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Abstract
Let Endly(A) denote the algebra of all bounded A-operators in Hilbert mod-
ule I2(A) and End *I3(A) denote the C*-algebra of operators admitting an adjoint.
Through GL (A) and GL*(A) we denote the correspondent groups of invertible cle-
ments. In the present paper we prove the contractibility of GL (A) and GL*(A) for
arbitrary C*-algebra A.

Let End 3(A) denote the algebra of all bounded A-operators in Hilbert module [(A)
and End */5( A) denote the C*-algebra of operators admitting an adjoint. Through GL (A)
and GL™(A) we denote the correspondent groups of invertible clements. The question on
the contractibility of these linear groups is very important in K-theory for construction of
classifying spaces and was the subject of a number of papers. In [6, 3, 7] the contractibility
of GL*(A) for unital A was proved. The author used these results for constructing the
classifying spaces for KP9(X; A) in [8]. In [9] the author obtained another proof of this
fact as well as a proof of the contractibility of GL (A) for unital A. In [1] was proved the
contractibility of GL™(A) for A with strictly positive element.

In the present paper we prove the contractibility of GL (A) and GL*(A) for arbitrary
C*-algebra A.
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1 The first step of the homotopy

Definition 1.1. The set of the invertible elements of End *I3(A) (correspondently [End
2(A)) we call the general linear group GL(A) (correspondently the full general linear
group GL*(A)).
Remark 1.2. The groups GL (A) and GL*(A) are open sets in Banach spaces End {5(A)
and End *l3(A) correspondently, hence, by the Milnor’s theorem [5] they have homotopy
type of CW-complexes. So, by the Whitehead theorem for the proof of the contractibility
of GL(A) and GL*(A) it is sufficient to prove the following. Let fo : S — GL(A)
be a continuous mapping of a sphere of arbitrary dimension, then f is homotopic to
fH:§ = 1€ GL(A) (similarly for GL™(A)).

So, let fo : S — GL (A) be a continuous mapping. Any operator from End {5(A) is rep-
resented by a matrix with entries from LM(A) C W = W=(A) the universal envelopping
von Neumann algebra. Then the [ollowing mapping (inclusion)

End;(A) C End (W), End"lo(A) C End *l,(W).

arises. Let us denote the images of GL(A) and GL*(A) under this mapping through
GL 4(W) and GL,(W).

Let us denote through pas the projection on the free W—module of finite type Las,
generated by e, ..., e,

Las = spanyy(er, ..., ea)

along Ly, and through ¢; the projection on the free 1-generated W-module W;, generated
by e;.

Lemma 1.3 Let K be a norm-compact set of operators from End [3(A). Then for anyn
and any € > 0 there exists k = k(e,n) such that

11 = pu)Gleall = 11 = pe)Cipall <e VG € K.
Proof. Let Gi,...,Gn be a finite ¢/2-net for K. For each G there exists such k(7) that
‘ E -
I = pr)Ciesl < 5= (s=1,...,m).
Ifze L, || £1, then z = £ es0,, J|as| <1 and for each i =1,..., N

100 = pro))Ginzll = [[(1 = pagi))Gipn D ea0ss|| <

| o

=¢g/2.

o

n

< 2 = prgy ) Gieal - fes]| < -
=1

If we define k = _max, k(z), then for every G € K there exists Gy, with ||G — G, || < e

i=1,.,

and

(1= pe)Cpall NI = pr)(G = Gig)pal|+
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-|_||(1 _pk)Giopn” <€/2+€/2=E. O

Let £ > 0 be so small that e-neighborhood of K is contained in GL..

We would like to define a sequence of homotopies in such a way, that as a result
the image of sphere will consist of operators mapping some subsequence of basis vectors
{a}}2, C {e;}%2, to another subsequence {a;}2, C {e;}%2,. These sequences will not
depend on the choice of s € S. We will define homotopies in GL (W), but we will verify
that in fact they are in GL 4(W).

While reasoning we will define sequences of strictly increasing entire numbers k(2),

K'(i), k"(i), i € NT.
Lemma 1.4 There exists a homotopy fo ~ foy3 and a decomposition in W-Hilbert sum
LIWY=E 0 E6...,

E; = spangy(exi), - - -, exj+1)-1), restricted to satisfy for every F' € fy;3(S) the following
conditions:

F(CL(J)) € Lk’{j)1 €L (541 c F(El b...0 Ej)a k(j) < k’(j) +1< k‘(j -+ ].) - 1.
In addition the homotopy is in GL 4(W).

Proof. Let k(1) = 1. Let us choose k(1) > &(1) in such a way that (see Lemma 1.3)

| ™

1
1(X = poy) Fier)l] < 2

for VI € K. Let us define I/ € GL by

P {pk:(l)F on spany (e),
S LF on spany (e ).

Let p(F"); = F'p;(F')~" be the projection on F'(L;) along I'(L;). Let us define
yj e (f'—”)—l])(.l“-',)ku(])ej = ])k,;(l)(,lp')_lej,

(1 <3 <K(1)+1), while £”(1) > K'(1) 4 1 is chosen in such a way, that y; are the frec
generators,
k(1)+1
2 wiosll <1 =l <2, j=1,.. K1) +1,
3=l
and ‘
!

. 1
"(1 — p(]‘ ,)k"(l))lLk’(l)-}l “ < 5 R

2R(1) + DIF
Vi € K (Lemma 1.3). Let us define (FM) € GL as

F‘(I)(yj)zej, (]: 1,...,k’(1)+1)
FOz = Pz, @ e (F)™ (Lbgy)

TR

3



and k(2) = k"(1) + 2.
Let now FU k(5), K'(4), k"(j) be already define for all j < m. Let k(m + 1) =
E"(m) + 2. Let us choose k'(m + 1) > k(m -+ 1) in such a way, that for every ' € K

JLm 1 E
H(l - pk'(m+l))}‘( )pk(m+1)|| < 5 : Qm-i—l ' (1)
(Lemma 1.3). Let us define 7™V € GL by
(m) L
pmd1)y pk'(m-{nl)F on Lig(m+1),
= (g ™ )

Let us note, that since
F™(Lim)) € Lirmy C Lirmerys

then from formula (2) we get:

F(m+1)/

Limy = F(m)lﬂk(m)' . (3)

Let p(£(mF17); = Rt (FmADN =1 be the projection on F™ V(L) along F™HV/(L1).
Let us define

y; o= (FHON = (B0 L enes = Prnpman) (FTD) e,

(1<j<K(m+1)+1), while (m + 1) > &'(m + 1) + 1 are chosen in such a way that
y; are free generators,

K (me1) 41

I Y wesll <1 = sl <2 =1, K(m+1)+1,
Jj=1

and

1 € 1
1— }:I(m+l)’ S < — - . 4
||( p( )L ( +I))|Lkl‘(m+1]+| || .2 2m+1 2(’{[‘,(”1 + 1) + l)||F(m+l);||? ( )

VF € K (Lemma 1.3). Let us define (Fi(m+l)) € GL by

{ F‘(m+1)(yj) = €y, (J =1,.. -1kl(777’ + 1) + 1)

F(m+1)‘1" = F(m+1)!$, T € ([:‘(m+])’)_l(Li_’(ryx+l)+l)

VF & K, or, equivalently,

(F(m+l))_]|14k‘(m+1j+1 = pro(mny(FOH) 7 .
(FOmE)=1) = (fm+1n-1 (6)

K (m41)+1



If 8 < k(m + 1), then by construction

E(m+1)+1
F("‘H)’(eg) € F(m+l)’(Lk”(m+1)) A Lk’(m+1)+la F(mH)’(e‘@) - Z e;aj,
J=1

K (m+1)+1 k' (m+1)+1

eg= 9. (F") e, ep = PruimsnC8 = D Ui,
=1 i=1

m+1 (

hence F! es) is defined by the first line of (5) and

A(m+1)+1
Frt(eg) = 3" eja; = ™ (ep),

J=1
so the changes "do not touch the changes on the previous step”. (In general changes are
on

(PO (F DY gy i g y1) =
= pk”(m+1)(F(m+l)')_lLk’(m+1)+l - Lk”(m+l)- )

Due to (1 — 5) and the choice of ¢ there exists the limit

F'={lim F'"™)eGL VFeK

m—od

and the induced linear homotopy fi/3 ~ fo/3 also lies in GL. By (3) and above reasoning
on the changes at the second part of each step the desired conditions are fulfilled. Indeed,

by (2) F"(ews)) € L), and by (5)

F" Newmary+1) C Lingmer),
hence

Cr'(m+1)+1 C F"(Lk"(m+1))-

Since the projections on the basis modules W; and their sums in [;(W) are from
End [3(A), then the homotopy also is in GL 4(W). O

2 The second step of the homotopy

Let
Co = max{ m'lx 1], I‘ndh =13

Now for each
r € [\,2/3 = f2/3(5)1 ¥ € [017]-/2]1 d € N+
we will define operators

J,‘(F, (,O) : IQ(H/) — IQ(W)

Each of modules spany (Fegy)) and spanyepy+1 is isomorphic to W, so by [2] has a
W-orthogonal complement in ().



Lemma 2.1
R} ® R := {spany(Fey) ® spanyer(iyr1 O

e{F (SPa'“l-ve}J{(;‘)) N (Spaﬂlvek'(i)+1)J'} = L(W).
Proof. Let w € [,(W) be an arbitrary element,
w=v+u, * € Spanyy € (i)41, v € (spanyyep(ys1)"
Then we can decompose
v = v + vy, vy € spany (Fegs), v2 € F ((spanyexi)t).

Hence v, € (spanwek:(;)H)J‘, since by the construction FeyiyLepiyyr, and

vg=v—v, € (spanwey(;)_,r,)l.
Hence, w = u + v, + v is the desired decomposition. O
Corollary 2.2 (from the proof) We have the following partition of the identity

1= (qrug) + (FPan P~ = awipr) + (1= Faw ™) = qegye),

into three complementary projections.
Lemma 2.3 Lefi > j, then

Feys) € Ri,  ewgn € Ry

Proof. By the construction FeyjyLew i+ and Fey;y € F(spa.nwei'(t-)), since ek(;)-Lex()-
Also ep(jy+1Lew(iy41, and by the construction

ex(iyr € F(E ... E;) C F((exg+1)*).0
Let us define J;(F,¢) by

Ji(F,o)(Ferqy) = cosy Fegsy +sinpepyyr,
Ji(F,(P)(ek'(i)+|) = —~sin@ Fegqy 4 cos @ epiy,
Ji(Fy0)(2) = =z, if ze€ RL

Lemma 2.4
Ji(F,o)(z) = {cosp Feggiy +sing ex(iy+ H(F (1 = (1;;,(,-)+1).1:)k(“)+

+{=sin Feygy + cos ¢ ey H() O+
+(1 = Fay F7H (1 = qrgiy41)z,

where v is the j—th coordinale in the standard basis {e;}.
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Proof. Let us verify the coincidense for the following three types of elements
T = Cri(iygtr, T = I?ek(i)y T € R‘ll

Let = ep(i)4.1, then the first and the third lines in our expression vanish. The second
line is equal to

{—sing Fegyy) + cospepiyer ) - 1,

and this case is done.
Let now @ = Fegiy. Then (1 — gu(i)41)(z) = z, since by construction FeyiyLe iy,
and the first line is equal to

{cos ¢ Feyuy + sine ekr(;)_l_l}(i’"(l - qk:(;)+1)m)k(£} =

= {COS 4 Fek(i) + sin 2 ek'(i)+1}([F_lpek(i))k(i) =
= CO5¢ I‘-‘ek(i) + SiIl 2 ek'(£)+l~

the second line is equal to 0 by the same argument. The third line is equal to
(1 — FauyF~") Feriy = Feyiy — Feyay =0

and this case is also done.
Let z € R}, then

z = (1= Faup P~ )1 = qu)(y)
and
@@ F T = qe@+)(1 — FarF (1 = qeae)(y) =
= () F ™' = o) F lavi+) (1 = Fan ™ — qepn + Farg P gog ) () =
= (g F ™ = aw) F ™ gy —
=) F T Py 71 quy P gy P 71—
— ey ™ qrriy + @y 7 e Gy
+qei) F 7 Py F ™ ey — auy) P aiogy i Faeey P~ e+ (y) =
= (ak) P~ = ey F ™ awiyn — e F™H + qupy 7020 P71
— e P e F @ P et
e F ™ qeiyn — @ F 0 F g ) (v) =0,

the first line vanishes. The third line evidently gives x. Since
a1 (L= Fa F 7)1 = quiye)(y) =

= (Qk'(f)+1 - flkr(i)+11?Qk(i)f?_l)(1 — qu+1)(y) =
= (g1 — 0+ F7H)(1 = qugye)(y) =0,
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then the second line vanishes and this complete the proof. O
From the representation in the previous lemma is evident, that J;(F,¢) are in the
image of Endl;(A). Norm of the operator for every i, F' € Ky3, ¢ does not exceed

(Co+1)Co+(Co+ 1) +(1+CE =C.
The operator Ji(F,¢) has the following matrix
cosp —sine 0
sing cose O
0 0 1
with respect to decomposition

spany ( Fexg)) ® spaniyeriy © Ry,

cosp sing 0
—sing cose 0 |.
0 0 1

In particular his norm is also not more then C.
Let us note that for every coordinate of sum of arbitrary vectors from [5(A)

while Ji(F,¢)7! -

ay+...ta,=(aj+...+a,dd+.. . +d )

we can write (here ¢ = by)

(bt b ) (o b2) < (b B (b1 o b) 4 (b — b;) (b — by) =
1]

= s(bjby + ... + b%b,),

hence

(ay+ ...t ag,ar+ ...+ as) < s{ar,a1) + ...+ {ay,a,)). (7)
Let us define a family J(F, ) : [o(W) = L(W), by

tf(F:‘rQ)|E(E,®...®E,) = J(F, @) sui(Fop) ... Ji(Fy0).
By Lemma 2.3 this is a well-defined operator on a dense set and
J(F ) (Fepsy) = Ji(Fop)(Fex)),

J(F,@)(eriy1) = Ji(F, o) (exriy1)-

Let us show that these operators are bounded and invertible. Let
y=(p+z)...+ys+az)+z,  yi+a€R,
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vi = Feypyoi = Fauny P (L — qu+1)Ys
T = ek'(;)+1ﬁ:‘ = Qk1(£)+1(y),
then

8

J(Fop)y =Y Ji(Fo)yi+ i) + 2=

=]
= Z [{cos @ Fepay + sing ep g fai + {—sing Fegiy + cosp ek:(,-)+1}/3;] + z.
=1

With (7) this gives

(J(F @)y, J(Fyo)y) < 5(cos® o3 Fergyau, 3 Fergan)+
=1

=1

IA

+sin? (3 Fepiou, > Fegoi) 4 sin* o Y ofos + cos? ) 576 + (2, z))
=1 =1

=1 i=1

< 5((IF|* + 1)(23 ofai + ijﬁ:ﬁi) +(z,2)).

Let us note, that

YoBBi =) Awi ) =Y (G Yy < (YY)
=1

=1 1=1
Also,
Yooie = (FTIFY enpan, Y F7 Feygo) < Co(Q_ v D_wi) =
i=1 =1 =1 =1 =1

= Cod Farny 7L = quye )y 2 Fary F7HL = qugy1)y) <
i=1 :

=1

<203 ((Z FauayF~'y, Y Fawp ™ 'y)+

=1 1=1

+O3° FaoyF ™ quiyys D Farg) F_lqk'(i)+1y>) <

t=1 1=1

<2C3(IFIF Y s F ™'y 2 i F )+

=1 =1

LIPS s P awiaays 3 ko P awny) <
i=1

i=1

<20y (Cg(fp_lya F7hy) + Ce3 F quyery, Y F_IQk’(i)My)) <
i=1

i=1



3 3

< QCS (CS(TJ, y) + CJ(Z Gk (§)+1Ys Z Qk'(i)+1y>) <

i=1 i=1

< 2C3(Caly ) + Coly, ) = 4C§(y, ),

hence ,

(2,2) < 3((y,y) + (i yugy;) + (g: m;,Zm.-)) <31 +1+4CH.

=1
We get an estimation, which does not depend on s, hence J(F, ¢) is a bounded operator
as well as J(F, )™ = J(F, —¢).
Lemma 2.5 The family of operators J(F,p) is conlinuous in

T
(Falp) € [\,2/3 X [Oa 3]

Proof. Let y € £, 6...8 E,.

J(F,(p)]?y - J(Fl:(ro)]wy =
= Z[{cosnp Fegiy + sin @ epiye fai + {—sing Feg iy + cos g Ekf(,‘)_}_l}ﬁi] 4 z—

1=1
- Z[{cos ¢ Fleyiy +sinpep iy foi + {—sing Flegy + cos o ek‘(*’)“}ﬁ:] -2,

t=1

where
Fy=(yi+z)+ ...+ (zs +ys) + 2, Fly=(yi+2)+...+ @ +y)+ 2,

yi = Ferpor = (Faey (1 = qrey) Fy,
T = ep(iy1Bi = @iy Iy,
yi = Fleygo; = (Fap ) = qeipe) F'y,
v = ep(iy1B; = Gy Fy,
then
(J(F )Py — J(F', o) Fly, J(F @) Fy — J(F, ) Fy) <

< 7[c052 o> Ferpylai — af), Y Ferp(ai — o))+
i=1 1=t

3 5

+cos’ (3 (F — Merayol, Y (F = Fewqai)-+

=1 i=1

+ sin® (,O(Z Feriy(Bi — ﬂ"),z Fewsy(Bi — B)+

=1
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3

+sin® o(3 (F — FlewsBi, 3 (F — F')ewnyBi)+
t=1

i=1

+sin? (Y ewpyar(on — ), D e (o — @)+
i=1 =1

+ cos? t,o(i ex(iy+1 (Bi — ﬁf),i ewgyr1(Bi = B7)) + (2 =2,z = zl>] <
=1

=1

<T[IF = P ofol + 3 B8+
=1 t=1

k)

HC+ D) (X — o) (ai - o) + il(ﬁi =B (B = B)) + (2 = 2,2 = ).

=1

Since ‘
ai = (F7'(1 = qugyer) Fy)*®,

of = (F'71 = qugye) Fy)*,
we get

i(ai — i) (i — o)) =

= > (g (F'(1 = quiys ) F — F7H 1 = qug+) F)y,
=1
akiy(F7H (L = quipe ) F — F7H (1 = g Fy) <

< 4[2(%({)(13_1 — F™YFy, quay(F~' — F'=') Fy)+
=1
+ > Aary(F™' = F™ Yy Fy, gro(F~H = F7 ) aquy Fy)+
i=1

+Z(qk(5)F'_l(F— FYFy, quayF'"'(F — F')Fy)+

t=1

+ 2 A F ™ e (F = F) Py, g P~ qup i (F = FY) FZI)] <
i=1

<TG P = FYPCS (Y, ) (8)

Since

Bi= (Py) 08, Bl (Pry)MO,

we getb
3

S (8- B) (8- 8 = Z(Qk'(z‘)H(F = )y, quy (' = Fy) <

i=1 =1
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<|F = F'*{y,y).

Hence
(z—2,z—2) = (F(y)—i:y.' - z;'c - F’(y)+ily£ + le
=1 i= i= i=
F(y) —gy; — gm;—- I"(y) +§y$+§fvi) <
<3P = (P = P+ (01 = v ol = ) + (o w8 3o = 29)
<3(IF = Py, ) + (g[(l’qk(m"“l)(l — qu+) Py — (P P70 = qogaen) Py,
i{(pflk(t’)F—l)(l — quiiy+1) Fy — (Flae P71 (1 - Qk'(e)-f-:)F'y])

i=1

+O~ a1 (F = Fy, Y qegyr (F — F'):U)) <
i=1 =1

a

< 3(||F — Py, y) + (Z[(F — FaqiyF ' Fy + (F = Faque F ™ apin Fy+

i=1
+ g (F~ = F Py + Flag(F™ = F'7Y e Fy+
+Fauy N EF = Yy + Flagy P~ gy (F = F)y),

S [(F = FYaquy P~ Fy + (F = F)qua F =" qugy Fy+

=1
+F g (F~ = FYFy + Flaa(F™ = F7 e Fy+
+Flau PN (F = )y + Pl P~ gy (F = F')y))+
HIF = Flity, y) <

-}

<3020 = P y) + 6{ (2 (F = Faways o (F = Fawoy)+
=1

=1
5 $
+O(F = FauyF quiye1 Fy, D (F — Faqry F ™ qugiyo1 Fy) +
=1 =1
+O Flgu(F' = F"OYFy S Flgyo(F~ = FYFy)+
=1 i=1

+(3 Flasy(F~' = F'™ D aug Py, ) Flas (F7' = F™ e Fy)+
=1 =1
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+O Flago F'7HF = F)y, 30 Flawa 71 (F = Flly)+
i=1 i=1

H Fa ' e (F = Py, Y Flawe '™ qu (F = F)y)) <

1=1 =1
<3[2F = P Xy, y) + 6{|F = FII*y,v) + 511 F — F[PCay, ) }]. 9)
(the last as (8)).

So,
IJ(F,0) = J(F', ) < CollJ(F, o) F = J(F', " )F|| <

< CollJ(Fy o) F = J(F', @) F' + (J(F', ) = J(F N F' + J(F, ") (17 = F|| <
Se+ (I o) = J(F, o) Ff,

where ¢ = 0 while F¥ — F. Let us estimate the last norm again on y € £, & ... F,,
where (in the previous notation)

Fly=(y+a)+...+ (2. +ya) + 2.

Then

J(F', @) F'y = J(E', @) F'y = 3" [{(cos o — cos ') Feyg + (sin p — sin @' )ewy 1 Yo+

=1

+{—(sinp — sin ") Fey(iy + (cos ¢ - cos V")ffk'(.')ﬂ}ﬂi]a
and the estimation from the proof of the boundeness gives now continuity. 0O
Let us denote €r() = iy ER/(i)+1 = (L}, Cr(i+1)—1 = a?.

Lemma 2.6 There exists a homotopy faoys ~ f1, such that for f € fi(S) we have
Fa; = a},
and which lies GL 4(W).
Proof. By the previous lemma it is sufficient to define the homotopy by
Ji(s) = J(fays(s) ) fas(s),

where ¢ = (4t — 3)(n/2). O



3 The contractibility of GL (A)

Let us define K;( F, ), being W-unitary automorphisms of £; when # € f1(5),0 < ¢ < 7.
We define for 0 < ¢ < 7/2

Ki(F,0)(a}) = cospal —I— sinp a?,
Ki(F,¢)(a?) = —sinpal 4 cospal,
Ki(F,@)(a) = a, if o Lspany(al, a?),

and for n/2 <o <7 -

{ K ‘( Foo ]\_I(F 7/2)(a?) = cos(p — (7/2))a + sin(p — (ﬂ(/?

1)

) ))a
G(F o) KTHE m[2)(w) = —Shﬂw'-(ﬂ/°ﬂfh-+coﬁ /2)) ai,
Ki(F,o) KT I(F 7/2)(z) = =, il xLspany (a;,a?).

m)(Fa

We have K;(F,

= ;.

Lemma 3.1 The homotopy K;(F, ) a continuous function of ' € f\(S§) and ¢ uniformly
with respect to 1.

Proof. Since K;(F,¢) is W-unitary, then
IK:(F', @) = Ki(F o)l <
KA ¢) = K P )| + (P ) — Kl Fo o)l <
< K VKT (P ) = 1+ [ (P ) KT (Fy ) — 1] (10)

Let us consider ¢, ¢’ € [0,7/2] and ¢, ¢’ € [1/2,7], separately. then it is clear, that the
first summand can be estimated by the norm of the operator ¢ : WaW — WeW with

matrix
cos(p —¢') =1  sin(p —¢')
—sin(p —¢') cos(p—9)—1 )"
Let ||arer + aqzeq|| = 1, then ||ai]| £ 1, ||ag]| £ 1 and

1G(arer + area)|| < Jlen| [[Gesll + [leall [|Gezll <
< {(cos* (¢ — ') — 2cos(p — ') + 1) + sin(p — )} *+
+{sin*( — ¢') + (cos*(p — ) — 2cos(p = ) + 1)}/ =

_ / _ /
= 2v2{1 — cos(¢ — ¢")}'/? = 45sin ? 9(10 ¥

~ i

<4 =2le - ¢'|.

The second summand in (10) is constant while 7/2 < ¢ < m. Hence, let us consider
0 < ¢ < 7/2, but since the choice of «;, a?, a} does not depend on I, then the second
summand vanishes. O

Since we have got a uniform estimation, then from it {ollows
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Lemma 3.2 The family of A—unitary homomorphisms K (I, ¢) of Hilbert module l,(1),
defined (when I € fi(5), 0 < ¢ <) by the formula

K(F, @)l = Ki(F,9),
is conbinuous in I and ¢, and
K(F,0) =1, K(F,m)(Fa;) = a;. 0 (11)
Let us define a homotopy f; ~ f2 by
J(s) = K(N(s),m(t = 1)) u(s), 1<t<2

When t=1:
K(f1(s),0) =1,  fi(s) = fu(s),
when t = 2

fa(s) = K(fi(s),7) fils),
thus by (11) we get the following statement.

Lemma 3.3 The mapping fi is homotopic in GL A(W) to such fa, that
fo(s)a; = a;. O

Now we reason as in [4]. We can work now only with operators {,(A) — {3(A), but for
the convinience of notation we will stay in GL 4(W).

Lemma 3.4 Let H' =2 [,(W) be generated by W—basis {a;}, H, = (H')* = [,(W), then
fa ~ f3, where

Ja($)lw = 1d f3(s)(Hy) = H,.

Proof. With the respect to the decomposition lo(W) = H'@ H, let us define the homotopy

by the formula
1 3—1
ft(s):(o ﬁ(’y )).
Let

be the inverse of
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(1 ﬁ) (90 sb):(wﬁx ¢+ﬁ§):(1 0)
U x ¢ X ¢ 0 1)°

hence
p=1 x=0, =E{=1,
B+Yy=0, $+p=0,
and
LgB-0) (1 BB-1) _
(o 0 (6 777) -
B (1 ﬁ(3—t)+(3—t)1/;7)__(] (3—1)-0)
N0 €y Lo 1 !
LBB-0\ (1 $6-0) _
0 ~ 0 £ h
(1 wB-0+ B -0 _ (1 (3-0-0
A0 ¥€ A0 1 '
so the homotopy is in GL. O

Lemma 3.5 The subset V C GL, defined by
V ={g€GL |glp = dn, g(H) = Hi},
is contractible inside itself to 1 € GL,.
Proof is just the same as in [4]. D
Theorem 3.6 The space GL (A) is contractible.
Proof. We have shown, that f = fo~ f4 : S = 1 € GL, where fy for 0 < <3 is
defined above, fi(s) = m-af3(s) for 3 <t <4, if 5, (for 0 < r < 1) is the contraction

from the previous lemma. All the homotopies are in GL 4(W). In accordance with the
remark from the beginning of the paper, it is suflicient to complete the proof. O

4 The contractibility of GL*(A) and GL (A) in the case
LM(A) = M(A)

Let B = LM(A) = M(A), then any operator F' € End{3(A) is defined by the matrix F;,
F} € B. Moreover, if ¢ = (by,bs,...) € [3(B), and we define

Fz = (...,Zﬁjbi,...)
1=1

16



(i.e. the operator with the same matrix), then

1 Fllf, gy = I1(Fa, Fa)| s =
- z()“j F;b;) (\;F;b,) = sup a-z(z i ) (z; Fjbi)a _
7=1 \i=1 =1 B ||':ﬁ:1 1=1 i=1 A

>

(Z F;b,a) (Z} F;b,'(t)

= sup = sup | F(za)l|* <
acCA —
ffallw [19=1 =1 A el

< sup IEWPlzall® = 1FI*|=]*.

llall=1
Quite similarly
sup || Fellf iz = sup I (za)ll® = FII*

ll=f|=1

|| || 1
Hence, the correspondence

Fe F, End®L(A) = End OL(B),
is a continuous isometric inclusion {(and *~homomorphism in the case of adjointable op-
erators). Here (*) denotes that it is possible to put on this place both algebras.
Conversely, let ¢ € End (),( B), then this operator is defined by matrix |G|, G5 € B
(since B is a unital algebra). Let us define for a = (ay,as,...) € l2(A)

Cla = ( ZC a1, )

Then we have the commutative diagram

G LG

[(A) — [(B)
and to prove the continuity of G' and of the correspondence G — G it is sufficient to
prove, that the horiszontal inclusions are the isometries, i.e.

fae) o0
1Y afail|la =1 D ajail|s,
=1 . =1

which follows from the fact, that A < B is an isometry:
lalla = sup llazila = fjals
ll=l=1
Theorem 4.1 [f LM{A) = M(A), then GL™(A) and GL (A) are contractible.
Proof. [t is evident, that
F=r (=q,
and we can identify End *)3(A) and End y(B), as well as GL*)(A) and GL®)(B).

Since B is unital, then the statement follows from [3, 6, 9]. O
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5 Proof of the contractibility of GL*(4) in general
case

Theorem 5.1 The group GL*(A) is contractible.

Proof.

The first way. Matrices of operators from End *l3(A) have the entries from the unital
C*-algebra M(A). The argument from the previous section gives the isometry between
GL7(A) and GL*(M(A)). Applying [9], [1] or [7] we finish the proof.

The second way. In this case we can choose k(7) and £'(¢) + 1 in such a way, that
(after small homotopy) the system {Fegy, exiy41} would be orthonormal (c.f. [9]). Then
J(F,¢) can be defined as J(F,¢)|g, = L(F, o)l : Ei — Ei, and to prove that it is
adjointable it is suflicient to prove that J; is such an operator and the norms of J* are
bounded uniform in z.

(Fery(ery F~' (1 = quge1)e) y) = (eri{(eriy, (1 = gy )e), Fry) =

= (2, (1 = quayr) (F) ™ ey )eriy, F7y))s
(ewgiyrileriy F7H1 = quae)e), y) = (F7H1 = quiye)e, ewmri(er@eny) =
= (%, (1 = queiy+ ) (F) ety {enir v))
(Ferlewmar, ), ¥) = (eriy(er@yn @), Fy) = (@, epyra (e, F7Y)),
(er(iy e+, ), ¥) = (2, epmi{eri+, ¥)),
(Farny P~ = (7)) quo P, (@ (iy+1)" = @iy

hence J; is adjointable and the norms of J; are uniformly bounded. The operators from
the other steps of homotopy are adjointable in this case in a trivial way. O
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