rqj K~'"Sl,cr-Jj ) and (3.23)

(1(2{äoao - CO}... E StJ+tJ' (n, Rqj K;,tJ+tJ'-" S~6)' (3.24)

Indeed, suppose this holds. Then (1(2{(w4iio)(aow) - W4CüW} is an element

of "R.6+tJ',o(!1 x Rq, g2)O,O. Moreover, we argue that (1(2w4a0(1 - w4)aow E

Rc/:1J,o(ü x Rq, g2)O,O: In view of the fact that supp (1 - W4) n sUPpw4 = 0 we
may replace the Mellin symbol h by a symbol tNhN' N E N with hN(t, z, 1]) =
- - - NhN(t,z,t1]) and hN E COO(R+ x Ü,Mbcl (X;Rq)) without changing the op-
erator and then apply Theorem 1.28. 'So we deduce (3.22) from (3.20) and
(3.21).

Next we foeus on (3.23). Choose cut-off functions Ws, W6, W7 with

(1 - W3)WS = 0, (1 - W6)Wl = 0 , (1 - W3)wr = 0, (3.25)

supp (W6 - W7) n sUPPWs = 0. (3.26)

This is possible, provided W5 and W7 have support in a sufficiently small neigh­
borhood of zero, while W7WS =ws. In particular (1 - W3)WS =O. Without loss
of generality we also assume that W1W3 = W3.

In the following few lines of computation we denote by == congruence modulo
"R.~+/l',o(ü X Rq, g2)O,O. Abbreviate Mä = wdt[1]])t-/l' opJ.{/l(f),(y, 1])W2 (t[1]]) ,
Ma = wdt[1]])t-/lop1(h)(y, 1])~(t[1]]), and Me = wdt{1]])t-Jj-tJ opl(k)(y, 1])
W2(t[1]]). Also omit, just for the moment, the argument (t[1]]) of the cut-off
functions for better legibility. The first two equalities, below, are immediate
from (3.25).

(1(2{aoao - c}ws = (1(2{äoMa - Me}ws

= (1(2{iiow6 Ma - Me}ws == (1(2{iiowr Ma - Me}W5

= (1(2{MäW7M a - Me}ws

- (1(2 {Wlt-/l'Opl{tJ (!)(y, 1])t-/lopl(h)(y, 1])W3 - Me}ws

- (1(2{Wlt-/l'op7;tJ(!)(y,1])t-/lop'1(h)(y,1])W3 - Mc}W5 == O.

J

l..
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The first congruence follows from (3.26) together with Lemma 3.4(a). For the
second we use the same lemma in connection with the fact that ~(1 - W7 )W1

is a function in COO(R+) whose support is disjoint to that of Ws. The third
congruence comes from replacing W1 by W1 i this is justified again by the lemma
together with the fact that supp (W1 - wd n supp W3 = 0. The final congruence
is slightly more subtle: By construction, the expression between the braces is,
for fixed (Y,11), an element of cg(X", g2)O,0. We may therefore first employ
(3.9) in order to obtain the pointwise mapping properties required for elements

in 'R~+JJ',O(O x Rq, g2)0,0 and then homogeneity in eonnection with Lemma
1.4 for the conc1usion.

What about (1(2{äoao - c}(l - Ws(t{11)))? We may change W1, W1, ••• , at the
expense of an operator in 'Rd+JJ',o(O x Rq, g2)0,o. Invoking Lemma 3.4(c) we
ean therefore show - just as above - that the term in question is congruent

+ 'omodulo 'R~ JJ, (0 X Rq, g2)0,0 to

(3.27)

both (Y,11) and (t[11)) have been omitted. The pseudodifferential operator be­
tween the braces is regularizing, hence given by an integral operator with a
kernel that is rapidly decreasing in t1]. For small!TJI, the excision function van­

ishes. For 11 away from zero, it yields an element in .c(K.~,/, SJ,et-JJ' ) for fixed

(y, 1]); moreover, the estimates in the sense of (1.2) are O((t[11])-N) = O([t]-N)
for arbitrary N. Hence (3.27) defines an element of S-N (0, Rq; K.~" 1 sJ"d) for
each N. Applying a similar argument to the adjoint, we conclude that (3.27)
is a symbol in 'RcOO10(0 x Rq 1 g2)0,o.

So the case of t-independent symbols is proven.

Step 3. The t-dependent case. In ease the symbols do depend on t, we use
a Taylor expansion up to order N. According to the above eonsideration the
polynomial part furnishes elements in 'Rd+JJ'lO(fl x Rq,g2)0,o. So we ean eon­
fine ourselves to the case where the symbols have eompaet support in t and we
have an additional factor tN . As in the proof of Proposition 3.11 the resulting
term then induces an element

9N E S-N (n, Rq; K.~", K:~l"Y-JJ-JJ'), S > -1/2

with the additional properties

9N E S-N(fl Rq· K.3
" S,-JJ-JJ' )

, 1 1 '3,o ,

9N* E S-N(n Rq· K. lI ,JJ+JJ' _, S-"Y)
, '3 , 1,0'
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Since N is arbitrary, this completes the proof.
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