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Introduction

In recent years the pseudo-differential analysis on manifolds with singularities
made enormous progress in constructing specific operator algebras with symbolic
structures for expressing parametrices and characterizing regularity of solutions
of elliptic equations. This concerns, in particular, manifolds with piece-wise
C'* geometry, for instance, conical points, edges, corners, ..., or non-compact
ends (“exits” to infininity) of different kind, cf. [23],[24]. The main analytical
difficulty is the control of symbols and distributions up to the singularities and
to manage the variety of new phenomena, such as asymptotics of solutions or the
interplay of different {(operator-valued) symbolic structures in a transparent way.
In the edge and corner theories as they were investigated in [21],[4] the operator-
valued symbols live in natural way on manifolds with exits to infinity, namely
on infinite cones with base spaces of lower singularity orders. For the spaces of
higher singularity orders this is to be expected, too, where the corresponding
pseudo-differential algebras have to be the result of some iteration of lower order
“cone” and “wedge” theories. In view of the complexity of the cone, wedge, and
corner operator algebras with one or two cone axis variables such an iteration
can be realistic only by developing suitable axiomatic ideas. The present paper
will establish some typical part of the axiomatic approach that is connected
with higher non-compact edges going to infinity.

The specific assumptions in our theory at infinity generalize those of the cor-
responding calculus for scalar symbols, cf. PARENTI {12], [13], CoRrDES [2],
SCHROHE [15], EGorov, SCHULZE [5]. Moreover, there are imposed the struc-
tures inherited [rom the local edge pseudo-differential calculus with cone-oper-
ator-valued symbols, here based on the Fourier transform on the edge. The
latter theory has the form of a pseudo-differential calculus with operator-valued
symbols in which the symbol estimates as well as the Sobolev space norms
contain actions of one-parameter groups of isomorphisms on the corresponding
model spaces. Analogous structures may be expected in higher edge theories,
i.e., when the base of the model cone of the wedge has more complicated singu-
larities. So it will be natural to formulate the theory mainly in terms of general
model Hilbert spaces. Our calculus at infinity is also new in the special case of
“ordinary” edges. The notation “Fourier-edge approach” indicates a connection
of the design of the pseudo-differential theory adapted to some specific part of
an underlying space with piece-wise C™ geometry, here for edges without sin-
gularities. In applications there also occur edges that have singular points, e.g.,
conical ones, as it is the case, for instance, for the one-dimensional edges of a
cube near the corner points. Then the present theory is to be combined with
some kind of Mellin-edge approach that relies on the Mellin transform on R
in the distance variable to the singularities, cf. DORSCHFELDT, SCHULZE [4].

Another ingredient for the calculus near conical or corner singularities is a cer-
tain order reduction approach based on the Mellin or Fourier transform, con-
taining global operator-valued symbols along the corresponding base manifolds,
cf. ScruLzE [19], [21].

The pseudo-differential operators on manifolds with singularities in general are
then to be obtained by glueing together the corresponding local variants.



The strategy of the present article 13 as follows. First in Section 1.1 we establish
general pseudo-differential operators globally in R? with weight conditions to the
amplitude functions at infinity, where the values of the amplitude functions are
operators acting between Banach spaces, with fixed strongly continuous groups
of isomorphisms. The basic results are analogous to those of the scalar theory.
Here we follow the scheme of CorDES [2]. Moreover, we introduce the weighted
abstract wedge Sobolev spaces in R? along the lines of the original definitions in
SCHULZE [23], here with weights at infinity. For performing the calculus includ-
ing the continuity in the weighted Sobolev spaces we assume in Section 1.2 that
the involved spaces are Hilbert spaces with unitary groups of isomorphisms. On
one hand we generalize elements of KUMANO-GO’s technique [9] with amplitude
functions dependent on the double covariables, on the other hand we general-
ize the proof of HWANG [8] of the global Ls-continuity to the operator-valued
case. Section 1.3 extends the results to the case of arbitrary strongly contin-
uous groups of isomorphisms. First, for the calculus, we may allow Banach
spaces, again, whereas for the proof of the continuity in the weighted Sobolev
spaces we impose Hilbert spaces and assume the existence of certain order re-
ducing symbols as they are known in concrete applications. Section 1.4 deals
with the global ellipticity in R? for symbols with compact variation as it was
supposed in a simpler situation in LUKE [11]. We obtain parametrices within
the class and the Fredholm property. In Section 2.1 we study the invariance of
the calculus under natural diffeomorphisms between open sets in R? that are
conical for large arguments. This extends the results of SCHROKE [14] to the
operator-valued case, here for simplicity for the case of diffeomorphisms that
are homogeneous of degree 1 for large arguments. Section 2.2 formulates the
theory on a non-compact C° manifold with conical exits to infinity, and stud-
ies ellipticity, parametrices and Fredholm property on such manifolds. Section
3.1 illustrates the present theory in terms of boundary value problems with the
transmission property. This has some relation to SCHROHE [15], though here we
develop another aspect; the exit conditions in our context are only of interest
tangent to the boundary. Section 3.2 constructs order reducing symbols for the
edge pseudo-differential calculus in the sense of [20], [23], [24].

Let us finally note that SEILER {25] studied a concrete global operator algebra in
the infinite wedge that is already of interest in boundary value problems without
the transmission property.

Acknowledgement: The authors are grateful to E. SCHROHE, J. SEILER, N.
TarkHANOV for useful discussions of this material.

1 The global Fourier-Edge Pseudo-Differential
Operators

1.1 Weighted operators and abstract wedge Sobolev spaces

Let E, E be Banach spaces. By L(E, E) we denote as usual the space of all
linear continuous operators T : E — E. The space L(E, E) is endowed with
the operator norm topology. We set L(E) := L(E, F). By L,(E) we denote
the space L(FE) but equipped with the strong operator topology. In the sequel



we fix a strongly continuous group action on FE, i.e., a continuous funktion
k:Ry = Lo(F), A= £y, which satisfies the composition rule kyxg = Ky for
all A, 3 e Ry.

A standard example is given by £ = Ly(R4) and the group action {xx},¢g,

defined by (kau)(t) := Au(M) for all A € Ry and u € La(Ry). In this case
{xx} is even a group of unitary operators.

Remark 1.1. If {«,} is an arbitrary group action on E, then
{||m,\||£(E) P AE IR+} cannot be expected to be bounded. For each group ac-
tion, there are constants ¢, M > 0 such that

M for A > 1
. for A > 1.1
lealleey < {CA-M for A < 1. v

Throughout this paper we fix a smoothed norm function
[] (R~ ]R+:

i.e., [] is a smooth and strictly positive function on R? and there is a constant
¢ > 0 such that [5] = |n| for || > ¢. For abbreviation we then set

Kk(n) = Kiy)-

Fix two pairs (E, {K*}AEIM) , (E‘, {E’\}AER+) of Banach spaces £, E together
with corresponding group actions.

Definition 1.2. Let 4,0 € R. Then 5#:¢(RYxRY; E, E‘) is defined as the gpace
of all a € C*°(RY x RY, L(E, E)) such that

%=1 { D§ DEaly, )} ()| o 5y < el (™! (1.2)

for all multi-indices o, # € N7 and all y, 5 € RY, with constants ¢ > 0 depending
only on ¢, 5.

Moreover, we set

S~ (R? x R% E, B) := [ S"¢(R? x R% E, E),

e€R

S#(RT x RY B, B) := (] $*¢(R? x RY; , ),
HER

§™=®(RY x RY) := ﬂ SHe(R? x ]Rq;E,E').
#,0€R

Remark 1.3. (i) The best constants ¢ that are possible in the estimates (1.2)

define a system of semi-norms on S#2(RY x R% E, E’), which makes it a
Fréchet space.
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(i1) Similarly to the scalar theory one can also consider spaces

Swee (R2 x RY; B, E) of (y,y')-dependent symbols, where the estimate
(1.2) has to be replaced by

[# 0 {og 05/ Dfatw v o], o < el 1 el

These symbols, however, will only play a minor role in the calculus, since
pseudo-differential operators with (y, v/)-dependent amplitude functions
can be replaced by operators with y’-independent amplitude functions

modulo smoothing error terms.

The following Lemma collects some simple facts about symbol spaces.

Lemma 1.4, Let E, E’, E be Banach spaces with associated group actions.
(i) If p < v, g < 7, then there is a continuous embedding
$%e(RY x RY; B, E) < §¥7(RY x RY% I, E).
(if) Ifa € S¢(RIx RY E, E’), then
DgDBa g soWPlhe-lel(Re x RY, B, E).
(iii) We have

S#e(RY x RY; B, E)S¥7(R? x RY; E, B) C S#+e+™ (R x R E, E),

with the point-wise composition of operator functions.

If E=E = C and the group actions are the trival ones, ie., k) = Kx = id
for all A > 0, we will write S#¢(R? x RY) instead of S¥:¢(R7 x RY, E, E). Note
that for all 8,7 € R we have [7}® [4]” € SP7(RY x R9). The multiplication by

[17]‘B {y]” induces isomorphisms

[U]ﬂ [y]" : S*¢(RY x RY; E, E) — GHtBety (RY x RY; E, E) (1.3)

for all 4,0 € R.

Proposition 1.5. Let a; € S#i:@(RY x Rq;E,E), j € N, be an arbitrary
sequence, and pj —+ —oo, g = —00 as j — oo. Then there is an a €
SHe(RY x RY E,E) with p = max{u;}, 0 = {o;} such that for every § € R

there is an N = N(B) with

N
a(y,m) = Y aj(v,7) € S* PP (R x RY B, ).

j=0

The symbol a is unique modulo S~ =% (R9 x RY; E, E).



Proof. Without loss of generality we may assume pu; < pj—1 and ¢; < gj—1 for
all 7 > 1. Let x(y,n) € C*(R? x R?) be an excision function with x(y,n) =0
for all [y|* + 9] < 1 and x(y,7) = 1 for all |y|* + |n|*> > 2. For all ¢ > 0 define
he(y,m) = 0 for [y + n* < c and hs(y,n) = 1 for [yl + [n|* > c. If ¢ > 1, then
the following estimate holds:

|81l [oa]
(053 (2.2) Q£ 0

¢ e clBi1l claal

¥
<sup{(Dg Dfx) (L, 2) ¢ fyl” + Il > ¢* il
= ay,fhe

By using the symbol estimates for a; we get

” 1(,7 DﬂnDﬂﬂaJ(y, }K(U)”c(E,E)
< P (a) (14 Iy 1oo (L 4 gy,

where pf’ 501 (

a;) denote the best constants in the symbol estimates of a;.

Now, employing the Leibniz rule, we obtain
(14 Jy|)lel=@i=1 (1 4 fp|)Iol=#i-s
~_l a ryf sl = =
Fre {psoix (3.7 aswm} o],
< Ka,p,c(a5)hea(y, n)(1 + [yh¥ ™= (1 + |p|)#i 74
< Kaypolas)sup {(1+ )50 (Lt )P -yl 4 nl? 2 e
)

=: Cq,p,c(a5),
where
olg
Ka|ﬂ'0(aj) = Z _—-———Mal,,ﬂl,cp“”fij (GJ)
a1 4az=a al!a?lﬂllﬁzl az,P2
ﬁl"‘ﬂ::ﬁ

Note that Cq p.c(a;) = 0 as ¢ = co. Choose ¢; > 0 such that Cq pc;(a;) < 277
for all |a| 4+ |B] < j. Now let

~ v o0
a;(y,n) =x (;—_, ;) aj(y,n).
¢l 7

This yields

&= () { DS DEG; (y, )} k(n) ”E(E E)
<2 (L [yl) oIl o ) pimr 1A
for all |a| + |B] < 4. So EOO_N+1 @; converges for all N € N in S#~:@N(RY x

R% E, E). Since @ a; € S“N"?N(]Rq x RY E, E) also ZJ n @j converges in the
space SPV@N(R2 x RY; E E)



Now define a := E?.):o @;. The sum is finite in each point (y,n) € R x RY and
converges in S*¢(R? x RY; E, E). Moreover,

N-1
a(y,n) — Z a;(y, 1)
” N-1 N-1
=a(y,n) = > G+ D @&y —a;i(y,n)
3=0 j=0

oo N-1 y 7
= Gy + Y (1 -X (;, —)) a(y,n)
i=N j=0 R
€ §HNeN(RY x RY; B, E).

If ' € S#e(R? x RY, E,E‘) is another symbol that satisfies a’ — Ef:ol a; €
SuNeN(RY x RY; B, E) for all N € N, then

N-1 N-1
a—ada = (a— Z aj) — (a'— Z a_,') ES“"'QN(RQXIRQ;E,E)
j=0 =0

J
for any NV € N and hence
a-a' €S (R x RY £, E).
O

As usual we write a(y,n) ~ E;‘;o a;(y,n), and call a the asymptotic sum of the
sequence (a;)jen.
Proposition 1.6. (i} Let p;j(y,n) € S#¢(RIxRY; E, E’),j € N, be an arbitrary

sequence with jt; - —oo as j — co. Then there isap(y,n) € S¢(RIxR% E, E‘)
with g = max {u;} such that for every 3 € R there is an N = N () with

N
p(y,n) — D _pi(y,n) € S*P ¢RI x R% E, F)
i=0
and p(y,n) is unique modulo §~*¢(RY x RY; E, E‘)

(i) Let rj{y,n) € S*¢ (R x R% E, E), j € N, be an arbitrary sequence with
0j =& —oo as j — oo. Then there is an r(y,n) € S*¢(RI x RY E, E) with
¢ = max {p;j} such that for every 3 € R there is an N = N(f) with

N
r(y,n) — 3 ri(y,n) € S¢~P (R x R% E, E)

i=0

and r(y,n) is unique modulo S#~*°(R? x RY; E, E‘)



Proof. The proof follows by simple modifications of the idea of the proof of
Proposition 1.5. If x(n) is an excision function in R? then p(y, ) can be obtained
as a convergent sum

Zx( )prn)

Analogously r(y, ) follows as a convergent sum

Zx( )f‘g (v, 7).

In both cases ¢; are constants tending to oo sufficiently fast as j — oo. O

With a symbol a € S#¢(R7 x RY; E, E‘) we associate a pseudo-differential oper-

ator Op(a) via
) =/f e =¥ Va(y, n)u(y) dydn,

for u € CP (RY, E), where dy := (2r)~%d7y. Then Op(a)u € C®(RY, E).
Definition 1.7. For every u, ¢ € R we set

L#2(R% B, E) = {Op(a) : a & SM2(RY x ]R‘T;E,E‘)}.
Moreover, we set

L= (R%EE) = () L*(R% B, E).
4,0€R

Proposition 1.8, If A € LF¢(R%G E, E‘), i, 0 €R, then A induces a continuous
operator

A:S(RYE) - S(RY, E).

Proof. Write A = Op(a) with a € $%¢(R? x R%; E, E). Let u € S(RY, E),
p € C§(RY), and consider ¢(y)Au(y). Put b(y,n) = w(y)aly, n)%(n). Sirice
i € S(RY, E), it follows that b € S(RY x RY, E) Hence F;5,b(y,n) € S(RY, E).
Since ¢ was arbitrary, we get Au € C®°(RY, E).

Next, let us estimate sup,ega ||3” DF Au(y) | 7, for given multi- mdlces @, € N9.
We have

Dyea(y,n) = €' Y caqyn Dy "a(y,m), (1.4)
i<lel

with suitable constants ¢, o € C. By (1.1) there are constants ¢, M, M > 0such

that [|xallz () < emax {AM, A~} and BNl gy £ cmax{,\ﬁ,.\'ﬁ}. Choose
k0 € Nsuch that 2k > 18|+ o+q, 21 > |a|+ p+ g+ M + M. Writing

(149 (1 = Ay) W=y = gily=yIn, (1.5)

1+]|y- y’]Q)'k(l _ Aq)ke"(y—y')n = =¥, (1.6)



an integration by parts gives

¥’ D Au(y)
= > can ]/ eV (1 4 Ig®) =P DS aly, n)(1 = Ay Y uly') dy'dy
Iyl <lal
= 5 can ]/ef(y—y')nyﬂ(u|y_y'|2)-*
vI<lal

A=A U+ P DE el } (1= Ay u(y) dy dn.

Here we have used the notation A, = 3°7_, 8%/893. Using (1 + |y — vk <
ce(1 4+ 171)*(1 + |y]*)~*, we estimate

D A =
sup |97 D5 Auy)|| 5

< sup cacn [ 1o 01+ 145+ ) IR e
v q

R {0 = ankr 4 ) Dg=vatw, m } <o)
e~ ”E(E) (1 - Av’){“(yf)”c(a') dy' dy
S AL f/ P11+ ) [ g+

1= pla)

L(E,E)

2
|+ WP =AY, v

< Caupx P(9) f Jo+ o~ Au')'u(y')”c(.s) W

where p is some semi-norm on §4¢(RIxRY; E, E) and € g & 18 @ constant which
only depends on ¢, € N9 k1 € N. To given %,/ € N there is a semi-norm =,
on S(RY, E') such that

sup
yeER?

L+ = 8 ()] < (1+ 1) 9 (w)
for all v € S(RY, E). Hence

sup [|s” Dy Au(y)|| 5 < cappip(a)m(u),
yeR?

proving the continuity of A as an operator from S(RY, E) to S(RY, E). a
By C°(RY, E) we denote the space of all u € C®(RY, E) with

sup ||[D%u(y)||g < o0
yER?

for all multi-indices o« € N7. Note that Cp°(RY, I7) is a Fréchet space in the
corresponding semi-norm system.



Theorem 1.9. Every A € L*°(R%; E, E), u € R, induces a continuous opera-
tor

A:CP(RY E) » CP(RY, E).
Proof. Let A = Op(a) with a € S"°(R? x RY%; £, F). Using (1.4), (1.5), (1.6),
we get for u € C§°(RY, E) and a € N¢?
Dy Au(y)
Eca,vfj v=+) "1+ y- y,)
lvI<le
A= Ak a1+ 1) Dg Yl m) } (1 - Ay uly) dy'dn.

Choose k,1 € N such that k> ¢ and 2 > |a|+ g+ ¢+ M + M. It then follows
easily that the last integral also converges for v € C°(RY9, E). We have

1D Au(y)l| 5
< S o [ = P F ROegey
[vi<lel
| -1 {(1—- Yy (L+ [nl)” r93_7“(y”?)}n(n)’|z(s,é)
s "E(E I¢! - Ay) uly “f» )dy’dq

<o [+l =y PH 0 0 pam () dy'dn

for all y € RY, where p is some suitable semi-norm on S#°(R? x RY; E, E‘), m
is a semi-norm on C§°(RY, E), and ¢, is a constant which only depends on a.
Hence

|05 Aut)5 < corl@m@) [+ 1=y )y
< cplam (),

for all y € RY, with a constant ¢/, which only depends on o € N9, This proves
that A € L(C5°(E), CP(E)). O

For y,n € RY define e, (y) := ¢'¥".

Proposition 1.10. Let a(y, 7) € S#°(RY x RY; E, E’), A = Op(a). Then, for
every f € F,

aly, mMf = e—q(y)Aleq (v)f)- (1.7)

10
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Proof. Let f € E. Then
Op(@eas) () = [[ 6 %aly,Clen () dr'dc
= [[ v aentay,o)s dyag
= // e~V VO ) gy 4 o) £ dy df
= e'¥7 /f VI gy, 4+ o) f dy dy.

The assertion now follows, using that [f e“y'"'a(y,n + ) fdy'dy = aly,n)/f.
O

Proposition 1.10 shows that the mapping

Op : S*¢(R9 x R% E, E) — L*¢(R% E, E), a Op(a)
is bijective, provided that ¢ < 0.
Proposition 1.11. The mapping

Op: 5#¢(RYx RY E, E) —» L"¢(RY E, E), a— Op(a)
is bijective for all 4, p € R.
Proof. Let A = Op(a) with a € 5%¢(R? x IRY). Notice that the function

c?(y) = (1+ ")
induces isomorphisms
Mo : 5#2(RY x RY; E, E) = §#°(R? x RY; E, E)

for all p € R, where (Mcea)(y,n) := c?(y)a(y,n). The mapping R? := Op(c?)
induces isomorphisms

R™¢: [#Y(R% E, E) = L*(RY; E, E)

for all 4 € R. Writing now Op = R™¢ 0 Op o M., the assertion follows, using
that Op : S#°(R7 x RY; E, E) = L*°(RY; E, E) is an isomorphism. O

Proposition 1.12. The following conditions are equivalent:

(i) Anoperator C € L(S(RY, ), S(RY, E‘)) is an integral operator with kernel
in S(RY x RY, £(E, E)).

(ii) C = Op(a) for some a € S~ ~(RI x R%; E, E).

(i) C € L=~ (R% E, E).

11



Proof. Let C = Op(a), where a € S™~(R? x Rq;E,E'). Put k(y,y') =
fe"(!"‘yl)’?a(y, 1) dn. Using (1.5) and (1.6) and integrating by parts, we see that

sup
v,y €Re

1+ PN (L + |y - ¥ )Y DE DL k(y, o)

L <o
(BB
for all v, 3 € N9 and all M, N € N. An application of Peetre’s inequality
2 2
(L+ WY <Cu(1+ =¥ 1)M (1 + 1y 1M

now shows that & € S(R? x RY, L(E, E)). To prove the converse, let k €
S(RIxIRY, L(E, E)) be given and let Cu(y) == [ k(y, v/ )u(y’) dy’. Put a(y,7) :=
(2w)qfe*(y"y)"k(y,y’)dy’. By analogous considerations as above, it follows
that a € S~ ~°(RIxRY; E, E). Moreover, we have Op(a)u(y) = Cu(y), since

Op(a)u(y) = j ] =YV (FL k(y, 2))u(y') dy/d
= f (Fu)m) (Fo, k(y, 2)) dn
= (21)70 [ Fom(@(2) « (o, 2) ) d,

where %i(x) := u(—z). The last integral equals [ u(z’ — z)k(y, ') dz’|$=0, and
hence Op(a)u({y) = Cu(y). We thus have shown the equivalence of (i) and (ii).
Clearly (ii) implies (iii). On the other hand, let C € L= ~%(R% E, E) By
definition, for all m € N, there is a symbol a,, € S~™ " (R9 x RY, F, E) such
that C = Op(am). In view of Proposition 1.11, the symbol a,, is uniquely
determined. Since

S~ (M) (Ra y R B E) <3 ST (R x RY E, E)

for all m € N, it follows that a,, = am4; for all m € N. Put a := a;. Then
a € S~ ~%(RYx R% F, E) and C = Op(a). a

It is a natural question whether operators in L#*¢(RY; E, E') can be extended to

continuous mappings on Sobolev spaces. The adequate spaces in the operator-
valued set-up are the abstract wedge spaces.

Definition 1.13. Let £ be a Banach space with an associated fixed strongly
continuous group of isomorphisms {Ka},¢x,, -

(i) For s € R the space W*(RY, E) is the completion of S(RY, E) with respect
to the norm

\ 1/2
[llweme, 5y = {f[n]z’ [~ N (Fymn )| 5 dn} :

(ii} For 5,8 € R, we define weighted wedge spaces by

W, E) = {ue S'RLE) : (1) ue W (RS E)}.

12



(iii) The space Ly(RY, E) is the completion of S(IR?, E) with respect to the

norim
\ 1/2
lell g = { JIZEIE dy} .

In general, the spaces Ly(R?, E) and W°(RY, E) are not equal, even if{"iA},\Em+
is a group of unitary operators. In order to have equality in this case, we have
to assume that E i1s a Hilbert space.

1.2 The case of Hilbert spaces and unitary actions
Throughout this section we assume that £ and E are separable Hilbert spaces

and that, moreover, the associated group actions {RA}A63+ and {E'\}Aen+ are
unitary.

Definition 1.14. Let s, 4/, o, ¢’ € R. Then §## &0’ (R?7xR%%; E, E‘) is defined
as the space of all a € C®(R% x R%, L(E, E)) such that

||DL’D;’,'D,*?Df,a(y, ¥ n’)” < oI B ge-tet e -1l

for all multi-indices e, o', 8,8" € N7 and all y,¢/,n,7° € R?, with constants
¢ > 0 depending only on o, o', 3, 2.

With each symbol a € $##"0¢' (R2xR29; E, E) we associate an operator Op(a)
by

Op(a)uly) = ff// e En Mgy, y 4 2, 0 )uly + 2 + ') dzd2 dndy

for u € C§°(RY9). Then Op(a) : CFP(RY) — C=(RY).
Theorem 1.15. Let a € $#4"0¢ (R x R, E, E) and put
bly,n) = /fe_izca(y,y+z,q+f,n) dzdC, (1.8)

where the integral is interpreted as an oscillatory integral.
Then b € S#T# 210 (RY x RY, B, E), and

Op(a) = Op(b). | (1.9)

The symbol b admits the asymptotic expansion

1 ! !
b(yl 7]) ~ Z ; (ar?D;’a)(ysy sTh 1] )ly

la|20

(1.10)

'=ym'=n’
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Proof Let 0 <8< 1,letac S“'“”Q'Q'(qu xR E, E‘), and put

Boly,m) = j f =5 Caly, y + 2,17 + 0C, ) dzd. (1.11)

To given multi-indices ¢, # € N? choose k,! € N such that 2k > ¢+ |u]+|5| and
2> g+ ||+ |al. Put

f'a(y, zl 77’ C)
= (L+ICA) 5 (L = AL+ (21171 = A¢) @y, ¥ + 2,7+ 6C, 7).

Integrating by parts we see that

D)= [[ oty 2,n,0) dede.
The symbol estimates yield

1D5 DEray, 2,0, O gy KT Y0 eqs M fy + )~ lel=iD)
[7]€ el
lél<|8|
-[7]+9C]#_|6|{ ]#'- 181-141} 7o 5(d),
where 7, 5 is a semi-norm on a0l (R% x R%; E, E) that only depends
on , 8 € N9, and ¢y 4, 7] < ||, [§] < |8, are constants that only depend on

@, B,v,8, but not on 8 € [0,1]. Using Peetre’s inequality [z + 2']* < ¢, [2]’ [w‘]l",
we get

||D;‘;‘Df:rg(y, RN/ C) ”C(B,E‘)

< cCap [y]e-w ~lal [z]lo [+1at-21 [n]nﬂ -8 [C]I#I+I!3I—2k 7o 5(3),

with a constant c, g that only depends on o, € N9 but not on § € [0,1].
Hence

”D;:Dg?)-g(y’ ’7)“ Carp T (3) [0+ 71 [t 1P)

L(E, E)
]f [le/[Hlal=2t g ul4181=2k g g
< ! T, 5(a )[y]eﬂ' ~le| [n]ﬂ-HJ Iﬂl

with a constant c;, 4 that only depend on a, 3 € N7 and on k,! € N, but not on
the symbol @ and the parameter 8 € [0, 1]. Thus by € SH+# e+’ (RTxR% E, E‘)
for all 6 € [0,1], and the set {39 L 0<0< 1} is bounded in S¥t# ete (R x

RY% F, E‘) Now let a = 4. Then b(y,n) = gl(y, n). For v € C§°(RY, E), we have

pOu) = [[ - ”"{f/ iy y+ 2,0+, )dzdc} u(y') dy'dn,

4



Substituting " = n+ ¢ and 2z’ = ¥ — y — z in the oscillatory integral, we see
that

Op(b)u(y)
= //// e"“"'“”’e"‘("'-”)n(y,y+z,r;’,n)u(y+ 7+ z/) d»zdz,dn,dn
f/f/ S gy, 4 2,0 n)u(y + 2 + 2') de'dzdy'dy

= Op(a)u(y).

Hence Op(b) = Op(a). It remains to prove (1.10). A Taylor expansion around
¢ =0 yields

a(y’y-f-z,f]'i‘C)n)
— E %aga(y,y'i*Z,f)’?)]f:q

ja| <N

4+ N Z C [ H)N-l 3?a(y,y +2,€,1) |E=,7+a( dé.

la|= v

Integrating by parts and using the formula [f e~ f(2) dzd¢ = f(0) shows that
—ll C
]/ (- aE (y!y+z161q)|€:n dzd‘:
- / / -uc DR, 1) my g gy 420G

1
= a 6?D3:ﬂ(y, y’sf;’?)l

y'=yb=n’
Hence
1
Bum =Y — (07 Dga)(y, y’.n,n')|y,=y'ﬂ,=,, +rn (¥, m),
lal<N
where
rn(y, )

00 [ gty 26y dedca

IIN

- Z /(1_ 9N - 1]/ —iz 0¢ Dyia J’J’e’n)|y’=y+z.f=q+ﬂc dzd(do.

laj=N

\Vl'itea(y,yl,f,ﬂ) aaD ,a(y,y’,.f,r,'). _ -
Then @ € S#-labs’ee "“'(]Rz" x R%%; E, E). With by as in (1.11), we have

1
f (1 —B)N_l/fe“”‘&'(y,y—{—z,n-{—ﬁ(, ) dzd(do
0
1
= [a-0 % s,
0

15



and {33 1 0<0< 1} is bounded in S#+#'~N.e+e'=N(R9 x RY; E, E). Since by
depends continuously on #, it follows that

1
f (1 — 0)V~1By(y, ) df € SHHH ~Ne+d'=N(Ra  RY; | E),
o

and thus ry € §#+# ~Ne+e' -N(RIxRY £, E). Since N € N\ {0} was arbitrary,
(1.10) follows. O

In the next Proposition E is a further separable Hilbert space with associated

unitary group action {E,\} .
AE..'.

Proposition 1.16. Let a € $#¢(RY x RY; E, E’) and b€ 57 (R?x R%G E, E‘)

(i) Set e(y,n) == [fe™**$a(y,n + )b(y + 2, 1) d2dC.

i~

Then ¢ € S¥T¥ @17 (R x RY; E, E’) and Op(a)Op(b) = Op(c).

(1i) The symbol ¢ admits the asymptotic expansion

ol ) ~ 37 = (85 aly, 1) D5 bl ) (112

in SUHe+e (RTx RY B, ).
Proof. Let u € Cg°(R% E). Then
Op(a)Op(b)u(y)
= /// f =MW ="' 0y (o Yu(y”) dydn dy d.

Substituting z = ¥ — y and ¢’ = ¥’ — y — z, we see that the integral on the
right hand side equals

/// e~ @Mt ) gy by + =, 7)uly + = + &) de’dy’ dedy,.
Set g(y, ¥/, m,7) = a(y,Mb(y/, 7). Then ¢ € S#e7(R% x R%; 5, E) and

Op(a)Op(b) = Op(g). By Theorem 1.15, there is a symbol ¢ € S#+*:¢+7 (R? x
RY; E, E) such that Op(g) = Op(c). Moreover,

‘=y,n’'=n

1 o fyo
c(y, n) o~ Z g (aq Dy’q)(y) y,’ 7, q’)ly

~ 3 (@ aly, 1) Db ).

o
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Remark 1.17. (i} Formula (1.12) is the Leibniz summation. As usual, we
write

s ~ 37 (05 aly,m)) D§bly, ).

24

This relation holds modulo S™%' = (RIx R, E, P:’) In fact, we may make
afib a uniquely determined symbol by setting Op(a)Op(b) = Op(alb), i.e

(afb)(y,n f/ ~a(y, n + )by + 2, 1) dzdC,

see (1.8). In view of Proposition 1.16 and Proposition 1.11, afb is then
well-defined.

(i) If a € S"¢(RY x RY%; E, E), b € 527 (R? x R E, E), and b is independent

of y € RY, i.e., b(y,n) = b(n) for all y,n € RY, then afp = ab. This follows
directly from the composition formula.

The Ly(RY, E) scalar product is denoted by (:,-)r,ms ), the scalar products
of E and E are denoted by (-,-)g and (*,*)g, respectively. If A : S(R?, E) =
S(RY, E) is a continuous operator, then the formal adjoint A* of A is defined

by
(Au, v)L-_»(Ii“,E‘) = (u,A"U)Lg(Bq]E)
forallu € S(RY, E), v € S(RY, E‘) Moreover, if e € 52 (RIxRY; E, E’), then we

denote the point-wise adjoint of a by a®*), i.e., (a(y, nfelg= (f, "Ny, n)e)E
forall fe F,e€ E, and y,n € RY.

Proposition 1.18. Let A € L#2(RY F, E‘), A = Op(a) with a € SH¢(R7 %
RY E,E). Then A* € L*¢(R% E, E) and A* = Op(a*), where a*(y,n) =
ff e~ ¥ al*)(y + z,n4 () dzd(. The symbol a* admits the asymtotic expansion

(v, 1) Z ~05 Dya) (y,7) (1.13)
in S#¢(RY x RY; E, E).

Proof. Forue S(RY, E)}, v e S(IR",E), we have

(Au, v} e *f(j/ W Ma(y, n)u (’)dy’dn,v(y))E dy
= f/f(e"(*"y Ma(y, n)uly'), v(y)) 5 dy'dndy
//f W= (u(y'), o™ (y, M) o(v)) & dydndy’
= / ("(y'),f/ W) (y, n)o(y) dydn)E dy’

= (u, Op(e™(y,7))v)E.

17



Hence A*v = [[ e W=¥1aC)(y/, n)u(y/) dy'dn. Writing at*)(y/,n) =
[f ey — o' pyuly’) do'dC, we get

Atu(y) = /f/f W=y M=) (o — ! pyu(y) dz'd¢dy dn.
Substituting 7/ = 1+ C and ¢ = y + 2 + = yields
A'v(y) = ff// e=i(E +eIm =" (=1 () (y 4 2 mu(y + 2’ + z) dx’dzdy’dy
= ffff e_i(rqﬂl"’)a(')(y + z, Mu(y + z + z') dz'dzdndy’.

Theorem 1.15 now shows that A* = Op(a*), where a*(y,n) = ff e“"'“a(‘)(y +
z,7+ (). The asymptotic expansion (1.13) follows from (1.10). O

The next thing we shall do is to prove that operators in L*2(RY% E, E) act
continuously on the weighted Sobolev spaces, i.e.,

L*¢(R% E, E) C LW (R, E), W* ~#4-¢(RY, E)).

The main step here is the corresponding version of the Calderén-Vaillancourt
Theorem for operators with operator-valued symbols. The proof of Theorem
1.19 generalizes an idea of Hwang [8].

Theorem 1.19. Let a € C®°(RY x RY, L(E, E)) and suppose that
n(a) :=  sup DEDEaly,n) =, < 00. (1.14)
(v.)CRIXR {0y D ”r,(E,E)
a,fL(1,.,1)

Then A = Op(a) induces a continuous operator

A: Ly(RY E) o Ly(RY, E).

In the proof of Theorem 1.19 we shall find it convenient to write (i + )¢ =
(i +m)8 - (i+ng)% and (i + Dy)® = (i + Dy,)% - (i + Dy, )%. With this
notation we have

(i + Dn)ﬁei(y—-y‘)’? =(i+y— y)ﬁef(v—y')n.
Moreover, we write #(n) = (Fyanu)(n).

Proof. Let u € C°(RY, E) and v € C3°(RY, E) be given.

Step 1. We first check two norm estimates. Let 8,4 € N9, where § > (1,...,1)
and g < §. Put

fiatu) = [ e“‘”‘"(—Dy)ﬁ%dm
sv.1) = [ @ET= ) 90) dn

18



LY

We want to verifty that

||f6.ﬂ||L,(n=c_E) < ¢ ||“||L,(m,1-3): (1.15)
||96“L,(n9q,1§) e ||UHL,(R-1,E) ) (1.16)

with constants cs,cg g, that only depends on 4, 3 € N9, but not on u,v. For gs,
we calculate

ool a2y = [ st qug, . &

/" y-}q’gJ( ) )
= [[164+ 0P 156N dny
~ . -2
= Pl [ 16+ 0% ac

q
= ol ey TT 01+ 672 dc;
i=1

< cslv

dn

La(RY, E)

2
”L,(nv'i::') )

provided that d; > 1 for § = 1,...,¢. It was used that the Plancherel identity
holds for functions v € Lo{RY, H), if H is a Hilbert space. Hence (1.16) is
proved. Analogously, it follws that

Mo 1o = Wil sy [ 106 = Do (i 4 )" .
If 3 < 4, then there are constants ¢s s > 0, that only depends on 4, 3, such that
[(i = D)2+ )| <Eplli+2)7°.
Thus
Vol sony < 101y o [ 1+ 2)7]" do
< s 0101z, e, -

provided that é > (1,...,1). This proves (1.15).
Step 2. Assume that a € C§°(R? x R, L(F, E)) and set A = Op(a). We have

(43,9) @0y = [[ [0 0y, muty), v(o)) g do' dndy
= [[[[ s m=isn'aty, myuty), 901 dy dndya
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An integration by parts gives

(Au,v Lg(IHE)

+D § +D 8 (=t Y=g’ 1y e Il
//// ( z:-y s)f 1(;7? il)ae"" Y oy, myu(y), ) dy' dndy'dy

f[[ (er=sm=n' (- D,y {6 = Dy oty

) 5)p dy'dndy'dy

Tro =P
= T aan [f 5= D06 - D))

. / e-‘y"(i—DyJﬂM_“fQ!_ﬂ_ dy, / T T =T o) i)
E.f""”/f (e {(i = Dy)(i = Dy)aly, )} fo0 (3, m),

96y, m) g dydn,

with suitable constants cs g . Now the Cauchy-Schwarz inequality yields
1(Au1 U)L,(mq E)|

< ¢s,8,1 {f/ (G = DY) = Dy)¥aly, m)} Foo(v )5 dycfn}m

,3+7—5

{/ llgs (v, M5 dyd,,}w

<G sup ”D;Dﬁa(y, 77)",;55 ”ffi.ﬁ"L, R9,E ”96”,;, R E) -
y.nERT (E,E) ( ) ( )
«,0<6

Using (1.15) and (1.16), we see that there is a constant ¢s > 0 such that
|(A": U)LQ(R',E)| <es Sl:splq || Dgpgﬂ(y, ’])||£(E,E) “u“L,(Rv,E) ”v”]_,,(gqj')
v
a,B<8

provided that é > (1,...,1). In particular,

‘(A“: “)L,(mqj)| <cn(a) ”u"L,(nc.E) ”U||L2(nwj) ) (1.17)

with some ¢ > 0.

Step 8. Next, let a € C®(R? x RY, L(E, E)) and suppose that w(a) < oo.
Let w € C§°(R? x RY) be a cut-off function, i.e., w(y,”n) equals 1 in some
neighbourhood of (y,7) = 0. Put a.(y,n) = w(ey,en)a(y,n). We then have

lim (Op(a,)u U)L,(nqj) = (Op(a)u, ”)L,(m,ﬁ)'

=0t
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Moreover,

(Au, ”)L,(m,E) ’ = E]_i’f[ll"*_ |(0P(“e)”: ”)L,(nq,é)
<& lim w(ac) lul,qme, 19l a3
< em(a) llull,me,m) 19l Lyme, By 0

and ¢ is independent of u, v, and of a. Since C§°(RRY, E) is dense in Ly(RY, E),
it follows that

l|Av|

La@®e,B) < cn(a) ||“|1L,(xq,3)

for all u € C§°(RY, E). Extension by continuity completes the proof. O

Since the spaces E, E are supposed to be Hilbert spaces with associated unitary
group actions, we have WO%(RY, E) = Ly(R9, E) and WOE(RY, E) = L2(RY, ).
We note a simple consequence of Theorem 1.19.

Corollary 1.20. Let A € L°°(RY; E, E’) Then A induces a continuous opera-
tor

A:WORI E) - WOOURY, E).
Define operators

R*% .= Op([4]") o Op([y]*),
P*4 = Op([4]°) o Op([n)").

The operators R*¢ and P*? are called reductions of orders.

Proposition 1.21. Let 5,6 € R. Then
R W (RY, E) = WOORY, E)
is an isometrical isomorphism with inverse (R*%)~! = P=* 9%,

Proof. Let v € W*4(R9, E).
S e e ot ™

= [ = 007 Op(l)0p(1)x ] 0

= [

o

Moreover, R*% o P=%~% = id on W*4(R9, E). Hence R*® is isometrical and
surjective. O

K ) Fyon (0 w(0))| o
, .

— 2
WJ.U(BG,E) - ”u”w"‘(nqiﬂ) )
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Proposition 1.22. Let A € L*¢(RY E, E‘) Then A induces continuous oper-
ators

A WH(RY E) - W B RY E)
for all 5,6 € R.
Proof. Put B := R*~#%=¢o Ao (R”‘s)"‘. By Proposition 1.21 and Proposition

1.16, B € LY°(R% E, E), i.e., B = Op(b) with some b € SO9(R? x R% E, E).
Now Corollary 1.20 implies that there is a constant ¢ > 0 such that

”B“”wo.o(mj) <c ““”wo.n(nq,s) .
Hence

lAullyemss-ome, iy = B0 At o0 e )

= |3 <efms

“”wn.n(mq,ﬁ) ““wo.O(nv,E)

= cllullyos @ gy -

1.3 The case of arbitrary group actions

In this section, we consider again Banach spaces Ey, E;, E; with associated
strongly continuous group actions {”OJA}Ael.i.’ {nl.A}AEn+, and {ng,A}AEn+. It
is not assumed that the group actions {""',A}Aem.p i =0,1,2, are unitary. Re-
call that by (1.1), there are constants ¢ > 0, M; > 0 (i = 0,1,2), such that
Ieiall gz < emax {A=Mi AMil

Proposition 1.23. Let a € S*¢(R%xRY; B, By) and b € 5S¢ (RIxRY; Ey, Ey).

(i) Set c(y,n) := [f e "*Ca(y,n + {)b(y + z,1) dzd(. Then
¢ € SEHete (RY % RY; o, E2) and Op(a)Op(b) = Op(c).

(ii) The symbol ¢ admits the asymptotic expansion

eluym) ~ Y (@5 a(y, 7)) Dyb(y, )

a

in SHtVeto(RY x RY; By, Ey).
Proof. Let 0 < 8 <1 and put
Co(y,m) = //e"“a(y, 7+ 00)b(y + z,7) dzdC.

To given multi-indices o, # € N¥ choose k,! € N such that 2k > ¢ + |u| + |3] -
My + My and 21 > Q+1Cf|+ |c].fl Put

ro(yi z: U:C) =
(L+ P = AR+ |27 (1 = Ag)a(y, 1+ 00)b(y + 2,7).
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Integrating by parts, we see that

EO(yvn) = //e-£2Cr9(y)z:na C) dZdC

We want to show that {€ : 0 <8 < 1} is a bounded set in
Sutvieta (R x RY; Eg, F3). To this end, we consider

w3t (n) { DS DErely, z,1,)} Ko(n)

13}
=Kz (Mr2(n+0¢) D @z 7),:,@3 — J)!J!KEI(H 0¢)
55

@+ ) = A) DY Dhaly, n+00) b ka (7 + 0) (87 (n + 6C) k1 ()
w7 () {1 = 851+ 21 DT DE by + 2,m) o),
and estimate
153 (n) { Dg Doy, 2,10} w0 £ 1,y
< Jlsz* (mma(n + 00 ¢,y Z oy (€17 Fapn,5(a)
325

e I+ 01 AT (0 4+ 00 (), 217 e 2,808
y+ z}o-hﬁl-HéI [n]v-lal+l~rl ’

where 'ﬁa,ﬁ_,,'l(; is a suitable semi-norm on S*2(R7 x RY; £y, F3) and mq g,.4,6 i8
a suitable semi-norm on $*9(RY x RY; By, £,). In view of (1.1) and Peetre’s
inequality [£] < ¢’ [€ + &) [€], we can estimate

53" (w2 (04 00) | £ 5,y = IEitr+ocrsion.2ll )

< ¢ Insaalogey < 1™
and ||fc1_1(17 + 0C)Rl(’;"£(E1) <" [¢(IM for 0 < 6 < 1. Hence

||n;l(1)) {D;"Dgro(y, z,1, c)} KO(U) "C(Eo,Ez)

<M S Caprs K17 Fapsla) )21 1"
155

.[HC]Iuth [C]M: [z]—m T v,6(b) [y}o—|ﬁ|+|5| [z]|o|+|[j| [ﬁlu-|a|+l"’|
< cap [C]-2k+M:+:\h+|ﬂ|+|a| {z]‘2‘+|°|+|ﬂl

)T )t g (a)ma,p(0),

with suitable semi-norms %4 g, ma,p on S¥¢(RY x RY; Fy, Ey) and
5Y7 (RY x RY; Ey, E4), respectively. Thus

w3 (n) { D5 Doy, m)} wo (M)l ¢, 5y
< Ca,pTa,p(a)7a,0(b) [y]9+o—|a| [1)]“"'"'“9' ,
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with a constant cq g that only depends on o, € N and on k,1 € N, but not
on the symbols a,b and on the parameter # € {0, 1]. For the rest, we can follow
the proofs of Theorem 1.15 and of Proposition 1.16. For u € C§°(RY, Eg) we
compute that

Op(a)Op(b)u(y)
- /f/f et gy, )by + 2, 7)uly + = + 2') dz'dy dedn
= Op(21)u(y)-
Setting ¢ := ¢}, assertion (i) is proved. The asymptotic expansion (ii) follows in
complete analogy to the proof of (1.10). O

Remark 1.24. As usual, we write Op(a)Op(b) = Op(aft), i.e., (afb)(y,n) =
Jfe*¢a(y,n + ¢)b(y + z,n) d2d{. By Proposition 1.16, the symbol affb is
uniquely determined.

In Remark 1.3(ii), we introduced the symbol class S#&¢ (R x R% E, E‘) for
Banach spaces with arbitrary group actions {K')\}AEB-’.’ {fc,\})“iB As we did
in Section 1.2 for symbols in S5#K 0 (R2 x R?; B, E), we associate with each
symbol a € §#ee’ (R¥ x RY; E, E) an operator Op(a) by

Op(a)u(y) = //j/ e~ ) gy y 2 puly + z + 2') dzd2' dndy’ (1.18)

for v € C°(RY). While it is possible to write a definition of S##" e (R2 x
R%%; F, E’) in the more general case (in Definition 1.14, E and E were supposed
to be Hilbert spaces with unitary group actions), doing so, it is not seen to be
of interest. The essential use of double symbols in Section 1.2, namely to show
that composition and adjunction of operators are possible within the class, is not
applicable here because of the presence of additional group actions. We therefore
proved Proposition 1.23 without referring to double symbols, but using in fact

the same technique. Next, we give the analogue of Theorem 1.15 for symbols in
Sme (R4 x RY; E, E)

Theorem 1.25. Let a € S%2¢ (R% x RY% E, F) and put

b(y,n) = //e"“‘a(y,y+z,n+<f) dzdg, (1.19)

where the mtegm] is interpreted as an oscillatory integral. Then
b SHete (RYx RY; E, E) and

Op(a) = Op(b). (1.20)

The symbol b admits the asymtotic expansion

by, ) ~ 3 = (05 D)o, 4/,

a

(1.21)

v'=y '
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Proof. Let 0 < 0 < 1,let @ € §#ed' (R% x RY; E, E'), and pul

Ee(y, n) = [/ e""c?i(y, y+z,n+0¢) d2d(¢.

To given multi-indices a, # € N9 choose k,! € N such that 2k > ¢ + || + |8] +
M, + M, and 2! > q+ |Q’| + |Ct‘| Put

ro(y,2,m,€) = (L4 [C1) 75 (1 ~ A A+ {2117 (1 - Ag) @y, y + 2,7+ 6¢).

Integrating by parts, we see that
Bolyn) = [[ 5 ro(u, 2,0 dodk.

As in the proof of Theorem 1.15, we want to show that {Eg 08 < ]} isa
bounded set in $#% ¢+ (R9 x R% E, I). To this end, we consider

1 (n) {D;’D,‘?T‘e(y, 2,1,0) } &(n)

and estimate

|71 () { D5 Df ro(y, 2,10} 601 ¢ 5
< [ @R + 00| s
&+ 00 { DYDY ra(y, 2, O} (0 + 0O . 5 5
a o + 6K £
< Rirocirinll gz Irmsmroall g gy €7 (7

. E Capn [y e— v [y + z)° =(lel-1vD [+ gc]#-—lﬁl o p(@),
[7l< e

where 7, g i a semi-norm on S“"?"”(]qu X ]R";E,E’) that only depends on
a,B € N9 and cq,8,4, |7| < ||, are constants that only depend on «, 3,y € N9,
but not on # € [0, 1]. Using Peetre’s inequality, we see that
~ ~ M
[Fn+ociinil oz < ¢ Foaill o) < ¢ 107
M
|t +oaill cimy < ¢ lxwal ey < < K1

Furthermore, we have [5 4 8¢)* V! < ¢ [g]* =181 [(]MIH1) ang [y 4 2]¢ —(el=-ID <
e[y]®~el=t 1€ [+e) | Hepce

%= () { D§ Dfra(y, 2,1, } k() 5. 5

]a+e'-la| [z}|o'|+|a|-2f [U]u-lﬂl [C]!ﬂl+lﬂ|+Mx+Mn-2k

Scaply Ta,0(d)

with a constant cq g that only depends on a, 8 € N?, but not on ¢ € [0, 1]. Thus

|72 { 5 DfEsw m } () fere el e

I .
‘t:[E,E“) S C“’ﬂ%'ﬁ(a)
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and it follows that &y € §#e+e'(R? x R% B, E) for all 8 € {0,1] and that,
moreover, the set {33 :0<8< 1} is bounded in S#e+e’ (R?x R% E, E‘) Now

let @ = @. Then b(y,n) = b1(y,n). The relations (1.20) and (1.21) now follow as
in the proof of Theorem 1.15. O

Corollary 1.26. Let p,p,0' € R. If a € S%02 (R% x RY; E, E), then Op(a) €
LHe+e (R4 B E).

Proof. Writing a{y,v',n) = ffe“"":a(y,y,( — z',n)dz’d(, we see that for all
u € C°(RY, E), we have

p(a)u(y) // W=¥a(y, o, n)uly’) dy'dy

= fff/ e y=y'n gmiz Ca(j,r, y — 2’ nu(y) dy'dz’dnd(.

Substituting ¥ = 7+ ¢ and z = y — y — 2/, in the oscillatory integral, we see
that

Op(
///j —i(en+e'y )a (v, y+z,Nu(y+z+z') dzdz'd‘r] dn
= Op(a
Now Theorem 1.26 shows that Op(a) € L*e+¢ (R%; B, ). O

In Section 1.2, we proved that if E,E are Hilbert spaces with unitary actions,
then

LPRGE,E) C () LWI(RY, E), W —H4=¢(RY, E)),
JJER

see Proposition 1.22. In the proof, it was used that there exist operators
R € L*%(RY, E, E) that induce isometrical isomorphisms R*?¢ : W*¢(RY, E)
— La(R% E), and that, moreover, LU'O(IRq;E,E) C L(L2(RY, E), La(RY, E)).
The proof was based on Hilbert space techniques. For Banach spaces E,E,
the situation is much more difficult. Theorem 1.35 presents a result on map-
ping properties in this case. In most applications, however, one deals with the
following situation.

Suppose, E and I are Hilbert spaces with associated group actions {}, {x}.
Moreover, suppose there are

o Hilbert spaces Eo, Eo with associated unitary group actions {ro}, {®or},
and

e symbols r*(n) in $*°(RY x RY% E, Eg) and 7 (n) in $*°(RY x R%; E, By),
for all s € R, that induce point-wise isomorphisms, i.e., r*(n) : £ = By,
() : E 3 Ep, for all n € RY.
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Under these assumptions, we have the following result.

Proposition 1.27. Let A € L#¢(R% E, E) Then A induces continuous oper-
ators

A WHH(RY E) o W —H4—(RY, E)
for all 5,6 € R.

Before turning to the proof, let us notice that if we put p~*(n) = (r*(n))7},
() = (P(n)7", for all n € RY, then p™ € S74°(R7 x ]Rq EO,E) and
7' € 579(RY x RY; Ey, E). Since Op(p~?*)Op(r’) = idwo.ors k) and
Op(r*)Op(p~*) = idwo.o(ms g,), it follows that Op(r*} induces an isomorphism

Op(r®) : W (RY, E) = WO (RY, Ey).
Analogously, it is seen that Op(¥*) induces an isomorphism
Op(F) : W(RY, E) = WOO(RY, Ey).

Proof omeposition 1.27. Put R* = Op(r*) o Op([y]a) R = Op(7) o

Op([y] )._ By Proposition 1.23 we have R ¢ L*$(R% E, Eo) and R €
19 (R9; E, Eg) The operators R** , R*% induce isomorphisms

R“’ . Wod (RS, B) — WOO(RY, Fo) and T8 : WH(RY, F) — — WOORY, Ey).

Moreover, (R*%)~! € L=*~%(RY; Ey, E) and (IA{""F)_l € L= (R, Eg, E). Put

B := R*=#8=05 Ao(R?%)~1. By Proposition 1.23, we have B € L%%(RY; Eq, Eq).

Now Corollary 1.20 implies that there is a ¢ > 0 such that

”B““wn.O(nqlén) < C”““WD'U(RQ,BO) :

Hence

o pe-pd-p
AUl nseagre iy < o [0l

= ”BRa'J"”wmﬂ(mq‘Eo) < e ”R"é“”wo.o(m,Eo) < eslltllyeeme,p) -
O

Remark 1.28. Note that if there exists an isomorphism aqg : £ — Iy such that
Koaaoky ' € C®(Ry, L(E, Ep)), then we find an order reducing symbol r*(n)
as above by putting r*(n) = [4]’ no'[q]aoh‘-[;]l-

1.4 Ellipticity and parametrices

For Banach spaces E, E‘, we denote by K(F, E) the space of all operators A €
L(E, E) that are compact.
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Definition 1.29. (i) A symbol a € $##¢(R? x RY; E, E) is said to have com-
pact variation, if for all y,n € RY

ay,n) — a(y,0) € K(E, E).

The space of all such symbols is denoted by SE¢(R? x RY; E| E’) The
space of all operators A € L#2(RY E, E) for which there is a symbol
a € S8#(RIxRY; E, E) such that A = Op(a) is denoted by LK (RY; E, E).

(ii) By S#¢(RIx RY; £, E‘), we denote the space of all symbols a € 5#¢(RY x
RY% E, E) such that a(y,n) € K(E, E) for all y,5 € RY. The space of all
operators A € L*2(RY E, E‘) for which there is a symbol a € S#2(RY x
RY E, E) such that A = Op(a), is denoted by L&¢(R%; E, E).

The applications we have in view will deal with symbols having compact varia-
tion. Notice that

SHe(RY x RY; B, E) C S4¢(RY x R E, E).

Lemma 1.30. Let a € S¥¢(R7x RY E, E‘)

(i) Then D&a € SE71°0¢(R7 x RY; B, E), for any multi-index o # 0.

(ii) Ifb € S&¢ (R x R%; B, F), then ba € S e+¢' (R x RY; B, B).
Proof. The proof is clear. Use that

b(y, m)a(y,m) — b(y, 0)a(y, 0)
= by, n)(a(y,n) — a(y,0)) + (b(y, n) — b(y, 0))a(y,0).
0

Proposition 1.31. Let a; € St7'%(R? x RY% E,E), j € N, be an arbitrary
sequence, where pj — —o00, g; = —o0 as j = oo. Put p := max{y;}, ¢ :=
max {g;}. Then there is an a € S#¢(R? x R%; E, E) such that for every k € N
there is an N = N (k) with
N
a=Y" €8st ke K (RIx RY B, E).

j=0
The symbol a is unique modulo S; (R x RY% £, E‘)

Proof. Following the proof of Proposition 1.5, we obtain a as a convergent se-
ries a = }7;5@;, where @;(y,1) = x(e;'y, ¢ 'n)aj(y, n), 7 € N. Since @; €
SLi%i(RIx RY; E, E) for all j € N, and since the series 2. i>04; is actually finite
in each point (y,n) € RY x RY, it follows that a € $#¢(RY x RY; E, E). More-
over, if a’ is another symbol in §%:¢(R? x RY; E, E) satisfying o' — 3°: ;" a; €
SEveN (R? x RY; B, E), then a — a' € [yen SEV¥(RY x RY; E, E), and hence
¢ — o' € S~ (RI x RY; £, F). [
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Lemma 1.32. Let a € SL2(RIXRY% B, E) and b € S%¢' (RYxR%; E, E). Then
bla — ba € SEHH -Lerd LRIy RY; E| E).

Proof. By Proposition 1.23, we have

ba~ 3 (D58 M) aly,n)
agN?

If « # 0, then Lemma 1.30 shows that
(D2b)O%a € S;t+u’—|a|,e+e'—lal(]gq x R% E, E).

By Proposition 1.31, the sum 37 .o 1/a!(Dfb)07a can be carried out in the
space Setr'~Lete -1 (RY x RY; B, E). O

Definition 1.33. (i) A symbol a € S&°(RY x R% E, E), 4,0 € R, is called
elliptic, if there are symbols b, € So#—2(RIXRYE, E), b € So e (RIx
RY; E,E) such that bj¢ = idg 4+ r, ab, = idg + ', where r € SR x
RY% E,E) and ' € S71 1R x RY; E, E‘)

(ii) An operator A € L&4e(RY E, E) is called elliptic, if A = Op(a), where
a € S%4e(RYx RY% E, E) is an elliptic symbol.

Proposition 1.34. Let A € L&¢(RYG E, E‘) Then A Is elliptic if and only
if there is an operator B = Op(b) € LZ/*~¢(R% E, E) such that BA —id €
[7°=(RY; E, E) and AB — id € L-~>(R%; B, E).

Proof. Let A = Op(a) be elliptic. Then there is a symbol ¥ € S3#~¢(RY x
RY; E, F) such that b'a —idg = r € S; 1= (RY x RY; E, E). By Lemma 1.32 it
follows that

bia —idg = (b'la — b'a) + (Pa—idg) € S,V "1 (R x RY, E, E).
Hence Op(¥)}Op(a) = 14+0p(r'), with ' € S7L"1(RIxRY; E, E). Write rfj] =
'} .. . fr' {j-times). By Proposition 1.31, " ~ Zj>1(—1)jr’b.] can be carried out
in Sy L1 (RIXRY E, E). Put b:= (1+r")ft'. Then b € S54~¢(RIxRY% E, E),
and

Op(t)Op(a) = Op(bfe) = Op((1 + (L ++')) = 1 + Op(ry),

where 1 € 57" (R? x RY E, E). Analogously, it is shown that there are
symbols b, € S ¢(R?Yx RY B, E) and r, € S;%7°(RY x RY; E, E) such
that Op{a)Op(b,) = 1 + Op(r;). Now

Op(b:) + Op(r)Op(b,) = (1 4 Op(r:))Op(br)
= Op(6)Op(a)Op(b,) = Op(b) + Op(6)Op(r,).

Hence Op(b) — Op(b,) € L7 ~®(RY%; E, E). It now follows that Op(b)Op(a)
B,

id € L7~ (R? x RY E, E) and Op(a)Op(b) —id € L;®~®(RY x RY; E, E).
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Conversely, suppose that B = Op(b) € Lc‘u“""(Rq;E’,E) is given such that
AB —id € L7~ (RY E, E) and BA — id € L7°>~°(R% E, E). Write ba —
idg = (ba — bﬁu) + (bfa — ldE) and ab~idg = (ab — affb) +- (afb —idg). Using
Lemma 1.32, we sce then that ba —idg € ST~ (R x R% E, E) and ab—idg €
SoL-1(RY x RQ;E',E'). But this means that a is elliptic, and thus A = Op(a)
is elliptic. a

Theorem 1.35. Let § < —¢/2 — 1.

(i) Ifa € S"S(RY x RY; E, E’), then Op(a) induces continuous operators
Op(a) : W*(RY, E) » W*~#(RY, E)
for all s € R,
(i) If v < 0 and a € S¥¥(RY x RY%; E, E), then
Op(a) : W¥(RY, E) - W*(RY, E)
is compact for all s € R.

Proof. See SCHULZE [18]. |

Proposition 1.34 and Theorem 1.35 yield the following result.

Theorem 1.36. Let A € LE#(RY E, E’) be elliptic and suppose moreover that
A€ L(W*S(RY, B}, W*—#4—2(RY, E)). Then

A:WHRY E) 5 W mS-(RY F)
is & Fredholm operator for all 5,§ € R.

In Section 1.3 we considered Hilbert spaces E, E for which there exists Hilbert
spaces Eo, E with associated umta.ry group actions and symbols

r*(n) € $Y°(RY x RY; E, Ep), #(n) € S*9(RY x RY, E, E‘g) for all s € R that
mduce point-wise isomorphisms.
If A € L#¢(RY; B, E), then A € LWS(RY, E), W*—#4-¢(RY, F)) by Proposi-

tion 1.27. Under these assumptions, we also have the following theorem.

Theorem 1.37. Let A € LA (RY; E, E) be elliptic. If v € W™ " (RY, E},
then Au € W*$(R9, E) implies that u € Wetid42(RI, E). Moreover, we have
ker A C S(RY, E) and there is a finite-dimensional subspace N_ in S(RY, E)
such that

AWtHSt R E)) @ N_ = WH(RY, E).

Proof. By Proposition 1.27 we have 4 € L(W*t#+e(RY, E),W"J(]Rq, E‘)) for
all 5,8 € R, and by Theorem 1.36, A is a Fredholm operator for all 5,4 € R.
Since A is elliptic, there exits a parametrix B € L;#*~¢(RY E, F) to A. Hence,
if f:= Au € W*(RY, E) for some u € W==®(R9 E), then Bf —u €
Ms ser W*4(RY, E), and hence u € W*T#S+¢(R9, ). It follows that if u €
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ker A, then u € [, seg W**(R% E) = S(RY E). In particular, the kernel is
independent of 5,6 € R. Next, put B := R*¥ o Ao (Retmo+ey=1 with R*?,
£% as in the proof of Proposition 1.27. Then B € £{Ly(R, Ey), Lo(RY, Ey)),
and B is clearly elliptic. Hence B* is elliptic {this follows easily by Proposition
1.18), and it follows that ker B* C S(RY, E'g). Now there is a finite-dimensional
subspace N_ C S(RY, Ey) such that B(L,(RY, Eo)Y®N_ = Ly(IRY, Ey). Writing
A= (}-i;"'s)"] o Bo R*+#:#+¢ we see that there exits a finite-dimensional subspace
N_ of S(RY, E) such that A(W*+sd+e(RY E)) @ N_ = W*4(RY, E). 0

2 Operators on manifolds with conical exits

In this section, we discuss the model situation of a non-compact manifold having
a conical exit to infinity. A detailed examination of the special features in this
case serves to illuminate the general characier of the calculus discussed in the
previous section.

2.1 Invariance under diffeomorphisms

We say that an open set U C RY is conical in the large, if there is a constant
¢ > 0 such that

zeU=>X xecUforall A>1and |z|>c.

Let E, E be Banach spaces with associated group actions {H"\}AEB.'.‘ {EA},\EB+-

Definition 2.1. Let U € R? be open and conical in the large.
(i) Then S*¢(U x R% E, E) is defined as the space of all a € C®(U x
RY, L(E, E)} such that for each open set Us C RY that is also coni-

cal in the large and that satisfies Uy C U, there exists a symbol ap €
SHe(RIx RYG E, E) with a0y, xre = a|onB¢

(ii) The space S(U x U, L(E, E)) is defined as the space of all ¢ € Ce(U %
U, L(E, E)) such that for each open set Us C R? that is conical in the
large and satisfies Up C U, there exists a cg € S(R? x R, £L(E, E)) with
coonon = clUDon'

(iii) By L=~ (U; E, E), we denote the space of all integral operators with
kernel in S(U x U, L(E, E)).

(iv) By L*%(U; E, E), we denote the space of all operators A = Op(a) + C,
where a € S#¢(U x R%; E, E) and C € L=*~°(U; E, E).

Lemma 2.2. (i) Ifa € 87 7°(U x RY; E, E), then
Op(a) € L™ ~°(J; B, E).

(i) L=°=(U; B, E) =, , L**(U; E, E).
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Proof. Let a € S~°~=(U x R% E, E) and put k(y,¢/) := [ &®=¥Ma(y, 1) dn.
Then Op(a)u(y) = [ k(y,¥’)u(y’) dy/, and clearly k € S(U x U, L(E, E)). This
proves (i). To prove (ii), let A € ﬂu.a L“"?(U;E,E). Let Uy be an arbitrary
open set that is conical in the large such that o C U. Choose an open set
U1 that is conical in the large such that U/ C U; and Uy C U. Moreover, let
@0 € C¥(RY such that 0 < 9 < 1,0< o < 1, ¢lgz =1 and polgag; =0
and @po = . Then pAp = popAppo, and pAp € (),  L*¢(R% E, E) Hence
by Corollary 1.26 and Proposition 1.12, there is a symbol a € §7° 7 (RY x
]R‘?;E,E') such that ¢ Ap = Op(a). Then p;Op{a)ps € L= ~%(U; E, E‘), and
thus pAp € L=~ E, E‘) Since ¢, @g are arbitrary, it follows that the
distributional kernel of A isin S(U x U, L(E, E)). Hence A € L™°~(U; E, E‘)

O

Definition 2.3. We define §#¢:¢ (I x U x IR";E,E') as the space of all @ €
C®(U x U x R L(F, E)) such that for each open set Uy C R that 1s also

conical in the large and that satisfies Uy C U, there exists a symbol ag €
Sk.ee (]qu x RY; E, E) with “0|onuu><na = a|uoonxnv~

Proposition 2.4, Let a € Sﬁ’“I(U xU xR%E, E)
Then Op(a) € L*¢+¢ (U E, E). If

alyn) ~ 3 = (05 05w,y (21)

o
in §mete (I x RY; E, E), then Op(a) — Op(a) € L=~ (U; E, E).

Proof. If a(y,n) ~ 3. ﬁ (05 Dgia) (. ¢/, 1})|y,=y then a is uniquely determined

modulo ™~ (U xR% E, E’) Let Up be an open set that is conical in the large
such that Uy C U. Choose an open set U; that is conical in the large such that
Us C Uy and U; C U. Moreover, let ¢ € C®(R9) such that 0 < ¢ < 1, plgg =1
and ¢|gqg; = 0. Then Theorem 1.25, in particular, formula (1.21), shows that

©(¥)(Op(a) —Op(a))e(y’) € L=—(RY; £, E). Since Uj isarbitrary, it follows
that Op(a) —Op(g) is an integral operator with kernel in S(U x U, L(E, E)). O

Let V' C IR? be another open set that is conical in the large. We consider a
diffeomorphism

x:U-V
for which there is a ¢ > 0 such that x(Az) = Ax(z) for all A > 1 and |z| > .

For £ € V let e(z) > 0 such that {2’ : |z —2z'{<e(z)} C V. Forz,a’ € V
satisfying [z — 2’| < e(z) put

1
M(z,z') :=/ dx~Hz' + t(z = ') dt. (2.2)
0
The mean value theorem then shows that

x\(2) - X&) = M(z, o) (2~ 7). (2.3)
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Lemma 2.5, There is a symbol s € SO (V xRY) that is independent of n € R9
ie., s = s(z), such that the following holds:

(1) For each Vi C V which is conical in the large and satisfies V; C V, there

is a ¢/ > 0 such that
¢ [x] < s(z) for all z € V%

(ii) If z € V, then |z — 2’| < s(z) implies that M(z,2') is invertible

Proof. Since M(z,2) = dx~1(z), the matrix M (z,z) is invertible for all z €
V. If we construct a function s = s(z) such that |z — 2’| < s(z) implies
|M(x,2") — M(z,z)| < 3 |M(z,z)|, then M(z, 2’) is invertible. We have

MYz, z)(M(z,2") = M(z,z))
= [ @ it - -
Writing dx™! = ((dx™1)i,5)i,j=1,...q, We get
()& + iz - =)
= @@ + [ (T slo 41 = (e = 20,2 = #)igm

Since (Dgx~1); € S®%(V x RY) for all i,j = 1,...,¢, and for |a| = 1, we see
that there is a symbol ¢ € S%°(V x RY) that only depends on z, i.e., p = ¢(z)

and is strictly positive, i.e., ¢(z) > 1 for all z € V, such that

1
]0(dx-‘)-l(z)(V(dx-l).-,j(z+s(1—t)(z'—z),z—x).J g d

1
</ p(2) [z + s(1 — ) (&' — 2)] "} |2 — '] ds.
0
| < elz], where ¢ > 0 is some small constant, then

Notice that if | — '
for 0 < 5,t < 1, with some constant ¢, > 0

[z +5(1 ~t)(z' = 2)] 7 S eela]”
Hence, for |z — z'| < ¢ [z],
1
| @5 =06 =) o= 2/l ds < cople) o e — 2.
0
(2], where 0 < &' < éq'z. Then s € S91(V x RY), and

Put S(.’B) = m
|z - 2| € s(z) implies that |z — 2’| < e[z] and

1
/0 (@) [+ s(1 = )(@ — )] o — '] ds <

—

t\:'

It then follows that

tleb—-

|M~ (2, 2)(M (2, 2') ~ M(z,2))| < 5.
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Lemma 2.6. There is a function w € S%9(V x V x RY), w = w(z,z’'), such
that w(z,z’) = 1 for |z — 2’| < L1s(z) and w(z,2’) = 0 for |z — 2| > 2s(x).
Here s is the function from Lemma 2.5.

Proof. Choose a funcion ¢ € C*°(R) such that ¢(t) = 1 fort < 1/2and () =0
for t > 2/3. Define w(z,z’) := ¢(|z — 2’| /s(z)). Then w is as required. The
only point to verify is that w € $%9%(V x V x R9). But this follows easily since
s € S%(V x R9). O
Let A€ L#e(U; F, E’) and consider the push-forward v, A, i.e.,

(x-A)p(y) = (x) T AX"V)(y), veCR(V),
where (x*v)(z) = v(x(z)).
Lemma 2.7. The push-forward x, induces a bijection

N LT B, E’) - L‘°°'“°°(V;E,E’).

Proof. Let C € L= ~%(U; E, E‘) and write Cu(y) = fU e(y, ¥ )u(y')dy’. For
v € C§° (V') we compute

(x-C)o(z) = f e(x~(2),)o(x(x")) de’
:l/;c(x_l(z),x_l(a:’)) |det dx = (z")| (') do’.

By assumption on y, we have |det dx~}(")| € C°(V), and hence the kernel
¢(z,2') = e(x7 (=), x N (&)) [det dx~}(z’)] is in S(V x V,L(E,E)). Thus
X.C € L=°=°(V; | ). Analogously, it follows that

(x"Y)a : L=V, B, E) = L™~ ®(U; E, E).
Since (x.)~! o x. = id, the assertion follows. a
Theorem 2.8. The push-forward y. induces bijections

X« : LPO(U; B, E) = L*%(V; E, E)

for all p,p € R. Il A = Op(a) + C with a € S*¢(U x R% E,E) and C €
L=%=%(U; B, E), then x, A = Op(b) + C', where G’ € L=°~°(V; E, E) and
be S¥e(V x RY% E, E). We have

bz, n) = a(x™'(2), (dx)(x~ (=))n) (2.4)
modulo S#=he=1(V x RY; E, E)

Proof. In view of Lemma 2.7 we may assume that A = Op(a) with a € S#2(U x
RY E, E). Then

(eap(e) = [ [ 0T w), )
KeJV
- |det dx~1(z")| v(z') dz'dn
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for v € C§?(V, E). Let w be as in Lemma 2.6 and put

ao(y, ¥, n) = w(x(y), x(¥'))a(y, n) and
ar(y,y',m) = (1- (x(y),x(y’)))ﬂ(y,n). Since

Z (07 Dga)(w, o/, m),ey, ~ O

y'=y
(¢4

in S#e(UJ % ]Rq;fJ, E‘), Proposition 2.4 implies that Op({a;) belongs to
L= =({; E,E). Now Lemma 2.7 shows that x.Op(a;) € L=°~%(V; E, E).
It thus suffices to consider x.Op{ap). We have

x-Op(an)ola) = [ [ 07O Mo, )ax ) )
R4
|detd\/ Hz")| v(z') dz'dn

=/ / el(:l:-:t’) Mz, )qw(mjzr)a(x—l(z),n)
ReJV
- |det dx ™ (z")| v(z') dz'dy

= [ [ e mata, satx @), (30)a,2m)

|det. dxy~ Yz | |det(*M)~ !z, z')| v(z') dz'dp.
Thus x.Op(ag) = Op{d) with

Ao, 2 ) = wle, 2 )al (&), (M) (2, 2'))
|det dx~ ()| - [(C M)z, 2]

It remains to show that d € S#e%(V x V x RY E, E‘) Once this is shown, the
theorem follows by Proposition 2.4 writing

bz, ) ~ Z (aa 2d) (=, 2’ U)l,ﬂ» .

23

In particular, (2.4) then follows, since

bz, 1) — alx~ (o), () (@) = 3 = (0P8 ), o)
a0
and the right hand side is in S#¥~1.e-}(V x R E, E’) To prove that d €
Swed(V x V x RY B, E), let V5 C V be an open set that is conical in the large
and satisfies V3 C V. Choose then an open set V; that is conical in the large,
where Vi C V and Vg C V). Moreover, let ¢ € C®(R9) such that 0 < ¢ < 1
and tp|ws 1 and ‘Pllv\WE 0. To Vo, Vi there exist open sets Uy, U; C U that

are conical in the large with U C Uy, Uy C U and such that y™! (z) € Uy for all
z € Vy and x'l(:r:) € Uy for all z € V;. What we want to show 1s that there ex-
ists a symbol d; € §%¢°(R% x RY; E, E) satisfying d;
Set wo(z,2') 1= p(z)p(z’). Let z,2' € V.

d(z,2',n) = w(z,2")a(po(z, z')x " (2), po(z, =) (' M) (z, 2)n)
. |¢,ao(z, ') det dx_l(z')l . I(Po(‘-l', z')det(* M)z, a:")l .

|V_ox70><m = dIVJxV_ox]RT
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By definition, there is a symbol a; € $#2(R? x RY, E, E) such that algrxpe =
ailg; xpe- Hence, for z,2’ € Vo, we have

a(pol(z,z’)x~ ! (z), po(z, &) M)z, z')n)
= ay(po(x, 2')x " (z), polz, 2 ) M)z, z')7y).

Since x~1(Az) = Ax~!(z) for A > 1 and |z| > ¢/, for some constant ¢’ > 0, we
see that po(z, z') |det dx~1(2')| € S"*O(R% x R) and

q
<PU($, I/)X—I(I) c -><1 5'0'1'0(]1:22‘? X R‘i‘)
J=

Analogously, we get by (2.2) that po(z, 2’) |det(*M)~!(z,2')| € S%00(R?7x RY)
and

q
polz, ) (‘M) (z,2')n € X SHOOR™M x RY).
i=1

Moreover, a simple calculation shows that bo(z,2’,n) € Xj-,:l S§91.0(R22 x RY),
bi(z,2',7) € Xy SVOO(RY x RY), and a; € S™¢(RY x RY E, E), imply
ay(bofz, 2, ), b1(x, 2, 1)) € S#O(R24 x RY; E, E). Thus, if we define

di(z,2',1) = w(z, 2 )ar(po(®, 2')x 7 (2), polz, ') (M)~ (2, 2"))
|po(®, 2') det dx ™ (z')| - |po(z, &) det(* M) ~* (2, )],

then d; € S#,P,U(IR% X IRQ;E,E') and d1|vﬂ'x-%an = dIV—UXVO-xB‘i' Hence d €
SHe0(V x V x RY E, E). 0

Remark 2.9. Equation (2.4) gives the first term of the asymptotic expansion

b(z,m) ~ D _(85a)(x (@), () (X @)nealx " ) m),  (25)

o
where ¢, (y, 1) == D;’ei's("y)f’lz:y, a € N? and 6(z,y) = x(z)—x(z)—dx(y)(z—
¥). The expansion (2.5) can be carried out in S™%=®(V x R‘?;E‘,NE). Notice
that for a € NY, we have (92a)(y, (‘dx)(y)n) € S#-12be(U, x R; B, F) and that
paly,A) = DR = Dyetfinion

= Mleloq (Ay, ).

=y

=y

= Alal pagidtz' )

Thus oAy, 1) = A71%lp,(y, ). Since @, is a polynomial in 5 of degree <
|| /2, Lt follows that (07 a)(y, tdx) W) ealx " z),n) € SH-lal/ze-lel/2(y x
RY% E,E).

2.2 Pseudo-differential operators on manifolds with coni-
cal exits
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Definition 2.10. A manifold with conical exits in our set-up is a smooth g-
dimensional manifold M which is a union

M=XUXjU...UXNyUIX1U...UdXyN,

where
o Xop, ..., Xn are g-dimensional smooth submanifolds with compact smooth
boundaries,
¢ 0Xi,...,8Xn are connected (¢ — 1)-dimensional submanifolds,

¢ Xj 1s compact,
] 31\’0 =31Y1 UUazYN,

e and X; is diffeomorphic to 0.X; x [1,00) for j +1,..., N, where the cor-
responding diffeomorphisms are homogeneous for large arguments.

Manifolds with conical exits are a special case of the SG-compatible manifolds in
the sense of SCHROHE [14]. Notice that, in particular, every compact manifold
is a manifold with conical exits, namely where N = 0. Another example is the
case M = R,

Every manmfold with conical exits has a finite atlas. Assume for simplicity that
N=1.

The set XoU{dX; x [1,2)} can be covered by finitely many open sets which are
relatively compact. To introduce coordinates on 8Xg x [1, c0), choose an open
cover of 90Xy, say {¥; : j=1,...,1}. Denote the corresponding coordinate
maps by o; : Y; = V; CRI™L j=1,...,1. As a cover of X x [1,0) choose
Xj = Y; x [1,00) with the ; : X; — U; C R given by ¢;(v,t) = (taj(v),t).
Notice that the sets U; are conical in the large and that the coordinate maps
wj, 3 =1,...,1, as well as the corresponding changes of coordinates are diffeo-
morphisms that are homogeneous for large arguments.

In the sequel, we fix this atlas and denote the open cover by
{M; : j=1,...,n} and the coordinate mappings by ¢; : M; — U;,
j=1,...,n.

Lemma 2.11. (i) There exists a partition of unity on M subordinated to
the open cover {M; : j=1,...,n}, ie.,, mappings ®&; : M — R with
0 < &; <1, supp®; C Mj, and 37, ®; = 1, such that &; ocpjfl I3
SU0(RY x RY).

(i) If {®; : j=1,...,n} is the partition of unity of (i), then there exists
a partition of unity {¥; : j=1,...,n} on M subordinated to the open
cover {M; : j=1,...,n}, such that ‘I!J-ogoj“ € SHC(RIXRY) and ¥;®; =
®; forj=1,...,n

Proof. Tor simplicity, let us assume that N = 1 and that M; = 90X, X [1, c0).
Let &;_,- : M; = Uj;, 5 = 1,...,n, be a partition of unity subordinated to
the open cover {M; : j=1,...,n}. Assume that M; N (0Xo x [1,00)) # @
for j = 1,...,k and M; N {0Xo x [l,00)) = B for j = k+1,...,n. Let
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{Y; : 7=1,...,k} be the open cover on X induced by {M; : j=1,... k},
and denote by «; : Y; = V;, j = 1,...,k, the corresponding coordinate maps.
For (v,t) € Xo x [1,00) define ‘ij(v,t) ‘= a;{v). Then E;f:l \AI;_,- = 1on
0Xp x [1,00). Let w € C°(M) be such that 0'< w < 1 and such that w
equals 1 on XoUdXoU(8Xp x [1,2)) and that w vanishes on 8.X x (3, 00). Put
®; = &;if j > k+1,ie, if M; C Xo, and put ®; = wd; + (1 — w)¥;,
if1<j<k Then0<® <1lforj=1..7n ady5, & = 1.
Moreover, ®; o ¢! € S%°(R? x R?). To prove (ii), make the same con-

struction as in (i), starting with partitions of unity {#; : j=1,...,n} on M
and {Oj i=1,. ..,k} on 0Xo that satisfy ejij = 5_,- forj=1,...,n, and
0;9; =0, forj=1,...,k O

Using the partition of unity {®; : j=1,...,n} of Lemma 2.11, we define
pseudo-differential operators on M. First, let us notice that a function f €
C®(M,E) is in 8(M, E), if (®;1)"(p; f) € SR™, E), for j,k=1,...,n
Definition 2.12. (i) An operator A : (M, E) = S(M, E)isin
L=e=%(M; E, E), if in local coordinates, A has a kernel in S(R? x
R, L(E, E)).
(ii) We write 4 € L7°~%(M; E, E), if the kernel of ¥;Adx, j,k=1,...,n
in local coordinates takes its values in K(E, E), for all (y,v') € R
(iii) We write A € L#¢(M; E, E) if there are symbols a; € S*¢(U; x R%; B, E)
and operators A; € L™ "°(M; E,E), j =1,...,n, such that
th..,('I' Ad; ) = Op(a;) and (1 — ¥;)A®; € L™~%(M; E,E), for all
ji=1,.
(iv) We write A € L#(M; E, E), if there are symbols aj € S5¢(U; xRY; B, E)
and operators A; € L7 "%(M, E, E), j=1,...,n, such that
go,l.,(\IJ i AD; ) = Op(a;} and (1 — ¥;)Ad; € L °°"°°(1M E, E), for all
Jj=1,.
Remark 2.13. In view of Theorem 2.8, the definition of L#¢(M; E, E) makes
sense., Notice that if {‘:17 1j=1,. n} is another partition of unity as
{¥; : j=1,...,n} in Lemma 2.11, then 5 (¥;AD; — ‘l! A®;) = ¢; . ((¥; ~
V;)A®;) € L™ °°"'°°(UJ,E E), since W 11’ vanishes on supp®;. In particular,
if a; € S%¢(RY x RY; E, E, then

@3+ (95 - T) (90,"109( ))®;)
= 05, (%5 — ¥;)(0710p(ly — v'[7* Agay))®;) € L7~ (U;; B, E).

Hence the definition of LE?(M; E, E’) makes sense.

Let & be a further Banach space with associated group action.

Proposition 2.14. If A e LHe(M; E‘, E) and B € LY (M; E, E), then AB ¢
Lrtvete (M, B, E).
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Proof. Writing AB = (3.7_) W;A®;)(3]}-, ¥;B®;) the assertion follows easily
using Proposition 1.23 in local coordinates. O

Next we turn to the action of operators in L*¢(M; E, E) on wedge Sobolev
spaces.

Definition 2.15. Let U C RY be an open set that is conical in the large. The
space W*4(U, E), 5,8 € R, is defined as the space of all u € D'(U, E) such that
for each open set Uy C RY that is also conical in the large and satisfies Uy C U,
there exists a function ug € W**(RY, E)} with toly, = ly,-

In the sequel, we assume that £ is a Hilbert space with associated group ac-
tion {#a},er,- Furthermore suppose that there exists a Hilbert space Ep with
unitary group action {"U,A}Aem_ and for all s € R a symbol r* = r’(n) in

S$*0(RIx R E, Ep) that induces point-wise isomorphisms, i.e., r*(n) : E = By
for all n € RY The operators R*® := Op(r*) o Op([y]'s) then induce isomor-
phisms R*% : W*¥(R9, E) - WOO(RY, Ey) for all 5,6 € R.

Let U,V C IR? be open sets that are conical in the large and consider again a
diffeomorphism x; U — V for which there is a ¢ > 0 such that x(Az) = Ax(z)
forallA>1and |z| > c.

Proposition 2.16. Let 5,6 € R. If v € W*4(V, E), then x*v € W**(U, E).

Proof. If v € D'(V, E), then x*v € D(U, E). Let Uy C U be open and conical in
the large such that Uy C U. We have to prove that X" v|y, can be extended to
an element in W**(R9, E}. To Uy we can find an open set V, C V, also conical
in the large, that satisfies V5 C V, such that x~!(Us) C V5. By definition, there
is a vg € W*S(IR9, E) such that voly, = vly,. Moreover, let xo : R = R%be a
diffeomorphism such that xoly, = Xxly, and such that 0 < ¢’ < |det dx‘l(z)| <
¢ for suitable constants ¢, ¢ > 0.

(i) Assume first that £ = Fy and s, = 0. An application of the Plancherel
formula shows that

flvo o XO“ffvn(m,Eu) = (2"")(;_/; [lvo (2)1I%, |det(dxo) " (xo(z))| d
< clwo)n)” [ ez, d= = (o) oolFuogan -

Since v © Xoly, = v o Xly,, it follows that x*v € WOO(U, Eo).

(ii) If v € W4 (RY, E), we write xjuo = ((R*%)~ 1 ox8) o (x0,« R**)vo. We have
RS € L*%(RY% E, Ey). By Theorem 2.8 we have xo.R*® € L*$(R% E, Ey),
and hence Proposition 1.27 implies that xo . R*%vy € WOO(RY, Ey). By step (i),
we then have xé(xo,.R"&vo) € WYO(RY, Ey).

Moreover, (R*°)~! € L=*~%(R% Ey, E). Using Proposition 1.27, again, it
follows that xgjvo € W*4(R9, E). Since Xovoly, = X*vly,, we get x*v €
WU, E). )

Definition 2.17. W*$(M, E) is the space of all u € W (M, E) for which
(gp}l)'(d.‘)ju) eW S (U;,E), forj=1,...,n.
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Remark 2.18. On W""(M, E), we introduce a norm by

1/2
n

el 5 = {Z Il(so,-‘)'(@.fu)iliv..,mm} ~
i=1

In fact, W*$(M, E) is a Hilbert space.

Notice that by Proposition 2.16 the definition of W*¢(M, E) is independent of
the particular choice of coordinates.

Suppose that  is a further Hilbert space with associated group action {%I\}Aenp
that Ey is a Hilbert space with associated unitary group action {E(}’A}AE-+, and
that for all s € R there exist symbols ¥ = () in $*%(RY x R, B, E‘o) that

induce point-wise isomorphisms, i.e., 7 (n) : E S Ep for all 7 € R9. Under
these assumptions, we have the following result.

Note that every A € L#¢(M; E, E) induces a continuous operator
A:S(M,E) = 8(M, E).

Theorem 2.19. Let A € L*¢(M; E, E). Then A extends to continuous oper-
ators

A:W(M, E) - WH5-e( M| E)
for all 5,6 € R.

Proof. If A € [=°~%(M; E, E), then the assertion is obvious. It thus suffices
to consider ¥;A®;, for j = 1,...,n. By Proposition 1.27 we have

(971)"(¥;48;) € LW (RY, E), W*~H*~¢(RS, )
for all 5,6 € R and j = 1,...,n. The proposition now follows. O
Definition 2.20. An operator A € L&8(M; E, E) is called elliptic, if
@i «(W;Ad;) is elliptic for j =1,...,n.
In Remark 2.13 we noted that if A € L*¢(M; E, E)and if k # j, then ¥, AD; €
L7®=%(M; E, E). Proposition 1.36 therefore yields the following result.

Theorem 2.21. Let A € Lé‘,;"(itl; E, E') Then A is elliptic if and only if there
is an operator B € LZ/»~¢(M; E, E) such that o
BA—ide L7 (M;E,E)and AB—id € L;®~°(M; E, E).

A simple consequence of Theorem 1.35 (ii) is that if C € L7~ (M, E, E‘),
then

C: WM, E) - WS (M, E)

is a compact operator for all s,6 € R. Proposition 2.19 and Proposition 2.21
thus yield the following result.
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Theorem 2.22. Let A € L*2(M; E, E) be elliptic. Then
A W*S(M,E) - WP (M E)

is & Fredholm operator for all s,§ € R. Moreover, if u € W™~ (M, E), then
Au € W*(M, E) implies that u € W*t#5+e(M E).

3 Examples and Remarks

3.1 Operator-valued symbols for boundary value prob-
lems

This section will study necessary elements for pseudo-differential boundary value
problems in the infinite half space

RYY = {(t,y) eR"™ : t >0,y e RY}

under the aspect of the operator-valued symbols with exit behaviour for |y| —
oo. The full algebra of boundary value problems with the transmission property
on a manifold with exits in the sense of the results of Chapter 2 will not be
formulated here. More details will be presented in the book ScHULZE [18]. We
shall start with scalar pseudo-differential symbols that have the exit behavior
for |y| = oo.

Let us denote by SHe(Ry xRIx R for i, p € R the space of all a{t,y, 7,7) €
C*(R; x R? x R'9) such that

|fony,qa(t, Y, T, r,')| <c[r n]ﬂ-lﬂl [y]e-lal

for all multi-indices «, # € N'79 and all ¢ € [0,%¢], y € RY, (7, 7) € Rt with
constants ¢ = ¢(a, 3,20) > 0, and for arbitrary ¢g > 0. By subscript ¢/ we
indicate the corresponding subspace of classical elements in (7, 7).

Choose a function f(£) € S(R) with suppf C R_and [ f(£)dé = 1. Set x(r) =
fe i f(€) d¢. Then x(r} € S(R) and x(0) = 1. Let 6 = sup |8-x(7)| and fix
a constant ¢ > § so large that x(r/(o ()} (n) — it # 0 for all (r,n) € R'*9.

Then
() = (x ((—n)) () - ) (3.1)

for any u € R is a classical symbol in R!t9, elliptic of order u, cf. SCHROHE,
ScrULZE [17]. In particular, it can be interpreted as an element of Sf,‘o(llh_ X
R x R!*9) though it has constant coefficients.

Let a(t,y,7,7) € SH%(Ry x R x R'9) and set

(o)) (t,7) = (D2, D2, alt, v, 7,1)

41



for every fixed y,n and arbitrary multi-indices a, 8 € N'¥9. Then al J'3)( T)
€Sy i‘Bl(IR.|. x R), and we get asymptotic expansions

[ee]

aL‘,‘,;ﬁ)(t. ) ~ Z g;,h (t)rH1Pl-

i=0

for 7 — oo with coefficients Gf(t) € C=(R,). Then a(t,y, 7, n) is said to have
the transmission property with respect to t = 0 if 8}’(0) = 65 (0) for all j and
all @, 3.

Note, in particular, that the symbol (3.1) has the transmission property.

Let us set H*(R}*?) = H*(R*9)| 1+, and, in particular, H*(Ry) = H*(R)}
+

for s € R. Denote by

+

et H)'(Ry) — S'(R)

for s > —1/2 the operator that extends the given distribution by 0 to ¢ < 0.
Moreover, let 7t be the operator of restriction to ¢ > 0. Then, if a(t,y,7,n) €
S#e(Ry x RT x R19) is given, we can form the operator family

op*(a)(y,n) := rTop(a)e’ : CF°(R4) = C%(R4) (3.2)

for op(a)u(t) = ffeft=*)a(t,y, v, n)u(t’) dt'dr. Here we might first extend
atoa symbol given for all t € R. However (3.2) will be independent of the
specific extension, so we use the notation without explicit reference to such
an extension. Let us assumé (for convenience) that the symbols a in question
are independent of ¢ for ¢t > const. It is well-known that when a(t,y, 7, n) has
the transmission property with respect to ¢ = 0 the operators (3.2) extend to
continuous operators

op™ (@)(y ) : H*(Ry) = H*"H(R) (3.3)
for all s > ~1/2. Moreover, (3.3) induces continuous operators
p*(a)y, 1) : SRy) = S(Ry)
for all y, n.
For u € H* (R4} we set

(kau)(t) = A 2u(A),

A € Ry, which is a strongly continuous group of isomorphisms on H*(R4) for
every s. It is unitary on H°(R,) = La(R4).

Note that
HY(RLF9) = WA(RY, (R 4),

cf. ScuuLze [23], and hence we get for the Sobolev spaces with weights for
|yl = oo

WO R H (Ry)) = ()7 H*(R'),

The following may be found in SCHROHE, SCHULZE [16].
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Theorem 3.1. We have

op*(rl)(n) € 54 (R x RY H'(Ry4), HO(Ry))
for every s € R, 5 > —1/2; opt(r2)(n) : H*(R4) = H°(R,) is an isomorphism
for every 1 € RY, where opt(r=*)(n) = op™(r:}~1(n).

Putting E* := {u € Hl,.(Ry) : ()’ ue H*(R4)}, s € R, we get other exam-
ples of Hilbert spaces in which {K"},\EB+ act as strongly continuous groups of

isomorphisms. We have S(R,) = LmkeNEk- Introduce the symbol classes
SHe(R? x RY; B, E*) for every k,I € N, Then, choosing a function § : N = N,
we get

[} S*¢(RY x R%; E°®), B*),
kEN

Moreover, we set

SHe(RY x RY; S(Ry), S(R)) = { ) $*e(R? x RY EO®), E“)} ,

L kEN

where the union is taken over all # : N = N. In an analogous manner we can
introduce the subspaces S?(R? x R% S(Ry), S(Ry4.)) of classical {with respect
to 1) symbols.

Theorem 3.2. Let a(t,y,7,n) € S5¢(R: x RIx R, p € Z, 0o € R, be a
symbol with the transmission property that is independent of t for t > const
for a constant > 0. Then we have

opt(a)(y, n) € SM(R x RY H* (Ry), H*7H(Ry)) (3.4)
for every s € R, s > —1/2, and
op*(a)(y, 1) € SR x RY; S(Ry), S(R4)). (3.5)

In particular, if the symbol a is independent of t then we may replace S#* by
5%, both in (3.4) and (3.5).

Remark 3.3. Under the conditions of Theorem 3.2 we have more precisely
D;’Dgop"'(a)(y, n) € Sﬂ—lﬁl.e—IaI(IRq x RY; H*(Ry), Ha—#+IﬁI(R+))

for all multi-indices «, 8 € NY; analogous relations hold with subscript ¢ for
t-independent a. In fact, D;Dg’o_p*' (a)(y, ) = op™(Dg DEa)(y,n), where
Dnga(t, y, 7, 7) € §#-Ile-lel(R, x R9xR'*9) has the transmission property.
Then it suffices to apply Theorem 3.2, again, for the orders u — |8], ¢ — |al.

Let us set
SHERT x RY Ly(Ry), S(Ry)) = limyenSi®(R? x RY Lo(Ry), E¥),  (3.6)

p,0 € R. If g(y,n) belongs to (3.6) we will denote by g*(y,n} the point-wise
adjoint with respect to the Lo(R)-scalar product. Every g(y, n) with

9(y,m),9" (v, m) € SHP(RI x RY Ly(R4), S(Ry))
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will be called a Green symbol of type 0 and order (4, g} in the global boundary

symbolic calculus for Boutet de Monvel’s algebra in R _,_""q. Then, every

] .
glw,m) =) 9;(v, n)%

=0

for Green symbols of type 0 and orders (¢ — j, o) will be called Green symbol of
type d and order (i, o).

By B~ =.HR _1|_+q) we will denote the subspace of all operators C with kernels
in C* (R} x R?x Ry x R9) such that C as well as the formal adjoint C* with
respect to the LQ(R}F"'Q)-sca}ar product induce continuous operators

C,C*: S(RY, S(Ry)) - S(RY, S(R,))
which extend to continuous operators
C,C" () (1 HURYTY) = (o)™ ()7 HR (R

for all s € R, s > —1/2, and all k,1 € N. Moreover, B““"m'd(lﬁi{'q) forde N
will denote the space of all

d .
¥
C= Z Cisg
i=0
for arbitrary C; € B~°~ 0 (RH9).

Definition 3.4. Let us denote by B“'g'd(R?q) forpeZ, o€ R, deN the
space of all operators

A=Op(opt(a)+g)+C

o (R4 xR7x R'*9) with the transmission property,
independent of £ for ¢ > const, a Green symbol g(y, ) of order (y, ¢) and type
d, and C € B~®=d(R 1Y),

for arbitrary a(t,y, 7,7) € S5

The following theorems are consequences of the general calculus of Section 1.2,
1.3 and of the fact that the corresponding operator-valued symbols form algebras
with the required properties.

Theorem 3.5. Every A € B“'P'd(]R},_"‘q) induces continuous operators
A: SR S(Ry)) - S(RY S(Ry))
and
A HJ,J(IR-I++<I) - H’_“’J“?(]R_l:'q)
foralls€R,s>d—1/2.
Theorem 3.6. Let A € B4R\, B € B»#¢(R}19). This implies AB €

BrHvethh(RAYY) for b = max {(d + »)*, ¢} where 6% = max {4,0}.
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For studying ellipticity it will be necessary in general to pass from operators
A € BHed(RiY9) to block matrices

4 K H:,J(m}ﬁﬁ') Ha-—p,é—g(m}d"?)
A= (T Q) : ® - @
H**(R?,CY-) He—#d-e(RY,CN+)

for suitable N_, N;. This follows easily by producing the remaining entries
(trace, potential operators with respect to R? and Ny x N_-matrices of scalar
pseudo-differential operators on IR9) in terms of a modification of the Green
symbols and of the smoothing operators.

The corresponding block matrix Green symbols (g(y, £)) = (gi,;(y, £))i j=1,2 of
type 0 are defined by

9(y,n) € S5° (R x RY Ly(R4) & C¥- , S(R,) @ CV+)
with
9" (y,m) € S4° (R x R% La(R4) & CY+, S(Ry) & C7-)

those of type d as symbols in which the left upper coners are of type d in the
former sense and, in addition, the trace entry

d i
gn(v,m) =) 9215y, NG
j=0

for trace entries go1,;(y, ) of type 0 and orders (i — 7, o)

The class of smoothing elements with additional Ny trace, N_ potential condi-
tions and type 0, denoted by B*m’"""-“(]R_lF"'q; N_,N,), is defined as the set of
all continuous operators

C:S(RL,SRy)DCY-) = S(RY, S(Ry) @ CV+)
with

c* S (R, SRy CY+) - S(RY, S(BRy) © TY-)
being continuous such that C and C* extend to continuous operators

W W HRYY) (W)@ HE R
C: & — (o)
()" H*(R9,CN-) ()™ Ho(RY,CV+)

and

W OF R ) () R R
C' : 145) - @ y
()* H* (RS, CN+) (y)~" H(RY,CN-)

respectively, for all s € R, s > —1/2, and all k,1 € N.
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The class of smoothing elements of type d has the left upper corners in
B‘m'“m'd(R_ll_'*'q) whereas the condition for the smoothing trace entry is to be
replaced by

d \
&
T=2Ti5m

=0
where T} are in B~%~%0(Ri*9; N_, N, trace operators in the above sense.

Now Theorem 3.6 has an immediate extension to a composition theorem for op-
erators when the number of trace conditions in B equals the number of potential
conditions in A.

3.2 Edge pseudo-differential operators

The boundary value problems of the previous section are a very particular case of
problems on a manifold with edges, where the half space is replaced by a wedge
in which the edge = RY is the substitute of the boundary. An infinite wedge is
of the form X2 x RY, where X is a closed compact ¢ manifold, n = dim X,
and X4 = (R; x X)/({0} x X) the model cone with base X. For n = 0 we just
obtain the half space with boundary R?. The edge pseudo-differential problems
as they were discussed in SciuLzE [20],(23], EGorROV, SCHULZE [5] correspond
for n = 0 to pseudo-differential boundary value problems for operators with-
out the transmission property, cf. SCHULZE [24], and they are of independent
interest in applications, e.g. for mixed boundary value problems. The theory
developed so far concerns the local situation with respect to the edge variables.
For dealing with the operator-valued symbolic structures for corners of higher
order there also appear symbolic levels operating along infinite wedges in the
sense that the edges have (conical) exits to inifinity. The typical model situation
for this is the case RY, and we then have to solve the problem of establishing
the pseudo-differential calculus in this case. If we want to apply the general
ideas from the Chapters 1 and 2 we have to specify the chosen spaces E and
E and to construct the corresponding order reductions that are compatible wih
the operator algebras. This is the program of the present section.

Instead of X2 we will take the open infinite stretched cone X* = Ry x X 3
(t,z). Let us first remind of the weighted Sobolev spaces on X”. Choose a clas-
sical parameter-dependent elliptic family R* () of pseudo-differential operators
of order ¢ on X, with the parameter A € R’. For instance, in local coordinates
on X we can start with symbols of the form ([€|* + [A]*+d)#/2, d > 0, and then
form the corresponding global operators, using a system of charts on X and a
partition of unity. It is well-known that then there is a constant ¢; > 0 such
that

RE(A) « HY(X) = H™#(X)

is an isomorphism for all |A| > ¢; and all s € R. In particular, by choosing d
sufficiently large we obtain isomorphisms for all A € R’. Now let us consider the
Mellin transform

(Mu)(z) = fomt"lu(t) d,
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first for u(t) € Cg°(Ry4), z € €, and then extended to suitable distribution
spaces (also vector-valued ones), where we allow at the same time z to vary
only on a corresponding subset of C. In particular, let

[g={zeC : Rez=p}, BER.

Then M extends to an isomorphism M, : 1Y La(Ry) — Lg(F_;__.,).

Let us now define weighted Sobolev spaces on X* based on the Mellin transform
in ¢t both globally in ¢ € Ry and then only for ¢ — 0. The latter variant
will be formulated in terms of charts x; : U7 = Vi, where U/; is a coordinate
neighbourhood on X and V; an open set in S* = {¥ € R**! : || = 1}. This
induces a diffeomorphism

x RyxUy=V={FecR" : /|3 e W} (3.7)

by x(¢,z) = txi(z). A cut-off function in this section will be any real function
w(t) € C°(Ry) with w(t) =1 for 0 <t < const for a constant > 0.

Definition 3.7. H*7(X") for 5,7 € R denotes the closure of C§° (R4, C*(X))
with respect to the norm

1

n = dim X, where R’(A) is an operator family as mentioned, here for | = 1.
The norm in L3 (X) refers to a corresponding fixed Riemannian metric on X
and to the associated measure dz. Moreover, K*7(X") denotes the subspace
of all u € H},(X") such that wu € H*Y(X") for any cut-ofl function w(t)
and (x~1)*(1 — w)up € H*(R™*!) for every chart x; : Uy = Vi, the associated
diffeomorphism (3.7), and ¢ € C§°(Uy).

1/2
|R* (Im z)(.Mu)(z)Hi:(X) dz} ,

These definitions are correct in the sense that H*7(X") is independent of
the specific choice of R*(A), furthermore H*7(X") C H{ . (X") ensures that
K*7(X") is independent of w(t). Moreover, standard invariance properties of
the H*(R™*1) spaces over conical subsets of R**! show that X*7(X*) is inde-

pendent of the choice of charts x;.

The spaces H*Y(X") only play an auxiliary role here, whereas the X*7(X")
are the adequate cone Sobolev spaces. If we set

(kxu)(t, z) = A3 u(Mt, z) for A € Ry,
then {x»},cg induces a strongly continuous group of isomorphisms on
K2 (XM) for every s,v € R. In particular, it is a unitary group on K%%(X*) =
t'"/2L2(X"), where L, refers to dtdx. In other words, the spaces

E=K"(X"), FE,=K%(x") (3.8)

are in such a relation as it was assumed above in Section 1.3 in the abstract
set-up.
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Now we can form the scale of weighted wedge Sobolev spaces on {the open
stretched) wedge X" x R?

W (RY, K*7(XM)) for 5,7 € R. (3.9)

They were introduced in ScHurze [20]. The spaces (3.9) have many natu-
ral properties, cf SCHULZE [23], [24]. Note, in particular, that in spite of the
anisotropic description with respect to the role of the (¢, z, y)-variables in the
definition we have

Hlpmp (X" x RY) C W (RS, K*7(X1)) C HY (X x RY)
for all 5,4 € R.

Let k%(t) for ¢ € R be a strictly positive function in C®(Ry) with k2(t) = ¢°
for 0 <t < cg, k%(t) = 1 for ¢; <t < oo with certain 0 < eg,¢; < o0, then the
multiplication by &2(¢) induces isomorphisms

R KHT(XNY = K0T (XM
for all 5,7 € R.
Theorem 3.8. For every 8,v € R there exists an operator-valued symbol
P1(n) € 82 (R% KH(XP), KOO(XN))

such that r*7(n) : K¥7(X") = K®°(X") is an isomorphism for every n € RY.

Proof. The assertion relies on the fact that there exists an isomorphism rq :
E — Ey between the spaces (3.8) such that

ro(A) := karoky ! € C(Ry, L(E, Eq)) (3.10)
holds, where L(F, Ey) is endowed with the norm topology. It is then clear that
r>(n) = [7]° ro([n]) € C(RY, L(E, Eo})

satisfies the relations
rY(An) = Ak (n)sy ! for all X > 1, [nf > const

for a constant > 0. Thus it follows that r*7(n) € S (R?; E, Ep). So it remains
to show the existence of an operator rg with the required property. First every
operator ry in the pseudo-differential algebra on the open infinite stretched cone
with respect to a fixed pair of weights, here y and 0, which is of order s, has the
property (3.10), cf. SCHULZE [24], Remark 2.2.52. It is not essential here that
the weight shift v is different from the interior order s, since the weights can be
changed by multiplying the operators by weight shift factors k¢ for appropriate
o € R. So let us talk about the cone operators of order u in the sense of [23]
without weight shifts, that are a subspace of (N cg LIK"O(X"), K™=#O(X")).
We always find an elliptic element ¢ of order u = s/2 in this class. Then ggq*
i8 elliptic of order s and has index zero. I ernel and cokernel in the sense of
Fredholm operators K™%(X*) — K7~*%(X") are independent of r. Then we
find a finite-dimensional operator ¢ with kernel in C§°(X" x X*) such that
gq" +c : K"O(X") = K'=*Y(X") is an isomorphism for all ». The latter
property is an easy consequence of the density of C§°(X") in K"%(X") for
every r € R. Now it suffices to set ro = (g¢* + c)k™7. O

48



The operator-valued symbols 7*7(n) of Theorem 3.8 are sufficient for the pur-
poses of Section 1.3. However there exist order and weight reducing symbols
with more subtle properties with respect to the scales K*7(X"), s,y € R:

Theorem 3.9. For every p € R there exists an operator-valued symbol

ri(n) € ) SERGKTY(XM), KIHImH(X ™))
sER

such that r#(q) : K*Y(X*) — K?*~#7=4(X") is an isomorphism for every 7 €
RY, s € R, and

DEre() € () 471 RE, K#(x00), KmmHb Tl () (30
seR

for every multi-index g € N9.

Proof. The required r#(n) can be constructed within the class of operator-valued
edge symbols in the sense of {20], [24], {5]. Let us start with local symbols in
R4 x R™ x RY of the form

tH(er ] + JE]? + |tnl? + 62)#/

for a parameter § € R? that will be chosen below. Then, according to a Mellin
quantization theorem from [22] in parameter-dependent form, with the param-
eter &, there exists a function

h(z,€,7,8) € C™(C x RFE4H)

which is holomorphicin z € C such that

(B +i7,€,7,8) € SH{RIEHH)

holds for every 8 € R, uniformly in ¢ < 8 < ¢ for arbitrary ¢ < ¢/, such that

opy o ((Itr1> + € + [tn]* + 82)#/2) = op,op%, (h ﬁm)(n,&)

modulo S(Rg}d, L=(R4 x R")), for every ¢ € R. Here
opby(fu= M‘,",l_,tf(z)M‘,,,:_,z is the pseudo-differential operator with symbol
f(z) with respect to the weighted Mellin transform (M, u)(z) = (Mt™u)(z +
o), and op, and op,; indicate the pseudo-differential operators with respect
to the Fourier transform in z and (¢, z), respectively. Let us fix a covering
{U1,...,Un} of X by coordinate neighbourhoods, a subordinate partition of
unity {¥1,...,9n~}, and a system {¥1,..., ¥~} of functions ¥; € C§°(U;) with
wj¥; = @; for all 5. Then, if x; : U; = R™ is a system of charts, we can form
the operator families

N
ag(n,8) = D _(1x xj Jupit ™ op, S(ltr[* + 67 + itn]* + 6%)*/%) 5,
i=1
N —~
afe(n,6) = 3_(1x X5 )eps0pz0pfy (B[ )(n, ).
i=1 -
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Here (1 x xj'l),. is the push-forward of pseudo-differential operators under 1 x
xj'l Ry x R®™ = Ry x Uj. Let us now fix cut-off functions w(t), wo(t), wi(t)
with wwy = w, wwy = w;. Then, according to the known properties of operator-
valued edge symbols, cf. [20], [23], [24], the (5, §)-dependent family

a(n,8) = w(t ()t a3 "* (n, O)wo(t ) + (1 = w(t [n]))ay (n, §)(1 — w1 (¢ [n)))

belongs to % (RYK5Y(XA), K3=#Y=H#(X ")) for every fixed § € R. The so-
called conormal symbol of a(n,§), cf. [23], [24], is a (2z,d)-dependent family of
elliptic psendo-differential operators on X, even parameter-dependent elliptic
with the parameters (Imz,d) € R!*¢, uniformly in finite intervals with respect
to Re z. Thus, for |4 sufficiently large, by a well-known theorem on parameter-
dependent ellipticity, for given fixed 4 we can say that the conormal symbol is
a family of isomorphisms H*(X) — H*~#(X) for all z with Rez = 241 — v and
for all s € R. Now

a(n,d) : KW(XN) = K287 #(XH)

is a family of Fredholm operators for all n € R?\ {0} and s € R. This is a
consequence of the mentioned conormal ellipticity together with the fact that
for  # 0 the pseudo-differential operator a(7,d) on X* is elliptic in the usual
sense and that it also satisfies the “exit ellipticity conditions” for { — oo to
ensure the existence of parametrices modulo compact operators. By inserting
[n] instead of |5 everywhere we get a modified family @(5, §) which is Fredholm
for all n € RY. Another result from [24], Proposition 2.1.189, tells us that there
is a smoothing Mellin operator of the form

w(t [m)t"op}; ™ (hywo(t []) =: m(n)

for an h(z) € S(I‘L#_v,L""’(X)) such that @(n,d) + m(n) is of index zero.
Moreover, by standard arguments similarly to the proof of the preceding Theo-
rem 3.8, we find a symbol g(n) € S5 (R K*7(X*), K< (X*)) (in particular,
compact operator-valued) such that »#(n) := @(#n,d) + m(n) + ¢(n) is a fam-
ily of isomorphisms. Here 4 is sufficiently large and fixed. (3.11) is satisfied,
since r#(7n} is an edge symbol in the sense of [20], [23], [24] and edge symbols in
general have this property. O
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