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Abstract

Dirac operat<?l's are weIl known to provide an elegant generalisation of complex
analysis both to domains in higher dimensional Euclidean space (Clifforcl analysis) anel
to closed manifolds (spin geometry). This paper is concerned with the meeting point of
these areas: Dirac operators on manifolds with bOllndary. The aim is to denlOnstrate
that many of the ideas from funct.ion theory in the plane have natural analogues on
lliemannian (or conformal spin) manifolds by provicling, as far as possiblc, elementary
prüüfs of the' main analytical results about the boundary behaviour of Dirac operators.
Emphasiseel throughüut are the confürmally invariant aspects of thc theory, and also thc
useflliness of the Clifforel algebra fOrlllalis1I1. A numher of classical results from complex
analysis, anel their counterparts in Clifford analysis, are extended to Dirac operators on
manifolds, including the Cauchy integral formula, the Plemelj formula, the Kerzman
Stein formula, and the L2-boundedness of the Cauchy and Hilbert transforms.

Finally, thc null space of the Dirac operator on a conformal spin manifold is shown to
define a conformally invariant Hilbert space of bOllndary values, such that the norm of
the pointwise evaluation of solutions on the interior gives rise to a conformally invariant
metric which is cOIIlplete and has negative scalar curvature.
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INTRODUCTION

The idea of fiuclillg first order systems of eqllatious whieh factor a Ficeond order linear

differential operator is certainly a venerable Olle, but over the past thirty years or so, a

nllinber of different thrcads have been pulling together around what is now widely known

as a Dirac operator. Although it is possible to dcfine Dirae operators qllite directly, a

cleeper understanding is aequired when these interrelated threads are brought into play.

Relevant ideas ineluele: Clifford algebras, which provide the right setting and language

for Dirae operators jllst as the eomplex numbcrs do for the Cauehy-Riemann operator;

harmonie analysis, which expresses the relatiollship, with its analytical ramificatiollS, of

Dirae operators to the represelltation theory of the spin grouPi and conformal differential

geometry, whieh eut.ers the picture as soon as one observes that thc Dirac operator is

conformally invariant, and provides a context for studying Dirac operators iu a manifestly

invariant way.

Thc Clifford algebraic, function theoretic, allel harmonie analytieal aspccts of Dirac

operators have been brollght together very fruitfully through the work of many pcople within

the rapielly developing fidcl of Clifford analysis [12, 19, 28, 37, 46]. Similarly, thc use of Dirae

ol)erators in differential geouwtry is widespread in areas as diverse as Rieruannian geOInetry,

it~dex theory, noneomulUt,ntive geometry, general relntivity and elliptic COhOlllOlogy [1, 5,

7; 11, 35, 43, 50]. At prmmnt, however, the Clifford analysis and differential geOlllctry of

Dirac operators are developed largely along separate lines. Yet these lines run very elose

at t.imes: in Clifford analysis, certain Dirac operators on submanifolels of Ilrl' are being

studied [37, 47, 48, 51, 52] and the geometry of Dirae operators is playing an increasingly

important role [19, 44, 47], while in differential geomctry, knowledge of harcl analytical

properties of Dirac operators ean be invaluablc [7, 26, 43]. Benee it seelUS worthwhile to

build more bridges betwecn these areas-this paper is intcnded as a step towards that end.
In [24], GilbCl·t and Murray deseribed the analysiH of Dirae operators both Oll clomains in

RH, as in Clifford analysis, and ahm Oll eompact boundaryless manifolds, the usua.l setting

in differential geollietry. The focus here will be on the IUOSt obvious llieeting point: compact

manifolds with boundary. The aim is to prescnt a thorough treatment of the analysis of

Dirae operators on such manifolds, with particular reference to conformal invarianee anel

also to the potellcy of Clifford algebra as a language in whieh to express thc results.

Much of the analysis studied here is already known in the context of elliptie pseudodif

fercntial operators-for example, SOlue of the rcsults are special cases of t.hose of Seeley [49].

However, the theory oE pselldodifferential operators on rnanifolds with botludary is lllore

conlplieated than on c10secl rnanifolds, and tbe Ulateria.l is often too techllical for a wide

audienee. In [11L Booß alld Wojciechowski observc that luallY sirnplificatiolls can be marle
when one restriets attention to Dirae operators. NOlletheless, for some crucial steps in their
approach, they follow the teehnical eornputations of Seeley.

Here I wish to show that a function theoretic point of view provides an alternative,

more elementary approach to the analysis of Dirae operators on manifolcls with boundary.

Indeed, using only integral Sobolev spaees, allel no pseudodifferential operators or Fourier
analysis, proofs of thc main analytieal results are givcn. As in Clifford analysis, one pleasant

aspect of these proofs, is that t.he argunwuts are rceogllisable even in some 0/ the details as

generalisations of cOluplex analytical methods. COllseqnently, many of the re~;ults obtained
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are dircet analogucs of classical theorems in complex analysis, and so I shall rcfer to theIn

by their dassical names. The results established, for arbitrary Dirac operators on arbitrary

(Rienlannian or confornlal spin) rnanifolcls with bounclary, includc Cauchy's theorcrn, thc

Cauchy integral fonnula, the POillpeiu representation formula, the Plemelj fornmla anel

t.he L2-boundeelness of thc Cauchy anel Hilbert transforms. To obtain such gencralisations,

complex and Clifford analytical techniques must be suppleluented by potent tools, such as

the Bochner-Weitzenböck forrnula, and formulated in a geometrie context. This eontext, I

believe, sheds light even upon the two dimensional resnlts. Furtherruorc, I claitn that these

methods are not only illtuninating, but also useful, in that they provide tools which are
easy to apply. To illustrate this, some function theorctic aspects of boundary problems for

Dirae operators are developed, and an applieation in eonfonnal gcometry is presented.

Since this paper is aimed at several alldienees, I have tried t.o keep it reasonably sclf
eontained, whieh partly aeeounts for its length. There is eonsequently a eertain amount

of well-established ruatcrial. To Clifford analysts, I arn labouring a fanüliar point when

I enlphasise that Dirac operators are a generalisation of complex analysis, while to other

analysts, t.he avoidallce of powerful pseudodifferential operator methods may seenl perverse.

Also, the differential geOlneter will find herein yet another summary of the clliptie theory

of Dirac operators. I crave the indulgence of all these readers. I should also rernark that it

has been neeessary at tirnes to choose between conflicting notation and terminologyj I have

tended to use gemlletrically invariant notation, but occasionally adopt analytieal language

anel conventions.

In the first two sections I briefly review the algebraic material used throughout., beforc

prcsenting, in sections 3-6, thc analytieal tools and elliptie theory of Dirac operators on

dosed manifolds. Here I follow [7, 24, 35, 45], although Boehncr-Wcitzenböck integral

forulltlae are established for a wider dass of Dirac operators than is llsual. In section 4,

I also reeall (essentially frmn [32]) the important fact that the Dirac operator assoeiat.cd

to a spin st.rllcture is confonnally invariant., in the sense tImt. it is defined int.rinsically on

any eonfonnal spill manifold. Most of the forululae obtained in later sections are explieitly

conformally invariant in this ca.se.

In section 7, I present the generalisat.ion of the Cauehy integral formula t.o llmnifolds
with boundary, the highlight. being the analoguc of the Pompeiu representation formula.
Applieations of this Cauchy integral to Inean value inequalities, removable singularities anel

residucs are t.hen diseussed in sectiOlI 8.
The heart of the paper lies in seetion 9, wherc the Hardy spaec H of L2 boundary data

(the boundary val11es of sections in t he null spaec of t.he Dirac operat.or) is introduecd. As

observed in [11], lnuch of the analysis of Dirae operators follows frOlll a twisted orthogonalit.y

property of this boundary data, and the aim here is to provc this propcrty. This is done

by using thc Callehy transform and a generalisatioll of thc Kerznmn-Stcin fOflnula [34J to

establish L2-boundcdness results directly, thus bypassing a lot of t.he technical analytieal

thcory of elliptic bOlludary problems. In fact, t.he line of proof in this seetion is bascd qllite

closely upon BelPs monograph [6] on the Cauehy transform in thc plane. In section 10,

fllrther analyt.ieal a...,pcet.s of Dirac operators on lllanifolds with boundary are discussed,
slIch as the Bergman kernel anel thc Dirichlct problem for the square of the Dirae operator.

The final section is dcvoted to an applieation of these tools in conformal geOInetry, which
was in fact the original lllotivation for much of thc work presented here. The key point
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is t.hat, for the confonnally invariant Dirac operator, thc L2-nonll Oll the Hardy spacc H
depellds only on the conformal structurc, anel so a canonical nornl is obtailled 'for free' on

a spa.ce of spinors with weIl defined interior values. This Bonn then t.rivialises tbc e1ensity

bunclle. In other woreIs, given a conformal structure on a cOInpact spin mallifold with

boundary, the Cauchy integral defincs a confonnally invariant metric on thc interior. The

metric is complcte with negative scalar curvature, and gClleralises thc Poillcare Inctric on

the unit ball. Such a rcsult was first obtaincel, in thc Euclidean case, by Hitchin [33], who

observcd that thc Cauchy integral (a,.., found in Gay anel Littlewoocl [23]) is conformally

invariant and bOllndcd. His results on thc completclless anel scalar curvaturc of this metric

gencl'alise readily to confornlal spin Inallifolds , except that the negativity (ra.ther than just

nonpositivity) of the scalar curvature relies on an integrability result for thc Dirac cquation

whosc proof uscs thc full machinery developed here.
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I. ALGEBRAIC PRELIMINARIES

1 Clifford algebras

I work throughout with thc algcbras introduccd by W. K. Clifford [17, 18] and H. Grnss
mann [27]. There are many ways to clefine these Clifford algcbras; I will use thc following:

1.1 Definition. Let. V be a linear space. Then a Clifford algebra for V is an extension of
IR EB V to an associative algebra A with identity 1 E IR such that

(i) A is generated (as a ring) by IR EB V

(ii) v2 E IR for all v E V.

It follows that v H v2 defines a quadratic farIn on V. I will say that the Clifford algebra is

nondegenerate or positive/negative definite iff this quadratic fOrIn iso Ir fj is any quadratic

form on V, then A will be ca11cd a Clifford algebra for (V, q) if v 2 = q(v).

REMARK. Clifford algebras are also sometimes defined by the relation v2 = -q(v). This

lllay seeni a trivial differcnce; however in Euclidean and Rienlannian gcometry it is usual
to work with positive definite quadratic forms, and so this extra luinllS sign leads t.o a
negative definite Clifford algebra. The foeus herein will be on the positive definite case.1 It is not immediately clear from the above definition timt a Cliffürd algebra für (V, q)

always existH, so I will bricfly recall a couple of cOIlBtructions. A CliJJord rnap on (V, q) is
J defined to be a linear map ~ from V to an associative algebra A such t hat ~ (v) 2 = q(v) 1.

(If ~ is injectivc then the subalgebra of A generated by thc itllage is a Clifforcl algebra.)
There is a standard algebraic COllstruction of a universal Clifford Inap 7r: V --+ Cl (V, q).

1.2 Definition. Define Cl (V, q) := ® V / (v ® v - q(v) 1), the quotient of the tensor algebra
® V by thc relation v 0 v = q(v) 1, and let 'lT be induced by the inclUSiOll V '-7 ® V.

This is clearly a Clifford luap; the universal property is a consequenee of the following:

1.3 Proposition. Let (V, q) and (W, r) be quad1'atic spaces, ~: W ---t A a CliJJord map, and

T: V --+ W an isornetry (that is, r(Tv) = q{v) for all v E V). Then there is a tinique

algebra homornorphism T.: CI{V, q) --+ A extending T, in the sense that T. 0 7r = ~ 0 T.
Note also that if A is a Clifford algebra and T is surjective, then so is T•.

Proof: ~ 0 T: V --+ A is a linear Illap frOlu V into an associative algebra, aud so by the
universal propert.y of the tensor algebra, there is Cl uuique extension of /, 0 T to an algebra

homomorphism T.: ® V --+ A. Siuce T is an iSOluetry and ~ a Clifford luap, T. (v 0 v) =

~(T(v))2 = r{Tv) = q{v) = T*(q(v)l), so T* descencls to the quotient CI{V, q). 0

Similarly there is a ullique algebra antihomomorphislIl from CI{V, q) to A extending T.

Ir there exists a Clifford algebra A for (V, q), then, taking T to be the identity Inap in

the above proposit.ion, it inullediately follows that GI(V, q) is also a Clifford algebra. One

way to obtain exist.enee is as follows (see for exarnple [7, 24]). Let A(V) be exterior algebra
of V allel let A(V, q) be the subalgebra of End A(V) generated by {c(v) = Eu + ~v : v E V},
where E: u (x) = v 1\ x and ~v is contraction by v (with respect to q).

1.4 Proposition. A(V, q) is a Clifford algebra for (V, q).

Proof: First. note timt c(v)(l) = v, so IR $ V Clnbeds illtO and generates A(V, q). Now

f~ = 0, ~~ = 0 allel /,vfv = -Ev/'v + q{v), by an ea..~y computation, allel so c(v)2 = q(v). 0
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1.5 Proposition. For finite dimensional V, the evaluation map eVI (at 1 E IR) is a linear

isomorphism from A(V, q) to A(V). There is also a natural algebra isomorphism between

A(V, q) and GI(V, q), and a basis is given by S = {e~'11 ... e~n : rnj = O,l}, where el,'" en

is any orthogonal basis 01 V.

Proo/: A simple inductive argument shows that eVI is surjectiv8, since im eVt contains
IR = AO(V), and the highest degree part of cvdc(vt} .. ,C(Vk)) is VI A·· ·/\Vk. Also, by 1.3,
t.here is a surjective algebra homomorphisrn from Cl (V, q) to A(V, q). Since Cjek = -ekej

for all j =I- k, S is a spanning set for any Clifford algebra, and so 211 ;;?: dirll Cl (V, q) ;;?:

dim A (V, q) ;;:: dirn A(V) = 2n . Hence equality holds all the way through anel the surjective
linear maps are all bijective. D

Henceforth, A(V, q) will be identified with Gl(V, q) and called the Clifford algebra of
(V, q) . Its elements are sometimes called Glifford numbers ar multivectors. Cl (V, q) is a

graded algebra: it may be written as a direct sum Cl(V,q) = Gl(V,q)ev EB Cl(V,q)od., with

Cl (V, q) ev a subalgebra, the even :mbalgebra. Frequent use will be rnade of the decoIIrposi tion
vw = (v, '/.0) + V A W of a product of vectors into its symruetric and skew parts, where (. , .)
denotes the induced inner product on V.

t~ Thc Clifford algebra ha.., several involutioIls, thc most important being the chif-ality,
.fj~ading, twisting or principal automorphisrn x f---7 x* induced by thc isollrctry v f---7 -Vj

its fixeel point set is the even subalgebra. The antiautomorphism x f---7 x induced by the
identity on V rnap8 VI ... Vk to Vk ..• VI and so is called reversion.

From now on, only the nondegencrate Clifford algebra" Clp,m or Gln will be cOllsidcred;

here (p, m) is the signature of the inner product on V, and Gln = Gln,o,

2 Spin groups and Clifford modules

2.1 Definitions. Let Gl;,m be thc Lie group of invertible elements of Clp,m and let d;,m

be its Lic algebra (which is Clp,m with bracket [x, y] = :r;y - yx). Thc adjoint action
Ad: Cl;,m --+ Aut( Glp,m) is given by Adx{y) = xyx- I

, but if x is odd, it is often usefnl to

incorporat.e thc grading of Clp,m and define thc twisted adjoint action Ad*: Cl~~t~u Cl~~:n --+
Aut( Glp,m) by Ad; = Adx for x even, but Ad;(y) = xy*x- l for x add.

2.2 Proposition. For x E Glp,m the /ollowing hold:

(i) if xv = vx* \Iv E V then x E IR.
(ii) if x is invertible and 't/v E V xv(x- I )* E V, then v f---7 xv(x- l )* is an isornctry of V.

(iii) ij x is a non-null vectoT' then v f---7 -xvx- l is a refiection in the hype7'1Jlane xl. ~ V.

This iH straightforward, as is the next proposition, which is a conseqllcnce of the defini
tiOIlS below anel thc fact that any isometry can be written as a composite of refiections.

2.3 Definition. The GliJJord semig1'oup Ap,m consists of those elements of Clp,m which can
be written as a procluct of vectors, the CliJJord grotLp r p,m being thc invertible elements
(with xx 1= 0). DeRne the Pin, Spin and S]Jin+ g1'o11,ps by:

Pin(p, rft) = {x E Ap,m : xx = ±1}
Spin(p, rn) = {x E A~~m : xx = ±1}

Spin+(p,1n) = {x E A~~m : xx = I}.
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2.4 Proposition. Ad· defines an action of r p,rn on V by isometries and on Clp,rn by auto
morphisms. The horrwmorTJhism from rp,m to the group of isometries of V is sHrjective with
kernet IR· and re.(jtricts to a two-fold cover of O{p, rn) by Pin{p, m), SO{p, rn) by Spin{p, m)

and SO+(]J, m) by Spill+(P, m).

The Lie algebra of these double coverillg groups will be dcnoted .6pin(p, m). It consists

of the bivectors in Clp,rn = d;,rn, and the Lie algebra map ad: 5pin{p, rn) -4- 50{p, m) is an
isomorphism. More precisely:

2.5 Proposition. Given x, y E V, define a skew endomorphism x6.y 01 V by x6y{w) =

(x, w}y - (y, w)x. Then ad- 1(x.6y) = -~x t\ Y = -:j{xy - yx).

Proof: The action of a E Spin{p, m) on V is given by v f---t ava- 1, and so the action of

€ E 5pin{p, rn), obtaineel by differcntiating, is v f---t ~v - v~. After subst.itutillg € = xy - yx,

a siluple complltation llsing the Clifford relation establishes the result. 0

The convelltion v2 = -(v, v) would givc the opposite sign in this formllia.

2.6 Definition. A CliJJord module for Clp,rn is a vector space JE on which Clp,m acts as

an algebra; that. is, an algebra hOlnomorphisnl Clp,rn ~ End{IE) is given. Elements of a

~ Clifford llloduic are often called spinars. A Clifforel module is said to he graded if it has a

~ direct SUIn dccmuposition JE = IE- EB IE+ preserved by Cl~m, anel such that Cl';!m exchanges

the summands. By restriction, any Clifford module (and also either cOluponent of a graded
Clifford module) iH a rcpresentation of Spin(p, m). Such a representation will be called a

spin l'eTJresentation.

Orten JE is cquipped with an inner prodllct such that Clifford lllultiplication by vectors
is either syunIlctric or skew. In the sYlllffietric case, the inner product can only be definite

if the Clifford algebra is positive definite, whereas in the skew case, the Clifford algebra

lUllst be negative definite. This is the main difference between the positive and negative

definite Clifford algebras, and has the consequence that Dirac operators are skew-adjoint
in t.he posit.ive definite C3..'3e, anel sc1f-adjoint in the negative definite case.

The 1l10St natural exalllpie of a Clifforc1 module is Glp,m acting Oll itself by left llluitipli

cat.ion. Since Gip,TIl is A{V) as a vector space, this lnay also be vicwed as thc natural action

of Clp,m on A(V). An inner product Oll Glp,m is given by (x, y) = (xy), where (.) clenotes
thc scalar part, although it is also of intcrest to work with the inner product xy taking

values in Clp,m {see (12]). For v E V, (vx, y) = (xvy) = (x, vy), so vectors are sylumetric,

anel for the positive definite algebra Gin, this inner product is positive definite.

The case of irreducible (grac1ed) Clifford modules is also of some iluportance. The cor
responding irreducible spin representations are often siInply called the spin representations.

In fact there are, up to iSOlllorphislu, only two such representations in even dimensions, anel

one in odd diInellsions. Other Clifford modules IUUSt elccOIllpose into a dircct SUIU of these,

although the dccompositioll is not canonically defined. For furt her details sec [3, 16,30,35].
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II. DIRAC OPERATORS ON MANIFOLDS

3 Dirac operators and Bochner-Weitzenböck formulae

Let M be a (sCIni) RiCIuanniall manifold. Then the Clifford algebra bund le Cl (M) is

thc vcctor bundle whose fibre at x E M is the Clifford algebra Cl(TxM). Using the rnetrie
this is isomorphie to Cl(T;M) and henee, a.s a veetor spaee, it. is isolllOrphie to AT;M.

Now suppose E is a Clifford module bundle on M , with covariant derivative nE. Then

for each x E M there is a Clifford action c: T;M 0 Ex ---7 Ex, written c(a 0 s) = c(a)s.

3.1 Definition. The (generalised) Dirac operator associated to (E, n E) is thc differential

operator y'; = c 0 D E: COO (M, E) ---7 Coo (M, E). A scetion in the kernel ol' a Dirac operator

will bc callod rnonogenic. (Gtlter t.crrllS in COIIlIIlon use arc Clifford analytic funetions and

ha17nOnic .':ipinors-however, for general Dirac operators, rnonogenic seetion." may not be

analytic, and on nonclosed rnanifolds, thc kerneis of y'; anel y';2 no longer agrec.)

3.2 Historical remarks. This definition has a long anel cOIuplicatecl history. After the

Cauchy-Riemann operator, thc first Dirac operator to be introdueed was the quaternionic

~i operator of Hamilton and Tait (a Dirac operator in 3 dimensions). In a reruarkable

piper [21], Dixon studied "Hamiltonian functions" and gave an analogue of Ca.uchy's inte

gral formula for Hamilton's operator. The Dirac operator in (3, l)-dirnensional space-time

was introduced by Dirac [20], anel here thc spinol' transforillation law wa..., also identified.

The elliptic analogue i Il lligher diruensiolls was dcscribed in Moisil [41]' w hilc Brauer and

Wcyl [13] gave thc general setting for thc Dirac construction. Quaternionic funct.ion the

ory was explored by Fuder and his school in thc thirties, and later they extended their
lllethods to higher dimensions (sec [29]). In the sixties Dirac operators were studied morc

intensively, when they were rediscovered by Delanghe, Gay and Littlewooel, Hestenes, If

tirnie, allel Stein anel Weiss-see [12] 01' [46] for a thorough bibliography. Around the SaDle

time, the Dirac operator began to play an important role in differential geOllletry through

the work of Atiyah and Singer [5], and Lichnerowicz [38].

3.3 Examples. A basic way to obtain examples of Dirac operators is from the representa~

tion theory of the spin group. More preciscly, let IE bc simultaneously a Clifford module for

Clp,m and a represent.ation of Spin(p, rn), such that. the actions c and . are cOIupatible, in

the seuse that c(axa- 1)a.'I/J = a.c(x)1./J for all a E Spin(p, rn), J; E Clp,m alld 'Ij; E.!E. Let M
be a Rienlannian rnanifold equipped, if necessary, with a spin structure (sec scctiOH 4-this

is only needed if the represcntatioH of Spin (p, rn) on JE does not descend to SO (p, m) ). Then
JE givcs riHc, via the a...,sociated bundlc constrllction, to a Clifford rnodulc bUIldle B with a

covariant derivative induced by the Levi-Civita connection. The ruost iruport.ant cases of
th is are as folIows.

(i) Ir Spin(p, rn) acts on Clp,m by conjllgation, then E is the bundle AT*M ~ Cl(M),
anel thc Clifford module structure is given by the action of the Clifford algebra bllndle Oll

it.sclf by lcft ruultiplication. Thc inclucecl Dirne operator on E is then the Hodge-Kähler

d + J operator, where cl is the exterior derivative, and J = -d* is the exterior divergence.

(ii) If JE is any Clifford module for Clp ,ml then by restriction it is a spin repl'esentation of

Spin(p, m)-a simple exaruple is the action of Spin(p, m) on Clp,m by left llmltiplication.

Now on any Riemannian spin ruanifold, JE induces a spinor bundlc E, alld a special Dirac
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operator, thc Atiyah-Singer 01' spinor Dirac operator, on E. This operator will siulply be

rcferred to aß the Dirac operator on M (asRociated to JE). Hg significance, over luore general

Dirac operators, is that it is conformally invariant in a very interesting way-sec section 4.

In practice Dirac operators are often "chiral" in the sense that E = E- EB E+ alld the

Dirac operator is given by -W±: COO(M, E~) -1 COO(M, E±); in other words, the Clifford

module bundle is graded and the Dirac operator is odd. This is clearly the case in the first

exaulple above, and in any slIch example if JE is a graded Clifford module. Even if E is

ungraded, the notation E± = E provides a useful way of differentiating between the domain

and codomain of a Dirac operator. The Dirac operators between E± are then "nouchiral"
if there is a distillguighed equivariant iSOIuorphislIl E+ ~ E- identifying thCIn.

A central propert.y of Dirac operators is that t.heir square is a Laplaeian on E; in

othcr words, its sYlubol is scalar, and is given by a nondegenerate bilinear fornl on M (t.he

luetric). This follows immediately from the Clifford relation v2 = (v, v), and is the key to

the analysis of Dirac operators. It also leads to the alternative definition [7]:

3.4 Definition. Let M be a Inanifold and E a graded vector bundle. Then a Dime operator

on E is an odd first order linear differential operator -W on E such that W2 is a Laplacian.

I From this definition it is immediate timt the symbol of 112 defines a (semi)R.iemannian

Iuetric on M, and tImt the symbol of -W defines a graded Clifford module structure on E

(see [7] for details). It is also easy to see that any Dirac operator is transitive in the sense

that. there exist.s a covariant derivative D E Oll E such that -W = coDE, aS in 3.1. Note,
however, that D E is not uniquely detcrulined by -Wo

3.5 Examples. Some examples illustrating the scope of this definition are a.." folIows.
(i) Suppose that ~ is a seeond order linear differential operator with nondegener<tte

scalar principal symbol, acting on a bündle E- and equipped with a given faetorisation

~ = VI 0 V 2 into first order linear operators between E- and another bündle E+. Now if

V20VI has thc smne sealar principal symbol on E+, thon VI and V 2 define a Dirae operat.or

on E- EB E+. The Cauchy-Rielnann equations and the Dirac equations fit this pattern.

(ii) Let M be a subluanifold of a (selni)Riemannian ulanifold X such that the pllllback

I1wtric is nondegenerate. On M the tangent bundle of X splits into a direct sum T EB N,
where T is the tangent bundle of M. The Levi-Civita derivative of X pulls back to a

covariant derivative on T EB N, given by the Levi-Civita derivative nT on T, a nletric
cOlnpatible derivative DN on N and the seeond fundamental form 11 acting between T and
N. IfEis a Clifford module bundle associated to TEBN (as in 3.3) then there are two induced
covariant derivativ~ on E, one eoming fr0111 DT(f)N = nT EB D N , the othcr from DT(f)N +11.

The seeond of these givcs riso to an interesting s,ubmanijold Dirac operator, which for a

spacelike hypersurface in a Lorentzian spin manifold, is the hypersurface Dirac operator used

in Witten's proof of the positive energy theorelu [43]. This is also the type of Dirae operator

which is sOlIletilues stuclied on submanifolds of Rn 01' cn in Clifforcl analysis [12, 47, 51],

and used to analyse the Cauchy transform on a Lipsehitz surface [37, 40, 42].

It is of crucial importance to have an explicit "Weitzenböck" formula for thc Laplacian

W2 . The basie way of obtaining such a formula is to compare -W 2 to the Boehncr Laplacian
6.'E = tr D T ·0E 0 DE of SOU10 covariant derivative D E on E. Any eovariant derivative can

be used, but silnpler formulae are obtained if the derivative is rclatcd to the Dirae operator.

9



3.6 Definition. Let W be a Dirac operator on E and nE a covariant derivative. Then nE

is called a Clifford derivative iff n E c = 0, in the sense that.

n§(c(a 0 cjJ)) = c(Dxa \3) cf» + c(a 0 D~cjJ),

where D is the Levi-Civita derivative. I will also say that D E is a Dirac compatible de1'ivative

iff VI = co nE . Finally, Y; will be called a Clifforrl Dirac operator iff therc is a compatible

Clifford derivative D E on E; that is, W= co nE and nE c = O.

Thc following thcorClll is now very weil known [24, 35, 45], although thc short global

approach to thc proof given below seems little used in the litcraturc. Thc product rule

rechlces this resuit to its essence: a decomposition inta skew anel sYlumetric parts. However,

despite its apparent simplicity, it proves to bc extrelllcly powcrful tao!.

3.7 Theorem (Bochner-Weitzenböck). Let W be a Clifford Dünc operator. Then

where 6. E is the Bochner Laplaeian 0/ the compatible Clifford de1-ivative D E , RE cjJ is the
qyrvature Alt(DT "0E 0 DEcjJ) and c(2) is the Clifford action 0/ A2T*M on E.

F:rooj: Since DEc = 0, nEoc = (id0c)oDT "®E and so W2 = co(id0c)oD'l'''®E oDE. Now

split this iuto skcw and symnwtric parts. On thc one haud, co(id0C)(~Alt(DT'®EoDEcjJ)) =

c(2) (RJ~cjJ), whilc on the other hand, because co (id 0 e)( ~(a 0 ß+ ß0 a) 0 cjJ) = (Ci, ß)cjJ,
it follows that co (id 0 c)(~ Sym(DT"®E 0 nE<!») = tr nT"®E 0 DEcjJ. D

If n E were not Clifford, thell thcre would bc a first order tenn in thc above farmula,

given by (c 0 DEc) 0 D E. More generally, for any covariant derivative D E on E, one can write

W= coDE + A E , with A E an endOIuorphislu of E 1 and so obtain a Bochner-Weitzenböck

fonuula with first order term (c 0 nEc + A E
0 c + cO A E ) 0 D E .

lt is weIl kuown [7, 25J that for any Laplacian, therc is a unique cava.riant derivative

whose Hochner Laplacian differs fronl the givcn Laplacian by a zero order term. In the CaBe

of W2 therc is thc following interesting description of this derivative.

3.8 Proposition. Let Wbe (1ny Dirac operator and DE any covariant derivative on E with

w=conE+AE . Then

whcre 'V deno tes the d + 6 ope1ntor applied to vector field.9 (cu1'l plus dive1yence).
This expression, when divided by 2, is there/ore a covariant derivative iJE on E (right

hand side) defined purely in terms 0/ Y; (left hand side). iJE defines an endomorphism A

of E by W= c 0 iJE + A, and is chm'acterised by the /orrnula e 0 iJE c + c 0 A + A 0 c = 0.

Proof: By thc product rule n E (c(X)cjJ) = (D E c)(X)4> + c(DX)4> + c(X)DEcjJ. The result

follows by appIying Clifford multiplication to this, using the Clifford relation to conlpute

co c(X)DE</J = 2nIJ:</J - c(X)(c 0 nE)</J, and adding the A E terms. D

b E will be called the associated derivative of W. Its characterisation immcdiatcly gives

thc following Bochncr-Weitzenböck formula:

3.9 Theorem. Let iJE be the associated de1'ivative 0/ a Dirac operator W = co /jE + A.
~ E " "

Then W2 = ~J)" - K] where K is the zero m'der operator - (c(2) RE + coDE A + A2).
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A similar result appcars in the paper [1] of Ackermann and Tolksdorf, althOllgh they

write the curvature terms differently by introdueing additional eovariant derivatives. The

above presentation arose from joint work with Tammo Diemer ainled at understanding [1]
in an explieitly invariant way. Various parts of 3.8 have appeared in other places. For

example, in [7], Berline, Getzler and Vergne give a formula for the derivative associated to
-W 2 eorresponding to thc left hand side, which shows that iJE is the supercOInmutator of-W

with Clifford multiplication by veetor fields. Different formulations of the right hand side

of 3.8 ean be found in [1, 26]. In praetice it is most useful to cOInpute iJE (and then K) in

tenns of a Clifford derivative. It follows in particular that if a Dirac operator is Clifford,

then the associated derivative is the only COlllpatible Clifford derivative on E. The Dirae

operators in 3.3 are a11 Clifford, but submanifold Dirae operators in general are not.

The fo11owing property of iJE is easily deduced frmn the Clifford rela.tion c(X)2 =

9(X, X), either by using the charaeterisation or by introducing a Clifford derivative.

3.10 Proposition. Let iJE be the associated derivative of a Dirac operator. Then bEc is

skew, in the sense that (b~c)(Y) = -(b~c)(X) for alt vector fields X, Y.

In specific eXaInplcs, it is interesting to calculate the Bochner-Wcitzenböck curvature

~f term K more explicitly. In particlllar, for the Dirac operator Oll the spinal' bundle E
~. (associated to JE using a spin structure), there is the following result of Lichnerowiez [38]:

3.11 Theorem. The square of the Dirac operator on a spin manifold is given by the forrnula

W2 = ßE - ~K, where K, is the scalar curvature of the metNe. In other w07'ds K = iK:.
Since I< = -e(2) RB, where RE is thc action on E of the curvature of the Levi-Civita

derivative, this computation is a simple consequence of the Bianchi sYlllllletry (sec [35]).

4 Conformal invariance

Conforlnal geometry is central to scction 11, and so I will review t.he basic not ions anel

give a proof of conformal invariance for thc Dirac operator on a spin Inanifold.

4.1 Defini t ion. Two inner produets 91, 92 on a veetor space V are said to be eonformally

eqllivalent iff there is a nonzero real number A such tImt for all vectors v, w, 91 (v, w) =
A2g2(V, w), A confonnal inne1' produet Oll V is an equivalence cla..~s of inner product.s.

Given an inner product 9 on V, a eonformal linear map wit.h seale faetor A E IR.+ is an

invertible linear lIlap T such that g(Tv, Tto) = A2g(V, w). A eonformal frame is a basis o[
orthogonal vect.ors of V which all have the same length with respeet to thc inner product.

Clearly the not ions of conformal linear map and conformal fralne depend only on thc

confonnal equivalenee dass of the inner procluet, and the conformal linear Inaps act freely

and transitivelyon the confoflnal fraInes. Any veetor v in an conformal inner product

space is an elernent of a conformal frame anel this defines an element CV(v) of AH(V)
which depends (np to a sign) only on v and the conformal inner product.

4.2 Definition. A density p on an n-dirnensional vector space V is a map from An(v) to

IR such that p(AW) = IAlp(w) for all A E IR. aud W E An(V). Thc densities on V form a oue

dimensional linear space clenoted IAn V*I, and p(VI, ..• vn ) is wri t ten for p(v1 1\ ... /\ vn ). An

inner product on V induces a nonzero density on V, the volume elc1nent. Finally, define
L = L(V) to be the space of luaps p [rom An(V) to IR. such tImt p(AW) = IAI1jnp(w).

11



Note that Ln = IAnV*I, so the density bundle of L 0 V is canonically trivial. An inner

product on L CO V will be called normalised iff its volume element is the canonical one.

4.3 Proposition. There is a one to one eO'T"1'e.<;pondenee between eonf01'mal inner pradu.ets
on V und normalised inner produets an L 0 V.

Proof: Given any inner product (. l') On L0 Vl defiue thc eonfonnru da.ss of inner products

on V to cousist of those 9 for which there is an element l of L such that g(1), w) = (L0v,L0w)

for all v, w E V. In the eonverHe direction it. suffices to define (l0 v II 0 v). To do this

fonn CV(v) E AnV and Ln E Ln. These are not. uniqnely dcfined , hut it is easy to see that

the real number obtained by evaluating Ln on GV (v) and squaring is weIl defined, an<:! that.

taking the positive nth root givcs a normalised quadratic form. 0

4.4 Definition. Let M be a Slllooth manifold. Then the weightless tangent bundLe is

defined to be the blludle L 0 TM where L is the t.rivialisable line bllndle whose fibre at

:1; E M is Lx = L(TxM). A confonnaL structure on M is a normalised llletric On thc

weightless tangent bllndle. This defines a cOllformal dass of inner prodllcts on each tangent.

spaee. M is then said to be a eonJarmul maniJoLd. Such a strueture is eqllivalcnt.ly given by

tlle principal CO(Pl m) bundle of eonformal frames. Note that a trivialisation of L dcflnes

~lRielnannia.n rnetrie on M and that Ln is thc density bUlldle of M.

. A confonllal nlanifold does not have a eanonical Levi-Civita derivative. hu~tead there is

CL distillguished family of torsion free covariant derivatives on the tangent bundle called WeyL
derivatives, which are thosc derivatives compatible with the metric on thc weight.less tangent

bundle. For example, the Levi-Civita derivative of any metrie in the eonformal dass of inner

prodllcts is a Weyl derivative. The difference betweell any two Weyl derivatives band D, as

an endmnorphism valued 1-fonn l Inust be a sectiOll of T*M 0 co (TM) n S2T*M 0 TM. This

bundle is iSOlllorphic to T*M-illdeed therc is a (sealar valllcd) I-form! with Dx - Dx =

X 6! - 'I (X) id, where X 6:,: M -t so (TM) is the skew endomorphism given by X and !

wüng the conforrnal structure.

Thc theory of general Dirac operators in section 3 Illay equally be dcveloped on a

confonnal manifold equipped with a Weyl derivative. A Dirac operator on E is then a first

order odd operator E -t L 0 E whose sYlnbol is a weightless Clifford action c: T*M 0 E -t

L 0 E. The associat.ed derivative ßlay then be dcfilled using thc chosen Weyl derivative

instead of the Levi-Civita derivative of a (semi)lliClnanuian metric.

The rest of this seetion is devoted to the special ease of the (Atiyah-Singer) Dirac

operator on a spin manifold.

4.5 Definition. A spin strueture on an oriented ßlallifold M is a principal GL+(n)-buudle,

together wi th a 2-fold cover of the bundle of oriented framos eompatible with thc (nontrivial)

2-fold cover GL+(n) -t GL+(n). A manifold with a spin structure is called a spin maniJaLd.

Not every manifold admits a spin structure, although it is possible to relax the ori

cntability requirenlCllt by considering "pin structures". This will not bc done here, nor will

topological obstructions be discussed (see [35] for a fuH treatment), but instead it will now

be asslllned that M is confornlal spin manifold. Thcreforc, thc principal CO+(p,1n) bundle

of orientecl conformal frumes has a double cover, a principal SpiU+(P1 m) x IR+ bundle r(M).
The ailn is to show that this structurc is sufficient to defiue the Dirac operator.
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4.6 Definitions. Let M bc a confonnal spin lnanifold, and JE be a Clifford module. Then

associated to f(M) are the following vector bundles:

(i) the tangent bundle, TM ~ f(M) x Pl IRn ,

where PI is thc standard representation of Spin(p, m) x IR+ on IRn (Le., (a, A): x r-+ Aaxa- I
)

(ii) thc weightless tangent bundle, L 0 T M ~ f (M) X P2 IRn
,

wherc P2 is the standard representation with IR+ acting trivially (i.e., (CL, A): x r-+ axa- 1)

(iii) the Clifford algebra bundle, CI(M) ~ f(M) x P3 Clp,m,

where P3 is the extension of P2 to Clp,rn (La' l the adjoint action of Spin(p, 771) on Clp,rn)

(iv) the density b1J.ndle with weight w, LW ~ f(M) Xt~w IR,
where J-.Lw is thc action (a, A): 0' r-+ A-wO'

(v) the spinor lmndles with wcight w, Ee ~ f(M) x Uw JE±,
where aw is the weight w spin representation (a,..\): 1/J r-+ A-wa1/J.

Note that Cl (M) is thc confonual version of the Clifforcl algebra bundle dcfined earlier; its

fibre Cl(M)x is the Clifford algebra of Lx 0 TxM with its normalised inner product. The

Clifford action on JE is spin invariant, and so, for each w, E w is a bundle of modules for

Cl(M), and therefore there is a Clifford action Cw : T*M 0 E~ -7 Ee+l'

Given a Weyl derivative D, a Dirae operator may be dcfined for each weight 1V as the1operator Cu, 0 D B from Ew to Ew+1, where D B is the induced covariant derivative on Ew

, and the sYlnbol Cw is independent of the Weyl derivative. The important fact is timt,

provided thc weight w is chosen corrcctly, the Dirac operator itself is independent of the

Wcyl derivative, anel is thcrefore callonieally a.<:;sociated to the confonllal spin manifold.

4.7 Theorem. The Dif'ac operatm' Cw 0 D E does not depend tipon the choice 0/ the Weyl
derivative D iiJ w = n 21 .

Proof: (e.f. Hitchin [32].) It lllnst be shown tImt Cw 0 (iJE - D E) = 0 (for all possible

choiccs) iff w = n 21. The difference between allY two Weyl derivatives on thc tangent

bundlc is given by iJX - Dx = X 6"( - ,(X)id for SOlIlC I-fonn I' lt then follows frolli

P roposi tiOll 2.5 that the correspouding section of sp in(M) EB IR is t(I X - X 'Y) - 'Y(X) ,

where IX and X, denote weightless Clifford lnultiplication and contraction of the weights.

Now the action of (~, JL) E spin(p, m) EB IR on lEw (from the weight W representation of

Spin(p, m) x JR+) is 'ljJ r-+ ~1/J - WtL1/J. Therefore

(iJf - Df)4J = ~C("YX - X,)4J + w,(X)4J = ~c(,(X) - X,)4J + w,(X)<!>,

and so (contracting the X variable with ew)

This is zero for all I iff w = n21.

5 Inner products and the Green formula

o

Henceforth, I restrict attention to definite Dirae operat.ors, i.e., t.he Clifford algebra

bundle on M will be definite. The two eases (positive 01' negative definite) are very similar,

aud so only the positive definite ca..'3e will be treated, partly in order to dcrnonst.ratc that the

theory is just as pleasant as thc negative definite ease (which is more widely considered),
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and partly in order to emphasisc thc link betwcen the Green formula and the product rule.

The negative definite version is easily obtained by jlldiciollS insertion of Ininns Higns.

Thc reason for the restrietion to definite Dirac operators is that they are elliptic, anel

HO havc a sirnpler alld better-dcvelaped analytical theary. More na'ively, thc analysis of

definite Dirac operators is easier because the Clifford module bundle may be givcn an

invariant definite inner product by aver!1gi ng aver the (compact) Spin group. Ta be precisc,

it will now be assumed that the bUlldles E± are eqllipped with inner products whosc real

parts are posi tive definite, and such that the Clifford action of any (co) tangent vector is

syuuuetric with respcct to the indllccd inner produet. on E. It will also be asfHuned that

thc Dirac operator is uncharged with rcspect to thc inner product, in thc sense that the

associated derivative iJE is cOlupatible with tlle inner product (i.e., the inner prodllct is

covariant constant) and A = W- co iJE is a skew endomorphism-it follows that K is

a Hymnwtric cndo1l1orphisrn. More general Dirac operators can be decomposed into an

uncharged part and a contracted potential, but this will be discussed elsewherc.

In the case of thc confonually invariant D irac operator a.ssociated to a Clifford rnodnIe E,
such an inner product bnudlc is easily obtained by equipping JE with a definite inner product

s.uch that vectors are synlmetric (by averaging over the Pin group). The equivariance of

tl~is inner product nnder Spin(n) x IR.+ ensures that it. indllces inner prodllcts on the spinor

bundles, such that the inner product of a section of EW1 with a section of EW2 is a section

of LW} +10
2. Any Weyl derivative D induces a covariant derivative D E on E with respect to

wllich this inner product is automatically parallel. Note also that D E is then the associated

derivative of the Dirac operator (computed USillg the givell Weyl derivative D). From time

to time it will be nccessary, dllring complltation, t.o mako such a choice of Weyl derivative,

for exmnple by choosing a metric in the conformal dass.

The aim now is to develop the analytical propertics of general Dirac operators, in such

a way that in the case of the Dirac operator on a conformal spin manifold, the formulae

obtained are luanifestly confonually invariant. To this end SOllle notation will be usefnl.

5.1 Notation. In the conformally invariant case, E± will be used for the weight 71;1, anel

jj;± for the weight 71il (so the Dirac operator acts frOln E- to jj;+). The Lu-l valued inner

product on E will be denoted (. 1 .). For more general Dirac operators, fj;± = L0E±, alld the

chosen inner product (. , .) on E will be a..o.;;sullled to take values in Ln - 1 as in the confornlal

invariant case. On a Riemannian manifold thc line bundles LW are each trivialised by a.

natural section, anel so may bc ignored when confonnal a."peets are not being considered.

As in [7], integration will bu defined iu terms of densities, rather than n-forrns, although

they are cquivalent in thc orientable case. Integration over M is thon a linear functional

IM: C~(M, Ln) --+ IR, where C~(M, Ln) the space ofsrllooth compadly supported sections

p of Ln. Given such a p and a vector field X, define div(X (9 p) to be the Lie derivative

Lx p. It is easy to see that this is well defined (indeed it is thc trace of D(X 0 p) for any

torsion-free derivative D) and that the Divergence formula

( div(X 0 p) = r (X, p)
1M 10M

holds. Here the boundary integrand is the contraction 01 X with p along DM, a scetiOll of

Ln-lover DM which lllay be defined as follows. Let v be any outward poillting vector fielcl
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along aM, and 0' thc section of T*M along aM such that O'(v) = 1 and kerO' = T(aM).
Then (X, p) = O'(X)p(v, - )1 8M . If M is a Riemannian (01' confonnal) Illanifold thcn this
equals (X , v) p(v, - ), where v is thc (weightless) Oll tward unit nonnal.

5.2 Theorem. Let 11 be any (uncharged) Dirac operator on E, and let cjJ, 'I/J be sections of
E- and E+. Then:

div (c(.)4>, 'I/J) = (y;+ cjJ ,'I/J) + (cjJ, 11~ VJ) ,

where (c(.)4> , VJ) is a vector field density; that is, an Ln valued linear map on T*M.

Proof: Thc divergcllce will be calculated directly-in the conformal case a Weyl dcrivative

needs to bc chosen for this cOlnputation. By assumption, b E is compatible with (. , .) anel

so thc product rule gives the following formula for the Lcvi-Civita or Weyl derivative D

applicd to (c(.)cjJ, 'ljJ):

D(c(.)cjJ,'I/J) = ((b E c)(.)4>,1jJ) + (c(.)b E 4>,'I/;) + (cjJ,c(.)!J E VJ ).

The divergence is obtained by taking thc trace of this equation. To do this, observe that

tor c(.)bEcjJ = c(DEcjJ) and tr bEc = 0 (by 3.10). Sillce 11 = co !JE + A with A skew, thc

right hand side of thc stated formula is obtained. 0

J5.3 Corollary (Green formula). 1/ '" and 1/J are compactly supported sections, then there

is the joilowing integration by parts formula for W:

{ (c(v)cjJ, 'ljJ) = { (W+ 4>, '1/;) + { (cjJ, W-1jJ) .
IBM 1M 1M

(The integrals (lre weil defined in the conjorrnal case, since (W+ cjJ , 'ljJ) and (cjJ, w- 'tj;) are
seetions of Ln, (lnd (c(v)4>, '1/;) is a section of Ln-I, as V is weightless.)

5.4 Corollary (Cauchy's theorem). If WcjJ = W'tj; = 0 on M, then IaM (c(v)cjJ, 1jJ) = O.

REMARK. The proof of theorem 5.2 makes essential use of the compatibility of b E witl;

thc inner product. In fact it is easy to sec that if thc divergence formula in 5.2 holds thcn

iJE is compatible with the inner product and A is skew.

The Green forrnula. is a formal skew-acljointness result. One way to interpret this is by

means of distributions. Let C~(M,V) dcnote the spacc of Slllooth compactly supportecl

scctions of V vanishing (to infinite order) on the boundary of M.

5.5 Definition. The space of distributional sections of a bundle V, denoted D(M, V) is
defined to bc thc continuous dual of Cö='(M, V* 0 LU) with respect to thc COO-topology of
uniform slllooth convergencc on cOlnpact sllbsets. Note that auy s E COO(M, V) detennines

the fu llctiollal I
YE

M (.,; (y) , .) on Cö=' (M, V *es Ln), where (. , .) denotes the Ln valucd cOlltra<:

tion of V*0Ln with V. For each y Eint M anel 8y E Vy*, the functional 8y ooy : f H By(f(y))
is continuous and so is a distribution, Thlls thc delta. Junction Oy is in D(M, V* 0 Ln) ® Vy ,

wherc D(M, V* 0 Ln) is the continuotls dual of Cg:>(M, V).

5.6 Proposition. In the case oJ a spinor bundleJ (E-)'" 0 Ln ~ E;-, and so the dual of
Cü(M, E-) is D(M, E-), with COO(M, E-) embedded into D(M, E-) as the linear' junc

tionals fM (cjJ , .), a.rul similarly for the positive spinors.
Hence the Dirac operators W±: Cö='(M, E:f) -+ C~(M, fj;±) are jormaily skew-adjoint,

in the sense that the adjoint (tr'anspose) 01 W+, when restricted to the smooth spinoT jields
(oj weight n 21) vanishing on the boundanJ, is -W-.
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This a.lso shows that W+: COO(M, E-) -+ COO(M, E+) extends to a continuous linear

operator V(M, E-) -+ V(M, E+), nauwly (-11-)"', the transpose of thc forulal adjoint.

I now turn to the Bochucr-Wcitzenböck formula of section 3-since this involves 112 ,

a metric on M (01' at least a WcyI derivat ive) is required. Thc Bochncr-Weitzenböck

fonnula is a powcrful tool for establishillg irnportant properties of "Yl, particlllarly whcn it

is recxprp..ssed using thc inner product on E. Such a forrllulatioll is easily obtained using

thc Green fonnula for thc Dirac operator and a weIl known Grccn fonnula for a covariant

derivative on a vector bundle with compatible inner product. For the associated derivative

on E, the latter Green fornmla arises fronl thc following:

div( (cjJ, 'I/J)~Q) = {tl' iJE (0: 0 cjJ) ,'IjJ) + (a 0 cjJ, !JII:'I/J).

Thc operator tr iJE is often called thc covariant divergence. Since it is thc operator ap

pearing in the Bochuer Laplaciau, it is now a straightforward matter to prove:

507 Theorem (Inner product form of Bochner-Weitzenböck)0 For seetions ep, 'I/J oJ

E, there are the following eqllalitics between pointwise inne1' produets:

1'l
5!S Corollary (Integral form of Bochner-Weitzenböck)0 FOT t:P,'I/J E C~(M,E),

~

{ (iJEep, iJE'I/J) + { (Kep, 'I/J) = r ("XlrjJ, W'I/J) - { {(c(v)"Yl - iJ~)t:P, 1jJ),
1M 1M 1M IBM

The operator in tl~e boundary integrand is c(v)WT where WT is a Dirac operator on

8M (the tangential part of W). Since K is a syullnetric cndoulOrphisru, thc above formula

implies e(v)WT is a formally self-adjoint. differential operator on 3M (in fact it is an exalnple

of a Dirac operator with a ncgativc definite Clifford algebra bundle).

There are two irumediate and important conscquences of thc Bochller-Weitzcnböck in

tegral formula: an L2 estimate and a vanishing theoreul. Both reqllire M to be compact.

5.9 Gärding's inequality. For M eompaet and rjJ E COO(M, E),

IlbErjJlj~2 ~ I)WcjJl)~2 + (sup IKI)llrjJllt2 - { (c(v)WT 4>, rjJ),IBM
where lKI denotes the pointwise operator norm.

On a closed manifold, or more gencrally if <pI DM is in the span of the positive 8pectrulll

of c(v)WT , the boundary tenn disappears.

5010 Theorem. Suppose that M is eompaet, and the symmetrie endomoryJhism K is non

negative. Thcn evcry monogenie spinor (satisJying the above 8peetral boundary eondition iJ

M is not closed) is iJE-parallel, and identieally zero iJ K is somewherc (strietly) positive.

Proof: By 5.8, fM (!JE cjJ ,OE cjJ) + fM (K cjJ, rjJ) is nonpositivc, since Y; ep = 0 and thc bOllnd

ary integrand is nonposit ive. But K is nOllllcgativc, so fJ E cjJ = 0 and (K ep , rjJ) = O. D

This type of vanishing result (on closed nlauifolds) goes back to Bochner [8]. In the case

of the Dirac operator on a conformal spin rnanifold, the Lichnerowicz fornlula 3.11, with

respect to any chosen Il1etric in the confornlal dass, gives K = t~, and so thc above theo

rC111 reduces to the Lichnerowicz vanishing theorem [38]. The extension of Lichncrowicz's

theorcm to spectral boundary conditions was givcn in [10], wherc it was uscd to study the

moduli space of nwtrics of positive scalar curvature.
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6 Elliptic theory on closed manifolds

This section slunrnarises the weH known elliptic theory of Dirac operators on closed

manifolds. This will be done within thc frmnework of (integer) L2 Sobolev spaces of sections
of a vector bundle V, denoted L](M, V). Roughly speaking, a section s is in L](M, V) iff
its derivatives up to order j are all in L2 (M, V). The derivatives can be defined with respcct
to a covariant derivative D V on V. L; is a Hilbert space with norm

IlslIL; = (~II(DV)jsll~,) 1{2

Any differential operator of order k is continuous frmn L;(M, V) to LJ-k(M, V) for j ~ k.

Most of thc properties of elliptic operators can be deduced from elliptic estiInates for

the Sobolev Horms. A notable feature of Dirac operators is that these estimates are easy

to establish, requiring no local complltations with pseudodifferential operators or Fourier

analysis, and no paraulCtrix TIlachinery. The proof below is based on Roe (45].

6.1 Proposition. Let M be a closed maniJold. Then Jor each JEN there is a constant

Cj such that for any 4J E COO(M, E), the inequality 114JIIL~ ~ Cj (11<p11L~ + IIW4JIIL~) holds.
. )+1))S Thus iJ ~, WcP E L; then in Jact <p E L;+l'

, Praa/: For J' = 0, this is iuunediate from 5.9. Now use induction on j. Ta estiInate

, the L;+l-norm of ~, it suffices to estimate the L;-norm of b1J;~ for any vector field X,

which, by induction, is bOllnded by Oj-1 (11.bf ~IIL~ + 111.bfcPI1L~ ). Since both bf and
)-1 )-1

[W, bf] = Y;blj; - b~'W are first order operators, thc L;_l-norms of b1J;cPl b~'W~ aud

(W,Df]<p are bounded by LJ-noflns of cjJ and Y;~, and the required estimate follows. 0

Frolll thesc estimat.cs and SOUle elelnenta..ry functional analysis (thc Sabolev elnbedding
theorem, the Rellich cOlnpactlless theorern, and an abstract closed range theoronl) the

following properties of Dirac operators on closed Inanifolds are easily cledllced:

6.2 Local elliptic regularity. Let U be an open subset oJ M, and suppose that cjJ E
L2 (M, E) with 'W<p (1'epresented by) a lnnooth funetion on U. Then cjJ is smooth on U.

Secondly, suppose 'W<Pj = 0 on U and cPj ---7 cP in L2 (W, E) Jor all compact subsets W of
U. Then ~j ---7 cP locally uniJormly in a[[ derivatives on U, and hence W<p = 0 on U.

6.3 Theorem. On a closed manifold, W±: COO(M, E~) ---7 COO(M,E±) has a finite di7nen
sional kerne! and (L closed range, und the orthogonal complement of ker W- in COO(M, E+)
is im Y;+, and similarly J01' the negative spinors. (More preciscly ker W- and im W+ are

mutual annihil(ltors with respeet to the paü'ing oJ COO(M, E+) and COO(M, i.:+).)

There is a silnilar result for the Dirac operator acting between Sobolev spaces. Note
also, that in thc case of the d + J operator, this gives a straightforward proof of the Hodge

decornposition: Coo (M, AT·M) = irn d Ei) (ker d n kor J) Ei) im J.

In order to study Dirac operators on manifolds with boundary, it. is convenient to use
an extension of the given Dirac operat.or to an invertible operat.or on a closed manifold
cOlltaining thc givell manifold with boundal'y. In fact it. is always possible t.o construct such

an extcnsion, thanks t.o thc following uniqlle contilluation propcrty.

6.4 Theorem. Let n be a conneeted open se t and ,p: n ---7 E a seetion with tJ cjJ = O.

Suppose <p vanishes on an open subset oJ n. Then cjJ vanishes on n.
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Olle way to prove this is to apply a result of Aronszajn [2] to thc square of the Dirac

operator-for another proof, see [11]. The theorem bclow only uscs thc wcaker continuation

property that on a connccted manifold with nonellipty boundary, a monogenie function

vanishing on the boulldary vanishes identically.

6.5 Theorem. Let M bc a compaet connected RicTnaunian manifold with nonempty h01Lud

fLry and a Dirae operat01' W+: COO(M, E-) --t COO(M, E+). Then ther"e is a closed manifold

111 containing M as a sHbmanifold of the same dimension, and an extension of W+ to a

Dirac operato1' on M which is invertible.

The proof of this theorem (sec [11] 01' [14] for the details) involvcs doubling thc manifold

M anel gluing E+ to E- across the boundary l1Sillg Clifford tllultiplicatioll by thc unit

nornml. This twist gives the Clifford tuodule bundle on M a spedal global structure, and

it is this whieh aceounts for the invertibility of thc Dirac operator.

II!. DIRAC OPERATORS ON MANIFOLDS WITH BOUNDARY

7 The Cauchy integral formula
~

~ I will now turn to the analysis of Won a mUllifold M with boundary, using an invcrt-

ible extension of W to a closed manifold Ml anel the restrietion ntap r: Coo (NI, E-) --t

COO(äM, E-). The main object of stlldy is t.he following (see Secley [49]):

7.1 Definition. The Cauchy integral is the operator

where (i) e(v): Coo(8M , E-) --t Coo ( fJM, E+) is t he action of the (weightless) unit nonnal,

(ii) r*: COO(8M,E+) --t V(M,E+) is given by r*4>[1/;] = 10M (4),7'1/;), and

(iii) (W- )*-1 : V(M, i;+) --t V(M, E-) is the inverse of thc transpose (W-)* = - w+.

Similarly, there is a Cauchy integral C- for E+. Sillce (W-) -1 is bounded from L2 (111, E-)

to Lr(M, E+) and r is bounded frolll Lr(M, E+) to L2(ßM, E+), it follows that:

7.2 Proposition. The Cauchy integ1'al is a bounded linear map L2(DM, E-) -+ L2(M, E-).

This simple result will not be uHed until mueh later. Instead some more infonnative

expressions for the Cauehy integral on SllloOth funetiolls will be developed, starting with:

7.3 Proposition. The Cau.chy integral is given by the formu.lae

C+ 4>['1f'] = { (e(v)4> , (W-)-l1/;) = j' (4), VJ) + rCw+4>, (W-)-l1/J),
IBM M 1M

where in the last expression ep has been extended to M. Hence if 4> is monogenie on M then

C+ (np) = 4> as dis tributions on int M. Also note that W+ (C+ 4» = 0 on Al " 8M .

Prao/: Thc first expression is a mat.ter of ullravelling the definition:

c+ 4>[1jJ] = ((W-)*-l 0 r* 0 c(v) 4» [1j;] = (r* (e(v)4») [(W-) -11j;] = { (c(v)4> , (W-) -11jJ) .
I BM

The seeond expression then follows frmn thc Green fOfluula, and henee ifW+4> = 0, C+(rcjJ)
a.lld 4> agree on test funetions1j;. For the last part it must be shown that (W+ 0 C+ 4>)[7j;J = 0
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for any test runction 'l/J E COO (Nt, jj;+) supported in int M. But W+ on distributions is given

by -('W-)"', so (W+ 0 C+cjJ)[1/;J = -r*(c(v)cjJ)[~] = - I8M (c(v)cjJ, r'l/J) = 0 since r1/; = O. D

This proposition is already a distribut.ional version of t.he Cauchy integral fonuula. It.
gives direct expression to the fact that a monogenie function is dctcrmined by its boundary

values. However, it is of little use unless the Cauchy integral is described more explicitly.

In particular, since C</> smooth away from DM (by elliptic regularity), it ShOltld be possible

to give an expression for its point values. This can be done using thc fundaUlental solution.

7.4 Definition. Recall that for each x E M there is a delta function bx E V(M, E-) (9 E; .
Defille the distribution Gi by Gi = (W+)*-lox E V(M, E+) 0 E;, so that Gi['l/J] =
((W+)*-lbx)['l/J] = ox[(W+)-l'l/J] = ((W+)-l1,b)(x). Now (W+)* is thc action of -W- on distri

butions, and so W-G~ = 0 outside {x}. Hence over {(x, y) E M x M : x #- y}, one can

defi ne the Jundamental solution of W+ to be the point values G+ (x, y) E E; 0 E; of C~.

Likewise W- ha.." a fundaInental solution C- (x, V).

An iInportant fact to be established is that the distributions G; are actually represented

by the fundamenta.l solutions y ~ G±(x, y), since a priori G~ Iuay harbour a genuine

dis tribut ion on the diagonal. However, it is at least deal' timt if 'ljJ = 0 near x, then

((W±)-l1/;)(X) = r . (C±(x,y) ,'ljJ(y)).
lYEM

7.5 Proposition. For x #- y, C-(y, X)T = -C+(x, V), wherc T denotes transposition oJ

tensors: E; 0 E; ~ E; 0 E;. H ence the Jundamental soltitions are smoG th in bo th variables.

Proof: It follows [rom the Green fonuula that IM (cjJ, (W-)-l1/;) + Jü ((W+)-lcjJ, 1/;) = O.

For cjJ, 'ljJ with disjoint support, this implies:

r . (cjJ(y),l _ (G-(y,x) ,'ljJ(X))) +1_(r _(C+(x,y) l~(Y)) ,'ljJ(x)) = o.1yEM xEM xEM 1yEM '

Since this holeIs for all such cjJ,1/;, the equality folIows.

It is now possible to describc the Cauchy integral operator more explicitly.

7.6 Theorem (Point values of the Cauchy integral). Away from DM, C+cjJ is given

by the smooth Junction

C+cjJ(x) = { (-G;, c(v)4» .
IBM

Proof: For ~ supported away from DM,

C+cjJ['ljJ] = r (C(lJ)</>(y),l. (C-(y,x),V;(X)))
JyE8M xEM

=1 -r ((-G+(x,y),c(v)cjJ(y)),7/J(x)) ,
xEM 1yE8M

using 7.5 and the continuity of thc integrand. This givcs the stated formula. D

7.7 Corollary (Boundedness of the Cauchy integral). In the oriented line L~-l,

where the last integral is contracted to lie in L~-l .
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Therefore the Ca'Uchy integral extends to a continuo'Us linear map from the (conformally

in1mriant) Hilbert space L2 (8M, E) to Coo (int M, E) .

Proof: This is just the Cauchy-Schwarz inequality for thc E; valued pairing of G~ and
ep, drcssed np in conformally invariant language. It inlluediatcly follows timt thc pointwisc

Canchy integral is cOlltinuous, but also since IaM (G~ ,C;) is SlllOOth for x Eint M, it is in
L2 on compact subsets. Now the Cauchy integral is monogenic , alld so the continuity (on

the dense subspace of snlooth boundary functions) follows frOlli 6.2. 0

7.8 Corollary (Cauchy integral formula). 1f ep is smoo th on M and W+ ep = 0 on int M
then

ep(x) = r (-C; 1 c(v)ep)
IBM

f01' X Eint M. Hence the Cauchy integral on bou.ndary valucs of srnooth monogenie ju,netion8

is an evaluation map.

This generalises the standard fornmla in Clifford analysis -[12, 24] (and thence thc clas
sical fornlula), as can be seen by cOluputing the fundamental solution on Rn. Since such
computation is also essential in order to underst.and thc bchaviour of the fundamental
SJllltion on a general manifold more concrctcly, I will recall it here.

7.9 Proposition. The inverse 01 the Dirae operator on sn is represented at X E Rn by the

fundamental solution G(x, y) = -L~, WhC1"e Wn is the area of sn-l and x - y aets from
Wn Ix-Yl n

jj;+ to E-, or from jj;- io E+.

Proof: It must bc verified that W*G(x,.) = bx , with G(x, y) as stated. In other words that

G(x, .)[WepJ = ep(x) for test functions ep. The lcft hand side lnay be writtell as

linl r (C(x ,y) ,W<jJ(y)) = lim { (c( -v)G(x, y) 1 ep(y)) ,
T~O l YEM'ßr (X) r~O JYEDf3r(x)

since G(x, y) = w1~ is monogenie in Y for y :I x (a straightforward verification-also see
n Ix-Y["

bclow). Here 1.1 = I~=~I is the outward nonnal on 8Br (x): and so -c(v)G(x, y) = wnlx~Yln t·

Thercforc thc integral is the average of 4J over a slnall sphcre centred at x, which tends to
<jJ(x) as l' -+ 0, since ep is continuous. 0

REMARK. The confonnal invariance of the Dirac operator on sn SllggCstS that the fun

dalllCntal solution should be viewed as being "constallt" away from the singularity. More
precisely, by the vanishing theorem 5.10, constant spinors on Rn do not extcnd to lllOno
genie spinors over sn. Thus, if a constant spinor 'lj; on }Rn is transforuled by the conformal
map x Ho x/I X 1

2 of sn l the result is a lllonogenic functioll on sn " {O}. This is easily COlll
puted to be r;ln'I/J, which is a cOlnponent of the fundamental solution at O. This givcs an
ea..'3Y way of seeing that the fundamental solution is lllonogenic away frmn the singularity.

All irnportant aspect of the above proposition is that the inverse of the Dirac operator
on the sphere is rcpresented by its fundamental solution. One way to establish the sanle

resllit more generally is to show that the inverse of a Dirac operator on a general nlanifold

cau be approxilnated by the fundmncntal solution on the sphere. To see this , it is llecessary

to calculate.
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1.10 Lemma. Let 4> be a smoo th spinor valued fu.nction on Rn " {O} 0 f uo'Unded support,

such that IWq,(x)1 ~ C/1'k with k < 11 (here r = lxi). Then 1q,(x)1 :S; C/r k - 1 plus a

logarithmic term if k = 1.

Pro0/: Writing 'I/J = Wq, alld n = supp'l/J allel applying thc fundamental solution, it suffices
to establish timt

1 w Ix ~ In-ll'l/>(Y)!
yEO n Y

has the statecl growth at the origin. In oreIer to estimate thc integral when lxi = r, split

it into integrals over lyl < 1'/2, r /2 < lyl < 31'/2 anel lyl > 31'/2, anel integrate in polar

coordinates (arouncl the origin). The integral over lyl < 1'/2 is bouneled by

1.
r / 2 2n-l C C

wn!yln-l n-l I lk ~ .k~l'lyl;:;:o .WnT Y 7

since k < n. Silnilarly for lyl > 31'/2, oue can estimate

1.
2n-1 C (;

wn !yln-l (\ I )n-t -IIk ~ k~l + log tenn if k = 1.
[yl>3r/2 W n Y - r y l'

J For thc integral over 1'/2 < lyI < 31'/2, it is necessary to separate out the pole of thc

" funelatnental solution in Iy - xl < r /2. For the integral without. the pole, therc is the

bound,

1
3T

/
2 I ln - 1 2

n
-

1 C 63
W n Y 1 I Ik ~ 1'k- 1 'y=r /2 W n1'n- y

since lvi is approxiruately 7'. It remains t.o cstimate

1. I 1 In-l ''I/>(y)I.
ly-xl<r/2 W n x - Y

Now this can be integrated in polar coordinates around x, which removes the singularity of

the funclarnental solution, leaving I'l/J (y) Ir /2 ~ 04/1'k-1, since again Iy I is approximately r.

Putting these estirnates together cmnpletes t.he proof. 0

This shows that. if W<jJ = O(r-k ) then c/J = O(7'-(k-l)) (plus a possible log tenn), where

o (r- k ) is thc usual notation for a function which, when rnultipliecl by 1'k , is bouneled near

l' = O. A similar argurnent shows that if W<jJ is logarithrnic, then q, is bounded.

These results will bc used to construct. a correct.ion ternl for the following parametrix.

At each x E M introdnce Rienlannian nornlal coordinates, anel trivialise E locally by radial
parallel t.ransport. Dsing a bump function on Rn which is ident.ically 1 near the origin, it

is then straightforward to lift the Euclidean fundamental solution to produce a function

G(x, y) which is snlooth off the diagonal, equal to the Eudidean fundamental solution in

normal coordinates (at x) when y is sufficiently dose to x, anel zero when Y is far [rmn x.

1.11 Proposition. The inverse of the Dirac operator on M is represented uy a fu.ndamental

solution G(x,y) = G(:c,y) + O(dist(x,y)-(n-3)). Since G(x,y) = O(dist(x,y)-(71-1)), it

lollows that G(x, y)dist(x, y)n-l is botinded. From the eonstruction 01 G it also lollows that

in anormal eoordinate ehart

1 x-v ( 1 )
G(x,y)=-I I +0 I 1-3 'Wn X - Y n X - Y n
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Proo!: Thc function O(dist(x,y)-(n-3)) wust be constructed so that W*G(x,.) = ox. For

V elose to x introduce normal coordinates centred at x and trivialise thc spinal' bllndles

usi ng radial parallel transport. Then 9ij (y) = Oij + 0 (r2 ), where r = !y I. Also, t he symbol

of the Dirac operator on M differs from the Euclidcan Clifford Inultiplication by a tenn of

order r, a.nd the conlleetion 011 E diffcrs from the flat connection by CL I-form of order r. It
follows that thc Dirac operator differs frolll thc Euclidean Dirae operator by a zero order
operator 8 of order r. In these coordinates, C(x, y) is the Euclidean funclauwntal solution

nea.r thc origin and so if 1.1* = -W is applied, the rcsult. is Ox + 8C(x, y) up to a bounded
term, and so thc delta distribution is obtained with error el = O(r·-(n-2)). Applying

the (truncated) Euclidean fUIldaulCntal solution gives a first correctioll tenn Cl, which is
O(r-(n-3)) by the lemma. Applying the Dirac operator to Cl corrects the error el, hut
there remaiIls an error e2 = 8CI (up to a boundecl tenn), which is O(r-(n-4)). Repeating
thia proeess gives further corrections Ck = O(r-(n-2-k)) to thc O(r·-(n-3)) functioll allel

the errol' is reduced to a bounded term. Extending this O(7·-(n-3)) function to M, aclding

it to C(x,.) anel applying thc Dirac operator gives the delta distribution with a bounded
erroT. The final correctioll ia obtained by applying W- 1 to this. 0

",~12 Corollary. 1J 'lj; E Coo (M ,E±) then
~

((W±)-I'lj;)(X) = liln r _ (G±(x,y) ,'lj;(y)) ,
r-+O 1yE M ...... Br (x)

whe7'e Br{x) denotes the ball 0/ radius r (using a metnc near x).

In fact it is not necessary to write the integral aB a limit, since the integrand ia integrable
ovcr the n-manifold M.

7.13 Theorem. The Cauchy integml oJ thc 1'Cstriction oJ cP E COO(M, E-) to 8M is given,

J07' x Eint M, by thc Jollowing JONnula:

C+1>(x) = 1>(x) - L(G~,YI+1».

Proof: By 7.3, the Cauchy integral paired with a test function 'ljJ supported in int M, is

givcn by

C+1>["'] = L(1),''') + !)YI+1>, (YlT1
",),

Substitllting the fornmla fronl 7.12 for thc inverse of W-, and changing the order of inte

grat.ion gives

C+cP['lj;] = f (ep(x),'lj;(x))- { (f (G;,W+4»,'lj;(X)) ,
JXEM 1xEM 1M

which cstablishes the result.

Combining this with the Cauchy integral theorem 7.6 gives:

7.14 The Pompeiu representation formula. Any Bmooth spinoT field 4> on M is given

at x by the JOr11w,la

1;(x) = r (-G~, c{V)4J) + r (G~, W+ 1;)
IBM 1M

on int M.

This result was obtained in thc Euc1idoall casc by Moisil [41), but sec also [12, 31).
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8 Applications of the Cauchy integral formula

8.1 Proposition (Mean value inequalities). If 4> is monogenie near x, then in anormal

eoordirwte ehart at x, and JOT all r stijJiciently small,

14>(x)]:S; :-1 r 14>1·
r l aB(x,r)

Integrating r n
- I I4>(x)1 from 0 to r gives

nCJ.14>(x)1 :s; n 14>1·
r B(x,r)

Proof: Apply thc boundcdncss of lG(x, Y)llx - V!n-l to the Callehy integral fonnula. 0

The next result. eoneerllS the extension of monogenie functiolls to submanifolds. Such

renlOvable singularity results are knowll to exist for arbitrary differential operators (see for

eXaluple Boehner [9]), but the proof below is interesting, beeause it is a simple application

of the Cauehy integral formula, exaetly as in complex analysis.

, 8.2 Proposition (Removable singularities). Let S be a comlJact submanifold 0/ M 01
;j codimension k ~ 2 and suppose cP is a smooth function on M " S which is monogenic

on int M "S. If cP(x)dist(x, S)k-l -7 0 as x -7 S then cP extends smoothly to S (I,nd is

monogenic on int M.

Proof: Thc idca is to extend 4> to S using the Cauchy integral fonuula.. To do this the

boundary of M tuust be nonempty, but this is not really a restrietion, sincc there is ccrtainly

a tnanifold with boundary containing S. Let Sc be a c:-tllbular neighbourhood of S in M

so that. the area. of a5c is boundeel by a constant titues c:k- 1 (S has finite voluBle). Then

for x Eint M " 5 choose 0 :s; 1 slIch that x E int(M ,,58). Now for any c < 0,

</J(x) = r (-Gx,c(v)<jJ)
JaMuaS f

by the Cauchy int.egral formula on M "Sc' But, for fixed x, G x is bOllnded on aSe
independcnt.ly of C:, anel RO the integrand is of order o(c:-(k-l)). But the area of aSe is

o (ck- 1) anel so the integralover [)Sc can bc tuade arbitrari ly sIllall for small c:. Now the

rest of the expression is independent of c:, and so

4J(x) = r (-Gx,c(v)cP).
JaM

But this formula defines a Blonogenic extension of </J to S. o
This suggests tImt a Inonogcnic spinor whieh does not extclld to a surface of codinlCnsion

~ 2 has SOlHe sort of "pole" there. Indeed, in the Euclidcan case, a residue theory has been

developed by Delanghe, SOlnBlen and Soucek [19], using the Leray-Norguet resielue. There

is a siIuple anel direct generalisation to arbitrary Dirac operators (see also [52}).

8.3 Definition. Let S be a closed subtnanifold of M. Then the space H(S) of Inonogenic

functions on S is defined to bc the dircct litnit of the spaces of sluooth monogenie functions

on neighbourhoods of S in M; that is, the space of germs of tllonogenie functions nea.r S.

23



The idea is to dcfine the residue on S of fUIlction cjJ Inonogenic on M " S as Cl linear

functional on H (S) in such a way that for any 't/J monogenie on M,

r (c(v) cjJ , 't/J) = (Res5' cjJ) [3k] ,
10M

whcre Yl. is the genn of'IjJ along S. One ean almost take this as the definition of the residue,

thc Inain point being to show that the left hand side depends only on the germ of 'IjJ. More

prceisely let U ce v be any open neighbourhooclH of S in M with ~Hnooth boundaries.

Now if 1J is Illonogcuic on V "" 8 anel 'IjJ is ulOnogeJlic on V, then both arc Illonogcnic on

V "" U and so by Cauchy's theorem

{ (e(v)ep, 'IjJ) = { (e(v)(p, 'Ij;) ,
lau lov

where v denote--,;; the outward normal to V and U. It follows that

(Ress 1J) [YL] = r (c( v)1J ,1/J)
lDu

is weil defined, independent of thc choice of a (sufficiently srnall) neighbourhood U of Sand

t~e extension of the gerIn YL to a monogenie function on U. The notion of re~~;jdue siulply

f6rmaliscs thc idea tImt the bad behaviour of 1J is loeal t.o 8, anel thc following thcoreln is

iIlunediatc:

8.4 Residue theorem. Let 8 1,82 be disjoint closed subrnanifolds of int M and suplJose

thai 1J is monogenie on M"" SI and'lj; is monogenie on M"" 82 . Then

{ (e(v)1J, 'Ij;) = (ResSt </» [YL] + (Ress 't/J) [~] .
JaA1 2

As an example, observe that the residue of G x Oll thc submanifold {x} is just the delta

function 6x . This is just a rcformulation of the Cauchy integral formula.

9 Hardy space theory for Dirac operators

Let MOO(M, E'F) be the space of 1J E COO(M, E'F) with W±cjJ = 0 on int M. Such sections

1J havc boundary values in COO(DM, E=F). This section is dcvot.cd to thc following:

9.1 Definition. Thc Hardy spaee H± is defined to be the dosure of thc space of boundary

values of elelllcnts of MOO(M, E=F) in the boundary L2-nonll. Thc orthogonal projection

fronl L2 (öM: E'F) to H± will be denoted p±.

Note thnt these definit ions arc intrinsic to M, and that in thc confonnally invariant case,

the boulldary L2-nonll (and hence H±) are defined without choosing a particular Iuetric.

Cauchy's theorem 5.4 states that H+ and c(v)H- are orthogonal in L2 (ßM, E-). Thc

main goal of this section is to provo that they a.re orthogonal conlpleruents (9.19). This is

donc by studying thc boundary values of the Cauchy integral of 1J E C OO (aM ,E- ). If ~ is

any extension of 1J to M and x Eint M thon by 7.13,

However, it is not apriori deal' that the integral has a limit aB x -t öM.
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and

9.2 Proposition. Let 'lj; E L2 (M, E+), extended by zero to M. Then (W+)-l1jJ is in

Lr(M,E-), and for 'ljJ smooth on M, (W+)-l'ljJ is srnooth on intM, where it is given by

('w+)-t'lj;(x) = 1. (C+(x,y) ,'Ij;(y)).
yEM

This is iuuuediate from local elliptic rcgularity and the represcntation of w- 1 by the

fundarllental solution. Taking 1jJ = W+ 4> on M (anel extending by zero) shows that the

Callchy integra.l of a. smooth 4> is in LI, which at least gives an L2 trace on the boundary.

It is possible t.o do nluch better than this by exploiting the freedOlu in thc choice of

the extension!/J. In order to find a good extension some technical tools are needed, hut

these tools are entirely clementary. In fact this approach follows thc book of Bell [6] on the

Cauchy integral in two dimensions.

First of all a dcfining fuuction p for aM needs to be chosen. This is a fuuction on M
such that p:f; °on int M and p = 0, dp(lJ) > °on DM. Such a function is easily constructed
using a partition of unity. The following lennna is the main technical computation (see [6)).

9.3 Lemma. Let'lj; E COO(M, E). Then for each k ~ 0 there is a smooth section cPk which

vanishes on DM, but such that 1jJ - WcPk vanishes to order k on DM in the sense that

11/J - Y74>k = pk+lOk Jor some smooth ek.

• Proof: Let 1] be a srnooth funct.ion which is identica.lly 1 on a neighbourhood of DM but

valli8hes on a neighbourhood of the critical points of p and define c(dp)-l to be zero on the

critical point.s. Write 4>0 = PXo so that Wepo = pWXo + c(dp)xo. Hcnce if Xo = 1]C(dp)-l'lj;
then 'ljJ - W4>o = (Jeo with Bo = (1 - 1])'ljJ -- WXo. Now, cOlltinuing by induction on k,

write 1>k = !/Jk-l + pk+l Xk . Thcn tJ4>k = W4>k-l + pk+lWXk + (k + l)pk c(dp)Xk = 'lj; +
pkOk_l + pk+lWXk + (k + l)pk c(dp)Xk' Defining Xk = ~1]c(dp)-lek_l gives 'ljJ -- W!/Jk =
(1 - ry)pkek _ 1 - pk+hPXk = pk+lOk for some Bk, which provos the lenllna. 0

9.4 Proposition. If'ljJ E COO(M, E+) and 4> E COO(DM, E-), then (W+)-l'ljJ and e+cP are

smooth on M. lv/ore precisely, Jor each k ~ 0 there are ."mooth seetions 4>k vanishing on
BM and smooth extensions ~k of 4>, such that 'ljJ - W+!/Jk and W+ ~k vanish to order k on

BM. The formtilae

~k(X) -- 1. (C+(x, y), W+ ~k(Y))
yEM

then define L~+l extensions oJ (W+)-l 'ljJ and e+ 4> from int M to M. (01 course the exten

sions are arbitrary on M " M.)
Proof: The existence of cPk was givcn in the lenll11a, and the first fornlllia follows by

extending 11 1>k - 'ljJ by zero to Ml giving a e k integrand on M. It is therefore in L~ and so

applying W-1 givcs a function is L~+l' Next, if ~ is allY extension of <p then taking 'I/J = W~

it follows that ~k = ~ -- <Pk are also extensions of ~ and the rest easily folIows. D

9.5 Definition. The Cauchy transJo1'1n on BM is thc linear nlap

given by restricting the Callchy integral to the bounclary.
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Since COO (8M, E-) has a canonical inner product, it is natural to ask whcthcr the
Cauchy transform has a formal adjoint.

9.6 Proposition. Dcfine (C+)*'Ij; = 'Ij; - c(v)C- (c(v)'Ij;). Then (C+)* i.'J formally (Ldjoint to

C+, The analogous rcsult holds Jor C- .

Proof: Let ~ be a (sllfficiently good) extension of cP to M. Then, omitting the tilde:

{ (C+ cP , 'Ij;) = { (cP( x) - ! (c+ (x, y) ,w+ cP(y)) ,'Ij; (x))
IBM lxE8M yEM

= { (cP,1/J) - { ! ((G+(x,y), w+</;(y)) ,7/J(x))
10M lxE8M yEM

(j { (</;,'I/;)-/, 1 (W+</>(v),(-C-(y,x),'I/;(x)))IBM yEM xEoM

= ( (4;,'1/;) - r (W+cf;(y) ,C-(C(l/)1f;) (y))
lDM l yE M

= ( (cjJ,7jJ) -! (C(l/)rjJ(y) ,C-(c(lJhb)(Y))IBM yE8M

;hich est.ablishes the proposition, provideel that thc change of order of integration at (*) is
( --

jbstificd. To sec this, choose the extension</; such that WcP vanishes on 8M. This ensurcs
that the singularity of the fundamental solution does not cause problems as y ~ 8M. D

At present C± 4; has only been defined for SIllooth cP, hut für such cP the followitlg formula
is now straightforwal'd. It will be seen shortly that it holels for all q; in L2 .

9.7 Theorem (Kerzman-Stein formula). For ep E Coo(8M, E), C<jJ = P(rjJ+ (C -C*)ep).

Proof: Simply check 4; + CcjJ-C*cjJ = Ccf;+c(v)C(c(v)cf;). Now CcjJ is in Hand c(v)C(c(v)cf;)
is in Hl.. by Canchy's theorem, and so the theorem is proven. D

The beauty of the Kerzman-Stein formula is that C - C* is a nmch bettcl' behaved
operator than C. This will turn out to be a consequence of the following piece of abstract
functional analysis (see für example Fülland [22]).

9.8 Proposition. Let V, W be vector bundles on a closed rn dimensional 17LaniJold X, and

K(x, y) E L(Vy , W x ) be a Junction continuous off tILe diagonal, such that Jor same a < rft,

]((x , y)dist(x, y)D is botmded. Such a K defines in an obvious way an ope1'ator TK from V

to W by integration oJ thc y variable against a fJection oJ V. Then Tl( is a compact operator

from L2 to L2 , (Lud K is called an integral kernel oJ order' a.

To apply this result, an analogue of the classical Pleluelj formula will bc used to give a

(singular) integral kernel for C, and then the integral kernel of C - C* will be cOluputcd.

Thc fundamental solution is an integral kernel of order n - 1 and defines the cOlnpact.
operator W- 1 on M. On DM, the closely relat.ed Cauchy kernel can only define a singular
integral operator.

9.9 Definition. Thc Hilbert transform 1i.+ on COO
( aM,E-) is givcn by thc singular integral

1{+<jJ(x) = 2lim { (-c~ ,c(v)cf;) ,
r--tü 18M ...... B r (x)

where x E 8M. Similarly one can define 1-l-.
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Of course it is not imluediate that 1{+ 4> cxists aB a Slllooth functioll on M. The integral

kernel used here is twice the Cauchy kernel (used in the Cauchy integral), so na'ively one

might cxpect to obtain twice thc Cauchy transform. This is not thc casc, as thc following

result on the boundary behaviour of thc Cauchy kernel shows (compare Fo11and [22]).

9.10 Proposition. /f 4> E MOO(M, E-) then

and fo1' x E 8M,

r (-C~'C(lJ)4J)={O
J8M 4J(x)

fo1' xE M" M

fOT X E intM

lim r (-C; ,c(v)4J) = ~<jJ(x).
r-+OJaM ..... Br(x) 2

Proof: The integral is zero outside M by Cauchy's theorem, and thc integral for x E illt M
is 4J(x) by the Cauchy integral fonuula, so it remains to calculate thc singular integral.

Choose a llletric near a; (if necessary). Sillce thc bOlllldary is differentiable at x, for any

E: > 0 there is a 8 > 0 such that the image Y of Tx 8M under the exponential map is elose to

aM in the sense that for a11 y E Y n B6(X), dist(y, ßM) < e.r, where r = dist(x, y). Bence

) Mn Br(x) = ~Br(:r;), with an error of order E. for r < 8. Now the integral over 8M" Br(x)
) can be replaced by the integral over D(M" Br(x)) provided the integralover MnaBr(x)
. is subtracted. The integral ovcr o(M -..... Br(x)) vanishes by Cauchy's theorem, becausc G;

and 4> are boUl nlOllogenic on M -..... Br(x). (The lack of sluoothness of the boundary cloes

not cause any problclus.) It rmuains to cOInpute J~~ JMn8B
r
(x) (-G~ ,c(v)4J), where v is

thc inwal'd nonnal to Br(x). By cstimating thc integral in normal coordinates using the

Ellclidean fundalncll tal solution, thc Iilnit is casily seen to bc ~ 4>(x ). 0

The last part of this proposition is used to prove the fo11owing important result.

9.11 Theorem (Plemelj formula). For</J E COO(aM,E-), C+<jJ = ~(4J + 1{+4J).

Proof: This formula can be verified at a point x E DM, by finding a monogenic function 4>0
with 4>o(x) = 4J(x). To clo this, observe that for x E Nf-.....M elose to x, the fundarnental solu
tion G- (x, x) is nondegenerate and so, by contract.ing with a spinor in Ei, 4Jo can be fonnd

such that W+ 4Jo = 0 on M and 4Jo (x) = 4J(x). Consequently 14>(Y) - 4Jo (y) I ~ const. \y - xI for

y near x in loeal coordinates on 0M. Thercfore C+ (<p - </Jo) (x) = JaM(- G; ,c( IJ) (<jJ - 4>0))
because the integrand is locally integrable, and so

C+</J(x) = C+ <Po (x) + lim ( r (-G~ ,c(v)4J) - r (-G~ ,C(V)<po)).
r-+O JaM ..... Br(X) JaM'Br(x)

Now C+cPo(x) = 4>o(x) = 4>(x) and by the lenuua, the second integral converges to ~</Jo(x) =

~ 4>(x). Hence t.hc first integral cOllverges and the resul t folIows. 0

It follows from the Plemelj fonuula. that C4J - eil 4> = ~ (1{4J + c(v)1l(c(v) 4J)), which is
an (a priori singular) integral operat.or with kernel A(x, y) = (c(vy)G(x, y) + G(x, y)C(IJx )).

9.12 Proposition. A(x, y)dist(x, y)n is twice differentiable as a function of y at y = x. It

vanishes, together with its first derivative at y = x, and the second is given by

D~ uA = 2- ((S'lL)'lL - u(Su)),
, W n

where Su = Duv is the Weingarten map applied to u.
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Proof: To cOmpllte thc linüt.ing bchaviollr of (c(vy)G(x, y) + G(.r" y)c(vx))dist(x, y)n as y

approaches x, introduce normal coordinates for M at x, and note that it suffices to work

with the Euclidean fundamental solution and the Euclidean dist.ance functiou, since the

error tenns are of higher order. Thus thc fuuction to bc computed as y --+ x is Ix(Y) ~

w
1
n

(!.Iy(x - y) + (x - y) vx )' Now to seeond order, a point y on a geodesic (in 8M) starting

at x in direction u E Tx 8M is given by y = x + cU - ~c2{u ,Duv)Vr. + o(c2
), where V x is the

normal at x. Also vy = l.1x + cDuv + o(c). Thereforc:

!x(y) = ~n ((vx + eDuv) (-w + ~E2 (u, Duv)vx ) + (-w + ~e2 (u , Duv)vx ) I/x) + 0(e2)

= :n (-(vxu + uvx)+ c( (u, Duv) - (Duv)1L)) + o(c2
)

c2
= -2-(u(Duv) - (Duv)u) + 0(6"2),

Wn

since I.IxU + uVx = 2(vx ,u) = O. This shows that Ix and its first. derivative vallish at x, with

the second derivative a.<;; stated. 0

~ Prom this thc analogue of the theorem of Kerzlnan and Stein [34J is inlluediate.

9.13 Theorem. C - C" is a compac t operator on thc inner product space Coo (8 M , E) .

Proof: It sllffiees to prove that C - C* is givcn by an integral kernel of order n - 2. As

observcd above,

(C4> - C*4>)(x) = - liml (A(x, V), 4>(y)) .
r-)O yEBM"'-Br(x)

Hence it must bc shown that A(x, y)dist(x, y)T1-2 is boundcd, which is only in doubt for

y close to x. But thc boundedncss as y --+ :/: followH from the abovo propositioll, so the

integral is not singular: and C - C· is a compact operator. 0

REMARK. Booß anel Wojeiechowski [11] base thoir analysis of Dirae operators on a very

silllilar rcsult, namely that that C - P is a eompact operator. This is cssentially equivalent

to the above, since by the Kerzlnan-Stcin formula, C - P = P(C - C·). However, thcir

proof of this fact involves some delieate estiInates followillg closely thc paper of Seeley [49].

9.14 Theorem. The Cauchy tran.llform C+ extends to a bounded ope1ntor on L2 (8M, E-),
with ünage H+, and L2-adjoint (C+)*. Hence the K erzman-Stein formula is valid for any L2

section, and by thc K erzman-Stein theorem, the Cauchy transforrn is eS.'Jentially self-adjoint.

Proof: Since C-C* is compact, it extends to a bouuded operator on L2 (8M, E-). Therefore

P (i d + (C - C·)) is also a boullded operator. By the Kerzluall-S tein fonnula, t his doRnes an

extension of the Cauchy transfoflll, and the illlage is H by definition. It is now iInmediate

that thc acljoint of C is C* sillce they arc formally adjoint on thc dense subspace of slnooth

spinor fielcls. 0

9.15 Corollary. The Hilbert tmnsform is a bonnded operator on L2 (8M, E-) and so the

Plemelj fONnula is valid for arbitrary L2 sections over the boundary.

Proof: By the Plemelj formula, 1-l+ 4> = 2C+ 4> - 4>, which is a bounded operator. 0

9.16 Proposition. iIn Pl kerC ~ (ker C) / (H1. n ker C) is finite dimensional.
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Proof: P - C is a conlpact operator on L2 anel so Pl kerc is also cOIllpact. Let Kc =

H.L n ker C be its kernel. Then im(Pl k c) = im(Pl
k

C K.L)' Now P is a projection injective
er er n c

on this closed subspace of L2 , so it is bounded below. Therefore im(Pl kerc ) is 80 closcd
subspace of L2 . Since P is a cOlnpact operator this nlust be finite dimensional. 0

These results, while interesting, are not intrinsic to M in that the Cauchy and HilbCl,t
transfonns involve the fundamental solution of Won thc dosed lllanifold M. Thc intrinsic
analysis of M is capturcd by the Hardy spaces H± with their associated projections P±,
Thc above work cstablishcs thrce ilnportant properties of Hand P.

Firstly, functions in H have weil defined interior values, given by the Cauchy integral. It

wa<:; shown in 7.2 that thc Cauchy integral is bounded from L2 (DM, E) to L2 (M, E). There
is also the following result, a silnple case of a nicc argument in Seeley [49].

9.17 Proposition. The Catichy integral is boundcd from H n Lr(DM, E) to Lr(M, E).

ProoJ: It suffices to establish the result for 't/J E MOO(M, E), so that 't/J1 8M is Slllooth.

(Note that C(t/J1 8M ) = 'lj; on M.) To do this choose a slnooth extension;P of 't/J1 8M to M. It

is possible to do this so that the LI-norm of {J is controlled by thc Li-nonn of 't/J1 8M . Now

:ft' let 4J eqllal 'l/J on M and ;p on M" M, This will not bc smooth, hut in fact lies in Lr(M, E)
) with W4J = 0 on int M alld equal to w;j; on M " int M. One way to sec this is to observc
"

that cjJ is eertainly in L2 anel eompute its weak derivative, using sIllall ncighbourhoods Ua
• of DM in M, anel the Green fonnula on M " Ua. In any ease, it follows that thc L2-nonll

of Y; cjJ Oll M is bounded by the Li-norm of ;P, anel henee the LI-norm of'1/J is eOlltrolled by

the LI-nonn of 't/J1 8M . 0

The sceond rcsult is a regularity result for P:

9.18 Theorem. 11 t:/> is smooth on 8M, then so is Pt:/>,

Proof: By thc Kerzillall-Stein fonllula PC = C and P( id - C·) = O. Therefore C, id - C·

have orthogonal "images and so I1 (id + C - C*) cjJI1 2 = I1 C4J 11 2 + 1I (id - C*)4J 11 2
. This is zero

iffC4J = 0 anel C*cjJ = 4J, whieh only holds if (4J,cjJ) = (4J,C*cjJ) = (C4J,cjJ) = 0, anel so
F = id + C - C· is injective. But C - C· is compact, and so F is Fredholm of index zero

on L2, anel henee is invertible. Now F anel F.o both map SlllOOth functions to smooth
functions, anel hellee :F is an invert.iblc Illap Oll RlllOOt.h functions, Thc rcsult now follows

beeause P = CF-I. 0

Finally, there is the theorem whose proof wa.~ the main goal of this scction:

9.19 Theorem. The slmces H+ and c(v)H- are orthogonal complements in L2 (oM, E-).

ProoJ: By Callchy's t.hcorelIl, t.hese spaees are orthogonal, so suppose cjJ E H.L. Then

o = (C't/J,4» = ('t/J,C·cjJ) for all't/J, anel so cjJ = c(v)C(c(v)4J) by definition of C*. Thus

cjJ E c(v)H. 0

Booß and Wojcieehowski [11] refer to this as the "twisted orthogonality of thc boundary

eIata" and use it to prescnt an extensive survey of global elliptie bounelary value problellls

for Dirae operators. Thc prototype is thc following:

9.20 Proposition. For t/J E L2 (M, i;+), the equation Y;+cjJ = 'lj; and P+(4)l aA-J) = 0 has

a tiniquc solution cjJ E Li (M, E-), and there is a bourul 114Jllq ~ cOllst·II't/JIIL2. Also, ij

'ljJ E COO(M, E) then so is 4J.
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Proo/: For'ljJ smooth, let ;j; be a srnooth extension t.o SI, othcrwise extend 'ljJ by zero. Let

epo = w-1;j;. The solution ep, whieh is clearly llnique, is obtained by subtracting from r/Jo the

monogenie extension of P(epOlaM)' If 7,U is snlOoth, so is P(1'OIDM) and henee the rrlonogcnie

extension is in MOO(M, E). Thereforc l' E COO(M, E). In general, <Po = w-1;j; E Lr(M, E-),

wherc;j; is now the extension by zero. It follows that C(epOIDM) = °(llsing the fornnl1a 7.13)

and so epOIOM lies in kcre. But P is a smoothillg operator Oll this spaee (by 9.16 anel 9.18),

anel so it is bounded from L2 to L? The Cauehy integral is bounded on Lr by 9.17, and so

<P E Li with the bOllUd as stated. 0

Although the proof of this result uses w- l on NI, it is clearly intrinsie to M. In fact, it

provides suffieient allalytical inforrllation to rerllove M from the pictllre. In this spirit, thc

Cauchy kernel and the fundamental solution Oll M will be replaced by two int.egral kerneis

eanonieally associated to M, the Szcgö kernel and the Green kernel.

Für x Eint M, the Cauehy kernel -c(v)C; reprcsents thc Cauehy integral ep H C+1'(x)
of <p E L2( ßM ,E- ). For 4> E H+, t his reproeluecs the value at x of t he rnollogcn ie extension

of 1', whieh is intrinsie to M. Define the Szego kern d by S; = p+ (-c(V ) a;), Then:

9.21 Proposition. The Szegö kernel represents the functiona/ S';[4>J = C+(P+4>)(x). It

i~ smooth on 8M and lies in H+, so it has interior va/ues, S; E M OO (M, E-) given

by S;(y) = J~M (S; ,S';). Thu8 S+(x, y) = S;(y) i8 monogenie in x, y Eint M, and

S+(y,x)7" = S+(x,y). (Note, though , that S+(x,x) beeomes singular on the boundary.)

FrOlu thc definition, S; = -c(v)G~ - C(l/)~~ (on ßM) for sOIue smooth ~~ E H-,
which therefore extends to a monogenie funetion on M. Define the Green kC1'11el on M by

g; = G~ + cI>;, so tImt -W- g; = Ox on int M and on the bOlllldary g; = c(v)S; E c(v)H+.

9.22 Proposition. FOT x #- y in int M, g- (y, X)T = -g+(x, V).

Proof: Observe that IBM (gi, c(v)g;) = °alld apply the rC8idue theorem 8.4: the residue

of g; at x applied to g; gives g; (x) and similarly the residue at y gives gi (y ). 0

9.23 Corollary. For each ]ixed y Eint M, g; (y), as a function of x E ßM I lies in (H+)..l.
Thercfore if 1'(x) = g;[1/J] then Y;+ep = 'ljJ and P+(1'I OM ) = 0. In other words g+[1'] solves

the baundar-y problem 9.20.

I will finish this section by giving a more eonercte description of the Hardy spaee H,

showillg how it generalises thc two diruensional theory. So far H has only been deseribed as

an I}-closure, whercRS one would likc to see that it is a spaec of boundary valuc.', of suitably

weIl behaved ruonogellie fUllctions on int M, and givc some sort of eharaeterisation. To do

this, llsing ametrie near aM, introduce thc normal geodesie ftow fronl the boundary (a local

I-pa.rameter fanlily of diffeOlnorphisms), whieh identifics 8M X [0,0] with a neighbourhood

of DM in M, for some small J. Trivialisc E in the normal direction by using parallel

transport along norrnal geodesics. Let Me = M " (8M X [0, cD alld let Te denote the

restrietion nlap from functiolls on M to functions on 8M given by restrictillg to 8ME and

idelltifyillg with DM. The main result to be cstablished is thc following.

9.24 Theorem. For l' E M oo (M, E)

r (1', cP) ~ eonst. r (cP, 1') ,
18M,; IBM

for same eonstant independent 01 cP and c.
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Proo/: Thc integral of (4J, 4J) ovcr ßME, denotcd I(c), is smooth with respect to c, for

c E [O,6}. It will be shown that I'(c) ~ AI(c), for a eonstallt A independent of 4> anel c.
Integrating this incquality from 0 to c gives I(e) ~ eAc 1(0) ~ eM 1(0). To estitnate 1'(e),
ielentify 8ME with DM and let volc bc the volume form on 8Me pulled pack to DM. Note

that the outwarel normal to DMe is ielcntificd with the outward uoruml at 8M. Thereforc

~_ r (<p, cP) = ~_ r (re<p 1 rc<p) vol E
u.c 1aM~ ut IBM

= r -2(iJ~<jJ,1»+ r (cP,<f;) vol~
JaM c 1DMe vole

= 1. -2(bEcP,iJE4J) + 1. -2 (K4J,<jJ) + r (4J,<p) vOII~ 1

Me Me 1aMe vo E

by the Bochner-Weitzenböck integral formula. The first integral is negativc, anel the second

is bounded iu terms of IMe (1), 4J). But 4> on M, is giyen by its Cauehy integral, whieh is

L2-bollnded by 7.2. Therefore the seconel anel third integrals are bounded by I(c). 0

9.25 Corollary. The Cauehy integral oj a junetion cP in H (which exists as an L2 monogenie

junction on int M by 7.2) is a smooth j'lLnction 1/; on int M with Tc1/; bounded in L2 (8M, E)
(J independent oj c:. Furthermore T e7/J --+ 4J in L2 as c --+ O.

, Pro0/: Approximatc cP by boundary values of 1>k E MOO(M, E). It is inunediate then that

thc L2 estinlate applies to 4J. Thcrcfore it also applies to cP - To4Jk alld so in thc estimate

thc first term is bOllucled by a. constant multiple of Il<p - rOcPk 11. Hence, like the last ternl, it

cau be Inadc arbitrarily slnall for large k. Now II1'e<Pk - rO<Pkll approaches zero with c: since
it is a continllOllS fllnction of E ~ 0 (ePk being continuous Oll M). 0

Conversely there is the following result.

9.26 Proposition. Suppose that 7/J is monogenie on int M with IeM (re1/; 1 T e7/J) is bounded

independent oj c:. Then 7/J is a Cauehy integral oj a junetion 4> on the bou1ldary with cP EH,
and so r c1/; --+ <jJ in norm.

Prao/: Since every boundecl sequence in L2 ha..., a weakly convergent subsequcnce (Banach

Alaoglu), there is a sequence of values of e with re7/J converging weakly to a fUllction 4J in

L2 (aM, E). Now 1/; is nlonogenic on int M anel so

Ce/> -1/; = CcP - Cc(VJl aMe )

= C(<p - 1'c1/;) + C(rE 1/;) - Cd1/;laM)

The first term cau be lllade arbitrarily small by weak couvcrgence, while thc renlaining

tenns are slnall for fixed x in int M bccause Gx Oll 8M E cOllvergcs unifoflnly to Gx on aM.

To see that <P E H it suffices to show that IaM (4) 1 c(v)B) = 0 for a11 B E MOO(M, E). But

this follows from IaMe (1/; 1 c(v)B) = 0, by taking a weakly convergent subsequcnce, and uSillg
the unifoflll convergence of Gx again. Althollgh only weak convergence of a subsequence

has been used so rar, the stroug convergellce now follows from 9.25. 0

To summarise, H is aspace of L2 bouudary values of Illonogcllic functions on the illterior 1

anel the Cauchy integral is an isomorphislll bctwcen Hand thc space of lllonogenic fUllctious

on int M with uniformly bOl1udcd L2-norm on hypersurfaces near 8M.
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IV. ApPLICATIONS

10 The Green kernel and boundary value problems

Thc relationship betwccll a spinor fielel anel it.s boundary valucs is eentral in thiH section.

10.1 Theorem. S~J,fJ]JOse cjJ E Li(M, E-). Then for any B in MOO(M, E+),

r (c(v)cjJ,B) = r (W+cjJ,B).
IBM JM

r (c(1I)9+[7jJ],B) = r (7jJ,B).
JOhl Jhi

Proof: e is Iuonogenic, so this is just the Green forlllula. D

10.2Corollary. For 7jJ E L2 (M,E+) and XE L2(öM,E-) the equation W+<jJ = '1/) on M,

cjJ = X on DM, ha8 a solution ijJ IDM (c(lI)X, B) = IM (7jJ, B) for alt B in MOO(M, E+). Note
that in general, the boundary values are attained in an L2 sense.

Proof: By the first part of the theorem, the conlpatibility conclition on (7jJ, X) is necessary.
;q

qonvcrsely take cjJo = 9[7jJ]. Then it suffices to show that cjJo - X is a boundary value of a

Illonogenic function, whieh by 9.19 follows if rPo - X is orthogonal to c(v) H on thc boundary.

But by thc second part of the theorem, this is precisely the compatibility condition. D

10.3 Definition. The Bergman space H 2 (M, E±) is clefined as thc closure of MOO(M, E±)
in L2 (M, E±). By 6.2, it.s elements lie in the kerncl of W:t=. The orthogonal projcction B±
OIltO thc Bergnlatl spacc is ealled thc Bergman projcction.

10.4 Corollary (to 10.1). /f r/>l öM E H+ then 11+ cjJ .1 H 2 (M, E+), and if'fjJ .1 H 2 (M, E+)

then g+['fjJ]1 8M = O. Tlte1'clore the orthogonal complement to the Bergrnan space is the image

of W+ on the space of LI functions vanishing on BM. Consequently, ",mooUL sections are
dense in Jf2(M,E+)l.. fLnd so any L2 solution ofW-cjJ = 0 is in H2(M,E+).

10.5 Proposition. The image of the Szego integral S+: cjJ H C+(P+cjJ) lies in the Be1yman

space, und its adjoint is 'IjJ H c(lI)(g+['$DlaM , with image in the Hardy space.

The Bergman projcction is related to boundary value probleulS for the Laplacian VJ2.

10.6 Proposition. The solution (in Ly) to the problcm W2cjJ = 'ljJ, cjJl aM = 0 (where 'ljJ E L2)

is given by cjJ = 9 [( id - B)Q [7jJ]] .

Proof: Clearly WcjJ = (id - B)9['fjJJ, and applying W again kills B9[1/1] leaving 'ljJ, The
bounclary condition 4Jl aM = 0 holds bccause (I - B)Q['ljJ] is orthogonal to H 2(M, E). D

Stl'ictly speaking, 10.6 only gives a distributional solution, but by local elliptic rcgularity

rP is in L~ on eompact S11bsets of int M. One would like to see directly that 4> E L~ (M, E),
but it has not been shown that B is bounded on LI. Apriori thcn, it is possible that 11</>

behaves badly near DM. However, by the Bochner-Weitzenböck integral formula, 4J satisfies

JM(iJBcjJ,DEB) + IM (KcjJ + 'l/J,B) = 0 for all B E Cgo(M,E), <Lnd so standard arguments

(such H...., difference quoticnts) give n. global L§ bound for 4>. In othcr worels:

10.7 Proposition. For any 'fjJ E L2, let cjJ denote a solution to VJ2cjJ = 7jJ and cjJI 8M = O.

Then IlcjJll q ~ eonst.II't/JIIL2 , the constant being independent 01 'ljJ.
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It is now clear that there is a weIl defined solution operator Q: L2(M, E) --+ L~(M, E),

and id - ß = W0 Q 0 W, cither by 10.6, or by noting that QW4>laM = 0 and using 10.4.

Reglllarity results for ß can now be deduced frOln regularity reslllts for Q. It can be ShOWH,

in fact, that if'ljJ E L;(M, E) then Q1.j; E L;+2(M, E), and beHee if 1.j; E COO(M, E) tben Q'ljJ

is also smooth up to the boundary, not just on int M. Consequently:

10.8 Proposition. ß is bounded on L; and maps COO(M, E) into itself.

Next suppose that X E L2 (8M, E) haB a L~ ext.ension. Then, by the regularity of Q, it

has unique Poisson extension Px satisfying W2 pX = O. In fact aPoissoll extension exists

for more general X. For cxanlple, if X is in H thon the Cauchy (or Szegö) integral gives

the required extension. Now suppofle that 4> is in Lr(M, E). Ir 4>l aM E H then BW</J = 0

by 10.4. More generally, 9 [ßW</J] 10M = 9 [W</J] 18M , which givcs the orthogonal projcction

of 4>\8M onto H 1-. Consequently if </J1 8M E H 1- then 9 [ßW</J] gives a Poisson extension
independent of the chosen LI extension 4>.

10.9 Theorem. Q = 9 0 (id - B) 0 9 o.nd for </J E LI (M, E):

P(</J1 8M ) = S[</Jl aM ] + 9[BW4']

B</J = WP(9[</J]l aM ) = </J - WQ(W4')

VlP( </JI ßM ) = ßW</J

Q[B</Jl = P(Q[<jJlI8M) = Qt/J - Q(W4».

The integral kernels of these operators will nOw be briefly studied. Firstly, it is clear

frOl11 thc mean valuc incqualities tImt 4> f-+ Bc/J(x) iH continuous for each :r: Eint M, and so:

10.10 Proposition. cP f-+ B4>(x) is rep7'esented by an integral kernel Bx E COO(M, E).

This is the Bergman kernel and is a reproducing kerneion H 2 (M, E). Similarly Q is

rcpresented by Qx = Q6'x, the Greon [unction for W2 on M, and the Poisson extension is

represented by the Poisson kernol Px . From the Green formula

{ ((Vl2t/J,1.j;) - (t/J, W21/J)) = r ((c(v)'W4J,'ljJ) - (<jJ,c(v)W'ljJ))1M IBM
and thc fact that QXIDM = 0, it casily follows t.hat Q(x, y) is symmetrie, and that Px =

c(v)(WQxIDM)' which is a normal derivative of Qx' Using the formulas in 10.9, one can
establish other idelltitics bctween the kerneIs. For exarnple:

10.11 Theorem. The Bergman kC1"1tel is given by Bx = 'W<x)(Qx + WQx) = W(S[c(v)Px ])'

In this way, lnany results from potential thCOl'y in the plane cau bc seen to have direct

generalisations to Dirae operators on lllanifolds with boundary.

Rather t.han develo}} these idcas further, an approximation result for Wwill be doduced

frOln 9.20 togetber wit.h unique eont.inuation, following Lax [36].

10.12 Theorem. Let n be an open subset oJ M. Then any monogenie Junction on n may

be approxi7nated (localty 1LniJormly in alt derivatives) by monogenie Junetions on M.

ProoJ: By 6.2 it sufficcs to provo approximat.ion in L2 for allY no cOHlpactly contained in

f!. Let VI be the space of monogenic fUllctiolls on f! and V2 t.he spaee of restrictions to f!
of monogenie funetions on M. Thc idea is to suppose 'ljJ 1.. V2 in L2 (f!o, E-), and show that
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'ljJ ..1 VI· To do this, extend 7jJ by zero to M and solve thc (adjoint) equation W- ifJ = 7jJ on M

with ifJI 8M = O. This is possible by 9.20 and 10.1 1 and by thc uniqllc eontinuation propcrty,

1J = 0 on M ,,00 • Now apply the Green formula on any smoothly bouneled dOluain 0 1

sandwiehed betwcen 0 and 0 0 , anel using any monogenie eOll 0:

and so 'ljJ is orthogonal to V2 as requircd. o

10.13 Theorem (Integrability of the Dirac equation). Suppose W= coDE. Then

fm , any x Eint M, ~ E Ex and GY E kor e ::::; T; 0 Ex there is a monogenie (p on M with

cP(x) = eand DEcP(x) = Q.

Proof: Let'ljJ bc any spinal' field with 'ljJ(x) = ~ anel DE'IjJ(x) = 0', so W'ljJ(x) = O. Firstly it

will be shown tImt 'ljJ ean bc approxilnatcd by lnonogenie functions. To do this, first work

Oll a slnall ball B 7·(x) around X, and for y E Br(x), COllstruct thc Cauehy integral

<f>(y) = r (-Gy, c(v)'ljJ) = 'ljJ(y) - r (Gy(z) ,W7jJ(z)) .
}8Br(x) }ZEBr(x)

..
Since W'IjJ (z) vFtnishes at x it nlay be wri t ten locally as (z - x) X(z) for some bounded X,
aÜcl so the integrand is approxiIuately Iz!lr2-2 ' The integral over Er (x) is therefore order

r2
, with derivative of order r. Henec both cP alld its eovariant derivative are elose to those

of 4) at x and the approxiInation is arbitrarily elose on a sIllall enough neighbollrhood. But

fol' each such neighbourhood, cP Illay bc approxinlatcd arbitrarily closely by a. lnonogenie
function Oll M, by 10.12, henee so ean 7jJ.

Now apply this approxitnation result to a basis for Ex EB ker c. For a sllfficiently gooel

approximation, the corrcsponeling monogenie functions will also fann a basis, anel the result

now follows frOlll the lincarity of the Dirae operator. 0

This is in marked contrast to closed manifolds, on whieh ker 't! is only finite dimensionaL

11 The Szegö kernel and conformal geometry

Thc analytical results will now bc applied to thc partieular case of the eonfonually in

variant Dirae operator on a manifold with boundary. The ainl is to show that the Cauehy in

tegral formula defines a eonformally invariant metrie on the interiOl' of M, whieh is eornpletc

aud has negative sealar eurvature. This was establishcd by Hitehin [33] in thc Euclidean

ca."lC, using arguments which easily generalise to arbitrary spin ma.nifolds with boundary.

Howcver, thc proof that this Ilwtrie has negative (rather than nonpositive) scalar curvaturc

usos the integrability result 10.13, and this relies upon the full analytieal theory developed

above. Also thc analysis adds SOlue fiesh to the eonstructions below, by identifying the eon

formally invariant Hilbert space H &1) a Hardy spaee, rather than an abstract L2-closure,

and providing useful infofIllation about the intimately related Szegö kerneL

T he eonfonllally invariant metric ariscs as folIows. By 7.7 thc evaluation nut}) evx : H ---7

Ex at. each x Eint M (given Oll smooth functions by thc Cauehy integral) is bounded. Now
because Ex has an L~-l valued inner product, the norm squared of evx is a.n element of
Li-I, rather t.han IR. If it can be shown that this dcfines a (smooth) trivialisa.t.ion of Ln-I
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thcn this trivialisation equips int M with a' (sInooth) metrie defined eanonieally in terms of
the conformal structure.

.A simple way to obtain a smoothly varying norm is to observe that the evaluation luap

evx on H is reprcsented by the Szegö kernel Sx E H 0 Ex' The L2-norm of this, contraeted
to lie in L~-l, is clcarly snlOoth in x, since by the reprodueing property of the Szegö kernei,

it is givell by (S(x, x)), where the angle brackets denote thc thc contraetion in Ex'

11.1 Proposition. The norm (S(x, x)) of evx is nonzero for all x Eint M.

Proof: It sufficcs to show that for each x Eint M thel'e is a monogenie spinol' on M which

is uonvanishing at x. This follows from 10.13, but there is a more explicit approach given

by l'eintroducing thc closed nlanifold M. The claim is that for each x E illt M there is a

y E M" M such that Gy(x) ::f O. Now by 7.5 it suffices to show that there is such a y with

Gx (1J) ::f O. But if Gx is zero Oll an open subset of!VI" M, it must bc zero Oll M" {x} by
uniquc cOlltilllw.tion. This contl'adicts the faet that it is the fundauleutal solution at x. 0

Tlms (S(x, x)) iH a 8n100th trivialisation of Ln-lover int M allel so defines a confonnally

invariant IIwtric t.here. Following Hitehin [33], a slightly different point of view will Le
adoptecl in order' to establish that this Inetric has negative scalar curvature .

.~ 11.2 Proposition. The L2 -norm (S(x, x)) gives the Hilbert-Sehrnidt rW1'111 of ev x, dcfined
! by 11 eV:r.II~1 S = tr( cV x 0 ev;) = tr( ev; 0 evx ), where ev;: E; --+ H is tILe t1'unspose of

eux . Henee ij cPk E MOO(M, E) form an orthonormal basis for H, then Ilevxl\~s =

L (cPdx) , cPk(X)).

Proof: Thc equality of the two traces is elemental'Y since Ex is finite diInensional. Now

for 'lj;x E Ex, thc transpose ev;('lj;x) is given by L('lj;x, eVx<Pk)4>kl and so tr(evx 0 ev;), is

given by L('lj;j, eVx4>k)2, where Wj form an orthononnal basis for Ex. This is clearly the
L2-nonll of S. The final expression is the other trace, nan1ely tr( ev; 0 evx ). 0

11.3 Corollary. If (. ,.) denotes the eonformally invariant metnc, L(cPk, cPk) = 1.

Proof: The IIlctric was defined by identifying the nonn in L n - 1 with 1 E IR. 0

11.4 Proposition. L (cPk' cPk) eonverges in COO(int M, Ln-I); that is, all derivatives eon
verge unifon,~ly on cornpaet subsets.

Proof: Thc SUlIl converges pointwise to a continuous limit, so by Dini's theorem it COll

verges locally uniformly, anel hence locally in L2 . Convergence in all derivatives can be

established by the salue technique as is often used to prove local clliptic regularity. Namely,

it suffices to show that L p (cPk' cPk) converges in L; for all j and all blUUP fUllctions p. This
follows by illductiou on j, llsing the elliptic cst.irnate for each cPk. 0

Thc aualytical too18 are now in place to prove the following theorCIn, due to Hitchin in
the Euclideall ca..,e-thc proof on general spin manifolds is not Inaterially different.

11.5 Theorem. The eonfonnally invariant metne has negative scalar curvature.

Proof: Let the smooth seetions cPk fonn an ol'thonormal basis of H. Thcn by thc Lich

nerowicz formula (see 3.11 anel 5.7) the following holds for cach k anel at each x E illt M:

(D E4>k(X) , DEcPk(X)) + iK(xHcPk(X) , cPk(X)) = div(DE<jJk l cPk)(X) = div(cPk' D E 4>k)(X).

But (D E 4>k ,4>k) + (cPk ,DEcPk ) = d(cPk, ePk}, so

(D E 4>k(X) , DEcPdx)) + i~(xHcPdx) 1 4>k(X)) = kß(cPk' cPk)(X),
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Now sum this fornlula over k. Since L:(1)k(X) ,1>k(X)) = 1 (locally unifonnly in all deriva

tives), the second term is summable, and the third term sums to .6.1 = O. Hence:

Thcrefore the scalar curvature is negative at a point x iff there is a Illonogcnic spinor on M

with nonvanishing covariant derivative at x. In the Euclidean ca."le, the monogenie affine

spinors will do. More generally, the integrability result 10.13 ensures such spinors exist. 0

It now remains to diseuss the completeness of this IllCtric. Since M is compact, it

sufficcs to show that tho confonnally invariant Inetric blows up suffieiently fast elose to thc

boundary with respect to allY llletric (on all of M) in the confonnal dass. Fixing sllch a

Inetric, it mllst be showll that the nonn of the evaluation map (with respeet to t his metric)

blows up dmm to thc boundary. Certainly 11 ev x l1 2 is less than 110M (Gx , Gx ) I, but here
a lower bound is Ilccded. Let y be a point on 8M anel E > 0 be so small that y is the

düsest point to x, Z = y ± EV(Y) (so x E M and z E M '" M). Now Gz is IllOnogenic on

M and so Gz(x) = evx(Gz ) = IOM(c(v)G x , G z ). Thus 1I eVx l1 2 ~ IGz (x)1 2 /1 10M (G z , Gz)l·
The denOIllinator is cau be seen to have order 1/en - 1, by the asyluptotic behaviour of,..

G"Zl while the Ilumerator is elearly of order 1/c:2n- 2 . Thus IIevx l1 2 ~ COnSt.IEn - l
, and

sÖ the corresponding section of L 2 is grows as fast as 1/c2 , which is sllffieient to ensure

completencss by standard argunlents.

Tü sUIlunarise, thc following theorem has been established:

11.6 Theorem. Let M be a spin mani/old with nonempty boundary and a con/oT/uai St1'1J.C

ture [g]. Let S be the Szcgo keT/~el 0/ the Dirae operator on M. Then [g](S(x, x)?/(n-l) is a

con/orrnally invariant metne on int M whieh is complete and has negative scalar curvat1J.re.

An example of this metric is the following:

11. 7 Proposition. On the unit ball in sn with the standard conforrnal .'it1"tJ.cture, the metrie

deßned by the evaluation map (expressed in terms 01 the flat metne Vij) is given by:

1

This is the Poineare metne, and is compleie with constant negative scalar curvatllre.

Since confonllal trausfonuations act transitivelyon the unit ball, the above metric is

characteriHed, IIp to a constant, by its confofIual invariance. This gives a way of COIllputing

it, anel indccd also the Szegö kernel. Alternatively, the Szegö kernel cau be obtaincd directly,

by observing that for lxi< 1, lyl = 1 the Cauchy kernel is

y(y - x) 1 - yx
-c(vy)Gx(y) = I In = 11 In'

Wn Y - X Wn - yx

which extends to a monogenic function of y for lyl < 1. Thercfore thc Cauchy kernel is

a boundary valuc of a Inonogenic spinor, and so the final expression actually is the Szegö

kernel for lxi ~ 1, lyl ~ 1 (with a singularity on the boundary diagonal). Thc fonuula
S(x, x)2/(n-l) thcll gives the Poincare metric.

It is interesting to see the form of this kernel in the conformal ehart on S12 which Illaps

thc llnit disc (the lower hemisphere in sn) to a half plane (x 1 en ) > O. Usillg either the
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transfonnation law for spinors, 01' direet inspeetion of the Cauehy kerneIon the half space,

the following fonnula for the Szcgö kernel is obtained:

S( )
_ enx + yen

x,y - I I .
W n enx + yen n

This ilnulCdiately givcs the half spaee model for the hyperbolie metric.

Another interpretation of the Szegö kerneIon thc disc or half plane is given by thc

method of ilnages. From this point of view, the identity

x/r2
- y x

wnlx/r2 - yln rn
1- yx

(where r = Ix I) Ineaus that the Szegö kernel at a point x in thc disc is given by the Green
kernel at thc iUlage point X/1·2 , transfonnecl appropriately. Oue advantage of this viewpoint.

is that, with a little thought, it leads to apower series for the Szegö kerneion an annllius.

11.8 Proposition. Let M be an anntiltis in Rn between spheres 01 radii 1 and ). < 1,
centred at the 01·igin. Then the Szegö kernel is given by

which is a .'iHm 01 image charges.

Proof: Thc sories is monogenie in both x and y, and is equal, for y E DM, to -c(l/y)Q(x, y)

wherc c(l/y) is thc outward nonual to the annuills, and

This is thc fllncla.Illcntal solution at x plus a function ulonogenic on thc annulus. 0

By conformal invariancc this gives apower series for thc Szegö kerneion a finite eylinder.

CONCLUSION

A tlumbcr of the ideas out.lincd ill this paper wOllld benefit frmu further exploration,

aud so a couple of final rcmarks are in order.
Firstly, a problenl in analysis: t.o establish the boundcdness of thc Canehy transfonll

nnder Iuinimal Sllloothness assllInptions. The results in this paper have aU been stat.ed for

smooth mauifolds with snlooth boundaries, but it. is quite straightforward to make wcaker

a..c;sluuptiollS, proviclcd that thc conclusioIlS arc appropriatcly wcakcllcd. Howcvcr, t.here

are limits as to how far some of the luethods in this paper can be pushed. They should

apply, for instance, if the boundary is Cl with a Lipsehitz normal vector field , but if t.he

boundary itself is merely Lipschitz, then the Kerzlllan-Stein theorelll fails and thc methods

of seetion 9 collapse. In the Euclidcan case, Murray and McIntosh have uscd different

Clifford analysis Illethods to establish bOllndedness rcsults for the Cauehy transforIll on

Lipschitz domains [37, 40, 42). It reluains to be seen whethcr these mcthods can be applied

to arbitrary Dirac operators on Inanifolds.
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Seeolldly, nlore detailed properties alld exarnplcs of the eonfonnally invariant mctric of

SCCtiOIl 11 are needcd. One illlluediate qucstion is: what different.ial cquation docs it satisfy?
In [39], Loewncr and Nirenbcrg used the confonnal Laplacian to construct a eonformally

invariant nwtric on the interior of a confonualmanifold with boundary. It is thon inltuediatc

from their construction that t.heir metric satisfies a differential equation: it has constant.

scalar curvatllre. However, for the metric described hero, a cOluputation of the a..":lymptotics

near thc bouudary shows that its scalar curvature is not constant in general. The unit disc,

because it aclmits a transitive group of eonformal transformations, is exccptional in this

regard. Clearly explicit descriptions of fllrthcr examplcH would bo hclpful. In particular,

cOlnputations on a non-conformally flat manifold have yet to be carried out: perhaps the
easiost case to try is S'2 X S2.

A third area which necds further exploration in this framework, is thc topic of global
elliptic boundary problems. Section 9 essentially established the weil known fact. that thc

Calderon project.ion outo the Cauchy data givcs a well posed global elliptic bOllndary prob

lem [lI), whilc sect.ion 10 discussecl same simplc Ioeal boundary va.lue problellls. However,

it is geoluetrically more intercstillg to study spectral boundary cOllditions [4, 10, 26J and

tl!e associated '1] invariant of the boulldary.

I This third topic is not at all independent [rom the others. As was briefty nlentioned

at the end of section 5, spectral boundary cOllditions enter in a very natural way via the

Bochncr-Weitzcnböck forrnula, the boundary operator then bcing a submanifold Dirac op
erator to which the Inethods of this paper apply. Thc functiollal ca1culus of such an operator
on a Lipschitz surface also lies at the lwart of the results of (40, 42]-see also [37]. Finally
the asyluptotics of the conformally invariant metric produce invariants of tbe elnbedded

boundary, which should be closely related to the '1]-inval'iant.

References

[l] T. Ackermann and .T. Tolksdorf, The generalised Lichne1'Owiez /oNrwla and analysis 0/ Dirae

operators, J. reine allgew. Math. 471 (1996) pp. 23-42.

[2] N. Arons~ajn, A unique eontinuation theorem for solutiorts of elliptie partial differential eq1la

tions or' inequalities 0/ second order, J. Matll. Pures Appl. 36 (1957) pp. 235-249.

[3] ~L F. Atiyah, R. Bott and A. Schapiro, Clifford modules, Topology 3, Suppl. 1 (1964) pp. 3-38.

[4] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral Asymmetry and Riemmarmian Geometr-y,

I, Math. Proc. Camb. Phil. Soc. 77 (1975) pp. 43-69.

[5J M. F. Atiyah and 1. M. Singer, The index 0/ el/iptic operators on compact mani/olds, Bull.
Amer. Math. Soc. 69 (1963) pp. 422~433.

[6] S. R. Bell, Tlw Cauchy Transform, Potential Tlwory and Conformal MllfJping, CRC Press,

Boca Raton (1992).

[7] N. Berline, E. Getzler and M. Vcrgne, Heat KerneIs and Dirac Operators, Springer-Verlag,
Berlin-Hcidelberg (1991).

[8] S. Bochner, Curvature and Betti numbers, AlIll. of rvlath. 49 (1948) pp. 379-390.

[9] S. Bochner, Weak solutions oi linear partial differential equflti01ls, J. Math. Pures Appl. 35
(1956) pp. 193-202.

38



[10} B. Botvillnik anel P. B. Gilkey, The eta invariant and metries 01 positive scalar eurvature,
Math. Alm. 302 (1995) pp. 507-517.

[11] B. Booß-Bavnbek and K. P. Wojciechowski, Elliptic bOlwdary problcms and Dirac operators,
~1athematicsTheory and Applications, Birkhäuser, Boston (1993).

[12] F. Brackx, R. Delanghe and F. Sommen, CJjfford Analysjs, Pitman Research Notes 72 , Pitman,
London (1982).

[13] R. Brauer and H. 'Veyl, Spinors in 11 dimensions, Amer. J. Math. 57 (1935) pp. 425-449.

[14] D. rvl. J. Calderbank, Geometrical A spects 01 Spinor und Twistor Analysis, PhD Thesis, Uni

versity of \Varwick (1995).

[15] D. M. J. Calderbank and T. Diemer, General Dirae operators, in preparation.

[16] C. Chevaliey, The Algebrak Theory of Spjnors, Columbia University Press, New York (1958).

[17] \V. 1<. Clifford, On the classification 01 geometrie algebras (Abstract), Proc. London ivlath.

Soc. 7 (1876) p. 135.

[18] \V. K. Clifford , Applications 01 Grassmann's extensive algebra, Amer. J. Math. 1 (1878)

pp. 350-358.

[19] R. Delallghc, F. Sommen and V. SOHeek, CJjfford Algebra and Spüwr-valued FUllCUOIlS, Math

ematics and Hs Applicatiolls 53 , KInwer Academic Publishers , Dordrecht (1992).

[20] P. A. M. Dirac, The quantum theory 01 the clectron, Proc. Rny. Soc. Landon A 117 (1928)

pp. 610-624.

[21] A. C. Dixon, On tlle Newtonian potential, Quarterly J. Math. 35 (1904) pp. 283-296.

[22J G. B. FolIand, IntroriucUon to ParUal DUfcrentüil Equatjons, Princeton University Press,

Princeton (1976).

[23] C. D. Gay and D. E. Littlewood , Analytic spinor fields , Proc. Roy. Soc. LOJ1(lon A 313 (1969)

pp. 491-507.

[24) .J. M. G ilbert and M. A. Pt'1. Murray, CJjfford Algcbras and Djrac Operators Ül Harmolüc

Analysjs, Cambridge Univcrsity Press, Cambridge (1991).

[25] P. B. Gilkey, The speetral geometry 01 a Riemannian manilold, J. Diff. Geom. 10 (1975)

pp. 601-618.

[26] P. ß. GilkeYl On the index 01 !Jeometrieal operaturs on Riemannian rmmifolds with oounrlrl.r'IJ,

Adv. Math. 102 (1993) pp. 129-183.

[27] H. Grassmann , Der Ort der Hamilton'tichen Quaternionen in der A usdehnungslehr'e, Math.

Ann. 12 (1877).

[28] K. Gürlebeck and \V. Sprössig, Quaternjonk Analysü; and EWptjc Boundary Val(JB Problems,

Birkhäuser, Basel (1990).

[29] H. G. Haefeli, Hypercomplexe Differentiale, Comment. Math. Helvctici 20 (1947) pp. 382-420.

{30] R. HarveYl Spjnors and CaJjbratjons, Academic Press, San Diego (1990).

[31] D. Hestenes, Multivector Iunctions, .J. Math. Anal. App!. 24 (1968) pp. 467-473.

3D



[32] N. J. Hitchin 1 Hannonie spinors, Adv. Math. 14 (1974) pp. 1-55.

[33] N. J. Hitchin, Unpublishcd lecture notes (1974).

[34] N. Kerzman and E. M. Stein, The Cauehy kernei, the Szego kernel, and the Riemann mapping
/unction 1 Math. Ann. 236 (1978) pp. 85-93.

[35] H. B. Lawson and M-L. Michelsohn, Spin GcometrY1 Princcton University Press, Princeton
(1989).

[36] P. D. Lax, Astability theorem /01' solutions 0/ abstract differential equations and its applieation

to the study o/loeal be.haviou1' 0/ solutions 0/ elliptie equations, Comm. Pure anel Appl. Math.
9 (1956) pp. 747-766.

[37] C. Li, A. McIntosh and T. Qian, Cliff01'd algebras, Fourier trans/orms (md singular convolution
opcrat01's on Lipsehitz smjaces, Hcvista. Matematica Theroamericana 10 (1994) pp. 665-721.

[38] A. Lichnerowicz, Spineurs harmoniques, Compt. Rend. Acad. Sei. Paris 257 (1963) pp. 7-9.

(39J C. Loewner and L. Nirenberg, Partial differential equations invariant under eon/onnal 01' pro

jeetive tran.'lfonnations, in Contrib!ltions to Analysis, Academic Press, New York (1974).

[40] A. McIntosh, Clifford algebras and the higher-dimensionul Gauchy integral, in Approximation

Theory and Function Spaces, Banach Centre PublicatioIlS 22 (1989) pp. 253-267.

[4]] G. C. Moisil, Bur les systemes d'equations fic M. Dime du type elliptique, Campt. Rend. Acad.
Sei. Paris 191 (1930) pp. 1292-1293.

[42] NI. A. M. Murray, The Cauehy inte.gml, Caldf-ron commutators, (md eonjugation 0/ singular
integrals in Km, Trans. Amor. Math. Soc. 289 (1985) pp. 497-518.

[43J T. H. Parker und C. H. Taubes, On Witten 's prool 01 the positive energy theorem, COIllm.
Math. Phys. 84 (1982) pp. 223-238.

[44] T. Qian and .1. Ryan, Gonfonnal transformations und Hardy spaces arising in Glifford analysis,
J. Operator Theory 35 (1996) pp. 1-25.

[45] .1. Roe 1 Elliptic Operators, Topology and Asymptotic MetllOds, Pitman Research Notcs 179 1

Pitman, London (1988).

[46] J. Ryan (ed.L CliHord Algcbras in Analysis and Relatcd Topics, CRC Press, Boca Raton
(1996) .

[47] J. Ryan, Intrinsie Dirae operators in e", Adv. Math. 118 (1996) pp. 99-133.

[48] J. Ryan, Dirae o!Jemtors on SphC1'CS and hyperbolae, preprint. (1996).

[49] R. T. Seeley, Singular integrals and boundary valuc problcms, Amer. J. MaUl. 88 (1966) pp. 781
809.

[50] G. B. Scgal, Elliptic cohomology, Seminaire Bourbaki, Asterisque 161-162 (1988) pp. 187-201.

[51] F. SOlilmen, Monogenie functions on sur/aces, J. reine angcw. Math. 361 (1985) pp. 143-161.

[52] V. Soucek, Residues /01' monogenie /01'11lS on Riemannian mani/olds, Suppt. Rend. Circolo Mat.
Palermo II 37 (1994) pp. 233-242.

40


