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Symrnetries of surfaces

Ravi S. Kulkarni*

§ 1 Introduction (1.1) Let Lg denote a compact orientable

surface of genus g. Without explicit mention we shall only

consider the effective and orientation-preserving actions of

finite groups ,G on Lg
. For brevity we shall simply say

that G acts on Lg or that G is a symmetry -group of Lg .
The cases g=O and 1 are well-known. For the latter case

cf. for example [3], ch. 19. So henceforth we shall·also assurne

g~2 • In this case it is well-known that each \' admits onlyLg

finitely many symmetry groups. Some experimentation shows how-

ever that their enumeration runs into difficult nurnber-theoretic

and finite-group-theoretic problems. In this note we investigate

the problem in the reverse direction, namely we fix a finite

group G and attempt an enumeration of those gis for which

G is a symmetry group of Lg . It turns out that the 2-Sylow

subgroup G2 plays a special role. According to a certain struc-

tural property of G2 , cf. (2.2) , GiS are divided into two

n
types I and - II ._+f ., P is the order of a p-Sylow sub-

e
graup Gp af G and p p is the exponent of G then thep

integer n -e is called the cyclic p-deficiency of G .
P P
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(1.2) Main Theorem Let G be a finite group. There exists

an integer N depending only on the cyclic p-deficiencies of

G with the following property.

1) If G acts on Lg then ga1 (N), (resp. (2N)), according

as G i5 of type I (resp. 11).

2) Conversely, if G is of type I, (resp. 11), and ga1 (N),

(resp. (2N), then G acts on Lg except for finitely many

exceptional values of g.

For the definition of N see (2.1). The exceptions men-

tioned in 2) depend on the solv~bility in non-negative integers

of a certain linear diophantine equation. This equation depends

in an essential ~~f:~n tne 'structure of the group.

( 1 .3) The methodof-proof of (1.2) combined with some ":

results fr~rn the finite""group th~ory provides"" some .P"~~9.~.~e in- I:

formation- on-·""surface-symmetri~a.,.The sophisticatec::I;;.:r:~ult"s from
- &... -~-

the finite group theory which we mention follow easily fram the

classification of finite simple groups. But partly they were in

fact some of the initial steps in this classification program.

(1.3.1) G i5 a symrnetry group of almost all (i.e. all but

finitely many) Lg iff Gp is cyclic for p edd and G2 is

cyclic, dihedral, generalized quaternion er semi-dihedral.
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Curiously, the family of groups nenfioned is.thls state-

ment includes the finite subgroups of 50(3) and 5U(2) , the

finite groups acting freely on complexes homotopic to spheres,

the semi-direct products of two finite cyclic groups of co-prime

orders etc. The only perfect groups among these are 5L2 ~ ).q

(1.3. 2) The only simple symmetry groups of ~ ,g even, comeLg

from

a) three infinite families . i) P5L 2 ~q) q odd ;;: 5. , ,

ii) P5L 3 (Fq) , q a -1(4) , and i1i) P5U-3 (Pq) , q !I 1 (4) ,

and

b) two special groups i) A7 , and 1i) M11 .

Ta get an overall understanding of the simple "symmetry

groups of Lg it is useful to consider the subsets S(r) =

{g I9 + 1 (2 r )} . We have S (1) ~ S (2) c..... and the result

mentioned above refers to 9 € S(1) For each fixed r the

simple symmetry groups of Lg ' 9 E S(r) , again come from .­

i) finitely rnany infinite families of Lie type where the con-

gruences on q are dictated by the fact that the cyclic ", "

2-deficiency is bounded by r , and ii) finitely many alter-

nating, sporadic and other classical groups.

(1.4) Besides the structural properties of p-groups acting on

Lg which follow from (1.2) we also derive bounds on thelr
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order by a Hurwitz's-type analysis, cf. (3.5). The bounds for

p-groups are substantially better than Hurwitz's 1184 (g-1)1I

which applies to all symmetry groups of E· · This considerab~y
9

narrows down a list of possible p-groups acting on "~, and in

certain cases actually leads to their classification. (For

example the p-groups acting on L2 are Z3'Z5 and subgroups of

SD 16 ; those on l4 are Z3'Z5'Z9'Z3~Z3 and subgroups of

It seems possible. to carry out the classification of

simple groups or p-groups acting on 1.g for small values of g ..

(1 .. 5) There are some purely finite-groups-theoretic consequences

'of this method. So far, they have been rather elementary but

their "geometricll proofs are intrigu~ng.. ~or example

(1.5 .. 1).A finite perfect group i5 of type I ..

This result appears to be new .. D.Gorenstein pointed out

to me a purely group-theoretic proof of (1.5.1) using transfer.

It appears that certain arguments in finite group theory can be

interpreted geometrically in terms of realizability of a branch-

data for a finite-group-action on a- surface .

•
(1.6) A hist0rical note: The first results on surface-symme-

tries (g ~ 2) are due to Schwarz, Klein, von Dyck and Hurwitz.

Perhaps the most celebrated among these is the Hurwitz's "84(g-1)

t!leorem 11 cf. [6 ] ..PartialJ.y more .precisely Wirnan [1 9'] ,- 2a-j~ showed

that a cyclic symmetry,group of I 9 has order at .most 4g+2 and

the bound 1s attained for each.. g. Accola [1-J and Maclachlan [1 3]
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independently showed that 8g+2 is the minimum of the max IG]

where G is a symmetry group of Lg ' and for infinitely many

g this is actually the max [GI also. The Hurwitz's bounds are

attained for infinitely many g , but the genera for which they

are attained are very thinly distributed cf. [11], [8]. There

is a vast literature. on surface-symmetries expressed in the

language of fuchsian groups, cf. e.g. [4], [8], [11], [12], [17]

and the references there. The ubiquitous PSL2 'S abundantly

make their appearance in this literature. Nielsen cf. [15] ob-

tained a topological classification of cyclic· symmetry groups.

This work i5 partially extended in [5], [18]. The algebraic

geometers have studied surface-symrnetries in the context of

automorphism groups of function-fields in one variable cf. e~g.

[9], [10], [19], [20]. Surface-symmetries also account for the

singularities of the moduli spaces of Riemann surfaces, [7], [16].

(1.7) Acknowledgement I would like to thank Professo~Gorenstein

and Lyons for sharing their insights in finite simple graups.
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§ 2 Congruences satisfied by the genera

( 2 • 1 ) Let G be a finite group of order d. Let ö

(resp. ö) denote the set of all primes dividing d (resp.

prime-powers q such that G contains an element of order

q) .Let Gp denote a Sylow p-subgroup of G. The maximum of

the orders of the elements of Gp is called the p-exponent

of G. Throughout we write IGpl =
np and the p-exponent =p

ep The number n -e i8 called the cyclic p-deficiency ofp . p p

G . Set

P i8 odd, or .p"= 2 & n
2

= e 2
(2.1.1)

and

(2.• 1 •. ;2)

n - e , . if
PP": -.

n 2 - 8 2-1 I if p=2 and

(2.2) A finite 2-group G is said to be of~ I if it is
e

either cyclic er else the elements of order < 2 2 da not form

a subgroup cf index 2. Otherwise G 1s said te be of type 11.

In ether words G is of type 11 if it is not cyclic and

there exists a homomorphism ~:G ~ Z2 = {0/1} such that

1 e 2 1
~- (1) consists of elements of order 2 .and ~- (0)

e •
consXsts of elements of order < 2 2. More generally a fin! te

group G will pe said to be of type I (resp.II) if Gz Ls

of type I (resp. 11).

(2.3) Theorem Let G be a finite group. Using the notation

and terminology introduced above we let S denete the set

of all integers ~ 2 and s 1 (N) (resp. (2N» if G is of
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type I (resp. 11). Then

a)

b)

G act s on L' , g ~ "2 ~ g E Sg

For all but fini tely many g ES, G acts on Lg •

(2.4) The proo~ of (2.3) is divided into several parts.

First note that if G

same h. Let p:Eg ~

and call

acta on Lg than G....... rg~ R:l Eh for

Lh denote the canonical projection

(2.4.1)

the singular set of the G-action. The sit B = p(S) is

called the branch set of the G-action. For x E Band any

-1
y E p (x) the integer n x = IGy I is called the branching-

index at x. The well-known Riemann-Hurwitz relation reads

(2.4.2) 2 - 2g = d {2 - 2h - L
xEB

(1 __1 ) }
nx

(2.5) First consider the case when G is a p-group. Write

n,e, f for n, e ", f respectively. If G ac.ts". on Eg andp p p

there are a j branch points of branching index pj then

(2.4.2) takes the form

(2.5.1)
n e

2 - 2g = P (2 - 2h) - L
j = 1

This shows that if p is odd then n-ep divides g - 1 and

if P = 2 and n > ethen n-e-12 divides g - 1. By the

definitions of fand N it follows that g 5!1 1 (N). In the

general case when G is not necessarily a p-group the s,arne
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result follows from the existence of Sylow p-subgroups

and the Chinese remainder theorem.

(2.6) Now suppose that G is a 2-group of type II •

We again write n,e,f for n 2 ,e 2 ,f2 respectively. By

(2.5) we know that g ii 1 (2 f ). Our claim now is that in

fact g a 1 (2 1+f). Suppose this is not the case i. e.

g ~ 1 (2 1
+

f ). Then (2.5.1) shows that a e is odd. By

the well-known description of finite~group action5 on

surfaces going back to Hurwitz cf. [3] p. 420 it follows

that a necessary and sufficient condition for the

existence of such aG-action is the existence of generators

u; ,v.
~ ~

that

1 ~ i :Si h and

has order

X j k' 1 :;;; j ;S e, 1;S k :Si a j

2 j and

of G such

(2.6.2)
a·
f3T
k=l

= 1.

By hypothesis there exists a homomorphism ~:G ~ ~2 = {0,1}

such that ~-1 (1) consists of elements of order 2e whereas

~-1 (0) consists of elements of order < 2e . It is also

clear that ~-1 (0) contains all commutators. But now

. applying ~ to both sides of (2.6.2) and noting again that

a e 15 odd, we clearly get a desired contradiction. This

proves the part a) of (2.3).

(2.7) Now we proceed to prove the part b) of (2.3).

For ·nE 6. set n' = d/n. The forrnula (2.4.2) suggests

considering the diophantine equation
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L . (n - 1 ) nix + 2dy = 2 ( z - 1) + 2d
n€~ n

to be solved for xn,Y and z in non~negative integers.

The g .c··.d. of the coefficients of the L.H.5. of (2.7.1)

is N if n 2 = e 2 and 2N if n 2 > e 2 · 50 for a solution

of (2.7.1) we roust have z a 1 (N) . It is an elementary fact

fram number theory that if g B 1 (N) and is sufficently

large then (2.7.1) with z = g can be solved for xn and

y in non-negative integers , or more generally xn and y

can be chosen to be greater than some fixed values. It

would suffice to show that if z = g, X = a y = h is such
n n '

a solution of (2.7.1) I and g € S I then we can choose

..

the elements u i I vi I X 1 I X 2 I • • • I X I 1 Si:;;; h,n E ß inn n nan
G so that (2.6.2) holds. The lower bound for the values of g,

and an needed for this purpose will be indicated in the

course of the proof.

(2.8) First set u i = vi = 1. Next note that G certainIy

admits a set of generators whose orders are prime-powers.

If {e" ..• ,es } is such a system we make sure that (2.6.2)

-1 -1 -1 econtains a segment of the form e,e1 e 2e 2 ••• eses

In this pracess for each n E ~ we have used 0 or 2

slots out of the a ailowable siots.
n

(2.9) Now suppose n is apower of an odd prime p. If

is even then we again insert segments.af the form -,
u·u

in (2.6.2). If an is odd , then we assurne that an '= 5. So

after possibly using 2 slots for the procedure described in

laNote that the order of the factors in (2.6.2) is immaterial.
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(2.8) at least 3 slots remain. Now note that an element

of order pr, p = an odd prime, can always be written

as a,.,product of two elements of order pr. So the remaining

slots can be filled in by a segment of elements of order

n whose product is identity.

(2.10) Now let n be apower of 2. Let G2 be a

5ylow 2-subgroup and write r = IG21 and s:= the 2-expo~ent

of G. We need to consider 3 cases.

Case 1) r = s: Then G2 is cyclic. The coefficient

of in (2.7.1) is odd, and it is the only odd coefficient.

So a r must be even. In G2 any element of order < r

may

some

be written as product of two generators of

a t ' t = 2
j

< r i5 odd we use two slots in and

one in to insert in (2.6.2) a segment of three elements

(one of order t and two of order r) whose product is

identity. The remaining a t - 1 slots may be filled by

-1
u · u -type segments. This proces s repeated for each

t = 2 j < r takes up only even number of s lots in

(So we need to ensure that a r is sufficiently large for this

purpose) . The remaining of the a r siets may be filled by

-1u·u -type segments.

Case, 2) r > s, G of type 2: Then by choice g ~ 1 (2N)

and so is even hence the process described in case 1

may be repeated.

Case 3) r > s, G of type 1: If is even, again

we can preceed as above. So suppose a r is odd. This
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occurs precise ly when g" a 1 (N) but g. 1 (ZN). Let P

be the subgroup of GZ generated by elements of order <r.

Clearly P is normal and G2/P is an elementary abelian

2-group. If P =G2 then an element of order r can be

expressed as a product of elements of order < r. So we

can use one slot in a r and certain o"thers in a t , t = 2 j <r

to be filled by a segment of elements (one of order rand

the others of order< r) whose product is identity. If

P *GZ then it has index at least 4. So it is possible to

express an element of order r as a product of two elements

of order r. Thus we can use 3 slots in a r to be filled

by element$ of order r whose product is identity. In any

case there are even number of slots remaining in a r • So

we can proceed further if necessary as in case 1).

This finishes the proof of the theorem (Z.3).

(2.11) Remark: For a precise enumeration of g such that G

acts on Lg we shall need to solve the equation analogous to

(2.7.1) where 6 15 replaced by the set of all orders of

elements of G.
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§ 3 Applications

(3.1) Proposition Let G be a symmetry p-group of Lg ' and

Pf (g-1) ·

a) If P is odd then G is cyclic.

b) If P = 2 then G 1s cycl~c, dihedral, generalized

quaternion or semi-dihedral.

(Recall. tha.t l;1y;:de:~inition, a dihe<i"ral groupl

2n 2 -1-1D n+1= <x,Ylx = e = y , yxy = x >, n~1 ,
2

a generalized quaternion group

2n 2n - 1 2 -1-1
Q n+1= <x,y]x = e, x = y , yxy = x >

2

a semi-dihedral group

, n;;:2

2 -1 2n - 1_1
y ,yxy = x >, nii:3 ,

and a twisted dihedral group

nii:3 .)

..

Proof The hypotheses inply that in the nota~ion of (2.1f

f =0 • Sop
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G has cyclic deficiency 0 if P 15 odd and ~1 if p=2 .

So is cyclic for p odd. The 2-groups with cyclic defi-

ciency ~1 are well-known. Besides those stated in the propo-

sition they are Z ED Z2 , n;;:2 and S*D n+1 , n~3 . A calcu-
2

n 2
lation for both of these types shows that they are of type II ,

and, so by (2.3) they cannot act on Lg
, if g is even.

q.e.d.

(3.2) Proposition Let G be a p-group acting on and r
p

the highest power of p dividing g-l . Then the cyclic defi-

ciency of G is ~r if p i8 odd, and sr+1 if p=2 . In

particular if G is an elementary abelian p-group of rank s

then s~r+1 if p i8 odd, and ~r+2 if p=2 •

Proof The first assertion follows immediately from (2.3). If

G is an elementary abelian p-group of rank s then its cyclic

deficiency is 5-1 • Hence the second assertion.

q.e.d.

(3.3) Proposition Let G be a cyclic p-group acting on Lg

then IGis ~~1 9 •

Proof Let ~J ~ \ with a branch points of branching indexG,Lg ~ Lh j

pj . Then' by the Riemann-Hurwitz formula

2-g
1

= IG I {( 2 - 2h) - I a. (1- . J" )} •
j J ~
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If h~2 then 2-2g ~ IGI (2-2h) ~ -21GI or IGI ~ g-1 . If

h=1 there 'are" at least two branch points and we have IGI ~

P~1 (g-1) · Now'suppose h=O . Then there are at least 3 branch

points and at least two b~anching indices equal IGI . So

2-2g ~ IGI {2-2(1- _1_) - (1- ~ )} =
]GI

or IGI ~ ~~1 g •

I 0-1
2- GI p

q.e.d.

(3.4) Proposition Let G be a non-cyclic p-group acting on

L • Let k~2 be the minimum number of generators of G. Theng

16 (g~1 ) if k=2 , p="Z,

9 (g-1 ) if k=Z , p=3,

IGI ~ 8 (g-1 ) if k=3 , p=Z,

"Zp (g-1 )

(k-1)p-(k+1)
otherwise.

Proof Let ~g ~ Lh . If k~2h-1 then h~2 and by the Riemann­

Hurwitz forrnula we get

Z-2g ~ IGI {Z-2h} s IG]{1-k} i.e. :;; h (g-1) .K,-1

So suppose k~Zh . We now use the fact that a minimal set of ge-

nerators of a p-group maps injectively onto a minimal set of

generators of its commutator quotient. So we see that there roust
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be at least k-2h+1 branch points. So

2-2g ~ lGI {2-2h - (k-2h+ 1) 1(1- - )} , orp

2p (g-1) 2p(g-1)
(3.,4.1) IGI ~ :Si ,

(k-1) p- (k-2h+1) (k-1)p-(k+1)

where the inequalities are valid as long as the denominators are

positive. The denominator of the last term i5 alr~ady positive

for all pairs (p,k) except (p,k) = (3.2), (2.3) and (2.2).

w~ analyze these exceptional cases separately.

case i), P=3, k=2 : If h~1 the denominators of the middle

term of (3.4.1) 18 pos~tive. This gives an estirnate IGI~3(g-1)

Now suppose h=Q . Then there are at least 3 branch points. If

there are ~4 branch points we get an estimate

2-2g a IGI {2-4(1- ~)} or IGI ~ 3(g-1) .

If there are 3 branch points then the branching indices {3,3,9}

give the best upper estirnate

1 12-2g:Si [Gj {2-2(1- :3 )-(1- 9 )} , or IGI:i 9(g-1)

case 1i), p=2, k=3 If h~1 the rn1ddle estirnate in (3.4.1)

gives lGI ~ 2(g-1) . If h=Q then there are at least 4 branch

points, and the branching indices {2,2,2,4} give the best

upper estirnate lGI ~ 8(g-1) .
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case iii), p=2, k=2 : The analysis as in the above cases

shows that the branching indices {2,4,8} give the best upper

estimate ]Gl:;i 16(g-1) .

q.e.d.

(3.5) Corollary If G is a p-group acting on \' thenL. g

Moreover for each prime p these bounds are attained for in-

finitely many values of g, and also not attained for infinitely

many values of g.

Proof qomparing (3.3) and (3.4) we see that for p=2 and 3 bounds

for the 2-generator groups are higher than those for k-generator

ps:: 5 one sees that the bound ~ (g-1)
p-3 for a

2-generator group is higher than that for a k-generator group,

~ (g-1)
p-3

(3.4) also shows that the bounds are attained precisely when

k 3 d ~ <' ~ (1) 1 2 1 0~ , an moreover p-1 g n p-3 g- as ong as p:;i g+ • n

the other hand (3.3) applied to G~ does imply p:;i2g+1 . So
P

i5 the estimate for IG[ for p~5 . The proof of (3.3),

~g ~ LQ , with three branch points with branching indices (2,4,8)

for p=2 , (3,3,9) for p=3 , and (p,p,p) for pi;:5 . Inter-

preted in terms of fuchsian groups this means that the bounds are

attained for G's which are quotients of the Schwarz triangle
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groups ~ for p=2 ß for p=3 and ~ for2,4,8 ' 3,3,9 p,p,p

p~5 wlth torsion-free kernel. One easily sees that there are

infinitely many such possibilities. Also there are infinitely

many genera not adrnitting such actions since existence of

such actions implies non-trivial congruences .~on g. (I~ fact

the genera admitting such actions have natural density zero in

the set of positive integers.) "

q.e.d.

(3.6) Remark The p-groups with cyclic deficiency ~2 are

known, cf. [3], [14]. So if g~1 1s not divisible by 4 or by

, p odd, then using (3.1)-(3.5) one has a small list of

p-groups using wh1ch one can actually enurnerate the p-groups

actin~ on Lg . Similar remarks apply to the actions of finite

simple groups on L ' cf. (1.3), and (3.7) below. (The topo-
9 "

logical equivalence classes of the actions can be determ1ned

by Hurwitz l s procedure, cf. (2.6). Each such topological equi-

valence class defines a certain subvariety of the Te1chmüller

space of Riemann surfaces of genus 9 -. The topology of this

subvariety can be determined, in principle~ from the branching
•

data of the action.)

(3.7) Remark The proof of the assertion in (1.3.2) in the intro-

duct10n follows fram (3.1) and" [2] which contains a classification

of finite simple groups whose 2-Sylow subgroups contain an ele-

rnentary abelian 2-group of rank at most 2. For the latter remarks

we have to appeal to the full classifiaction of finite simple
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groups. For instance if g,1 (4) then the only simple symmetr y.'~,:

groups of I - I besides the ones listed in (1.3.2) I are the
g

fi t J k J th R 2G () , '- 32n+ 1 2rs an 0 group 1 ,eee groups 2 q q- - I n,= I

and PSL2 (PS) · These results may be further extended in the

following direction. Let G be a finite perfeet group acting

on \' g even , and 0 (G) :- -:the maximal normal subgroup ofl..g I

odd order in G. Then G/O(G) is isomorphie to one of the

groups listed at the beginning of (1.3.2) or else it is i50-

*morphic to SL2 (Fq ) q odd ~S or A 7= the 2-fold central

perfeet extension of A7 .

Notice that if G\Ig has genus 0 and the branching

indices are pairwise co-prime then G is necessarily perfect.

The above remarks indicate the very special nature of such

actions.

(3;8) Remark The proof of (1.3.1) in the introduction follows

from (3.1) I (3.7) and a simple check that in the list given in

(1.3.2) only PSL2 (Fq ) q=a' prime ~5 has cyclic p-Sylow sub-

groups for p odd, and SL 2 (Fq ) q=a prime ~5 1s its only

perfeet extension with the same property~

Now we mention two purely group-theoretic consequences ,

which are presented mainly for the novelty of their "geometric"

proofs.

(3.9) Proposition Let G be a p-group and H~G . Then the



-19-

cyclic deficiency of H is less than or equal to that of

G • In particular the rank of an elementary abelian subgroup

is ~1+ {the deficiency of G} .

Proof Suppose p is odd. By (2.3) we may choose g such

that G acts on Lg and the highest power of p dividing

g-1 equals the cyclic deficiency of G . But then H acts

on Lg
and the result is clear from (2.3) . A slight modifi-

cation of this argument for p=2 i5 left to the reader. The

last assertion' is clear.

q.e.d.

(3.10) Proposition A finite perfect group is of type I .

Proof Let G be a finite perfeet group of order d and

suppose if possible that it is of type II . We use the no-

tations of § 2. For z = g ::I 1 (N) hut $ 1 (2N) , and g

sufficiently large we can find a solution of (2. 7 • 1) . in

non-negative integers for xn,Y and h , and we may assume

that h 1s sufficiently large. According to (2.3) G cannot

~'~ct on L • On the other hand in aperfeet group i:he equation
g •

•
(2.6.2) clearly has a solution for large h so if h is

s~ficiently large then G would act on ~ This contra-Lg ·

diction shows that G must be of type I.

q.e.d.
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