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Moduli of half conformally flat structures

Mitsuhiro Itoh

ABSTRACT The moduli of half conformally flat structures on a 4—mam'f01d i studied.
The moduli is equipped with a real a.na.lytic'va.riety structure and a canonical L2—metric
structure.

This moduli with the L2_metric turns out in a K3 surface case to be isometric through the
period map with a domain in the Grassmannian 80(3’19),80(3)XSO(19) . The moduli of

zero scalar curvature type, the subspace of the full moduli is also investigated.
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1. We would like to study in this article the moduli of "conformal structures" on a given
4—manifold. Here the moduli of conformal structures or more precisely the moduli of half
conformally flat structures means the set of all half conformally flat structures [g] ona
4—manifold M modulo the action of the gauge group Diff(M) , the diffeomorphism group
of M.

There is a significant notion in conformal geometry, the conformal flatness.

A Riemannian n—manifold (M,g) is called conformally flat if (M,g) has at every
point a locally defined conformal map into a Euclidean flat space R™. When n > 4 this is
equivalent to the vanishing of the Weyl conformal tensor W .

In four dimensional case one has a notion "half conformal flatness", in other words,
the vanishing of a half part of W, Wt or W™

Let (M,g) be an oriented Riemannian 4—manifold. Then a 2—form a € 0 splits
with respect to the star operator * into the self—dual part at = (a + *a)/2 and the
anti—self—dual part a = (e —*a)/2, a= at+a .

The Weyl conformal tensor W viewed as an End(TM)—valued 2—form decomposes
into W =W + W™ and we say (M,g) is selfi—dual or anti—self~dual (or simply half
conformally flat) if W™ =0 or W =0.

Obviously a conformally flat 4—manifold is self—dual and anti—self—dual.

Examples of conformally flat manifolds which are well known are manifolds of
constant curvature and Riemann surfaces. These manifolds are divided into spaces of
positive, negative or zero curvature.

Similarly the sign of the scalar curvature divides the set of all Riemannian
4—manifolds up to conformal change into three classes (see § 2 for the details and [5],
[44]) so that a half conformally flat structure [g] is called type positive, zero or
negative according to the sign of the scalar curvature.

We denote by ¢ M the set of smooth conformal structures on a given compact

connected oriented 4—manifold M and define an action ¥ : ty—R;
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¥(7) = %J‘ IW(g) |§ av, = %J{ Tr W(g) A% W(g) for W = W(g) , the Weyl

conformal tensor of a representative g of 7.

The topological identity (M) = '_I—EJ ( |W+ ] 2—| W 2)dVg then indicates the

12x

absolute inequality; #(7) 2 672 | (M) | for the Hirzebruch signature of M, (M),
and " =" holds if and only if 7 or g is self—dual (necessarily (M) 2 0) or
anti—self—dual (7(M) <0).

The moduli & = A, of anti—self—dual conformal structures on M is defined as
all equivalence classes of anti-self—dual conformal structures. Here 7, 7, € €, are
equivalent if 8= tp*g for a diffeomorphism ¢ of M and for some representatives g

*
and 3} of 7 and 7 respectively and we write N=P T

DEFINITION 1 The moduli of anti—self—dual conformal structures 4 M is defined as
the quotient

Ay = {r=1[g] € LAV W(g)+=0}/Diff+(M) )
modulo the group of orientation preserving diffeomorphisms of M , Difi (M).
To simplify the argument we deal mainly with anti—self-dual case, since reversing
the orientation transfers an anti—self—dual conformal structure into self—dual conformal

structure.

Another type of definition of the moduli is

A'yp = {[6] € €5 W(BY =0} 0y

where DiﬁO(M) denotes the group of diffeomorphisms homotope to the identity idyy .
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Then A& M M M is a fibration whose fibre is the "mapping class group".

The moduli A& M corresponds to the Teichmiiller moduli of Riemann surfaces and
its analysis is much easier to deal with than that of A, .

Works for moduli of some special geometric structures, for instance the moduli of
Einstein metrics on 4—manifolds are recently done by several geometers ( [31], [1], [42])
and our investigation of the moduli of half conformally flat structures seems to be an
approach along the similar lines.

However, there are other moduli spaces which share common feature with our moduli
from conformal geometric viewpoint, the moduli of Riemann surfaces and the moduli of
Yang—Mills instantons ([7], [16]).

Being guided by established theories of these moduli spaces one can develop the study
of our moduli.

Like the Yang—Mills instanton case our moduli has a "quantum number" the
Hirzebruch signature corresponding to the instanton number. It admits also an elliptic
complex describing the local data.

We have few examples of manifold for which the moduli is completely known.

For S* .4 consists of a single point, the standard conformally flat structure ([35] ).

The complex projective plane CP? has the Fubini—Study metric as an isolated point
in 4 ([27], [43]).

The conformally flat case is another example whose moduli is somewhat known. In
fact each conformally flat structure has by making use of the developing map a holonomy
correspondence 7, (M) — SO(5,1) , the conformal group of s* with the standard
metric, 80 that the moduli of conformally flat structures is mapped into the representation
space & (7 (M);50(5,1)) , the space of conjugacy classes of representations
7, (M) — §0(5,1) .

A product 4—manifold Ek x CP! with metrics of opposite constant curvatures is a

nontrivial example of conformally flat 4~manifold. Here X, denotes a genus k(> 1)



compact Riemann surface.

By counting the dimensions the moduli of conformally flat structures on Bk x CPL is
naturally embedded in £ (x (X, );50(5,1)) , since dim %= 30(k—1) is the minus sign of
the index (1.1).

As in the Yang—Mills instanton case & is in general described locally as a
conformal group quotient of a real analytic subvariety ir a finite dimensional vector space,
the first cohomology group B of the elliptic complex:

C®(TM) — Cm(Hom(Q"',ﬂ_)) —_ Cm(SO(ﬂ+)) (see § 3, (ii) for the precise definition).

This complex has the index

dim B — dim B! + dim B2 = } (207(M) + 15x(M)) (1.1)

from the Atiyah—Singer index theorem ( x(M) is the Euler characteristic of M ).

The 0—th cohomology group HO =KerL at 7€ ¥ M is the Lie algebra of the
conformal group 00(7) ={p€ DiHO(M); ga**y =7}.

By applying a slice theorem (Theorem 3.3, § 3) and the Kuranishi map (Theorem 3.4,
§ 3) one has indeed

THEOQOREM 2 For any 7€ A M there exists a neighborhood U; represented by the
1

group quotient of the zero’'s of amap ¢ : H — i ;

_ gl 2

By virtue of the formulation of ¢ M Bivenin § 3 the tangent space T y € 8
identified with Cm(Hom(ﬂ+,ﬂ_)) . A positive definite inner product on it is defined as
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A2 = ‘L (—TrAA*)(x)dVg(x) , A € C®(Hom(nt 1)) (1.2)

in terms of a "canonical" volume form dV , where A" is the adjoint of A : 07—t

The notion "canonical" requires d\/g to satisfy the conformal invariance and the
naturality with respect to diffeomorphisms, from which the inner product ”AH2 is
Diff(M)—invariant.

By using a basis of Bt = {self—dual harmonic 2—forms}, for instance, which is
orthonormal with respect to the cup product on H2(M;Il) one can exhibit such a canonical
volume form (see § 3 v) for the details).

Thus this L2—inner product is able to descend to the quotient ¥ M /DiﬂO(M) .

By restricting this inner product we have

THEOREM 3 The moduli of anti—self-dual conformal structures is endowed with a

Riemannian metric even if a point 7 has a quotient singularity.
We would like to state several consequences and applications of our theorems.

The first one is a local Torelli—type theorem on a "periodic map".
There is a natural map, the period map, p: € — gt +(H2) = {positive
b

2
b+—pla.nes in H2(M;IR) o !Rb } , where H2(M;[R) is equipped with the cup product of
type (b+,b_) ([17, Appendix] ). At a tangential level this is

py : C¥(Hom(0¥,07)) — Hom(EH,H") (1.3)
for the spaces H of self~dual (anti—self—dual) harmonic 2—forms.

THEQREM 4 Fora K3 surface M the p, restricted to the tangent space of A M &t



.

any Ricci flat metric becomes an isometry with respect to the L2—metric and the invariant
metric on Hom(H+,H_) , 80 that the component of A M containing a Ricci flat metric

(and hence a type zero anti—self—dual conformal structure) is isometric onto some open

domain in the symmetric space SO(3,19)/ SO(3)xS0(19) -

This theorem is already shown in terms of polarized Ricci flat Kihler metrics ([31],
[8] and see also for the brief survey [2]). However it will be verified from our formulation
of JJVM in § 5 (Proposition 5.2).

As a consequence of this theorem there is no type negative anti—self—dual conformal
structure on a K3 surface M, close to any Ricci flat metric.

The moduli A"y, is divided into disjoint three parts
A M= A M(+) 1L A M(O) 11 A M(_) according to the sign of constant scalar
curvature.

The presence of each piece implies a geometric restriction. In fact, if A M(+) is not
empty, then the quadratic form on H2(M;Zl) is negative or zero so that from the definite

intersection form theorem M is homeomorphic to El:f #..# (Z_P2 (b2—times) provided

M is simply connected.

On the other hand, if 4 M(O) #¢ and HT #0, then M must be a Kahler surface
with an extremal Kahler metric in the sense of Calabi [13] (see § 2, and [28] for the
classification of candidates of those M’s of nonempty 4 0) )-

So we obtain a map from A M(O) into the moduli of complex structures on M,

jM -
For a ruled surface, a typical anti—self—dual 4-manifold of which & M(O) $ ¢ we
are able to present A M(O) as in the representation space

% (r (M); SL(2,R)xPU(2)), PU(2) =SU(2) /Z2 whose dimension coincides with the

dimension of /'y, (see Theorem 5.1).
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This phenomenon can be explained by the investigation of a fibred space structure of
vaM(o) over j’M in a more general setting, namely for M of bt =1 (i-e. Pg = 0).

Infinitesimally for a fixed pair (J,g) , a complex structure and a zero scalar curvature
Kahler metric traceless symmetric 2—{ensors which are J—invariant give rise to the
"vertical" direction of A~ M(O) —J M 8nd the "horizontal" direction is just a traceless
symmetric 2—tensor induced from a complex structure deformation.

We discuss this observation in § 5 and as a result from Theorem 5.3 and Propositions
5.4, 5.5, 5.6 we can assert at least that for M of Pg=0 j: Jf‘M(O) — ‘fM has a
fibre space structure over the image j( A M(O)) , Some number of connected components
of J M - 1t8 vertical tangent space must be in terms of the first cohomology description
the linear subspace of {J—invariant h € T A" C H;} annihilated by the Ricci form of
g . For the precise statement see Proposition 5.6. This linear subspace is thought to be the
exact space describing the "vertical" tangent direction of the j.

The importance of half conformally flat 4-manifolds is that they are equipped with
twistor spaces. It is an interesting question how our moduli relates with the moduli of
complex structures on the twistor space, while we only remark on it in § 5.

However, more interesting is an investigation of the ends of the moduli of half
conformally flat structures. The action #(7) = 67° | 7(M)| for 7€ A M 80 that a
bubble off phenomenon may occur at points where the Weyl conformal tensor concentrates.
A Uhlenbeck’s type theorem is expected as in the Yang—Mills instanton case.

The essential difference from the Yang—Milis instanton case is that by bubbling off a
half conformally flat 4—manifold may separate into some half conformally flat 4—orbifolds
M,,...,M; suchthat M =M, # .. # M, (seealso [2], [42]). So possibility of bubble
off is detected by the quadratic form on E_I2(M;Il) ([23]). Here the connected sum is
considered as generalized one being attached along homology 3—sphere. At any rate the one

point blown up of €2 with anti—self—dual Kahler metric whose conformal compactification
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is QZ_P2 with the Fubini—Study metric ([30], [40]) and the Eguchi—Hanson metric on an
ALE 4—manifold must play roles as "1—instantons" in the compactification of the moduli.

We discuss in § 2 the scalar curvature type and the connected sum operation. In § 3
we review briefly the fundamental properties of the Weyl conformal tensor and study the
moduli of half conformally flat structures to show the main theorems (the real analytic
subvariety theorem and the L2—metric theorem).

We specify our argument in § 4 to the moduli of Ricci flat metrics of unit volume,
identified with the moduli of type zero conformal structures when the Hitchin’s bound
X+ % 7 =0 is satisfied, and exhibit the detailed proof for the local Torelli-type theorem.
§ 5 is devoted to the investigation of the moduli A~ M(O) in terms of complex structures.
Indeed we derive the "horizontal" direction theorem from the %- complex—homomorphism
between the Kodaira—Spencer deformation complex and the half conformally flat
deformation complex (Theorem 5.2) and obtain also the "vertical" direction theorems, as
Propositions 5.4, 5.5, 5.6.

We summarize in Appendix some formulae needed in deriving the linearization of the
Weyl conformal tensor.

For general references of (half) conformally flat manifolds we refer to [37], [4], [8],
[15], [28], [39].

The author would like to express his gratitude to T. Mabuchi and C. LeBrun for ‘
useful conversation and criticism and also to Max—Planck—Institut fir Mathematik for

supporting his stay in Bonn.
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2. Scalar curvature type
i) Before discussing the moduli of half conformally flat structures we begin with scalar
curvature type.

As is shown as Yamabe problem solved by Aubin, Schoen, a compact connected
oriented Riemannian 4—manifold (M,g) admits a constant scalar curvature metric,
conformally equivalent to g ([5], [44]).

A conformal change g’ = f2g , € C®(M), >0, has the scalar curvature p’
obeying the equation

p’ B =6Af+ pf (2.1)

for the Laplacian A = A g and the scalar curvature p of g.
From (2.1) one has the following proposition from which the value of constant scalar
curvature is unique up to volume normalized conformal change provided the value is

nonpositive.

PROPOSITION 2.1 Let g,g’ be two conformally equivalent metrics of same volume. If

they have constant scalar curvature < 0,then g’ =g.

PROOF We assume & dVg = 1. The metric g’ = fzg i8 a conformal change. So
if’dvg = 1. The proposition is obviousif p = p’ = 0.So assume- p=p’ < 0. Ata

point x € M where { has the maximal value Af = —gijﬂi Ojf 2 0 so0 that from the
equality (——p)f(l—f?’) = 6Af l—fz(x) 20 and hence 121 on M. So f=1 because
Jf4dvg =1.Thecase p’ < p <0 is similarly proved. Q.E.D.

Now we divide Ve the set of conformal structures, into three parts # M(+) ,
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3 M(O) , B’M(_) according to the sign of the constant scalar curvature and decompose
Ay 38 Myg = A 1 iy (O 11w O

Toevery 7€ ¢ M\ ¢ M(+) we choose a representative g of unit volume and
assign the value of constant scalar curvature of a conformal change of g within the volume
normalized conformal class. So we get a map, Diff(M)~invariant p: #,/\ ¢ M(+) — R
which descends to a "smooth" function on  #,\ gM(+)/DiEO(M) in certain Sobolev

norm.

ii) Non negative type
The following are known with respect to half conformally flat 4—manifolds of

nonnegative type.

THEOREM 2.2 ([14], [9], [15], [28]). Let (M,g) be a connected 4—manifold endowed
with a complex Kihler structure. (i) If (M,g) is compact and self—dual, then (M,g) is a
complex space form, i.e., €P2 with a Fubini-Study metric, 022/ A with a flat standard
metric, D2/I‘ with a standard K&hler metric, or a compact quotient of D1 x CPI with
opposite curvature metrics (here Dl, D? are the unit balls). (ii) (M,g) is anti—self—dual if

and only if the scalar curvature p=0.

THEOREM 2.3 ([39]). Let (M,g) be a compact connected oriented anti—self—dual
4—manifold of type positive or zero. If M admits a harmonic self—dual 2—form ## 0 i.e.,
b+(M) > 0, then (M,g) carries a complex structure for which g is a Kahler metric of
type zero and the normalized | 6|_10 is the Kahler form.

It follows from Theorem 2.3 that (i) if J(M("') # ¢, then b+(M) = 0, namely the

intersection form of H,(M;Z) is negative definite or zero so that for such M of 7, =1,
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M is homeomorphic to the connected sum of b2(M) copies of CP2 , €P? with reversed

orientation, due to Donaldson’s theorem [16] and (ii) if 4 M(O) $ ¢ and b+(M) >0,
then 4 M(+) = ¢ and M carries a complex structure with a Kédhler metric of zero scalar
curvature.

It i8 concluded moreover from Theorems 2.2, 2.3 that (i) type positive self—dual
compact Kahler surface is only €P? witha Fubini—Study metric, (ii) type negative
self—dual compact Kahler surface is only a complex space form of negative constant
holomorphic curvature, (iii) a Kahler metric is anti—self—dual if and only if it is type zero
and (iv) compact conformally flat Kéhler surfaces are only a Kahler flat torus T* and a
compact quotient (DIXCP 1) Ir-

The last 4—manifold is in the algebraic geometric terminology a complex ruled surface
M, , a holomorphic ¢P! bundle over a Riemann surface %, ofgenus k(> 1).

We remark against this 4—dimensional special feature that every conformally flat
Kahler manifold of complex dimension 2 3 is flat ([46]).

A Hopf surface, diffeomorphic to slxg3 , 18 an example of compact conformally flat
4—manifold ([11], [38]). Its scalar curvature type is positive.

iii) Connected sum

A fundamental operation in conformal geometry is taking the connected sum. The
class of conformally flat manifolds is closed under the connected sum operation ( [36] ). The
subclass, a class of type positive conformally flat manifolds is also closed under this
operation ( [45] ).

For half conformally flat case the connected sum operation must be specifically
important since the "quantum number" 7 behaves additively, (M # N) = (M) + 7(N)
and it is reasonably expected that the operation # works on half conformally flat
4-manifolds with "one instanton” CP? with a Fubini~Study metric. Actually the
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connected sum of n copies of ¢p? for arbitrary n is endowed with a self—dual conformal

structure ( [43], [21], [18], [41]).

iv) Negative type case
Type positive manifolds are well investigated because of Lichnerowicz—Hitchin
A—va.nishjng theorem for spin structure.

However, type negative 4—manifolds seem 8o far to be less known.

THEQREM 2.4 Let M = N1 # N2 be a connected sum of compact connected oriented
conformally flat 4—manifolds. If Ni , 1=1,2 is a flat torus T4 or a ruled surface Mk ,
k > 1, with a conformally flat structure, then M admits a conformally flat structure and

moreover any conformally flat structure on M must be negative.

PROOF From Kulkarni’s theorem [36] M admits a conformally flat structure. Let [g]
be any conformally flat structure on M . Assume its type is nonnegative. Since
b+(M) = b+(N1) + b+(N2) >0, (M,g) must be Kihler from Theorem 2.3 so that M is
T (b® =6, x = 0) or M, (b =2, x = 4(1-k)). On the other hand

2 2 2 .
b%(M) = b%(N,) + b%(N,) , x(M) = x(N;) + x(N,) — 2. So the topological type of M
differs from T4 and Mk .
REMARK The class of type negative conformally flat 4—manifold is closed under the

connected sum operation, as pointed out by Lafontaine ([38]).
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3. Moduli of anti—self—dual conformal structures
i) Let M be a compact connected oriented 4—manifold. We fix for a technical reason a
volume form dv on M.

For a smooth metric g on M we denote by [g] the conformal structure
represented by g .

We note first that any conformal structure 7 has the unique representative metric g
whose volume form dv = yTg[ dx!rdxadx3adx? coincides with dv . We call this g
the normalized representative of 7.

Since two metrics g,g’ on M arerelated as g’ (X,Y) = g(h(X),Y) for a positive
definite symmetric tensor h , we regard conformal structures as smooth sections of a fibre
bundle V—— M whose fibreat x €M is § +(T:M)/|R+ . Here S +(T;M) is the cone of
positive definite symmetric bilinear forms on TxM and RT operates by scalar
multiplication; €, & C*(M;V) .

This is the standard description of conformal structures, valid for arbitrary
dimension.

We have another formulaton of ¢ M from the four dimensionality.

The star operator * : 02— 0 depending on a conformal structure and the
orientation of M gives the splitting ﬂi = n'; ® ﬂ; , X€M,into + eigenspaces Q'; ,
A with A% A Q7= 0 so that the wedge product -A- : i — 0i* = Rdv is positive on
0t and negative on 1, respectively. |

Conversely a choice of an appropriate 3—dimensional subspace U in ﬂ?{ on which
A+ i8 positive determines uniquely a conformal structure 7 at x € M so that U and
the subspace U™ annihilated by U give the splitting 02 =t @t = v, a7 = U*.

So given a 4—manifold M fixing a conformal structure means equivalently a choice of
an appropriate rank 3 subbundle 2’ of 0 —M (see [21], [17, Appendix] for this
formulation). Thus, once we fix a conformal structure 7 with splitting = n: e n; ,
we can identify #), with an open set in C"’(Hom(ﬂ';,ﬂ;)) ;
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s’Mg{Aecm(Hom(n*',n;)); nrn+AnpaAp>0, gent}).

REMARK These two identifications are very natural because we have an
— *
SO(4)—isomorphism between aten” and SO(T M) = {traceless symmetric

2—tensors} :
— *
0" @ 07(x Hom(*,07)) —— S,(T M)
(3.1)
(’7+,7?_) ——h= (hij) )
hij = gkl q-;'k ”ij (Lemma 4.6 [10]) and h € SO(T*M) induces a homomorphism
A=A 0t —a7, apt = (An"'ij) ;
Apt. =0yt 0kt gtent (3.2)
T e TR s TR A S -

giving the inverse.

We adopt the Einstein summation convention throughout this article unless any

confusion occurs. .

ii) Elliptic complex

Our next investigation is to derive the linearization of wt , the self—dual part of

The tensor W is composed of the Riemannian curvature tensor R, the Ricci tensor
Ric and the scalar curvature p .

R is regarded as a self-adjoint operator: P — 0P ;
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1
Riejre;) = g Rygyi € A

for an orthonormal basis {e;} of 1—forms so that

rtt
R=
R~ R—

with respect to the splitting 12 = 07 @ 0~ . Each of R*t, R has

w* e C"’(So(ﬂ*)) as the traceless component and actually

where SO(Q+) denotes the traceless symmetric product of ot ([4], [24])-
Raising indices of W we consider Wt W™ as sections of N7 ® so(3)+ ,
1 ®s50(3) , respectively and then as End(TM)—2—forms

W =2 (WHEW), W™ = J(W—W) .

Here so(3)* is the Lie algebra of skew adjoint endomorphisms of T_M caused by the
operation of ﬂ: .

We denote by D = Dg : Cm(SO(T*M)) — Cm(So(Q+)) the directional derivative
of WH at y=1[g], D ) = (6WH)(h) for hET » ¥ - The tangent space T_ %)
is here identified through the first identification of €y, with C®(Sy(T M)) , the space of
traceless symmetric 2—tensors, since ag we note in i) we can choose for any 7 € ¢ M the

normalized representative g uniquely.
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PROPOSITION 3.1 Let 7= [g] be an anti—self—dual conformal structure. Then the

directional derivative D is a second order differential operator represented as
D(h) = (6W, ()" , (33)

that is, D(h) is the self—dual part of the directional derivative of the full Weyl conformal

tensor W .

PROOF The proof involves only calculation. By the definition of wt ,
1
(W E)(B) = (6W ()T + 5 (6%, (0))(W(g)) -
Since for any metric g » the star operator satisfies *g = (hI) o *g o (hIl)* for
1
h, € C°(End(TM)) given by g,(X,Y) = g(b,(X),Y) , the derivative (&* g(b) is
(6% g)(h) =ho *g = *g © h where h is considered as acting on 02 as derivation. So
Dy(b) = (8Wy(h))* + 5 h(* W(g)) — 5 *,(aW(g)) reduces to (6W ()", because
W(g) € CP(5,(7)) - Q.E.D.

The action of diffeomorphisms of M on ¢ M yields the Lie derivative operation on
the tangent space T 79’ M by choosing a representative g within 7 as

L=L,: C®(TM) — c"’(so(T*M))
(3.4)

Xr— L(X) ,

L(X);= VX, + VX~ (VX ;e
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We derive then a complex at any anti—self—dual 7= [g] ;

C®(TM) e CO(S,(T M)) D, c(s,(0™)) (3.5)

PROPOQSITION 3.2 ([21]). This complex is elliptic.
This complex has the index %(291'(M) + 15x(M)) . See also [20].

iii) Slice theorem

To get the real analytic variety structure theorem for &), we discuss a slice
theorem and then a Kuranishi map theorem, even though these theorems are quite common
for the Yang—Mills instanton case ([22]).

Consider the L2—adjoint of L8 , [g] € ¢ M » denoted by L with respect to

Sobolev spaces
L 3
L : LP, ,(Hom(n™ 7)) — LY(TM) .

*
The kernel of L , an L2—orthogona.l to Im L, gives a slice in Lﬁ +1(Hom(ﬂ+,ﬂ_)) .
We use here the second identification, since ?!M is considered as an open subset of

an affine space.

Consider the composite map
¥ : Difi’(M) x #,(C LP_  (Bom(a*,07))

(3.6)

L
— gy —Lco(mm)



-19 —

where Diff’(M) is completed by the LP Sobolev norm and the first map is the
diffeomorphism pull back.

To obtain the slice theorem we follow § 3, [22] and [19].

The partial derivative at (idy;,0) 6, = L'L is self-adjoint and elliptic. So the

restriction of ¥
¥ : exp((Ker L)*) x ¢4y —— (Ker L)* (3.7)

has at (idM,O) the invertible partial derivative. By the implicit function theorem
¥(p,A) = 0 has then a unique solution ¢ = p(A) for A in a neighborhood U of 7 so
that onehasamap f: Am— X = (,a(A)*(A) , L*(K) =0.

Since the conformal group CO( 7)={p€ DiﬂO(M); (p*')' = 7} actson €, as
isometries and leaves Ker L invariant, each ¢ € 00(7) maps (Ker L)* into itself and
hence on the group level exp(Ker L)J' into itself.

Thusfor X = f(A) ¢ actsas ¢ (X) = (¥ (A)¥) ¥ (A) and L (¢ (X)) =0.
So (¢ (A)) = # 1(A).

We can now follow the argument given by Ebin in the case of space of Riemannian

%
metrics and we have the following theorem for a sufficiently small ball in Ker L .

THEOREM 3.3 Forany 7€ G’M there exists a slice ¢’ in S’M , 7Y€ & ,aballin
Ker L* such that

i) any %€ CYy) fixes o invariantly
(ii) if p€DI(M), ¢ (#)N &+ 4, then € C%(7),
(iii) there exists a local section y : DiffO(M)/CO(7) — Diff’(M) defined on 2

neighborhood U of the origin such that the map F: (u,A) = ( x(u))*(A) ;

Ux of — €y, isa homeomorphism onto a neighborhood of 7,
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diffeomorphic off fixed points of C%(7) .

From this theorem for any 7 € KM/Diﬂ‘O(M) there exists a neighborhood of 7,
homeomorphic to &/ CO( 7) and diffeomorphic off quotient singular points.

iv) Kuranishi map
Let 7 be an anti-self—dual conformal structure on a 4~manifold M .
Consider the anti—self—dual equation in the slice o = o y
WHy+A)=0,
(3.8)
L'(A)=0 .

The second equation is a gauge fixing equation. W+(7+A) is the self-dual Weyl
conformal tensor of a conformal structure 7+ A closeto 7.
Choose metrics g, 81 for instance, the volume normalized representatives of 7,

7+ A, respectively. Since *_ = (o *g 0 (b,)* for h=h, € C®(End(TM)),
1

+
8(X,Y) = g;(h(X),Y) , the first equation is replaced by (h A(W(7 + A))) 8-0.50we

rewrite (3.8) as

+
(hy(W(7+A)) =0,
(3.8)/

Define a map
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W o —— LE(SO(Q'*'))

(3.9)
+
A—— (b, (W(y+4)) &
and expand W"(A) as
WF(A) = W¥(7) + D (A) + R(A)
with a remainder term R(A) =R g(A) . So for anti—self-dual 7 we have
wt(A) =D g(A) + R(4) (3.10)

As a routine business for solving the equation W"(A) = 0 we introduce a map
8= Bg , the Kuranishi map, from a small ball in Lg +1(Hom(ﬂ“",ﬂ_)) into
L} , 1 (Hom(0F,07)) ;

B: A~ A + D G(R(A)) (3.11)

X
for D ,the adjoint of D and G, the Green operator of DD on L£(80(9+)) ,
As was discussed in the deformations of complex structures ([34] ) we can show the

following, since B is locally invertible and CO( 7)—equivariant.

THEQREM 3.4 (i) There exists for small ¢ >0 a 00(7)—equiva.riant map ¢ from an
* * —_

e—ball H! of H,lr ~KerL NKerD to H?, nKer DD : A~ 7R(B"L(A)) such

that anti-self—dual conformal structures in the slice <’ , 81 described as



Zero(3) = {A € Hi; $(A) =0} and (ii) each gauge equivalence class 7 € fM has a
neighborhood, homeomorphic to the quotient Zero(#)/ CO( 7)’ diffeomorphic off singular

points. Here x is the projection of Cm(So(ﬂ+)) onto H,27.

V) L2_metric

As a first step towards for defining a Riemannian metric on the moduli 4" M Ve
define a Diff" (M)—gauge invariant L2_metric on M-

Throughout this section as in iv) we keep the identification
#q C CO(Hom(a1,07)) .

For A€ Cm(Hom(ﬂ+,ﬂ_)) define the adjoint A ﬂ;——: ni with respect to the

volume form dvg ( g is a representative of 7 ), in other words
* - &, 3
nTAA g =AnTag, T ENT . (3.12)

*
Then the trace —Tr AA is a scalar function on M , positive definite and depends
only on 7.
In fact, choose at a point orthonormal basis {n';'} , {17;} of N* v ie.,
+ + : + jor * o WX+
ol LR j=6ijdvg' i=1,2,3 and set Aqi =Ai17j.Then A ”i=Ai’7j has
E 3 3 * PR
Ad=-A j’ and hence —Tr AA = AiJAj‘ is positive definite.
From this definition the trace is obviously independent of the choice of g .
A diffeomorphism ¢ acts on Cm(Hom(ﬂ"',ﬂj) :

_ * :
A€ Cm(Hom(ﬂ';,ﬂ;)) —— AP € Cm(Hom(Q'; A ), 7= 7 by the following
1M

diagram



@
n+ X :n+*
g )g(x) ¢ g ’ b 4
A¥’( x)l * J(Aw)x
2
0 X 1
g,de) w*g , x

* * _
wheri x Ej\d ani g isa rep:esenta.tive of 7.So0 (A‘P)x =@, 0 A o(x) o (gox) 1 and
(A“’)x =¢ 0(A) o(x) © (qox)"1 . Then the pointwise inner product satisfies

(=Tt AY AP%)(x) = (=Tr AA")(p(x)) . (3.13)

To define an L°—inner product on ¢, ,invariant under Diff+ (M)—action we need
from (3.13) a "canonical" volume form g+ dVg satisfying the conformal invariance,

dVgy(x) = dV,(x), 1€ CPM), >0, and the naturality, 4V 4 (x) = (ga*dVg)(x) .
7
Assume the existence of the canonical volume form. We then obtain an L2—inner

product on Cm(Hom(ﬂ';,ﬂ;)) as

l1A]|2 = IL (~Tr AA*)(x)dvg(x) . A € C®(Hom(nt,0) , (3.14)

integrated in terms of the canonical volume form.

So the remaining problem is to verify the existence of such a volume form.

To investigate it we notice that the quadratic form induced from the cup product:
H2(M;Z) x B2(M;Z) — BY(M;Z) » T gives a nondegenerate symmetric form on
HZ(MR) of type (b¥,b7), identified with the wedge product on the de Rham
cohomologies: H2(M;R) x HE(M:R) — HYM:R) = R[dv] ; ([6],[«])+— [ * o]
( dv is a volume form of unit volume).

For any metric g H: = {(anti—) self—dual harmonic 2—forms} are
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b*—dimensional subspaces of H2(M;IR) , respectively.

To simplify the argument we assume bt >0 (when bt =0 , b >0 is assumed
so that anyway b2 >0 is primarily assumed).

We choose an orthonormal basis {;6';' = ‘ﬁg_,i} , 1€i< bt , of H'; . The
orthonormality is measured by the cup product; [ﬂ'] A [95';-'] =4 j [dv] .

Define
bt
. _ 4112
dV,(x) = '21 ¥ ]|g(x)dvg(x), XxX€EM , (3.15)
1=
where || ”g is the norm measured by g .

This does not depend on choices of orthonormal basis. This is conformally invariant
since for each i l|¢l||§ dvy = 4 A % = ¢, A ;-

The canonical volume form (3.15) depends smoothly on the metric g, since
bt = dim H'; is a topological invariant (see for example Theorem 4.5, p. 178 [34]).

The naturality of dV_(x) is indicated as follows. Any ¢ € Difft (M) induces a
quadratic form isometry ¢ : H2(M:Zl) — H2(M:H) 80 that {tp*ﬁ';'} gives rise to an

orthonormal basis of H+,,. and hence
¢ 8

v« =Yl $Tl% @ av 4 @
¢8 ; vE  ¢8

_ T ll4H2 *
= 2 17 Iget) e dv,)(x)

Thus one has
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PROPOQSITIQON 3.5 The inner product (3.15) is positive definite and
Diff T (M)—invariant.

Theorem 1, § 1 is concluded from Theorems 3.3, 3.4 and 3.5.

REMARK dVg is the Riemannian volume form dvrg multiplied by a nonnegative weight
function which has in general discrete zero from the result of [3]. However in some special
case dV_ coincides with dvg up to a constant scalar factor. Indeed this is the case if each

8
of ¢'}' has constant norm.

*
We also remark that through the identification (3.1) —Tr AA  is just 4 Trhh,
A=A, from (3.2).
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4. K3 surfaces
Recall the following formula for a compact connected oriented Riemannian
4—manifold (M,g)

x40 +§ 70 =L [ 1w¥ 12 L5 [ %5 Ric)? (4.1)
4x 487
(see p. 72 [24]). So as an easy observation from (4.1)

PROPOQSITION 4.1 Let M be as before a compact connected oriented 4—manifold. If M
satisfies 2y(M) + 37(M) = 0 (this is the case for a complex torus, a quotient of a complex
torus, a K3 surface, an Enriques surface and the quotient of an Enriques surface by an
antiholomorphic involution [26]). Then any anti—self—dual Riemannian metric g is of

zero scalar curvature if and if g is Ricci flat.

The moduli A I&O) of type zero anti—self—dual conformal structures on M of
2y + 37 =0 is then identified with the moduli of Ricci flat metrics of unit volume.

Now let M be a K3 surface, a simply connected compact complex surface with the
trivial canonical bundle KM .

The topological invariants are y = 24, b2 = 22 , (b+,b_) = (3,19) so 7=-16
and 2y +37=0.

The moduli A& I\(flo) is well investigated in terms of the periodic map. Actually the
quadratic form gy, on H2(M;H) has type (3,19) and the Grassmannian
Gl = S0(3,18)/g0(3)x50(19) ©f Oriented positive definite 3—planes in H2(M;R) gives
the Ricci flat Kahler metrics on M provided we ignore the action of Aut(Hz(M;H);qM) ;
p: & — G'; . Here & denotes the moduli of Ricci flat metrics of unit volume.

Then & admits a structure of 57 dimensional symmetric space with an invariant
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metric. This means that the space Hom(H+,H—) =H © (H+)* gives the tangent space
Tg # and the invariant metric is —Tr XX , X€ Hom(H"',H_) from the standard
argument of symmetric spaces.

On the other hand the index of the complex (3.5)is —52 and dim HC = 0 and
moreover from Corollary A.5 in Appendix dim H2 = 5 . The virtual dimension of our
moduli at each 7 represented by a Ricci flat metric g is then at most 57.

The following proposition asserts as exhibited in Theorem 4, § 1 that A 1\(40) has
actually 57 dimension and the connected component of A M containing A 1&0) is itself
A 1\(10) and i8 isometric to p( &) in G'; . As an easy observation there is no type
negative anti—self—dual conformal structure nearby & 1&0) .

PROPOSITION 4.2 Let g be a Ricci flat metric on a K3 surface M . Let yfz en’t ,
a=123 and ;‘kl-) €H , b=1,..,19 be harmonic 2—forms being orthonormal basis of
BT, H™, respectively. Then ¢ ® ¢} € H ®HY, 1<a<3, 1<b<19 form
through the identification HY o (H+)* an orthonormal basis of the tangent space

2

T A M 7= [g] with respect to the L"—metric.
7

PRQQF First we remark that the metric g is Kahler from Theorem 2.3 and each ¢: i8
covariantly constant so that dVg =3dv g and then the L2—inner product (3.14) is just

*
the ordinary inner product ||| = J'Tr hhdv, of C®(Sq(T M)) through the

identification (3.1).

Let h € Cm(SO(T*M)) be given through the map (3.1) by g&g @ p‘): . Then
P 7 A
h=(hy) is by;=¢g e = Py
Weverify h€ KerL NKerD at g.
Since d ¥ =0 and V¢t =0, L (k) is from (3.4)
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L (n) = —2g£ivjhj£ = -2g"'i(Vj;;6'jk)qﬁk£ =0,80 hEKerL .
To show Dh = 0 we make use of the anti—self—duality of ¥ and apply (3.3) and
(A.1), Appendix. Apply ¢+k£ to vi{jk + vj‘ﬁ;i + ngﬁ;j = 0. Then we have

+
Vibjo = Vipip + Voo - ¥ =0 (4.2)
and hence
¥ Vi~V Vibip + (VkVﬂgsi'j)go““"2 =0, (4.3)
or interchange k and €
Ve Wiy —VoVibyy + (Vavs”i-j)"ﬂk =0 . (4.4)

So the tensor U € c“’(nzenz) defined in (A.2) is
2 Ui = (DT 009y — (Vo )9 ™", . (45)

D(h) is the SO(ﬂ+)—component of U since g is8 Ricci flat.

Without loss of generality we can assume ;6'{' = w , the Kihler form and yfg , gé'g
are the real and imaginary parts of a covariantly constant holomorphic 2—form,
respectively.

We use the complex coordinate indices.

For ¢+ =w, _,g';+ij = -1 6; , ¢+ij =—/—1 6’1 , 1,j = 1,2 and others are zero.
Then Uim= 0 for k2 € {1,2} and i,j € {1,2,1,Z} since [Vk,Va] =0 and also
Uijkﬂ. =0 for i,j€ {1,2} and k. € {1,212} since ¢ isa (1,1)Hform.

Similarly U, KL= 0 for all indices running over I, 2 . Therefore the components of



—99 —

U in 07@NT remain are only the w®w—component. But it is
| gjigu Uing = gjigu(vkvr + vl'vk)”i} which vanishes from the fact that ¢ is
primitive.

The similar argument works for other y’fg , ¢§ 8o that ;5; @ ;9': € Ker L' NKer D
forany a,b. ‘

That ¢, @ ¢1' , 1<a<3, 1{b<19 enjoy an L2 orthonormal basis of
T; A y follows from the definition of the L2-inner product (3.14) and the remark
mentioned at the beginning of the proof. Q.E.D.
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5. Half conformal flatness and complex structures
i) Moduli on ruled surface

Since any ruled surface M = M, has 7=0, every anti—self—dual structure is
conformally flat. Also &~ l\(ﬁ+) = ¢ because b = 1. The moduli
A M= A I&O) 1L A 1&_) , the moduli of "conformally flat" structures on M, is
considered to lie inside the representation space % (x,(M,); SO(5,1)) , as explained in
§1.

Now we are interested in A& 1&0) , the moduli of type zero conformally flat
structures on Mk'

~ Let 7€ A h(flo) . Then one has from Theorem 2.3 a representative g of 7, a

Kahler metric of zero scalar curvature. From Theorem 2.2 (Mk,g) is then covered by the
Kahler product p! x ¢p! ; (M.8) = D! x CPl/r for a discrete subgroup T' of
Aut(DGCPl) = SL(2,R) x PU(2) acting freely and properly discontinuously. Since every
a € PU(2) has a fixed point, I' is the graph of a homomorphism
¢:T; CSL(2R) — PU(2) = Aut(CPl) , where T'; is a subgroup isomorphic to (X, )
acting on pl freely and properly discontinuously.

It follows then that every type zero conformally flat structure 7 € A 1\(40)
one—to—one corresponds to an appropriate conjugacy class of representation
71(3,) — SL(2,R) x PU(2) . More precisely, A ISIO) is exactly the set of all conjugacy
classes [¢] , ¢: 7 (¥,) — SL(2,R) x PU(2) satisfying that ¢ is the composite of
¢; : 7y(%) — SL(2,R) and 4, : Im(¢,) C SL(2,R) — PU(2) and ¢, acts on the disk
p! freely and properly discontinuously.

Since the homomorphism ¢, induces a PU(2) flat connection on a complex vector

bundle over the Riemann surface %, = p! tm 4, ; D! x ¢2C2 — %, , the following

fibration structure theorem is available.
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THEOREM 5.1 The moduli 4”\") on a ruled surface M =M, , k > 1 has a structure
of fibration A~ 16[0) — A Ek , the Teichmiiller moduli of Riemann surfaces, whose

fibre over a Riemann surface represented by [¢1] v 8y (B) — SL(2,R) is the
moduli of PU(2) flat connections on the complex smooth vector bundie induced by
¢o : Im ¢, — PU(2) .

From this theorem it i8 expected that the fibration yields a Riemannian submersion
with respect to the L2—metric and the Weil—Petersson metric on A4 zk such that the

L2—metric restricted to each fibre is the metric introduced in [29].
Since SL(2,R)xPU(2) is immersed in SO(5,1) as a proper subgroup, & (x(%);
SL(2,R) x PU(2)) and hence A& 1\(10) are immersed in % (x;(M;); SO(5.1)) .Therefore

COROLLARY 5.2 Any ruled surface admits type negative anti—self—dual structures
around a type zero anti—self—dual structure. Namely, if 4 1&0) +¢,then A ISI_) is
also not empty.

REMARK There exists a ruled surface admitting no type zero anti—self—dual conformal
structure ([12]).

ii) Moduli of complex structures

Let M be a compact complex surface. We investigate how the moduli of complex
structures Jy, of M affects our moduli.

The Kodaira—Spencer complex for complex structure deformations has the index
§ (1 SHM) — 5 c(M)) = 5 (21 (M) + 9 x(M)) ([33]).

This index is for M = M, , a ruled surface, 6(1—k), so that Hl(Mk,TM) has the

virtual complex dimension 6(k—1) . This dimension coincides from Theorem 5.1 with the
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"complex dimension" of A 1&0) .

This phenomenon is fortunately not accidental.

Let M be now a compact complex surface of p g 0 (or equivalently b+(M) =1).
Then from Theorem 2.3 every type zero anti—self—dual structure 7 € K (0) yields the

unique complex structure J y (up to diffeomorphisms) so that one has a map
. 0 _ .=
j: Jf"l\({ )——; fM = {complex atructures}/DiﬁO(M) 7 —— [J7] .

Relative to a fixed complex structure there are two possibilities of conformal
structure deformations. One is a deformation fixing a complex structure and varying a
metric and another is a deformation varying a complex structure.

We postpone investigating the first possibility.

Consider the second one from which we derive information on 4~ 1\({0) being affected
by £ M-

Let J be a complex structureon M and g a zero scalar curvature J—Kdhler
metric.

Consider a deformation of complex structures J(t) of J . The infinitesimal

deformation I = J(0) = Ig Eai ® dx) then satisfies

W+J1=0, 6N;(I)=0 (5.1)

Here Ny is the Nijenhuis tensor and 6N(I) = %1- NJ(t) =0 -
From the first equation I € C®(End(TM)) is regarded as a section of %l e T™ ,

I= Iij a—af ® dz’ for a complex coordinate (zl,zz) and the second equation means 81 = 0
Zz

for §=17;: Cm(ﬂo’1 ® TM) — C"’(ﬂo’2 ® TM) , where %P is the (0,p)—form bundle
and TM = TVOM is the holomorphic tangent bundle.



Trivial deformations LyJ, X € C°(TM) are obviously sections of (5.1). Since
%=1 (@, for X=2+7, 7€ CTM) ([8]), we obtain the
Kodaira—Spencer complex

c®(rm) —2— c®(%lerm) —2 ., c®(n®ZeTM) . (5.2)

THEOREM 5.3 Let (M,J,g) be a compact complex surface with an anti—self—dual Kahler

metric. Then there exist homomorphisms between complexes (3.5) and (5.2);

c®(tM) —9 . c®(n loTm) —2—, ™" 20TM)

lﬁ 1 162 (5.3)
C®(TM) ——— C®(Sy(T M) ) —— C2(5o(T) )

For the proof of Theorem 5.3 we need to define homomorphisms ,81, 62 .

ﬂl(l) , 1€ Cm(ﬂo’lﬂ‘I‘M) is defined as ﬁl(l) = hy, the traceless symmetric tensor;
hI(X,Y) = g(IX,Y) + g(X,1Y) .

Note that Ker ,6‘1 consists of those 1’5 being g—skew symmetric.

To define 62 we introduce an operator 9: Cm(ﬂo'zﬁTM) — cm(n°’2m°’2) as

the composite of the operators

c®(n®%erm) —— c(a¥Tmpen®t) 2,
(5.4)
c®(a%rm)en®?) 2, co(n02en0?)

ﬁ2 is the traceless symmetric part of the real form of 9. Here # is the operator raising



and lowering indices so that for a = a9 @7 » asF € Cm(ﬂo'2 ® TM)

N!H
151-
D
ml-l

t= (Vo - Vja;EI)(dzIAdzj) ® (dFrdsl) |

(5.5)
PROOF of Theorem 5.3 What to show is that ﬁz('&(I)) = D(hy) for any
1€ c®(n¥lerm).
We calculate #(3(I)) from (5.5) as

HA) = (V'VE T VvVEI] i V~VEI rt Vle-If P x
(5.6)

(dz*rdz) @ (dz5adzF) .
On the other hand from Proposition 3.1 and the formula (A.1) in Appendix D(h) is

D(h) = U(h)* + v(b)* (5.7)

where U(h)+ , V(h)+ are the SO(ﬂ+)—components of U=TU(h), V=V(h),

respectively;

1
Uie = 3 (ViVihie = Vo Vibyy — Vi Vibje + Vo Vi)
(5.8)

1
Vike =~ 7 (Bybyjp —Ryghyy —Ryhop + Rosha)
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Since Ric € N1 for the Kahler metric g and the self—dual 2—form bundle is
ot =Ru® ﬂ'(')', IT(')' = (02’063('10’2)[R for the Kahler form », V' vanishes and also the
SO(Q'(';)—component of U agrees with that of (5.6). Moreover the ﬂ+0w—oomponent of U
is zero since (hI)ij =0. Q.E.D.

We would like to define a homomorphism between 1st cohomology groups. But this is
not automatically defined because of the lack of 0—th homomorphism. However for any
TeH! =Ker InKer 3 , ﬁl(l) belongs to Ker D . We add a compensating term
—LGL'(BY(1)) such that B(1) - LGL'(8Y(1)) isin H,lr = Ker L N Ker D . So we derive

a homomorphism
1 1 '
ﬁl:HJ-—4H7. (5.9)
*
Here G is the Green operatorof L L.

PROPOSITION 5.4 For the infinitesimal deformation ﬁl(l) € Ker D causedby I€ H}

the scalar curvature derivative &p vanishes.

PROQF For the scalar curvature derivation &p is ép(h) = gij(b"R)i |~ hini j and from
. 1 . . R
(A.6), Appendix (4R), i3 (Vavihﬂ-‘ + Vtvjh% - Vl,‘Vf‘hi j) . Since the metric g is Kahler

and h = ﬂl(I) is type (0.2), in complex coordinates &p(h) is gﬁ( SR)ij. But

(6R) =1 {v Vrh;)+V(V bl )} vanishes because 1=1 EKer'B* and h,- is gi
=z VgVt + V{(Vipp} v =13 3 is given
by hv'v= r-v+Iji'. Q.E.D.

From this proposition the deformation of metrics 8; induced from any complex

structure deformation in the above way keeps the scalar curvature constant zero.
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We remark that the geometric genus p g gives rise to an obstruction of the

injectivity of the ﬁl : H} — Ker D . Indeed we can show

PROPOSITION 5.5 The kernel of ﬁl restrictéd to H} is isomorphic with
B(M,0(Ky))

PROOF Let 1€ H} be in the kernel. Then this means that (X,Y)—— g(IX,Y) is a

gkew symmetric tensor I jdzl A de € c"’(novz) . On the other hand =0, ie.
VEII} = \7!'31“E 80 it follows that Vflj g =0 forall i, j, k. Applying the Ricci identity

th ih

we see I jdzf r D is covariantly constant. So the kernel {I € H}, ﬁl(I) =0} is
isomorphic through the complex conjugation with the space of covariantly constant
(2,0)—forms. This space is from Lemma 3.1, [28] exactly HO(M;d(KM)) .

Q.E.D.

Now we consider the inverse image of the map j: A& M §'s M
Welet (J,g) be a complex structure and an anti—self—dual J-Kihler metric.
Let g, be a deformation of anti—self—dual J—Kahler metric. Then g, satisfies

t
a conformal change so that its volume form agrees with dv g Then

*
h= %fftgt =0 € Cm(SO(T M)) satisfies D(h) = 0 . We differentiate *

S, A w, =0 for the Ricci form S, = =T R}jdziadzJ.Let f,g, , f, €C(M), >0 be

gy =y (o0

the Kahler form of g, ) and have h(*w)-*h(w) = w—*kw . From (3.2) h(w) € 0™ so the
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anti—self—dual part () is (w)” = h(w).From S, A w, =0 we have Saw+Saw=0.

But S is an exact fomr s0 by integration J Sa(w)” = J Sah(w) = 0. Thus we have

PROPOSITION 5.6 Let g, , g; =g be an anti—self—dual J-Kéhler metric deformation.
Let h € Cm(SO(T*M)) be an infinitesimal deformation of g, . Then the anti—self—dual
harmonic part of h(w) is annihilated by [S] as a cohomology element, where w, S are

the Kihler form and the Ricci form of g.

For any anti—self—dual J-Kahler metric g on a ruled surface M, , the Ricci form
S #0 spans Hg (b =1) so that from Proposition 5.6 there is no anti—self—dual
J—Kdihler metric deformations 8 Bp=8- This means that the map
j: A 1\(/[0) — ,3' M ‘is an immersed map and moreover from Proposition 5.5 the injective
homomorphism ﬁl : H} — Ker D g must give the inverse of jy .

,We expect that these arguments explain a fibred space structure of A 1&0) when
M is one of other complex surfaces of pg =0 admitting an anti—self—dual K&hler metric,

for instance, a Ricci flat Enriques surface.

ili) Remark for twistor spaces

By the twistor correspondence any anti—self—dual conformal structure 7 ona
4—manifold induces a complex structure J _ the unit sphere bundle U(ﬂ+) over M,
called the twistor space Z = Zy, = (U(ﬂ+),J 7) ([271])-

This correspondence induces a canonical map from & M ' the moduli JZ of
complex structure on Z . This map is an embedding since there is a {wistorial
characterization of complex 3—manifold (Th. 13, 69 [8]).

Correspondingly to this we have a homomorphism between the complex (3.5) and the
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Kodaira—Spencer complex of Z (see (3.3)in [21]);

Cc®(TM) —L— c®(Hom(n™, M) —2— c®(s, (™))

L e

c®(rz) —2— c®(n° lerz) —& ., ¢’ 2e12) 2,

which induces the injective homomorphism of 1st cohomology groups, the "tangent spaces”
of £y and Fpp.

A conformally flat structure corresponds to a holonomy homomorphism
7,(M) — SO(5.1) . As was pointed out in p. 439, [4] the natural homomorphism
SO(5.1) — SO(6,8) — PSL(4,C) then defines on the twistor space U(ﬂ"') a
projective flat complex structure ( [25], [32]).

The twistor space of a conformally flat 4—manifold is in fact represented locally as a
neighborhood in €P3 containing a complex line.

Our investigation of the moduli of conformally flat 4—manifolds yields examples of
family of projectively flat complex 3—manifolds.

A projectively flat complex compact 3—manifold ZM satisfies for Chern numbers
16 co(Z) = 3 ¢,¢5(Z) = ¢,%(Z) = 32x(M) (p. 135, [32] and [27]).
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Appendix

In this appendix we will show
PROPOSITION A.1 Let g be an anti—self—dual conformal structure. Then the linear
map: CO(S(T M)) — C2(S,(07)); h+— (6 W(h)* is written as

(W m)" = U@t +vmy* (A1)
where UT |, VT are the So(ﬂ+)—components of UVE c‘”(nzonz) defined by
1
Uime =7 (Vi Vjhip = Vo Vi = ViVibe + Vo Vi) (A2)
1
Vike =~ 1 (Byjhig —Ryghy —Ryghyp + Ryshyg) (A-3)
*

for b= (h;;) € CP(Sy(T M)

The proof needs a straightforward calculation. For two metrics g, g we calculate

the difference of the Christoffel symbols as
Y . _ 1wik 8 8 8
(il — (il =38 (BgeV by + 855Vih g —8igVghy) (A4

for h = (b)) € C®(End(TM)), g(hX,Y) = §(X,Y).

From this one has
. 1 » . . ’
(i }(0) =5 (V jh’k + th‘j - Vlhjk) : (A.5)

_d i _ ik
b= r8;0), By=g by -
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Applying the chain rule, one gets

6 R () 3¢ =Vy(6(ig}0) - Vo (6L }0))

and then from (A.5)
6 Rg(h)i e = 3 (Vk\;'thi - VQthi ) (A.6)
+3 (Tl -V V)
LT AL
Hence

1
(6 Rg®ijee =3 (TiViip — VoV =~ VyVibjp + V¢ Tiby)

(A.7)
1.t {
* 3 (0Rpe + 0iRie) -
The Weyl conformal tensor W has three parts
W - R + RI + RI I'4 ,
’ _ 1 _ _
R%ixe =~ 7 (8Rje — &g Ry + RiuBie — Rig8) » (A.8)

R’ e = § /(880 ~ Big8p) - (A.9)
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By calculating SR’ and 6R’’ we derive the following formula valid for any
metric and any h € C(S%(T M) .

FORMULA A.2
.t ¢
EW ke =2 Wigee + 2 iWitke + Uijee
1.t t
—7 (0 Regp + 1 Rine)
7 Bk O g8jt ~ B 0% Byt T By O k8jg T Eit O™ ¢Bjk
+ é (69)(Eik8jg - Biggjk) . (A.10)

Now assume that g is anti—self—dual and h is traceless. Then the So(ﬂ+)—component
(6 wg(h))+ is

(6 Wg(h))'*' =ut+vt,

where V1 is the So(ﬂ+)—component of the third term V of (A.10), since the first term
and the last two terms of (A.10) vanish when we take the SO(ﬂ+)—component. Here we

characterize the traceless symmetric product SO(Q+) as

LEMMA A.3 The traceless symmetric product So(0%) of 07 at x is {Z= (Zije) s

Z is Ricdi flat curvature like tensor satisfying the first Bianchi identity;
k

_ — _ i _ _
Zike =~ Zivg =~ Zijen = Zunij € L =9 Zije *+ Likej + Ligg = 01

We substitute R = W—R’—R’’ into V as
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18 ¢
Vike =~ 3 (0 Wi +05Wiine)
1.t o/ t o/
+3 (R g +hR )
1t 7/ t p7v
(R me TR k)

and take its S Q+)—component. Then

of
+ _ 1 +
VVike =~ 7 (Ryghip — Ry — Righye + Rojhy)
from which the proposition follows.

REMARK If g is anti—self—dual and Einstein, then vt=0 , namely
(6 Wg(h))+ =ut.

*
We would like to obtain a formula for the adjoint D of
D : C%(5,(0™)) — CO(S,(T M)).

PROPOSITION A.4 For an anti—self—dual conformal structure 7 = [g] the adjoint D
has the form

*
(D2);; = V0 g + VT2, + B2, (A11)

PROOF D is defined by
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J‘(h,n Z)dv, = J{ (DhZ)dv, |

of which the right hand side we calculate as (Dh,Z) = (U",Z) + (V¥,2) from Proposition
Al

Here
+ oy ijke

and

+ gy _ ik&j

(vh,2) = hinkf,z .
Then the formula (A.11) is derived from the integration
+ _ ikej ik€j
J(U 2)dV, = J' FARAEA AN T

REMARK This formula is appeared already in [6] as the first variational equation
D'W =0 of the functional ¥ : ¢y —— R (see also Lemma 1, [15]).
As a consequence of Proposition A.4
COROLLARY A.5 Let M be a K3 surface or a complex 2—torus and g be a Ricci flat
(i-e., type zero) anti—self—dual metric on M . Then the second cohomology group of the
ol
complex (3.5) is Hggle.Infa.ct }:aij f;'@;'f;', a.ijGIR, 8= 3 Za.ﬁ =0, span

Hi for self—dual harmonic (i.e., covariantly constant) 2—forms ;6';' , 1=123.
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