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Wir zeigen: Sei U ~ Rn offen und zu je zwei Punkten P und Q gebe es einen
Weg c : [a, b] -+ U mit c(a) =P und c(b) =Q. Weiter seien Ib 12 : U - R zwei
Funktionen mit grad ft = grad 12. Dann gibt es ein k E R mit h = 12 + k.

Beweis. Wir definieren eine Funktion h : U - R .durch h := ft - 12. Dann
gilt wegen der Voraussetzung grad h = O. Zu zeigen ist, das h == k rur
ein k E R gilt. Dazu betrachten wir zwei beliebige Punkte P, Q E U und
einen Weg c : [a, b] - U in U ·zwischen P und Q. Die Kettenregel liefert
wieder

(h 0 c)'(t) = (grad h(c(t)), c'(t)).

Wegen grad h = 0 ist nun (grad h(c(t)), c'(t)) = 0, also hoc konstant.
Daraus folgt, daß h(P) = h(c(a)) = h(c(b)) = h(Q) gilt. Also ist für
beliebige Punkte P, Q E U gezeigt, daß h(P) = h(Q) gilt, also ist h
konstant.

A.6 Stammfunktionen zu Vektorfeldern

Es sei U eine Teilmenge des Rn und F : U - Rn ein gegebenes Vektorfeld.
Eine Funktion <P : U - R mit grad <P = F heißt Stammfunktion zu F.

Uns interessiert nun, wann es solch eine Stammfunktion gibt. Dazu betrach­
ten wir zunächst folgenden Spezialfall:

• Es sei n = 2 und F gegeben durch die Funktionen I, g : U - R. Nehmen

wir an, es gebe eine Funktion <P mit grad ~ = F, also F = (-i!; ,l!;).
Dies bedeutet, daß gerade f = ~ und g = ~ ist. Dann ist aber

~ ßi"i
!lL ~ tP _ ~ 8~~ 1 •
~ =~ und 8%1 =~. Wenn nun ~ von der Klasse C 1St, dann
. ~ 1r;___ . .!lL ~
Ist~ = ~, also gJlt dann 8%2 = 8%1'

Analo~ zei~t man allgemein: \Venn es ein <P E Cl mit F = grad tjI gibt, dann
gilt ~ = U; für alle i, j.

Wir können uns nun fragen: Wenn umgekehrt *=U; gilt, gibt es dann
eine Stammfunktion ?

Die Antwort liefert der folgende

Satz. Es sei ,U ein Rechteck im Rn, d'h( j~n)kartesiSChes Produkt von offenen

Intervallen in R. Weiter sei F = L :U - Rn mit fi : U - Reine

differenzierbare Funktion mit *=U;. Dann gibt es eine Stammfunk­
tion r/>: U - R mit F = gradtjl.

Beweis. \Vir führen den Beweis für den Fall n =2 mit ft =1 und h =g. Im
allgemeinen Fall schließt man ganz analog.



Abstract. In this expository article we analyze a new method which was recently devised to

construct smooth loeal stable manifolds for certain infinite-dimensional dynamical

systems. Some of those systems are associated with nonlinear Klein-Gordon equationB in

one space dimension. They are characterized by the f&ct that the corresponding linearized

flow has a spectrum whieh may consist of either a purely continuous part, or of a eon­

tinuum of eigenvalues, or of the union of a point spectrum with a continuous spectrum in

which the point spectrum is everywhere.dense. The major difficulty to overcome in our con­

struction is thereby a small divisor problem; we resolve it without using KAM - or related

techniques. A corollary to our main result is the existenee of spatially localized time-quasi­

periodic cla.ssical solutions to nonlinear Klein-Gordon equations on IRt x IR . The set of

Fourier exponents of such 8Olutions posse&ses a preassigned integer basis consisting of

finitely many rationally independent frequencies.

1. Introduction and Qutline. There are at least two weIl known techniques to construet

stable manifolds of dynamical systems around an equilibrium point. The first one is the

geometrie method of Hadamard ([1] J [2]) , while the second one is the celebrated fixed

point method of Liapounov and Perron ([3] - [6]) . Hoth have been widely used by ma­

ny authors in variOUB contexts, which includes the stability theory of nonlinear parabolic

and hyperbolic partial differential equations ([7] - [16]) . In both cases a detailed know­

ledge of the spectrum of the linearized flow ia necessary. TypicallyJ the 8pectral information

is used to show that the nonlinear flow behaves locally a.s its linearized counterpart, at

least in the stable and unstable directiotlB. Moreover, in most applications the success of

the two methoda has mainly been the fact that the spectrum of the linearized flow possesses

nice separation properties. However, there are imponant claases of problems for whieh the

spectral properties of the linearization are not niee from the point of view of dynamical

system theory. It ia the purpose of this ahort expoaitory article to describe such a dass of

problems, and to show that one can nevertheless still construct appropriate stahle
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manifolds for them.

Consider for instance nonlinear Klein-Gordon equations of the form

(1.1)

where (x,t) E orÖ )( IR and g: IR --+ IR • Equations of the form (1.1) OCCUI in various con­

texts, such aB in the description of wave propagation phenomena in superconductors, ferro-

magnets and nonlinear optics (with g(u) = sin(u) or g(u) = sin(u) + sin(u/2)) , in the

theory of dislocation of crystals (for example with g(u) = u - u2 - u3 ) and in the classi­

cal modelling of certain phenomena in fieId theory (with g(u) = u3_ u ) ([17] - [21]) .

Suppose now that we fix an N EW n [2,(0) , and that we" preassign a rationally indepen­

dent set of frequencies {wl""'wN} CIR/{O} , In view cf the above applications of equation

(1.1) , it ia then imponant and natural to ask whether there exist auitable restrictions

concerning the nonlinearity g, in such a way that equation (1.1) possesses classical BoIu­

tions of the form

u(x,t) N 1: uk(x)exp [i'\i]

kEZN

(1.2)

(Throughout tbis articleJ ihe tilda refers to the formal Fourier series associated with the

function on the Ieft-hand side), In relation (1.2), we require thai the Fourier senes even­

tually converges in some appropriate topology, that x --+ uk(x) decays exponentially
, N

rapidly for every k, and that '\ = 1: klWl for some kl E Z , In other words, we are

l=1
Iooking for spatially localized classical solutions to equation (1.1) wbich are time-qua-

siperiodic, with the property thai the corresponding set cf Fourier exponents be
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generated by {"'I"""'N} over Z. From the mathematical viewpoint tbis problem has

had a relatively short history, and we refer the reader to ([22] - [25]) for a description

of its physical origins in the periodie eaBe. One may reasonably ask whether there is any

connection at all between the above problem and the construciion of stahle manifolds in

the presence of small divisors. The answer is affirmative for the following reason: there is

first a very natural way to go about solving the problem of existence for solutions of the

form (1.2) to equation (1.1). It amounts to exploiting the deep connections between

almost-periodic functions and periodic functions of several variables, as was first brought

about in the beautiful works of Bohr [26]. For j = 1, ...N ,let T· = 2r I"'.1-1
be the

J J
periods associated with each one of the frequencies w', and consider the N-dimensional

J
N

torus TN =n IR/TjZ . Consider then the infinite-dimensional dynamical system

j=l

(1.3)

on IRÖ)( TN ' where we have defined

(1.4)

We claim that the problem of constructing solutions of the form (1.2) to Problem (1.1)

is then essentially reduced to constructing a stable manifold for the dynamical system

(1.3) , in an appropriate Banach space of multiperiodie funetions on TN . In fact, suppose

that



and
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N

U(x,tl'...tN) N l Uk(x)exp [i l /IIjkhJ

kEZN j=l

N

V(x,tl',.,tN) N l U~(X)exp [i l /IIjkhJ

kEZN j=l

(1.5)

(1.6)

denotes a solution pair lying on such a manifoldj by definition, it then exists globally for

every x and exhibits a behaviour with exponential decay. Moreover, the function given by

(1.5) is formally a solution to the partial differential equation

(1. 7)

since (1. 7) is formally equivalent to system (1.3) . Consider then the section of the func­

tion (1.5) by the main diagonal on TN , namely

u(x,t) = U(x,t,."t) N 1: Uk(x)exp [iOkt]

kEZ N
(1.8)

It is then dear that u formally solves equation (1.1), since the formal Fourier series of

(x,t) --+ Utt(x,t) and of (x,t) ---+ 0 NU(x,t1· ..tN) It
1
=t

2
=".=t

N
=t are the same, namely

uu(x,t) = 0 NU(x,tr ..tN) It
1
=t

2
= ...=t

N
=t N l - o~ Uk(x)exp [iOkt]

kEZN

(1.9)
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In the remaining part of this article it is our intention to show that the above ideas can be

implemented rigorously. In Section 1, we prove that the spectrum of the linearization of

(1.3) around the desired equilibrium solution consists of the union of a point spectrum and

of a continuoUB spectrum in which the point spectrum is everywhere dense. This fact is due

to the rational independence of the wj's, and lies at the very source of the small divisor

difficulty. We are nevertheless able to formulate a stable manifold theorem for system

(1.3) , whose proof we briefly outline. We finally state a corollary concerning the existence

of solutions of the form (1.2) to equation (1.1) . Section 3 ia devoted to the discussion of

an open problem.

2. A Stable Manifold Theorem for System (1.3) in thc Presence cf Small Diyisors.

Consider equation (1.1) or system (1.3); we shall assume that the nonlinearity g satis­

fies the following hypothesis:

(G) g: IR ---i IR ia entire analytic and there exists 110 E IR such g(uo) = 0 and g' (uo) > O.

Now wriie 'lf(TN, CI:) for the Banach algebra of all complex continuous functions on TN

equipped with the uniform norm. In order to investigate system (1.3) and contral the

small divisors associated with the corresponding spectral analysis, it is necessary to intro­

duce a family of Banach spaces on TN which carry stronger topologies than that of

~(TN' <C ) . Trus motivates the following

Definition 2.1. Let s E 1R6 ; we define B(s) (TN, <C) as the set of all U E tß (TN, <C)

such that the corresponding multiple ~ourier series

N

U(tl'...tN) N I Ukexp [i I IIIjkh]
kEZN j=1

(2.1)
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converges in the sense that

lIulls=lIUkl(l+IC\ls)<CD

kEZN

N

where C\ = l kj"'j.
j=l

In relations (2.1) and (2.2) , the Fourier coefficients Uk are given as usua! by

Tl T N N

Uk = Tl- Tj -1 Jdtr "" JdtN U(tr-"tN)exp [-i ~ I&Ijkh]
j=1 0 0 j=1

(2.2)

(2.3)

It is t.hen clear that B(S) (TN'~) becomes a complex Banach spare with respect to the

UBual pointwise operations and the norm (2.2). We then define the phase space associated

with system (1.3) as B(() = B(l) (T
N

,() e B(O) (T
N

,() , and we write

(U,V) ---+ II(U,V)1I1 0 = lIull l + IIvllo for the corresponding norm. Finally, we write,
B(IR) = B(1) (T

N
,IR) EI B(O) (TN,IR) for the real component in B((). The main result of

this article is then the following

Theorem 2.1. Assume that g satisfies hypothesis (G); for every l/ E [0, J g' (uO)) ,

define rno(v) = (g' (uo) - v 2)1/2 " Then there exist constants k E [1,m) , EO E (O,m) • a

Banach subspace M lI of B(IR) and, for every e E (O,eoJ , an open spherical neighborhood

A'E/2k of radius (2k)-IE centered at the origin of B(IR) , such that the following

conclusions hold:
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(1) For every 1/ E f e/ 2k nMV , there exists a unique (U(1/),V(1/)) E f e ' and a unique

x -+ (U(x,1/), V(x,1/)) E ~(1)(1R!, B(IR)) satisfying the Cauchy problem

(2.4)

-
U(O,1/)(t1·.. t N) = U(1/)(t1···tN) + uo

(2.5)

-
Ux (O,1/)(t1···tN) = V(1/)(t1···tN)

(2) The exponential decay estimate

(2.6)

holds for every x E IRt.

(3) The set

(2.7)

is in fact a ~(1)-Banach manifold in B(IR) , tangent to M lI at the origin.

Remarks. (1) Theorem 2.1 is a typical stable manifold statement: it asserts that for a very

special set of initial data in B(IR), namely those on the manifold vi~, there exists a
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unique classical solution to Problem (1.3) which exists globally in x E IR! ' and which

enjoys the exponential decay estimate (2.6). Moreover, the rate of exponential decay is

explicitly known: it is the quantity lUo(V) = (g' (uo) - v2)1/2 . We see here aposteriori

the necessity of having assumed g' (110) > 0 . In many physical applications one refers to

g' (uo) > 0 as the positive mMS term, a terminology borrowed from relativistic quantum

mechanies and quantum field theory ([20], [21]) .

(2) In spite of the formal equivalence between system (1.3) and the partial

diHerential equation (1.7) , we may not assert that the function (x,t1'." tN) --+

U(X,fl)(t1' ...tN) of Theorem 2.1 provides a classical solution to the second-order equa­

tion (1.7). All that we can assert is that the function x --+ (U(x,l1), V(x,fJ)) provides a

classical solution to the first-order system (1.3). However, we shall see that the section of

(x,t1... tN) --+ U(x,fJ)(t1...tN) by the main diagonal on the torus does provide a classical

~(2)--solution of the original equation (1.1) (compare with the statement of Corollary

2.1 below).

(3) The exponential decay estimate (2.6) implies that (U(X,l1), Ux{x,fJ))

converges strongly to the equilibrium (uo,O) in B(IR). We shall see exactly what tbis

mea.ns for equation (1.1) in Corollary 2.1.

Sketch of the Proof of Theorem 2.1. Without restricting the generality we may assume

that Uo = 0 ; the linearized system a8sociated with (1.3) is then

(2.8)
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80 that the infinitesimal generator of the linearized flow is formally given by

L(U,V) = (V, 0 NU + g' (O)U) (2.9)

If we realize L as a linear operator on the dense domain

D(L) = B(2)(TN,() x B(I)(TN,G:) in B(G:), we then obtain

Statement (Al. L generates a ~(O)-group {W(x)}xEIR on B{G:); moreover, the spec­

trum of L is

and consists of the union of the countable point spectrum

0'P(L) = {~ E (: ~2 = g' (O) - ~ , k E 7lN}

with the continuous spectrum

Moreover, O'p(L) is everywhere dense in o-(L).

(2.10)

(2.11)

(2.12)

The proof that L generates a ~{O)-group (and not merely a semigroup) follows from

standard arguments (this of course means that (2.8) can be solved for

(x,t, ... tN) E IR x TN ' a.nd not merely for (x,tl' .. tN) E IRÖ x TN ). It is also

straightforward to show tha.t O'p{L) is the point spectrum of L; however, since

{"'l'''''''N} is rationally independent, the set {p E IR : p = '\, k E 7lN} is everywhere
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dense in R by Kronecker's theorem of number theory [27]. It follows that O'p(L)

cannot be the whole spectrum of L. In fact, independent arguments show that the

resolvent set of L is p(L) = 4: - o{L) , 80 that the dosure of O'p(L) in the complex plane

is O'p(L) = o{L) . Finally, the fact that the complementary set of O'p(L) given by (2.12)

identifies with the continuous spectrum follows from an elementary Fourier analysis of the

resolvent operator in B((). •

Now let 1II • 111
00

. denote the usua! operator norm on B((). The following statemen~

is the comerstone of the entire construction.

Statement (B) . For v E [0, J g' (UJ) as in Theorem 2.1 , the linear operator

N

)( exp [i 1: Wjkh]
j=l

(2.13)

is a projection operator on B((). Moreover, for rUo(v) as in Theorem 2.1 (with

110 = 0) , and for the linearized flow {W(x)}xElR ' there exists Cl > 0 such that the esti­

mate

holds for every x EIRÖ ' and there exists c2 > 0 such that the estimate

111 W(x)(I - pli) I 11 00 ~ c2exp [-rO(v)x]

(2.14)

(2.15)
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holds for every x ERa .In relation (2.15) , I denotes the identity operator on B(G:) .

The proof of Statement (B) follows !rom the fact that the action of {W(x)}xElR on the

trigonometrie polynomials ean be determined explicitely, and !rom a eareful analysis of the

frequency domain to control the small divisors around the resonant value J g' (0) . In

fact, we can already see such small divisors lurlring in expression (2.13) since, because of

the linear independence of {"'1"" "'N} over ~, '\ can become arbitrarily close to

J g' (0) . Expression (2.13) thus provides an aposteriori meaning for the parameter

v E [0, J g' (Ö») of Theorem 2.1: it is a cut-off parameter which prevents ~ !rom

getting arbitrarily dose to g' (0) . This and the very special topology of B(() induced by

the norm (2.2) then allow one to prove the basic estimates (2.14) and (2.15). We refer

the reader to [13] for complete details. •

Remark. Although system (1.3) is eventually analyzed for (x,t1.. ·tN) EfRt )( TN ' it is

essential that {W(x)}xEIR be a group for Statement (B) to hold; indeed, notice that x

is non positive in relation (2.15), 80 that {W(x)} may blow up exponentially on

Ran (I - Pv) . Thie fact is crucial to the construction of the manifold .Jt; oI Theorem

2.1 . On the other hand, {W(x)}xElR decays exponentially on MV = Ran pV
, and in fact

leaves tbis suspace globally invariant. It is then natural to call MV the linearized stable

manifold as80ciated with systems (1.3) and (2.8). MV is oI course the Banach subspace

alluded to in the statement oI Theorem 2.1.

From statements (A) and (B) we can then obtain the conclusion of Theorem 2.1 upon

using a suitable refinement of Perron's fixed point method along with the technique oI

exponentially weighted Banach spaces of maps developed in [11] . •
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Remark. The reason for which we assumed the analyticity of g in Theorem 2.1 is that it

ia not possible to represent equation (1.1) aB a weil-defined dynamical system on B(() if

g satisfies only weaker differentiability propenies. This has to do with the fact that

B(O)(TN,G:) , the right--eomponent of B((), is the Banach algebra of all functions

U E ~ (TN,IR) which POSseBS an absolutely and uniformly convergent Fourier series (take

relation (2.2) with s = 0) . In order to make system (1.3) weil defined on B((), the

analyticity is then forced upon U8 by the Wiener-Levy theorem of harmonie analysis

[28] . However, it is naturally conceivable thai one can prove a stable manifold theorem

such as Theorem 2.1 with only weaker differentiability properties for g in choosing a

different phase space. How one cau possibly do that and simultaneously salve the above

small divisor problem remains an open problem.

Theorem 2.1 implies the following result for equati.on (1.1) through the section method

deseribed earlier.

Corollary 2.1. The hypotheses and the definitions concerning {wl'u.wN}, g ,110, 11 ,

and rno(v) are the same as in Theorem 2.1. Let (Ü( ,,), V(1])) E.i(~ and write

- -
11(1]) (resp. v(,,)) for the aection of U(,,) (resp. V(,,)) by the main diagonal on TN , that

ia

and

-
t ---t n(7])(t) = U(7])(t, ... t)

-
t ---t V(1])(t) = V(7])(t, ...t)

(2.16)

(2.17)
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Then there exists a function (x,t) --+ u(x,t J 7]) E ~(2) (IRÖ )( IR, IR) which satisfies the

Cauchy problem

U t t (x,t) = uxx(x, t.) - g(u(x,t» J (x,t) ER1; )( IR

u( 0, t) = n ( 7]) (t) + 110

Ux ( 0 , t) = V( 7]) (t )

Moreover, the exponential decay estimates

(2.18)

sup lu (x,t,1]) I ~ c exp [-r (II)X] (2.20)
tEIR x 110

hold for every x E lRÖ . Finally, t --+ u(x,t,7]) is quasiperiodic for every x E1R1; , is not

constant for every x E IR+ if t --+ n( 7])(t) is not constant, and the set {w1,... wN }

provides an integer basis for the set of its Fourier exponents.

Sketch of the Proof of Corollary 2.1. Let x --+ (U(x,1']), V(x,7])) be the unique classical

- -
solution to Problem (2.4) - (2.5) corresponding to the initial datum (U( '7),V( '7)) . We

ca.n then prove that the section (x,t) --+ u(x,t,1]) = U(x,7])(t, ... ,t) possesses all of the

required properties. •

Remark. A technique similar to that used to prove Theorem 2.1 can be used to deal with

dynamical systems whose linearization has a continuous spectrum or a continuum of eigen­

values. Such situations occur for instance in some questions of parabolic stability [10] , or

in the construction of spatially localized time-almost-periodic solutions to equation (1.1)
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when the basic frequencies {w1"""'N} are not apriori specified [11] .

We devote the last section of this article to the diScu8sion of an open problem.

3. Qn the Structure of Spatially Localized Time=:Quasiperiodic Solutions to Eguation

M. In Corollary 2.1, we have shown that at least same exponentially localized time­

quasiperiodic aolutions to equation (1.1) can be generated by taking the diagonal section

of multiperiodic solutions to system (1.3). In tbis context, there is an interesting question

motivated by a beautiful structure theorem of Bohr ([26] ),( [27]) ; that theorem asserts

that~ Bohr almost-periodic function can in fact be viewed as the diagonal sedion of

same appropriate multiperiodic function, which may of course depend on infinitely many

variables when the given almost-periodic function ia not quasiperiodie. In particular, it is

then natural to ask whether every exponentia1ly localized time--quasiperiodic solution of

small norm to equation (1.1) with preassigned basis {w1"""'N} ia the diagonal section of

some multiperiodie solution to (1.3), or the diagonal section of some multiperiodic solu­

tion to same appropriately constructed dynamical system on IRt)( TN . We have been

able to find neither a proof nor a counterexample. Qf course, we can also formulate the

above question in more general terms. We leave it to the imagination of the reader to for­

mulate such questions.
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