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ONE REMARK ABOUT BRÜCKNER-VOSTOKOV

EXPLICIT RECIPROCITY LAW

VICTOR A. ABRASHKIN

o. Introduction.

Let K be a Ioeal eomplete diserete valuation field of eharacteristic 0 with a finite
residue field k of charaeteristic p 2:: 3. Assume that K eontains a primitive root of
unity of degree pM, M 2:: 1, and denote by

a pairing given by the Hilbert symbol. Fix a primitive root ( of elcgrce pM in !<.
If U, v E K*, let c(u, v) E Z modpMZ be such that (u, v) = (c(u,v). The explicit
reciprocity law (ERL) gives a formula for the value of c(u, v) in terms of expressions
of u and v as power series in a uniformizer 7r of !(. First results in this direction were
obtained by Artin and Hasse, [A-H28J, for the field Qp((). A different approach to
the problem to find general ERL belongs to I.R.Shafarevich, [Sh50]. His arguments
were based on a deep analogy between algebraie nUlnbers and funetions on Rielnann
surfaces. The main idea of Shafarevich was to define an analog< , > of the Hilbert
symbol in a ring of fonnal power series in one variable X, to prove its independenee
of the ehoice of the variable X and to obtain the value of the Hilbert symbol by
specialization X I--i> 7r. Proeeeding in the sarne way S.Vostokov, [Vo78], obtained
explicit simple expression for c(u, v) (c.f. also [Br64], [Br79)).

The higher r th (r 2:: 1) analogs of the Artin-Hasse ERL for the field Qp(() were
eonstructed by Coates and Wiles, [Wi78] (the classieal ERL appears for r = 1).
Bloch and Kato, [B-I(90], found relation between higher Coates-Wiles ERL and co­
homology of Fontaine-Messing. E.de Shalit, [dSh], gave a simple proof of Bloeh-Kato
ERL from Coates-Wiles ERL in the case r = 1. In arecent paper J.-M.Fontaine,
[Fo94], dedueed Bloeh-I<ato ERL from Witt ERL for Ioeal fields of eharacteristie p.
His arguments use the Fontaine-Wintenberger funetor "field of nonns", whieh give
a relation between loeal fields in eharacteristic p an~ eharaeteristie O. This functor
depends on the choice of some infinite loeal field !{ with increasing ramifieation,
and Fontaine uses p-cyclotomie extension of Qp. So, one can eombine argull1ents
of Fontaine and of E.de Shalit to deduee the classieal Coates-Wiles ERL (in ehar­
aeteristic 0) from Witt ERL (in charaeteristic p) by the above choice of the fielel of
norms functor. A different way to obtain this implication for extensions of degree p
was given by E.de Shalit, [dSh92]. His arguments are based on the relation between
loeal fields in charaeteristics p and 0, given by P.Deligne, [De84].
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To the best author's knowledge the opportunity to prove the general ERL in
the form of Brückner-Vostokov from Witt ERL has not been yet systematically
investigated (the simplest case of the problem: M = 1, K = Qp ((), was done in
(DR89]). In this paper we give a proof of this implication. We use Fontaine's
(resp., E.de Shalit's) way to relate Witt-Artin-Schreier (resp., Kummer) theory to
Fontaine-Messing theory for 7' = 1. In fact, the only difference with FOlltaille's
approach is another choice of the field of norms functor. This functor corresponds
to the extension K = 1« {7r I

/
pn In ~ O}), where 7r is a fixed unifonruzer of the

field K. The answer is given by the natural specialisation of the symbol defined
for apower series ring in one variable X 1r • Though this symbol coincides with
the symbol introduced in [Vo78] we can't explain its indepenclence of the choice of
a uniformizer in apower series ring (for different 7T" these power series rings "live
in different worlds"). We also restrict our attention to the study of values of the
Hilbert symbol only on principal units of the fidd K. General formula can be easily
derived from trus study using explicit constructions of pM -primary ele1uents, (Vo78,
n.4].

1. Preliminaries.
Let K be a Iocal field from introduction with fixed unifonnizer 7r.

1.1. Functor "field 0/ norm~" X.
Consider an extension K of I< given by K = U K(n), where K(O) = K, I{(n) =

n~O

K(~ - l)(7rn ), 7r~ = 7rn -I for n 2:: 1 and 7ro = 7r.
K is an APF-extension in tenninology of [Wtb] and, therefore, it dcfines the field

of norms functor X. This functor is defined on the category of algebraic extensions
of the field K, xCi() = K is a complete discrete valuation field of characteristic
p with the same residue.....,field k, and X induces an equivalence of the category of
algebraic extensions of !{ and of the category of separable extensions of the field
K. In particular, if we choose an algebraic closure [( of !{, then Olle can use
identifications XCI?) = Ksep and

9 = Gal(Ksep/K) = Gal(K / K) c r = Gal(I? / I{).

If E lS a finite extension of K, then the multiplicative group E* of nonzero
elements of the field E = X(E) is equal to a projective limit of groups E*, where
K C E c E, (E : K) < 00 and transition morpms1us are incluced by nonn 1uaps

N EI / E 2 , where ]{ C E2 C EI C Eand (EI: K) < 00. The sequence {1rn} K( n) gives
the uniformizer of the field K. The field of constants of K consists of sequences
{ci p

-
n

} K(n) (where ci E K is Teichrnuller representative of a E k) and can be

identified with k by the map a 1-+ {a P-
n

}. So, if we denote the above uniformizer
of lC by ta, then K is identified with the quotient field k((ta)) of the power series
ring k[[i;;]].

1.2. Shafarevich 's basis fOT K+ / K*pM •

Let e be the absolute ramification index of J( and let ( E I( be a fixed prinlitive
root of unity of degree pM.
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Let 1(0 be the maximal subextension of K which is unraluified over Qp. We
have the natural identification of the valuation ring of this field with V/itt vectors
W(k).

Denote by (1 the absolute Frobenius automorphism of W(k). For a E W(k) and
an indetenmnate X set

(oa)XP (ona)xp"
E(a,X) = exp(aX + + ... + + ... ).

p pn

One has (c.f. [8h50])

E(a,X) E W(k)[[X]] for a E W(k);

E(al +a2,X) = E(al,X)E(a2,X) for 0'1,a2 E W(k);

E(aa,X) = E(a,Xt for a E Zp.

Let {adl~i~N be a Zp-basis of W(k). Then Shafarevich's basis of K* /1{*pM
consists of the uniformizer 7f, principal units E(ai, 7fa), where 1 :s i :s N,l :s a <
ep/ (p - 1), (a, p) = 1, and one addi tional so-called pM -primary elelnent. One can
make a choice of a pM -primary element by fixing a E W( k) such that Tr KO /~ a E
Z;. Then by definition

M
E(a) = E(ß,eo)p ,

where ß E W(k) is such that aß - ß = a and eo E GI<: is such that E(l, eo) = (.
Oue can show that E(0') can be expressed in terms of elements of the grouncl

field K
E(o:) =II E(O'na,eb")pM-n mod1(·p

M
•

n~l

This expression was simplified by Vostokov, [Vo78, nA].
The basic property of E(a) is that E(a)l/pM generates unramified extension of

K of degree pM. Therefore, all images of pM -primary elements in K* /1(*pM create
a cyclic subgroup of order pA!.

. 1.3. Shafarevich 's blLBis for K! / Je*pM .
Here the elements to and E(ail tg), where {adl<i<N is a Zp-basis of W(k) and

a E N, (a,p) = 1, give a basis of Je* /JC.pM. - -
Let

N : Je* = lim 1((n)* ---t 1«(0)* = K*
f--

be a canonical projection.

Lemma.
a) N(~) = 7f;

b) iEo: E W(k),a E N,(a,p) = 1, then N(E(a,fo
a

)) = E(a,7fa).

Proof.
a) Obviously, N(t;;) = N((7fn)K(n») = 7f.
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b) It is sufficient to check up that for any n 2:: 1

N (E( -n a)) E( -(n-l) a )
K(n)/K(n-l) a a, 7rn = a a, 7rn-] .

This is implied by the following observation

m { 0,
TrK(n)/K(n-l)(7r~P ) = apm-l

p7rn-l ,

form=O

for 7n 2: 1.

Corollary.
The group N(lC* / lC*pM) has an index pM in [(* / !(*pM and is generated by the

images oE tbe elements 7r and E(a,1ra
), where a E W(k), 1 ~ a < ep/(p - 1),

(a,p) = 1.

Proof.
By the above lemma 7r E N(K*) and all E(a, 1ra

) E N(K*).
So, it is sufficient to show that the index

This follows from the indusion

N(K*)K*pM C NM := NK(M)/K(I«(M)*)

and the equality (K* : NM) = pM given by local dass field theory.

1.4. Compatibility 0/ clQ,js field theorie8.
By the result of F. Laubie [La], we have a commutative diagrarnlTI

K* N
I K*

1/J~1 1tPK

ga.b 1~/K

I r ab

Here 'lj;JC and 'lj;K are reciprocity maps for the fields K and !( respectively, and
homomorphism i JC / K appears from the identification Gal(KsepjK) = Gal(I?jK) C
r given by the above functor X.

Let E(M) and E(M) be maximal abelian extensions of exponent pM of the fields
K and K in k and Ksep = X(K), respectively. Then we have

E(M) :) ,.-Y(E(M)K) :) !C,

E(M) n K = K(M),

Gal(X(E(M)K)/K) = Gal(E(M)/K(M)).

It follows now from Corollary of n.l that
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1.5. Explicit reciprocity law in characteristic p, [Wtt].
The uniformizer to of the field K gives p-basis for any separable extension E over

K. Therefore (c.f. [Ab93]), one can define a compatible on E c Ksep and M ~ 1
system of liftings 0 M (E) of the fields E. modulo pM (0M (E.) is a flat Z j pMZ-algebra
such that OM(E.)jpOM(E) = E.).

Fix an element t E 0 M (Je) such that t mod p = i:o and define (the unique)
lifting

a : 0 M(Je) -----+ 0 M(K)

of the absolute Frobenius of K by the condition at = i P
• Then for any f. c Ksep

there exists only one lifting ae of the absolute Frobenius of the field E to OM(E)
which i8 compatible with the above chosen lifting a. We use the SaIne symbol a for
all these liftings ae.

Let / E OM(Je), 9 E K* and (/,g) E WM(IFp ) be a pairing given (as usually) as
follows

TT - T = (/,g),

where T E 0 M(Ksep ), aT - T = 1 and T = 'lj;JC(g) E gab.

Witt explicit reciprocity law is given by the formula

dg(I, g) = Tr(Res f -:-),
9

where Tl' : WM ( k) -----+ WM (IFp) is induced by the trace lllap of the extension
kjIFp and 9 E OM(K) is the image of 9 E K* under the multiplicative morphism
K* ~ OM(K)* given by the formulae

~ ~ t, E(a,~) r--t E(a, t),

where a E l'V(k).

1.6. Fontaine'~ ring R, c./. [F082].
R i8 a complete valuation ring of characteristic p and consists of sequences

(x( n) )n~o, where all x( n) are in the valuation ring OCp of the completion Cp of
the field k and x(n+l)p = x(n) for all n ~ o. If (x(n»)n~O'(y(n»)n~O E R, then

(x(n»)n~o(y(n»)n~o= (w(n»)n~O'

where (z(n»)n~O = lim (x(n+rn) + y(n+rn»)pm and wen) = x(n)y(n).
r rn-oo

Valuation VR on R is gjven by VR((X(n»)n~o) = v(x(O»), where v is the valu~tion

on OCp normalized by v(p) = 1. Residue fields of OCp and R are identified by the
correspondence

where & is Teichmuller representative of a E k.
Let Ro be the quotient field of the ring R. Clearly, Rand Ro are r -modules.
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There exists a natural injection j : Ksep --+ Ra, c.f. [Wtb83]. Recall briefly

its construction. Let [E :K] < 00, Etr be the maxilnal taInely raInified extension

of K in E, :Fn be a family of fields E, such that E tr C E C E, [E : EtrJ is
finite and equivalent to 0 modulo pn. If a == (aE)EE:Fn E ~ E* == E*, then

EE:Fn

j(a) = (j(a)(n»)n>a, where j(a)(n) == Ern aPE-n[E:Etr].
- EE:Fn

One has j(4J) == (7rn )K(n) and j is conlpatible with given above identifications
of the residue fields of Ksep == XCI?) and of R with the residue field of I<.

Let T E r == GaJ(K / }(). Then T K gives the field of norms functor which we
denote by XT. Clearly, T defines isomorphism of fields XCI?) == lCsep and XT(I{),
which we denote by the same symbol T. Let jT : XT(K) --+ 14J be embedding
analogous to the above embedding j. Then j and jT are compatible with the
natural action of r on Ro, i.e. the following diagraInffi is commutative

j
---+1 14J

jr ) 14J

1.7. Ideal J C WeR).
1.7.1. Let

U == L pn[un] E WeR),
n~O

where rUn] are Teichmuller representatives of Un E R for all n > 0. Then the
correspondence

defines an epimorphism of rings, : WeR) --+ Oe" and Ker, = J is a principal
ideal, c.f. [Fo82].

Let
X P X pn

leX) = X + - + ... + - + ... E Q [[X]]
p pn P

be the Lubin-Tate logarithm. By the Hazewinkel functional equation lemrna,
[Ha78], the power senes 'IjJ(X) == l-l(log(l + X» is in Zp[[X]].

Fix an element c; = (c;(n»)n>O ERsuch that c;(M) == (.
We have, c.f. [Ab90, n.1.7]
a) O"([e] -1) == 7P([e]P -1) == [P]G(~)([e] -1), where [P]G is the endomorphisln of

multiplication by p in the formal group G with logarithm leX).
b) There exists s E WeR) such that

7P([c] - 1) == s1jJ([ep /p - 1)

aIld this element s generates the ideal J.

1.7.2. Set j(w) == aw/wP for w E W(R)*.
Then j (w) E 1 + pW (R) and we have the following lemma, c.f. [dSh]
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Lemma. The sequence of (multiplicative) groups

1 ---+ (t:]Zp ---+ 1 + J~ 1 + pW(R) ---+ 1

is exact.

Proof.
We repeat arguments of E. de Shalit. Nontrivial part of the proof is surjectivity

of j. If WI E 1 + pW(R), then there exists W E 1 + WeR) such that j(w) = WI (it
can be proved by successive approximations). Then one can take u E R, such that
,([uD = ,(w), and check up that wu- I E 1 + J and j(wu- 1

) = WI.

1.8. Fontaine 's ring B:ris'
1.8.1. B:ris is a p-adic completion of the divided power envelope of lV(R) (in

W(R) 0 Qp) with respect to the ideal Ker r = sW(R). For an integral i ~ °clenote
by Fil i Btris a decreasing filtration of Btris by its closed ideals, generated by all
sn In!, where n ~ i. One has the natural strueture of a eOlltinuous r-module on
Btis' The Frobenius (7 on R induces Frobenius morphism on B~is' whieh we denote
also by a.

Let B~is M = B:rislpMB~is and Fil
1
B~is M be the iInage of Fil

l
B:ris in B:ris M'

One has' J ,

F 'l! B+ n MB+ M F'l l B+
) cris P cris = P ) cris'

Indeed, Fil! B:ris + WeR) = Btis and Fill Btis n WeR) = J. Therefore,

C pM Fil) Bd;.is + J n pMW(R) = pM Fil) Btis'

It follows now that the exponential exp(x) = 2: x n In! defines a bijeetion
n~O

exp : Fil l B:;is M ---+ (1 +Fil! B:ris M)*
I ,

and the morphism alp: Fil] Btis ---+ Bd;.is induces morphism

1 . F'l l B+ ---+ B+
-(7.) cris M cris,M'P ,

1.8.2. Let 7jJ([e] -l),s E WeR) be the elements from n.1.7. Then
a) 7jJ([e] - I)P- I lp E Fill Bd;is and is a topologically nilpotent element of this

ring, c.f. [Ab90, n.1.5].
b) In the ring B:;is we have (78 = PT/I, where

'71 E 1 + ..p([c] ~ 1)P-1 W(R) [[ ..p([c] ~ 1)P-1]] C B:"i'

(and therefore 771 is invertible in B:;is)' c.f. [Ab90, li.l.8].
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c) Let SM be the ideal of Bd;is M gellerated by 'lj;([e] _l)p-l Ip. Then alp induces
a nilpotent endomorphism of th~ Zp-nlodule SM.

Indeed,

a'lj; = [P] c(v,,) = v"P + p?jJ + L CiP?jJi,
i~2

where'lj; = ?jJ([e] - 1). Trus expression gives

1 ('ljJP-l) _('lj;P-l) 2 I ('lj;P-l) "-a -- - -- w + -- w,
p p p p

where w ' E W(R) and w" E pW(R). This fornlula implies the above statement c).
1.8.3. Let [e] E WeR) be the element from n.1.7. Then, c.f. [Fo82], log[e] E

F 'll B+ d1 cris an
{m E Fil] B~is I am = pm } = Zp1og[c].

From this it follows now that
a) {m E Fil1

Btis,M I am/p = m} = WM(IFp)log[e] c Btis,M;
b) If a E Zp, then [e]a E 1 + pM Bd;is {:} a =OmodpM.

2. General explicit reciprocity law.

We use all previous notation. In particular, K is a cOlnplete discrete valuation
field of characteristic 0 with a finite residue field k of characteristic p, fixed uui­
formizer 7r and primitive root ( of degree pM, M 2:: 1. If u, v E !(, then (u, v) is
the Hilbert symbol given by the formula

where 'lj; K : ](* ~ rah is the reciprocity map of loeal class field theory and U] E I?,
pM

U 1 = U.

2.1. Mostly essential part of description of the Hilbert symbol of the field !(
is related to its values on principal units of the form E(0', 7ra), where 0' E W( k),
a E N,(a,p) = 1.

The explicit reciprocity law in the form of Vostokov, [Vo78], gives these values
in the form

(E(O',7ra),E(ß,7rb)) = (c(o,ß,a,b),

where 0', ß E W(k), a, bEN, (ab,p) = 1 and

1 {[O'ß(b-a)xa+b-ldX]}
(*) c(O',ß,a,b) = 2TrKo/Qp Res H(X)p M -1

Here K O is the maximal subextension of K, whieh is unl'amified ovel' Qp, Tl' is
the trace map, H(X) E W(k)[[X]] is such that H(7r) = ( and Res is the residue at
x=o.
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RemarL.
a) Vostokov and Brückner use a different definition of the Hilbert symbol, where

!(ummer theory and reciprocity map are applied to the second and the first ar­
guments, respectively. So, our expression for c(G:, ß, a, b) has the opposite sign
compared with the expression given by the Brückner-Vostokov formula, because of
the skew-symmetricity of the Hilbert symbol.

b) We use slightly lnoclified expression, which can be obtained from Vostokov's
or Brüclrner's formula by skew-sYlnlnetrization. Other siInplifications are related
to the assumption (ab, p) == 1 and to the special properties of the power series

H(X)pM - 1 (c.f. n. 2.4 a,b below).

2.2 Reformulation 0/ (*).
Let X be the "field of norms" functor from n.1.4, Je == X(K), t7J be the uni­

formizer of Je constructed in n.1.4, OM(K) be the lifting of Je modulo pM chosen
--- ....., --- p --- ---

in n.1.5, t E OM(Je) be such that at = t and t modp = ta. Clearly, OM(Je) can
be identified with the WM(k )-algebra of Laurent series in the variable t.

Denote by U/C the group of principal units of the field K. Any u E U/C can be
uniquelly expressed in the form

u = II E(aa, ta),
aEN

(a,p)=l

where aa = G:a(u) E W(k), a E N, (a,p) == 1.
The correspondence

U I-? L G:a(u)t
a

modpM
aEN

(a,p)=l

M

defines the homomorphism L : U/C ----+ 0 M(K). Clearly, !(er L = U::' ,Im L C

WM(k)[[tlJ.
HG E OM(Je)*, define symbol< , >0 on the group U/C with values in WM(IFp )

by the following formula

< u, v >c= Tr { Res (L(U)(d L(v)) ; (d L(U))L(V)) } .

Here Tr : WM (k) -----+ WM (IFp ) induced by the trace of the extension k/lFp and Res
is a residue at t = O.

Similarly to the n. 2.1 introduce H E WM ( k)[[f]] such that fI (-rr) =(mod p,

where iI E W(k)[[~], iI modpM = H, and set HM = HpM -1.
Consider the projection, c.f. n.1.3, N : U/C ----+ UK, where UK is the group of

principal units of the field K. Now the formula (*) of n. 2.1 is equivalent to the
following statement

Theorem. H u, v E U/C, then

(N(u),N(v» = (~<U,V>HM.

9



Proo/ 0/ theorem.

2.3. Let f E L(UK.) C OM(JC). Consider 'iVitt-Artin-Schreier extension Ef of Je
given by a solution T of the equation

faT - T =-
HM

in 0 M(JCsep ). For any T E Q we have

Let u E U/C be such that L(u) = f. Then a solution Z of the equation

M
ZP = N(u.)

defines Kummer extension of K. This extension does not depend on the choice of
u. and will be denoted by Ef. For any T E r we have

where all br E Z modpMZ.

Proposition.
In the above notation for any T E ger we have

Remark.
The embedding ger is given by the construction of the functor X, c.f. n.1.4.

2.4. Deduce theorem of n.2.2 from the above proposition.

By bilinearity it is sufficient to consider the case u = E (0' 1 fa a ), v = E (ß, fa b) 1

where o,ß E lV(k), a,b E N,(ab,p) = 1.
Consider the equation (*1) of n.2.3 for f = L(u) = oi

a
•

Let .,pK. : JC* --4' gab be the reciprocity map and T 1-+ .,pJC(v) under canonical
projection Q ---+ gab.

Then the explicit reciprocity law in characteristic p case, c.f. n.1.5, gives (in
notation of n.2.3) that

{ [

""'"'a ] ""'"' }ot n ""'"'pnb d t
ar = Tr Res HM ~ b(u ß)t t·

Remark, that
M -p ~

a) H M = HP - 1 = GoU ) for some power series Go E WM(k)[[t ]], therefore,
we can omit all terms of the above formula (*) with n > O.

10



M M-l

b) HM = GM(i P
) +pGM -1 (i P

) +... +pM-1G1(i P
) for sorne power series

GI,' .. :, GM E W M(k )[[t]). This gives skew-symmetricity of the right-hand side of
(*) as a function of pairs (Q', a) and (ß, b). So, one can rewrite the formula (*) in
the form

1
a r ='2<u,V>HM'

The cOlnmutative diagramm of n.l.4 gives iK,jK ('ljJK,(v)) = 'ljJ J((N(v)). Therefore,
(in notation of n.2.3)

(N(u),N(v)) = (b T

and our theorem follows from the above proposition.

2.5. Proo/ 0/ propo~ition n.f2.9.
It is sufficient to treat the case f = ata

, where Q' E W( k), a E N, (a, p) = 1. Let
T be a solution of the equation

---a
cd

aT-T= -­
HM

in OM(Ksep ). Then for any T E 9

2.5.1. One equivalence.
Consider the embedding j : Ksep ---+ Ro from no.1.6. This j can be prolonged

uniquelly to the imbedding

which transfonns a to Frobenius morphism of WM(Ro) (so, we can denote the
Frobenius on WM(Ro) also by a) and is compatible with the inclusion of Galois
groups ger.

Let H E W( k )[[t]) be the power series from n.2.2 and (as earlier) e; = (e;( n) )n>O E

R be such that e;(M) = (. Clearly, this means that (a- M e; )(0) = (. Therefore~ we
have the following equivalence in WM (R)

It is easy to see that we have an equality of ideals

---~
(e; - l)R = to p-l R,

in the ring R (here e is the absolute ramification index of K). Therefore,

[cl =Hp
M

mod(([e] _1)p
M

-
1
(p-l)WM (R) +p([e] _1)p

M
-

2
(p-l)WM (R) +...

... + pM-I([c] - l)(p-l)WM(R)).

11



This gives for any 0' E W( k) and a E 'N

-a ....... a

O't =~ mod(([c:]-1)pM-l(P-n-2WM(mR)+p([c]_1)pM-2(p-l)-2WM(mR)+ ...
[cl -1 HM

... +pM-l([c:] - 1)(P-1)-2WM(mR)),

where m R is the maximal ideal in R.

2.5.2. Interpretation 0/ ar in WM(Ro).

Consider an analoug of the above equation (*1)

....... a
cd

aT - T = [ ]
E -1

in WM(Ro). The last equivalence of n.2.5.1 gives

OM(j)(T1) =T2mod(([c]-1)p
M

-
1
(P-l)-2WM(mn)+p([c:]-1)p

M
-
2
(P-l)-2WM(mn)+...

... +pM-1 ([c:] - 1)(p-n-2WM(mn»,

where T2 is a solution of the equation (*2) in WM(Ro). Therefore, for any solution
TE WM(Ro) of the equation (*2) and any T E 9 we have

TT- T= ar ,

because WM(Ro){; = WM(IFp ).

2.5.3. Interpretation 0/ ar in W M(R).
V\Te use notation of n.1.7.
Remark, that

'ljJ(X) =log(l + X) mod XPZp[[X]],

where log(l + X) = X - X 2 /2 + ... - X p - 1 /(p - 1) is the truncated logarithm.
Let T be a solution of the equation

....... a
O't

aT - T = 1f'([c:] _ 1)

in WM(Ro).
By the above remark

....... a ....... a
cd at

?j;([c] - 1) = [c:] _ 1 mod WM(mR).

Therefore, T is equivalent modulo WM(mR) to some solution of the equation (*2).
This gives

for any T E 9.

12



Lemma.

Proof·
Clearly, Tl = T7f;([e]l/p - 1) satisfies in WM(Ro) the equation

....... a
aTI - sTI = at .

R is integrally closed in Ro, therefore, Tl modp E R. Now one can apply induction
on M to prove Tl E WM(R).

Let X o = T1j;([e) -1). Then X o = sTI E JM = JmodpMW(R) and satisfies the
equation

aX ....... a
--X=at
as

in WM(R).
Clearly, multiplication by 1/;([e] -1) defines a one-to-one correspondence between

all solutions of the equation (*3) in WM(Ro) and all solutions of the equation (*4)
in JM. Therefore, if X E JM satisfies (*4) and T E Q, then

T X - X = a r 1/;({e] - 1).

2.5.4. Interpretation 0/ ar in Bcris,M.
Consider a morphism

induced by the natural inclusion WeR) c B;;is'
According to the property 1.8.2 b) DM transforms solutions of the equation (*4)

to solutions Y E Fil1
B~js M of the equivalence,

um __ ...... a
-- - m _ at modSM ,

p

where SM is the ideal of B~iS Ml generated by 1/'([&] - l)p-l/p . From the property,
1.8.2 c) it follows now that every solution m of the above equivalence (*5) gives
rise to the unique solution m E Fill B:;is M of the equation

I

um ...... a
--m=o:t

p

in B~is,M' such that m = mmod SM. Now the property 1.8.3 a) gives

Tm - m = a r log[c],

for any T E Q and arbitrary solution m E Fil! B~is,M of the equation (*6).

13



Multiplying (*6) by p and taking an exponential we obtain that for every

y E (1 + Fil1 B:;is) mod pM+l B~is'

satisfying the equality

in B:;is, M +l' one has

2.5.5. Interpretation 0/ ar in W M+l (R)*.
Consider the exact sequence from lemma of n.1.7.2. This sequence gives solv­

ability in (1 + J)* modpM+llV(R) of the equation

in W M+1(R) and the cocycle {er E Zp I T E Q}, such that TZ = Z[e]C T
•

Clearly, the imbedding W(R) C B-:;is maps solutions Z E (1+J)* modpM+llV(R)
of (*8) to solutions Y E (1 + Fil1Bd;is) mod pM+l B:;is of (*7), and, therefore,

, M
ar = er modp Zp

far any T E y.
2.5.6. Relation to Kummer theory.
Let Z E (1 + J)* mod p M+l W(R) be some solution of (*8) in WM+l (R). Then

in WM+l(R).
The power series E(0:, X) from n.1.2 satisfies the following identity

~ ~ ~ M............P ~ ~

Take t 1 E WM+l(R), such that t = t 1 modp ,at} = t} and Ti} = t1 for any
T E 9 (such element i;. cau be constructed similarly to t in the lifting OM+l(K)
and then one cau take t = i; modpM).

Now the above identity gives an equality

Therefore,
pM ...... a

Zl = ZE(a, t 1 )

for Zl = (a- MZ)E(a- M
Q', O'-Mi;ß), because a is bijective on WM+l(R).

14



For every T E 9 we have

Consider the homomorphism of rings r : W(R) ~ Oe;, from n.1.7.1. This r
induces the homomorphism

and, clearly, rM+l(Z) = 1 mod pM+10k ,rM+l(E(a, ~a)) = N(E(a, i;'a)) mod pM+10J?,
rM+l(a-M t--;a) = 7rM mod pM+10x , c.f. n.1.3, and rM+l ([o--M eD = (mod pM+10k.

Therefore, if W E 0i< be such that 'YM+l (Zl) = W IllOd pM+I0k , then

wPM =E(a,7r a )mod pM+lOk

and for any T E gone has

Obviously, this implies that !(ummer extension

has a cocycle (T Z)Z -1 = (C T
• Proposition is proved, because ar = er fiod pM Zp,

c.f. n.2.5.5.
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