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ONE REMARK ABOUT BRUCKNER-VOSTOKOV
EXPLICIT RECIPROCITY LAW

VICTOR A. ABRASHKIN

0. Introduction.

Let K be a local complete discrete valuation field of characteristic 0 with a finite
residue field k of characteristic p > 3. Assume that K contains a primitive root of
unity of degree pM, M > 1, and denote by

(,): K" x K* — pm(K)

a pairing given by the Hilbert symbol. Fix a primitive root ¢ of degree p™ in K.
If u,v € K*, let c(u,v) € ZmodpMZ be such that (uv,v) = ¢e(vv) . The explicit
reciprocity law (ERL) gives a formula for the value of ¢(u, v) in terms of expressions
of u and v as power series in a uniformizer 7 of K. First results in this direction were
obtained by Artin and Hasse, [A-H28], for the field Q,(¢). A different approach to
the problem to find general ERL belongs to I.R.Shafarevich, [Sh50]. His arguments
were based on a deep analogy between algebraic numbers and functions on Riemann
surfaces. The main idea of Shafarevich was to define an analog <, > of the Hilbert
symbol in a ring of formal power series in one variable X, to prove its independence
of the choice of the variable X and to obtain the value of the Hilbert symbol by
specialization X — 7. Proceeding in the same way S.Vostokov, [Vo78], obtained
explicit simple expression for c(u,v) (c.f. also [Br64], [Br79)).

The higher 7** (r > 1) analogs of the Artin-Hasse ERL for the field Q,({) were
constructed by Coates and Wiles, [Wi78] (the classical ERL appears for r = 1).
Bloch and Kato, [B-K90], found relation between higher Coates-Wiles ERL and co-
homology of Fontaine-Messing. E.de Shalit,[dSh], gave a simple proof of Bloch-Kato
ERL from Coates-Wiles ERL in the case r = 1. In a recent paper J.-M.Fontaine,
[Fo94], deduced Bloch-Kato ERL from Witt ERL for local fields of characteristic p.
His arguments use the Fontaine-Wintenberger functor “field of norms”, which give
a relation between local fields in characteristic p and characteristic 0. This functor
depends on the choice of some infinite local field K with increasing ramification,
and Fontaine uses p-cyclotomic extension of Q. So, one can combine arguments
of Fontaine and of E.de Shalit to deduce the classical Coates-Wiles ERL (in char-
acteristic 0) from Witt ERL (in characteristic p) by the above choice of the field of
norms functor. A different way to obtain this implication for extensions of degree p
was given by E.de Shalit, [dSh92]. His arguments are based on the relation between
local fields in characteristics p and 0, given by P.Deligne, [De84].
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To the best author’s knowledge the opportunity to prove the general ERL in
the form of Briickner-Vostokov from Witt ERL has not been yet systematically
investigated (the simplest case of the problem: M = 1, K = Q,({), was done in
[DR89]). In this paper we give a proof of this implication. We use Fontaine’s
(resp., E.de Shalit’s) way to relate Witt-Artin-Schreier (resp., Kummer) theory to
Fontaine-Messing theory for » = 1. In fact, the only difference with Fontaine’s
approach is another choice of the field of norms functor. This functor corresponds
to the extension K = K({x'/?"|n > 0}), where 7 is a fixed uniformizer of the
field K. The answer is given by the natural specialisation of the symbol defined
for a power series ring in one variable Xr;. Though this symbol coincides with
the symbol introduced in [Vo78] we can’t explain its independence of the choice of
a uniformizer in a power series ring (for different 7 these power series rings “live
in different worlds”). We also restrict our attention to the study of values of the
Hilbert symbol only on principal units of the field K. General formula can be easily
derived from this study using explicit constructions of p*-primary elements, [Vo78,
n.4].

1. Preliminaries.
Let K be a local field from introduction with fixed uniformizer «.

1.1. Functor “field of norms” X.
Consider an extension K of K given by K = |J K(n), where K(0) = K, K(n) =
n>0
K(n—-1)mn), 72 =mp_q forn > 1 and mp = .

K is an APF-extension in terminology of [Wtb] and, therefore, it defines the field
of norms functor X. This functor is defined on the category of algebraic extensions
of the field K, X (f{' ) = K is a complete discrete valuation field of characteristic
p with the same residue field k, and X induces an equivalence of the category of
algebraic extensions of K and of the category of separable extensions of the field
K. In particular, if we choose an algebraic closure K of K, then one can use
identifications X (K) = Ksep and

G = Gal(Keep/K) = Gal(K/K) C T = Gal(K /K).

If E is a finite extension of K , then the multiplicative group £* of nonzero
elements of the field £ = X (E) is equal to a projective limit of groups E*, where
K C ECE, (E : K) < oo and transition morphisms are induced by norm maps
Ng,/E,, where K C E; C E;y C E and (E1 : K) < co. The sequence {my} x(n) gives
the uniformizer of the field X. The field of constants of K consists of sequences
{&" "} x(n) (where & € K is Teichmuller representative of @ € k) and can be
identified with k by the map a — {a4? " }. So, if we denote the above uniformizer
of K by #p, then K is identified with the quotient field k((fo)) of the power series
ring k[[fo]].

1.2. Shafarevich’s basis for K*/K"pM.

Let e be the absolute ramification index of K and let { € K be a fixed primitive
root of unity of degree pM.



Let K° be the maximal subextension of K which is unramified over Q,. We
have the natural identification of the valuation ring of this field with Witt vectors

Denote by o the absolute Frobenius automorphism of W(k). For « € W(k) and
an indeterminate X set

(oa)X? + (o™ a)XP"

E(a,X) = exp(aX + =

+- +..0).

One has (c.f. [Sh50])
E(a,X) € W(k)[[X]) for « € W(k);

E(ay + a2, X) = E(ay, X)E(ag,X) for ay,a; € W(k);
E(aa,X) = E(a,X)® for a € Z,,.

Let {ai}1<ign be a Zp-basis of W(k). Then Shafarevich’s basis of K* K"
consists of the uniformizer =, principal units E(a;,n?), where 1 £: < N,1<a <
ep/(p — 1), (a,p) = 1, and one additional so-called p™-primary element. One can

make a choice of a p™-primary element by fixing a € W(k) such that Tryoq, a €
Z;. Then by definition

E(a) = E(B,&)",

where 3 € W (k) is such that 0 — § = a and & € Ok is such that E(1,&) = (.
One can show that E(a) can be expressed in terms of elements of the ground
field K

E(a) = [ E(o”a, & " ™" mod K**"
n2l
This expression was simplified by Vostokov, [Vo78, n.4].
The basic property of E(a) is that E(c)!/ P" generates unramified extension of

K of degree pM. Therefore, all images of pM-primary elements in K*/K 2™ Create
a cyclic subgroup of order p*.

. 1.3. Shafarevich’s basis for IC"‘/KI""’M.
Here the elements o and E(a;,t2), where {a;}1<i<n is a Z,-basis of W(k) and
a € N, (a,p) =1, give a basis of ’C*/K,'"'PM.
Let
N K*=lmK(n)* — K(0)*= K*
—

be a canonical projection.

Lemma.

&) N(fo) =,

b) if « € W(k),a € N,(a,p) =1, then N(E(a,f&a)) = E(a,n%).
Proof.

a) Obviously, N'(fo) = N((Ts) g(n)) = T
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b) It is sufficient to check up that for any n > 1

Ni(ny/ k(-1 (E(0™"a,72)) = E(e™"Va,n_,).

1 n—1

This is implied by the following observation

0, form=10

Tr _n(xer"y = m=
K(n}/K(n 1)( n ) {P”"'zil 1, for m > 1.

Corollary.

The group N(K*/K**") has an index pM in K*/K**" and is generated by the
images of the elements © and E{a,n*), where « € W(k), 1 < a < ep/(p — 1),
(a,p) = 1.

Proof.
By the above lemma 7 € A(K*) and all E(a, %) € N(K*).
So, it is sufficient to show that the index

(K* /K" MK IR )) > pM.
This follows from the inclusion
NENE*™ c Ny = Ny k(K (M)")
and the equality (K* : Nas) = pM given by local class field theory.

1.4. Compatibility of class field theories.
By the result of F. Laubie [La], we have a commutative diagramm

N

K* T K*
'l’r.l J'ibK
gab i’c/K Fab

Here 9¥x and g are reciprocity maps for the fields K and K respectively, and
homomorphism ix,x appears from the identification Gal(Ksep/K) = Gal(K/ K)c
I’ given by the above functor X'.

Let E(M) and £(M) be maximal abelian extensions of exponent p of the fields
K and K in K and Ksep = X(K), respectively. Then we have

E(M) > X(E(M)K) DK,
E(M)NK = K(M),
Gal(X(E(M)K)/K) = Gal(E(M)/K(M)).

It follows now from Corollary of n.1 that

ik k(G /™" ) = Gal(E(M)/K(M)).



1.5. Ezplicit reciprocity law in cheracteristic p, [Wtt].

The uniformizer £, of the field K gives p-basis for any separable extension & over
K. Therefore (c.f. [Ab93]), one can define a compatible on & C Kgep and M > 1
system of liftings Ops(£) of the fields £ modulo pM (Opm(€) is a flat Z/pMZ-algebra
such that Om(€)/pOm () = E).

Fix an element ¢ € Op(K) such that  modp = #, and define (the unique)
lifting

og:0u(K)— Ou(K)
of the absolute Frobenius of X by the condition ot =1". Then for any £ C Ksep
there exists only one lifting o¢ of the absolute Frobenius of the field £ to O (E)
which is compatible with the above chosen lifting o. We use the same symbol o for
all these liftings o¢.

Let f € Opq(K), g € K* and (f,g) € Wum(F,) be a pairing given (as usually) as
follows

TT—T:(f,g),

where T € Op(Ksep), 0T — T = f and 7 = 9x(g) € G*P.
Witt explicit reciprocity law is given by the formula

(f,9) = Tr(Res f%g),

where Tr : Wy(k) — Wy(F,) is induced by the trace map of the extension
k/Fp and § € Oy (K) is the image of ¢ € £* under the multiplicative morphism
K* — Oum(K)* given by the formulae

to — f,E(a,f;) — E(a,?),

where o € W (k).

1.6. Fontaine’s ring R, c.f. [Fo82].

R i1s a complete valuation ring of characteristic p and consists of sequences
(") 30, where all (") are in the valuation ring Oc, of the completion C, of
the field K and z("tD? = (™) for all n > 0. If (m("))n?(), (y("))n;g € R, then

(‘T(n))ﬂ?ﬂ + (y("))n20 = (z(n))n>0

(w("))nzo(y("))nzo = (w(n))n>0,
where (z(")n30 = lim (z("*™) 4 y("+m)P"™ and (W = g(My(),
nt— 00

Valuation vg on R is given by vg((z(™),30) = v(z(??), where v is the valuation
on Og, normalized by v(p) = 1. Residue fields of O¢, and R are identified by the

correspondence
Ap— T
a— (&7 ), >0,

where & is Teichmuller representative of a € k.
Let Ry be the quotient field of the ring R. Clearly, R and Ry are I'-modules.
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There exists a natural injection j : Ksep — Ro, cf. [Wtb83]. Recall briefly
its construction. Let [E K ] < 00, Eir be the maximal tamely ramified extension
of K in E Fn be a family of fields E, such that E,;, C E C E, [E : Ey is
finite and equivalent to 0 modulo p". If a = (ag)ger, € 1(1111 E* = £*, then

EeF,

y n n “O[E:E\:
J(a’) (.?( )( ))n>01 Where]( )( ) = EhenflnaE [ ]

One has j(ip) = (7n) K(n) @nd j is compatible with given above identifications
of the residue fields of Kgep = X(K) and of R with the residue field of K.

Let 7 € I' = Gal(K/K). Then 7K gives the field of norms functor which we
denote by A;. Clearly, 7 defines isomorphism of fields A’ (I;’) = Ksep and X, (K),
which we denote by the same symbol r. Let j, : X,.(IE’) — Rp be embedding
analogous to the above embedding j. Then j and j, are compatible with the
natural action of I on Ry, i.e. the following diagramm is commutative

’Csep _J_’ Ry

1L
X(K) —2— Ry

1.7. Ideal J C W(R).
1.7.1. Let

u= ZPn[un] € W(R),

n20

where [u,] are Teichmuller representatives of u, € R for all n > 0. Then the

correspondence
T Z p"ul®
n20
defines an epimorphism of rings v : W(R) — O¢, and Kery = J is a principal
ideal, c.f. [Fo82].
Let

n

z(X)=X+§+-»-+); 4 € Qp[X]]

be the Lubin-Tate logarithm. By the Hazewinkel functional equation lemma,
[Ha78], the power series ¢(X) = {7!(log(1 + X)) is in Z,[[X]].

Fix an element € = (5(")),120 € R such that e = ¢,

We have, c.f. [Ab90, n.1.7]

a) o{[e] — 1) = P([e]”? — 1) = [p]a(¥)([¢] — 1), where [p]g is the endomorphism of
multiplication by p in the formal group G with logarithm I(X).

b) There exists s € W(R) such that

¥(le] — 1) = sy([e] /P — 1)
and this element s generates the ideal J.

1.7.2. Set j(w) = ow/w? for w € W(R)*.
Then j(w) € 1 4+ pW(R) and we have the following lemma, c.f. [dSh]
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Lemma. The sequence of (multiplicative) groups

1] — 14+ J 251+ pW(R) — 1

is exact.

Proof.

We repeat arguments of E. de Shalit. Nontrivial part of the proof is surjectivity
of j. If wy € 1+ pW(R), then there exists w € 1 + W(R) such that j(w) = w; (it
can be proved by successive approximations). Then one can take u € R, such that
¥([u]) = ¥(w), and check up that wu=' € 1+ J and j(wu™!) = wy.

1.8. Fontaine’s ring BY, .

1.8.1. B, is a p-adic completion of the divided power envelope of W(R) (in
W(R)® Qp) with respect to the ideal Kery = sW(R). For an integral : > 0 denote
by Fil' Bf,. a decreasing filtration of B, by its closed ideals, generated by all

s"/n!, where n > i. One has the natural structure of a continuous Imodule on

B:’m The Frobenius ¢ on R induces Frobenius morphism on B, , which we denote
also by o.
Let BY,, 1, = B, /p™ B}, and Fil' BY, ,, be the image of Fil' B in BY,_ ;.
One has

Fil! BX. npMB* = pMFil' BT

Cl’IB Cris cris’

Indeed, Fil' BY, + W(R) = B, and Fil' B}, N W(R) = J. Therefore,

cns
Fil' Bf, npMBY, =pMFil' B, +Fil' BX, npMW(R) c
cpM Pl B, +7npMW(R) = pMFil' B} ...

It follows now that the exponential exp(z) = > z™/n! defines a bijection
n20

exp : Fil' B;[;is,M (14 Fil! ch )

+ .
ms — B  induces morphism

and the morphism o/p : Fil' B

1 :
0 Fil' B, » — B
1.8.2. Let ¥(fe] — 1),3 € W(R) be the elements from n.1.7. Then

a) ¥([e] — 1)?~1/p € Fil' BX., and is a topologically nilpotent element of this
ring, c.f. [Ab90, n.1.5].

b) In the ring B}, we have os = pny, where

m € 1+M5]—;1)—P_1W(R) Hﬂ[fl‘Tl)”Zi” c B+

CIrl1s

(and therefore 7 is invertible in BY. ), c.f. [Ab90, n.1.8].

cris
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c) Let Sas be the ideal of ‘B::tis,M generated by ¥([e]—1)P~!/p. Then o/p induces
a nilpotent endomorphism of the Z,-module Sps.
Indeed, _
o = [pla(¥) =97 +pp + ¥ _ capi’,

i>2

where ¥ = 1([e] — 1). This expression gives

p—1 r—1 2 p—1
() () ()
P P p p
where w' € W(R) and w" € pW(R). This formula implies the above statement c).

1.8.3. Let [¢] € W(R) be the element from n.1.7. Then, cf. [Fo82], log[e] €
Fil' B}, and

cris

{m e Fil' BX

cris

| om = pm } = Z,loglel.
From this it follows now that

a) {m € Fil' BX, | om/p=m} = Wy (F,)log[e] C B o n
b) f a € Z,, then [¢]* € 1+ pM B}, & a=0modpM.

2. General explicit reciprocity law.

We use all previous notation. In particular, K is a complete discrete valuation
field of characteristic 0 with a finite residue field & of characteristic p, fixed uni-
formizer 7 and primitive root ¢ of degree pM, M > 1. If u,v € K, then (u,v) is
the Hilbert symbol given by the formula

(u,v) = prc(v)(ur)u?,

where 1y : K* — T'*P is the reciprocity map of local class field theory and u; € K,
M

P _
Uy =u.

2.1. Mostly essential part of description of the Hilbert symbol of the field K
1s related to its values on principal units of the form E(a,7?%), where a € W(k),
a € N,(a,p) =1.

The explicit reciprocity law in the form of Vostokov, [Vo78], gives these values
in the form

(E(CI{, Wa),E(,B,?Tb)) — Cc(u.ﬂ,a,b)’
where a, 8 € W(k), a,b € N, (ab,p) =1 and

(%) ca,B,a,b) = %Trlx’“/Qp {Res [aﬁ(b —a)Xeti-! dX] }

H(X)™ -1

Here K° is the maximal subextension of K, which is unramified over Qp, Tris

the trace map, H(X) € W(k)[[X]] is such that H(r) = ¢ and Res is the residue at
X =0.



Remarks.

a) Vostokov and Briickner use a different definition of the Hilbert symbol, where
Kummer theory and reciprocity map are applied to the second and the first ar-
guments, respectively. So, our expression for c(a,f,a,b) has the opposite sign
compared with the expression given by the Briickner-Vostokov formula, because of
the skew-symmetricity of the Hilbert symbol.

b) We use slightly modified expression, which can be obtained from Vostokov’s
or Briickner’s formula by skew-symmetrization. Other simplifications are related
to the assumption (ab,p) = 1 and to the special properties of the power series

H(X)PM —1 (cf. n. 2.4 a,b below).

2.2 Reformulation of (x).

Let X be the “field of norms” functor from n.1.4, K = X(I?), to be the uni-
formizer of K constructed in n.1.4, Op(K) be the lifting of K modulo p™ chosen
in n.1.5,7 € Op(K) be such that of =% and{ modp = fy. Clearly, O3 (K) can
be identified with the Wy (k)-algebra of Laurent series in the variable # .

Denote by Ux the group of principal units of the field K. Any u € Uk can be
uniquelly expressed in the form

u= [[ E(aat"),
aeN
(a,p)=1

where aq = aa(u) € W(k), a € N, (a,p) = 1.
The correspondence

U Z aa(u)?a mod pM
aeN
(a,p)=1

defines the homomorphism L : Ux — Opm(K). Clearly, Ker L = L{,%M, ImL C
W (k)([t ]]-

If G € Op(K)*, define symbol <, > on the group Ux with values in Wy (F,)
by the following formula

i oo e (L) —WEOIO |

Here Tr : Wi(k) — W (F,) induced by the trace of the extension k/ F, and Res
is a residue at £ = 0.

Similarly to the n. 2.1 introduce H € Wa(k)[[t ] such that H(r) = ¢ modp,
where H € W(k)[[{], # modp™ = H, and set Hy = H?" — 1.

Consider the projection, ¢.f. n.1.3, N : Ux — Uy, where Uy is the group of
principal units of the field K. Now the formula (*) of n.2.1 is equivalent to the
following statement

Theorem. If u,v € Uk, then
(M), N () = (3>
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Proof of theorem.

2.3. Let f € L(Ux) C Om(K). Consider Witt-Artin-Schreier extension £5 of K
given by a solution T of the equation

(*1) aT—T:%

in Op(Ksep). For any 7 € G we have
7T —T = a, € Wy(E,).
Let u € Ux be such that L(u) = f. Then a solution Z of the equation
77" = N(w)

defines Kummer extension of K. This extension does not depend on the choice of
u and will be denoted by Ey. For any 7 € I' we have

where all b, € Z modpMZ.

Proposition.
In the above notation for any 7 € G C I we have

ar = b, modpMZ.

Remark.
The embedding G C T is given by the construction of the functor X, c.f. n.1.4.

2.4. Deduce theorem of n.2.2 from the above proposition.

By bilinearity it is sufficient to consider the case u = E(a,ﬂ,a), v = E(ﬁ,f{)b)
where a, § € W(k), a,b € N,(ab,p) = 1.

Consider the equation (*;) of n.2.3 for f = L(u) = af °.

Let tx : K* — G®P be the reciprocity map and 7 ~— 3x(v) under canonical
projection ¢ — G2,

Then the explicit reciprocity law in characteristic p case, c.f. n.1.5, gives (in
notation of n.2.3) that

)

(%) ar = Tr { Res % Z b(a"ﬁ)i‘vpnb —

nz0

Remark, that

a) Hy = HY 1= Go(t ") for some power series Gy € War(k)[[f]], therefore,
we can omit all terms of the above formula (x) with n > 0.

10



M M -1
b) Hyr = Gu(t " Y+ pGr—1 (7 )4+ pM1G(§ ") for some power series
G1,...,Gp € Wpg(k)[[t ]]. This gives skew-symmetricity of the right-hand side of
(%) as a function of pairs (@,a) and (8,b). So, one can rewrite the formula (*) in
the form

ar=§<u,v >Hp -

The commutative diagramm of n.1.4 gives ix/x (x(v)) = P (N (v)). Therefore,
(in notation of n.2.3)

(NM(u), N () = ¢*
and our theorem follows from the above proposition.

2.5. Proof of proposition n.2.8.
. . ~Qq
It is sufficient to treat the case f = at , where @ € W(k), a € N, (a,p) = 1. Let
T be a solution of the equation

;tva
(+1) oT —T = ?{—M
in Opt(Kgep). Then for any 7 € G

Tl —-T=ar = ar(aaa) € WM(FP)'

2.5.1. One equivalence.
Consider the embedding 7 : Ksep — Rg from no.1.6. This j can be prolonged
uniquelly to the imbedding

Om(3): OM(K:sep) - WM(RO)

which transforms o to Frobenius morphism of Wy (Rg) (so, we can denote the
Frobenius on Wys(Rp) also by o) and is compatible with the inclusion of Galois
groups G C I.

Let H € W(k){[t ]] be the power series from 1n.2.2 and (as earlier) e = (e™)ys0 €
R be such that (M) = (. Clearly, this means that (6=M¢)(® = ¢. Therefore, we
have the following equivalence in Wy (R)

o™M[e] = H mod(f *War(R) + pWar(R)).
It is easy to see that we have an equality of ideals
PO
(6 - I)R =1y Pt R,
in the ring R (here e is the absolute ramification index of K). Therefore,
€] = H?" mod(([e] — 1)*" P Wype(R) + p(le] ~ 1) P~ I Wy (R) +. ..
o+ PNl - )P W (R)).
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This gives for any o € W(k) and a € N

[:i‘t 1 EC; mod(([e]-1)"" T PV Wy (mp)+p([e]-1)F PO EWay(mp)+ ..
- M

M7 (] = PV W (ma)),

where mpg is the maximal ideal in R.

2.5.2. Interpretation of a, in Wa(Ryp).

Consider an analoug of the above equation (*;)

~{
ot

] -1

(*2) ol - T =

in Was(Rg). The last equivalence of n.2.5.1 gives
Om(G)(T1) = To mod(([e]-1)" " D=2 Wy (mp)+p([e] - 1)P" D2 Wy (mg)+. ..

o M ([e]) = DY 2 W (mp)),

where Ty is a solution of the equation () in War(Ro). Therefore, for any solution
T € Wy(Ry) of the equation (*;) and any 7 € G we have

™—-T=a,,

because Wy (Ry)f = War(F, ).

2.5.3. Interpretation of a, in W (R).
We use notation of n.1.7.

Remark, that N
B(X) = 55(1 + X) mod X2, [[X]]
where loﬁé(l +X)=X—-X?/2+---—X,_1/(p—1) is the truncated logarithm.

Let T be a solution of the equation

~a

at
(+s) (7 )
n WM(Ro).
By the above remark
ot al
WE =D~ =1 et Pulme)

Therefore, T is equivalent modulo Was(mg) to some solution of the equation (*2).
This gives
™T—-T=a,

for any 7 € G.
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Lemma.

Ty([e]'/? — 1) € Wi(R).

Proof.
Clearly, T} = T([¢]/? — 1) satisfies in Wps(Ry) the equation

ol —sT) = ot .

R is integrally closed in Ry, therefore, 71 mod p € R. Now one can apply induction
on M to prove T € Wy (R).

Let Xo = T¥([¢] —1). Then Xy = sTh € Jy = J mod p W(R) and satisfies the

equation

O'X ~a
— =X =at
(*4) p o
in Wy (R).
Clearly, multiplication by 1([¢] — 1) defines a one-to-one correspondence between
all solutions of the equation (*3) in War(Ro) and all solutions of the equation (*4)
in Jps. Therefore, if X € Jps satisfies (#4) and 7 € G, then

X - X = a,9([e] - 1).

2.5.4. Interpretation of ar in Beris m.
Consider a morphism

induced by the natural inclusion W(R) ¢ BF. .
According to the property 1.8.2 b} 6y transforms solutions of the equation (*4)
to solutions ¥ € Fil' B:;is’ s of the equivalence

(*5) %—Nza{amodSM,

where Sy is the ideal of B:ris,M, generated by y([e] — 1)P~1/p. From the property
1.8.2 ¢) it follows now that every solution m of the above equivalence (x5) gives
rise to the unique solution m € Fil' B;’;is’ u of the equation

am ~Q
(*6 — —m=uqt
) r

in B;Lris’M, such that m” = mmod Sy. Now the property 1.8.3 a) gives
Tm —m = a, logle],
for any 7 € G and arbitrary solution m € Fil! B y of the equation (xg).

cris,
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Multiplying (*¢) by p and taking an exponential we obtain that for every

Y € (1 4+ Fil' B}, ) mod pM*+' B

cris cris?

satisfying the equality
(%7) oY =Y? exp(pafa)

in B(-:tis,M—l-l’ one has
(Y)Y = [¢]* mod p™ B}

crig”

2.5.5. Interpretation of ar in War(R)*.
Consider the exact sequence from lemma of n.1.7.2. This sequence gives solv-
ability in (1 + J)* mod pM 1 W (R) of the equation

(*s) 02 = Z” exp(pat ')

in War41(R) and the cocycle {¢; € Z, | T € G}, such that 7Z = Z[e]°r.
Clearly, the imbedding W(R) C BZ. maps solutions Z € (1+J)* mod pM+'W(R)

cris
of (*g) to solutions ¥ € (1 + Fil' B, Ymod pM+!Bt. of (*7), and, therefore,

cris cris
ar = Cr modpMZp

for any 7 € G.

2.5.6. Relation to Kummer theory.
Let Z € (14 J)*modpM*+W(R) be some solution of (xg) in Was41(R). Then

Mo opM M—1, yapM ! M 4
oM Z =27 exp(pe™ T (a)t +--+pMat )

n WM+1(R)
The power series E(a, X) from n.1.2 satisfies the following identity

E(a,X)”M = exp(pMaX +pMo(a) X+ --{-pch—](ar)X“’M_1 YE(eM (), x»™ ).
Take £, € WM.H(R), such that { = {; mod p™, ot =~{;p and 7t = 1 for any
7 € G (such element #; can be constructed similarly to ¢ in the lifting Op44(K)

and then one can take ¢ = #; mod pM).
Now the above identity gives an equality

oM (zE(a,{I“)) = (ZE(a,é‘;“))PM

Therefore,
M ~a
Zf = ZE(a,tl )

for Z1 = (6 ™M Z)E(c=Ma,0~M{;"), because o is bijective on Wary1(R).

14



For every 7 € G we have
TZ](Z])_I = [O'—M(E]cf.

Consider the homomorphism of rings v : W(R) — Og, from n.1.7.1. This ¥
induces the homomorphism

41t Wans1(R) — O /pMH10%

and, clearly, Yar41(2) = 1mod pM*10g, yar1(E(a, 1)) = N(E(a, ;")) mod pM+10p,
ym+1(0™Mi1") = 74 mod pM 10, cf. n.1.3, and yar41 ([0 Me]) = C mod pM 10
Therefore, if W € O be such that yar41(Z;) = W mod pM+10, then

wr" = E(a,7*)mod pMt10g
and for any T € G one has
(W)W = ¢°" mod pM 0.
Obviously, this implies that Kummer extension
77" = N(u) = E(a,7%)

has a cocycle (7Z)Z ™ = (°. Proposition is proved, because a, = ¢, mod pMZ,,
cf n.2.5.5.
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