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A COUNTER-EXAMPLE BY YAGITA

NIKITA A. KARPENKO

Abstract. According to a 2018 preprint by Nobuaki Yagita, the conjecture on a rela-
tionship between K- and Chow theories for a generically twisted flag variety under a split
semisimple algebraic group G, due to the author, fails for G the spinor group Spin(17).
Yagita’s tools include a Brown-Peterson version of algebraic cobordism, ordinary and
connective Morava K-theories, as well as Grothendieck motives related to various coho-
mology theories over fields of characteristic 0. We provide a proof using only the K-
and Chow theories themselves and extend the (slightly modified) example to arbitrary
characteristic.
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1. Introduction

For a smooth algebraic variety X over an arbitrary field F , we write CH(X) for the
Chow ring of X and K(X) for the Grothendieck ring of vector bundles on X. There is a
canonical surjective homomorphism of graded rings ϕX : CH(X)→ ChowK(X) onto the
ring associated with the Chow filtration on K(X), [12, §3]. The elements in the kernel of
ϕX are known to be of finite order.

Let G be a split semisimple algebraic group over F and let X be the variety of its
Borel subgroups, twisted by a generic G-torsor. It has been conjectured in [8, Conjecture
1.1] that ϕX is an isomorphism. This conjecture appears already in [9, §1] in form of a
question. The answer depends only on G and does not depend on the choice of a generic
G-torsor. For any given G, the variety of Borel subgroups can be replaced by the variety
of special (i.e., not admitting non-trivial torsors over fields) parabolic subgroups of any
given type: an equivalent version of the conjecture/question is produced this way.
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For any odd integer l ≥ 1, the cases G = Spin(l) and G = Spin(l + 1) of this conjec-
ture are equivalent and mean that ϕX is an isomorphism for X the highest orthogonal
grassmannian of a generic l-dimensional quadratic form of trivial Clifford invariant. The
index ind(X) (= the greatest common divisor of the degrees of closed points on X) has
been computed for such X by Burt Totaro in [18]. In particular, one has ind(X) = 24 in
the case of l = 17.

According to Nobuaki Yagita the above conjecture fails for G = Spin(17). The following
statement appears in [21] over a field of characteristic 0 and is extended here to arbitrary
characteristic:

Theorem 1.1 (cf. [21]). Let X be the highest orthogonal grassmannian of an arbitrary
non-degenerate 17-dimensional quadratic form over F of trivial Clifford invariant. As-
sume that indX = 24. Then ϕX is not an isomorphism.

To provide more details, let us write cCH
k ∈ CHk(X), k = 1, . . . , 8, for the Chern classes

of the dual to the (rank-8) tautological vector bundle on X. Since the Clifford invariant of
the quadratic form is trivial, the group CH1(X) is generated by an element eCH satisfying
the relation 2eCH = cCH

1 . By Corollary 3.4 and Proposition 4.4, proved below, the product

cCH
2 cCH

3 cCH
6 cCH

7 (eCH)15 ∈ CH33(X)

is not divisible by 2, but its image under ϕX is.
The proof of the non-divisibility is given in §3 and makes use of the Steenrod oper-

ations on Ch(X) := CH(X)/2 CH(X). Cohomological operations in algebraic geometry
have been introduced by Vladimir Voevodsky in the context of motivic cohomology, [20].
The Steenrod operations on the Chow groups modulo a prime p have been constructed
over fields of characteristic 6= p by Patrick Brosnan in [1]. Very recently, they’ve been
constructed over fields of characteristic p by Eric Primozic, [16] (see also [17]).

The computations in §3 are quite mysterious. Not only because the Steenrod operations
themselves are so, but also because we do not know much about CH(X). Still it is possible
to determine the values of the operations on certain “easy” part of CH(X): the subring
generated by the Chern classes of the tautological vector bundle on X. This subring is
explicitly known and very rigid: it does not change under extensions of the base field
(see, e.g., [11, Theorem 2.1]). On the other hand, when taken modulo 2, it vanishes
over an algebraic closure. We finish by computing over an algebraic closure, where the
whole integral Chow ring is known. But instead of computing modulo 2, we work modulo
a higher 2-power, despite of the fact that the operations themselves are only defined
modulo 2...

The proof of the divisibility is given in §4 and makes use of an imitation CK(X) of
the connective K-theory of X, built from the terms of the Chow filtration on K(X). One
could expect this part to be a boring computation because K(X) is computable as a ring.
In the generic case (as in the conjecture), which is the only case we are really interested in,
the Chow filtration on K(X) is also computable. However, making a direct computation
turns out to be extremely complicated and has been not worked out. The idea of the
computation actually made is borrowed from [21]. It looks like it only uses the structure
of the modulo-2 Chow ring of X̄ (which is X over an algebraic closure of the base field).
This structure has been beautifully described by Alexander Vishik in [19] (see also [4,
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§86]). It is simpler than that of the integral Chow ring CH(X̄) and much more simpler
than that of K(X) = K(X̄).

Our proofs, at the same time, are guided by and differ in many ways from [21], where,
e.g., a Brown-Peterson version of algebraic cobordism, ordinary and connective Morava
K-theories, as well as Grothendieck motives related to various theories are involved, in
the arguments as well as in the statements. None of these appear here. Also it seems,
some arguments in [21] need justification (or modification). For instance, multiplication
in various additive groups, related to motives, is constantly used there.

Let us conclude by remark that the conjecture we are discussing has been verified for
many groups including the spinor ones up to Spin(12), see [10]. The cases of Spin(13/14)
and Spin(15/16) are still open.

2. Basic notation

Throughout this note, n is an integer ≥ 1, q is a non-degenerate quadratic form of
dimension 2n + 1 over a field F , and X is the highest orthogonal grassmannian of q, i.e.,
its variety of n-dimensional totally isotropic subspaces.

For every integer k, let CHk(X) be the codimension-k component of the graded Chow
ring CH(X). (On some rare occasions we write CHk(X) for the dimension-k component
CHdimX−k(X).) For k ≥ 0, let cCH

k ∈ CHk(X) be the kth Chern class of the dual to the
(rank-n) tautological vector bundle T on X. In particular, cCH

0 = 1, cCH
k = 0 for k > n,

and (−1)kcCH
k is the kth Chern class of T for any k. Note that by [4, Proposition 86.13],

cCH
k itself (without the sign correction) is the kth Segre class of T .

We also consider the Chow ring Ch(X) := CH(X)/2 CH(X) with coefficients in F2 :=
Z/2Z and write ck for the class in Chk(X) of the element cCH

k ∈ CHk(X).
Remaining notation will be introduced on the go.

3. Steenrod operations

We consider the cohomological Steenrod operation SX : Ch(X) → Ch(X), as in [4,
Chapter XI]. We do not exclude the characteristic 2 (excluded in [4, Chapter XI]), where
the reference is [16]. All the properties of SX we need are available in arbitrary characteris-
tic. For characteristic 2 they are obtained in Corollary 2.4 (commutation with pull-backs),
Proposition 5.1 (Cartan formula), Corollary 6.3 (relation with squaring), Proposition 6.4
(vanishing), and Proposition 7.1 (relation with push-forwards) of [16].

For any i ≥ 0, we write Si
X for the ith homogeneous component Si

X : Ch(X)→ Ch+i(X)
of the total operation SX .

Proposition 3.1. For any k ≥ 0 and any i ≥ 0, one has

Si
X(ck) =

(
k − 1

i

)
ck+i.

Proof. We adapt the proof of [4, Theorem 89.1]. The formula [4, (86.5)] is replaced by

(3.2) ck = (s∗ ◦ t∗)(hn−1+k),

where h ∈ Ch1(X1) is the class of a hyperplane section of the quadric X1 of q, and s∗, t
∗

are as in [4, 86.5]: for Xn := X, t is the projection of the flag variety X1⊂n ⊂ X1 × Xn
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onto X1 and s is the other projection X1⊂n → Xn. Since s it the projective bundle given
by the tautological vector bundle on Xn and h is the Euler class of the canonical line
bundle on X1, formula (3.2) follows from the definition of Segre classes as in [5, Chapter
3] or [4, §58.A].

Instead of the formula for the value of the Steenrod operation on the elements in Ch(X1)
which appear in the proof of [4, Theorem 89.1], we apply the formula

SX1(h
k) = (1 + h)khk

which holds for any k ≥ 0 as a consequence of the formula

SX1(h) = S0
X1

(h) + S1
X1

(h) = h + h2

(for characteristic 6= 2 see [4, Theorem 61.13 and Example 61.16]) and Cartan formula
([4, Corollary 61.15] for characteristic 6= 2). �

We now specify the situation we are considering. First we assume that the Clifford
invariant of the quadratic form q is trivial. This implies that cCH

1 = 2eCH for some
eCH ∈ CH1(X) (see, e.g., [4, Exercise 88.14(1)]). We write e ∈ Ch1(X) for the modulo-2
class of eCH.

Then we additionally assume that n = 8 and the index of X is 16. In this case we have
a homomorphism (deg /16) : Ch(X)→ F2 mapping the class of any closed point on X to
the class modulo 2 of its degree divided by 16 (and mapping to 0 the classes of positive
dimensions).

Proposition 3.3. (deg /16)
(
S3
X(c2c3c6c7e

15)
)
6= 0.

Proof. By Proposition 3.1 we have: SX(c2) = c2 + c3, SX(c3) = c3 + c5, SX(c6) = c6 + c7,
and SX(c7) = c7. Besides, SX(e) = e + e2. It follows that

SX(c2c3c6c7e
15) = SX(c2)SX(c3)SX(c6)SX(c7)SX(e)15 =

(c2 + c3)(c3 + c5)(c6 + c7)c7(e + e2)15.

Let X̄ be X over an algebraic closure of F . The ring CH(X̄) has been computed (for
arbitrary n) by Alexander Vishik in [19] (see also [4, §86]). The group CH(X̄) is free of
finite rank. For any k > 0, the image of cCH

k in CH(X̄) is 2eCH
k for certain eCH

k ∈ CHk(X̄).
(In particular, eCH

1 is the image of eCH.) The products eCH
J :=

∏
k∈J e

CH
k , where J runs over

the subsets of {1, . . . , n}, form an additive basis of CH(X̄). In particular, the product
eCH

1 eCH
2 . . . eCH

n ∈ CHdimX(X̄) = CH0(X̄) is the class of a rational point. Note that
dimX = n(n + 1)/2. In our special case of n = 8 we have dimX = 36.

The product

(cCH
2 + cCH

3 )(cCH
3 + cCH

5 )(cCH
6 + cCH

7 )cCH
7

(
eCH + (eCH)2

)15

is an integral representative of SX(c2c3c6c7e
15). The degree-36 part of this product is

an integral representative of S3
X(c2c3c6c7e

15). This degree-36 part is a sum, where each
summand is a product of 4 elements cCH

k (with various k) and a power of eCH. One of
them is

cCH
3 cCH

5 cCH
6 cCH

7 (eCH)15,
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an integral representative of S1(c2)S2(c3)c6c7e
15, which is an element of degree 16 modulo

32. Indeed, the image in CH(X̄) of cCH
3 cCH

5 cCH
6 cCH

7 is 16eCH
3 eCH

5 eCH
6 eCH

7 and the image of
(eCH)15 is (eCH

1 )15 = eCH
1 (eCH

1 )2(eCH
1 )4(eCH

1 )8 which is congruent modulo 2 to eCH
1 eCH

2 eCH
4 eCH

8

because of the modulo-2 relation (eCH
k )2 ≡ eCH

2k (which holds for all n and all k).
We claim that the degree of every other summand in the degree-36 part is divisible by

32. Indeed, since (eCH
1 )16 is 0 modulo 2, the degree of every summand containing a power

of eCH greater than 15 is divisible by 32. The remaining summand is cCH
2 cCH

5 cCH
7 cCH

7 (eCH)15.
Because of the formula

(cCH
k )2 = 2

(
cCH
k−1c

CH
k+1 − cCH

k−2c
CH
k+2 + · · · − (−1)kcCH

0 cCH
2k

)
∈ CH(X)

(which holds again for all n and k, but this time over F , see [4, §86] or [11, Theorem 2.1])
its image in CH(X̄) is divisible by 32 . �

Corollary 3.4. Let X be the highest orthogonal grassmannian of a non-degenerate 17-
dimensional quadratic form of trivial Clifford invariant over an arbitrary field. Assume
that ind(X) = 16. Then the element cCH

2 cCH
3 cCH

6 cCH
7 (eCH)15 ∈ CH33(X) is not divisible by

2. �

4. “Connective K-theory”

In this section we work with the Grothendieck ring K(X). By [13], K(X) is identified
with a subring in K(X̄) (where X is as in §2; we do not assume yet that the Clifford
invariant of q is trivial). We consider the Chow filtration on K(X) and write K(X)(i) for
its ith term. The index i is allowed to be any integer: K(X)(i) = K(X)(0) = K(X) for
negative i.

Note that K(X)(i) ⊂ K(X̄)(i) for any i.
For k ≥ 0, we write cKk ∈ K(X)(k) for the K-theoretic Chern class of the tautological

vector bundle on X, defined as in [12, Example 2.3]. For k ≥ 1, we also define the element
eKk ∈ K(X̄)(k) as eKk := 0 for k > n and eKk := (s∗ ◦ t∗)(lKn−k) for k ≤ n, where s, t are as
in the proof of Proposition 3.1 and lKn−k ∈ K(X̄1)n+k−1 is the class of a linear projective
(n− k)-subspace on the quadric X1. (Note that dimX1 = dim q − 2 = 2n− 1.)

Lemma 4.1. For any k ≥ 1, the element 2eKk + eKk+1 of K(X̄)(k) actually belongs to

K(X)(k) and is congruent modulo K(X)(k+1) to cKk . More precisely, the difference

(2eKk + eKk+1)− cKk

is a sum of monomials in cK1 , . . . , cKn of degree greater than k (where for any r ≥ 0, the
degree of cKr is defined as r).

Proof. Let hK ∈ K(X1)(1) be the class of a linear section of the quadric X1. By [7, §3] (see
[6, §2] for more details), (hK)n+k−1 = 2lKn−k + lKn−k−1 ∈ K(X̄1) for any k ≥ 1. Therefore, to
prove Lemma 4.1 is to prove that (s∗ ◦ t∗)((hK)n+k−1) equals cKk plus a sum of monomials
in cK1 , . . . , cKn of degree greater than k.

Since the modulo-2 formula (3.2) holds integrally, the element (s∗ ◦ t∗)((hK)n+k−1) is
cKk modulo K(X)(k+1).

To prove the more precise statement of Lemma 4.1, let us consider the generic (2n+1)-
dimensional quadratic form qgen as in [11, §3]: qgen is the quadratic form over the field F gen



6 NIKITA A. KARPENKO

of rational functions over F in n(n+1)/2 variables, whose coefficients are the variables. For
the maximal orthogonal grassmannian Xgen of qgen, since the ring CH(Xgen) is generated
by cCH

1 , . . . , cCH
n (see, [14] or [11, Theorem 6.1]), the group K(Xgen)(k+1) is generated by

monomials in cK1 , . . . , cKn of degree greater than k. Therefore, the statement we want for
q holds for qgen. Since over an algebraic closure F̄ gen of F gen the forms qgen and q become
isomorphic, the statement holds for qF̄ gen . Since the change of fields homomorphism
K(X)→ K(XF̄ gen) is injective, the statement holds for q as well. �

We consider the following imitation of the connective K-theory of X (for definition
of the connective K-theory itself see [2] or [3]). Let CK(X) be the Z-graded ring with
CKi(X) := K(X)(i) for any i. We write v ∈ CK−1(X) for the element 1 ∈ K(X)(−1). So,
v is an element of degree −1 and CK(X) is the subring of the Laurent polynomial ring
K(X)[v, v−1] consisting of the polynomials

∑
i aiv

i satisfying the condition ai ∈ K(X)(−i)

for any i. In particular, ai = 0 for i < − dimX.

Example 4.2. The graded ring CK(SpecF ) is the polynomial ring Z[v].

We write cCKk and eCKk for cKk v
−k ∈ CKk(X) and eKk v

−k ∈ CKk(X̄).
Let I(X) ⊂ CK(X) be the ideal generated by 2 and v. Note that

CK(X)/v CK(X) = ChowK(X) and CK(X)/I = ChowK(X)/2ChowK(X).

Lemma 4.3. For any k ≥ 1 one has: (eCKk )2 ≡ eCK2k (mod I(X̄)).

Proof. For any k ≥ 1, the element eCKk has been defined the way that its class modulo
v CK(X̄) coincides with the image of eCH

k ∈ CHk(X̄) under the homomorphism CH(X̄)→
CK(X̄)/v CK(X̄) (see [4, Formula (86.5)]). In particular, the class of eCKk modulo I(X̄) co-
incides with the image of ek ∈ Chk(X̄) under the homomorphism Ch(X̄)→ CK(X̄)/I(X̄).
The congruence follows from the relation e2

k = e2k we have in Ch(X̄). �

Below we are assuming that the Clifford invariant of the quadratic form q is trivial.
Therefore the subring K(X) of K(X̄) coincides with K(X̄). The Chow filtrations on
K(X) and K(X̄) may still differ. However K(X)(1) = K(X̄)(1). In particular, eK :=
eK1 ∈ K(X)(1).

Proposition 4.4. For n = 8 (dim q = 17), assume that the Clifford invariant of q
is trivial. Then the class of the element cK2 cK3 cK6 cK7 (eK)15 ∈ K(X)(33) in the quotient
Chow33K(X) = K(X)(33)/K(X)(34) is divisible by 2.

Proof. We do our computations in CK(X). To simplify notation, we write ck, ek, e instead
of cCKk , eCKk , eCK1 in this proof.

According to Lemma 4.1, the class of the product c2c3c6c7e
15 ∈ CK33(X) modulo

v CK34(X) is represented by the element

x := (2e2 + ve3)(2e3 + ve4)(2e6 + ve7)(2e7 + ve8)e15 ∈ CK33(X).

All we need to prove is the inclusion x ∈ I(X), i.e.,

(4.5) x ∈ 2CK33(X) + v CK34(X).
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Let us consider x as an element of CK(X̄). Obviously, x ∈ I(X̄)4. As a first step, we
claim and check that

(4.6) x ≡ 0 (mod I(X̄)5).

Indeed, the expression defining x is a polynomial in v. Its free term is 24e2e3e6e7e
15, which

is 0 modulo I(X̄)5 because e2 ≡ e2 and e16 ≡ 0 modulo I(X̄) by Lemma 4.3.
Concerning the coefficient to v in x, we need to check that it is 0 modulo I(X̄)4.

Dividing by 23, we get to check that

(e3e3e6e7 + e2e4e6e7 + e2e3e7e7 + e2e3e6e8)e15

is 0 modulo I(X̄). The first summand in the parentheses modulo I(X̄) is

e3e3e6e7 ≡ e6e6e7 ≡ 0.

Each of the remaining three summands contains ek with k a 2-power. Since ek ≡ ek

(mod I(X̄)) for such k, we get 0 modulo I(X̄) after the multiplication by e15.
Next we check that the coefficient to v2 in x divided by 22 is 0 modulo I(X̄). This

coefficient is a sum of 6 products multiplied by e15. The products containing ek with k a
2-power are treated as before. The remaining product is e3e3e7e7 and is 0 modulo I(X̄)
because e2

7 is so.
For the coefficients to v3, only the argument on ek with k a 2-power is needed. The

coefficients to higher powers of v are 0 by dimension reason.
We proved claim (4.6). Therefore

(4.7) x = 25x0 + 24vx1 + 23v2x2 + 22v3x3

for some xk ∈ CK33+k(X̄) with k = 0, . . . , 3.
Our quadratic form q, as any non-degenerate 17-dimensional quadratic form of trivial

Clifford invariant, completely splits over a finite field extension L/F of degree dividing 24.
(This is a consequence of Albrecht Pfister’s theorem on 11-dimensional quadratic forms
of trivial Clifford invariant, [15].) Note that CK(XL) = CK(X̄). The composition of the
change of field homomorphism CK(X)→ CK(XL) with the norm map NL/F : CK(XL)→
CK(X) is multiplication by the degree [L : F ]. Since the group K(X̄) is torsion-free and
the subgroup K(X) ⊂ K(X̄) is of finite index, the composition

CK(XL)
NL/F−−−→ CK(X) −−−→ CK(XL)

in the other order is also multiplication by [L : F ]. It follows that

(4.8) 24 CK(X̄) ⊂ CK(X).

Using inclusion (4.8) we can kill x0 and x1 in (4.7). To deal with x2 and x3, however,
we need some more computations.

Recall that for arbitrary n, the total Chow group CH(X̄) has an additive basis given by
the products eCH

J :=
∏

k∈J e
CH
k , J ⊂ {1, . . . , n}. In particular, CH0(X̄) and CH1(X̄) are

both cyclic, generated respectively by eCH
{1,...,n} and eCH

{2,...,n}. For our case of n = 8, it follows

that the group CK36(X̄) = CH36(X̄) = CH0(X̄) is generated by e{1,...,8} := e1e2 . . . e8 so

that x3 is a multiple of e{1,...,8}. It also follows that the group CK35(X̄) is generated
by ve{1,...,8} and e{2,...,8} := e2 . . . e8. Therefore, we may assume that x2 is a multiple of
e{2,...,8}.
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Consider the element

y := (2e2 + ve3)(2e4 + ve5)(2e6 + ve7)(2e7 + ve8)e14 ∈ CK33(X).

Computing as for (4.6), one shows that

y ≡ 22v2e{2,...,8} (mod I(X̄)5).

It follows that vey ≡ 22v3e{1,...,8} and 2y ≡ 23v2e{2,...,8} modulo I(X̄)6. Therefore, adding

to x an appropriate linear combination of vey ∈ v CK34(X) and 2y ∈ 2CK33(X) and
using (4.8), we can reduce to the case x = 0. �

Proof of Theorem 1.1. As already explained in the introduction, Theorem 1.1 follows from
Corollary 3.4 and Proposition 4.4. We only need to add/recall that for any k ≥ 1,
the image of cCH

k ∈ CHk(X) under the ring homomorphism ϕX is represented by cKk ∈
K(X)(k). And the image of eCH ∈ CH1(X) is represented by eK ∈ K(X)(1). �

Acknowledgements. I thank Alexander Merkurjev and Nobuaki Yagita for useful
comments.
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