Newforms, geodesic periods and modular forms of half-integral weight

Winfried Kohnen

Universität Augsburg Mathematisch-Naturwissenschaftliche Fakultät Memmingerstr. 6 8900 Augsburg, FRG

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3, FRG

ţ

Introduction

In [3] an identity is given which relates the integral of a newform f of even integral weight and odd squarefree level N along a geodesic period on the modular curve $X_0(N)$ to the Fourier coefficients of a modular form g of half-integral weight and level 4N associated with f under the Shimura correspondence. This formula contains as a special case a refinement of a result of Waldspurger [8] about the special values of L-series attached to f at the central point.

The proof strongly depends on a "strong multiplicity 1" theorem for a certain subspace of forms of half-integral weight, which so far is known only when N is odd and squarefree, and therefore our identity could be stated only in this case.

The main purpose of this note is to show that the restriction to N squarefree can be lifted and that our identity in the more general case is essentially a consequence of results of Waldspurger [6,7,9].

Certainly our formula should be valid also for N even and probably could be proved in a similar way as here.

1.Notations

We let $\Gamma(1)=SL_2(Z)$ operate on integral binary quadratic forms [a,b,c](x,y)=ax²+bxy+cy² by

 $[a,b,c]\circ \begin{pmatrix} a & \beta \\ y & \delta \end{pmatrix}(x,y) = [a,b,c](a x+\beta y, yx+\delta y).$

The symbol by denotes the upper half-plane. For zely we write q=e^{2Tiz}. The letters k and N denote positive integers, N is always assumed to be odd. We write N'|| N if N'|N and $(N', \frac{N}{N})=1$.

We let $M_{2k}(N)(S_{2k}(N))$ be the space of modular forms (cusp forms) of weight 2k on the group $\Gamma_0(N) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & b \end{pmatrix} \in \Gamma(1) \mid N \mid \gamma \right\}$ and $S_{2k}^{new}(N) \subset S_{2k}(N)$ be the subspace of cuspidal newforms.

For a prime p we denote by $T_{2k}(p)$ the Hecke operator acting on $S_{2k}(N)$ by

$$T_{2k}(p) \sum_{n\geq 1} a(n)q^n = \sum_{n\geq 1} (a(p_n) + (\frac{N^2}{p})p^{2k-1}a(\frac{n}{p}))q^n$$

(with the convention $a(\frac{n}{p})=0$ if $p \nmid n$). The Hecke operators leave $S_{2k}^{new}(N)$ stable.

For f, f'
$$\in S_{2k}(N)$$
 we write
 $\langle f, f' \rangle = \frac{1}{[\Gamma(1):\Gamma_0(N)]} \int_{\Gamma_0(N) \downarrow_2} f(z) \overline{f'(z)} y^{2k-2} dx dy \qquad (z=x+iy)$

for the Petersson product of f and f'.

We let $\mathfrak{S}_{k+1/2}(4N)$ be the space of cusp forms of weight k+1/2 on $\Gamma_0(4N)$ ([4]) and $S_{k+1/2}(N)$ be the subspace of forms whose n^{th} Fourier coefficients at infinity vanish for $(-1)^k n \equiv 2, 3(4)$ ([2]). For a prime p we write $\mathfrak{T}_{k+1/2}(p^2)$ and $T_{k+1/2}(p)$, respectively, for the Hecke operators acting on $\mathfrak{S}_{k+1/2}(4N)$ and $S_{k+1/2}(N)$ by $\mathfrak{T}_{k+1/2}(p^2) \sum_{n\geq 1} c(n)q^n = \sum_{n\geq 1} (c(p^2n)+(\frac{4N^2}{p})(\frac{(-1)^kn}{p})p^{k-1}c(n) + (\frac{4N^2}{p})p^{2k-1}c(n/p^2))q^n$

and

$$T_{k+1/2}(p) \sum_{n \ge 1, (-1)^{k} n \equiv 0, 1(4)} c(n)q^{n} =$$

$$\sum_{n \ge 1, (-1)^{k} n \equiv 0, 1(4)} (c(p^{2}n) + (\frac{N^{2}}{p})(\frac{(-1)^{k}n}{p})p^{k-1}c(n) + (\frac{N^{2}}{p})p^{2k-1}c(n/p^{2}))q^{n},$$

respectively (cf.[4], §1. and [2], §3., Propos. and Remark, p.46).

For
$$g, g' \in G_{k+1/2}(4N)$$
 we denote by
 $\langle g, g' \rangle = \frac{1}{[\Gamma(1):\Gamma_0(4N)]} \int_{\Gamma_0(4N) \setminus k_2} g(z) \overline{g'(z)} y^{k-3/2} dx dy \quad (z=x+iy)$

the Petersson product of g and g'.

2. Statement of results

In [3] for every fundamental discriminant D with $(-1)^{k}$ D>O we defined a Shimura lifting \mathcal{L}_{D} mapping $S_{k+1/2}(N)$ to $M_{2k}(N)$ (to $S_{2k}(N)$ if k≥2 or if N is cubefree) and a Shintani lifting \mathcal{L}_{D}^{*} mapping $S_{2k}(N)$ to $S_{k+1/2}(N)$, and \mathcal{L}_{D} and \mathcal{L}_{D}^{*} were shown to be adjoint maps with respect to the Petersson products. Explicitly, for $g = \sum_{n \ge 1, (-1)^{k} n \equiv 0, 1(4)} c(n)q^{n} \in S_{k+1/2}(N)$ one

has

$$\mathbf{s}_{D^{g}} = \sum_{n \ge 1} \left(\sum_{d \mid n, (d, N) = 1} \left(\frac{D}{d} \right) d^{k-1} c \left(\frac{D}{d^{k-1}} \right) q^{n},$$

and for
$$f \in S_{2k}^{new}(N)$$
 a newform (the case we will be interested in) one has
 $\Im_{D}^{*}f = (-1)^{\lfloor k/2 \rfloor} 2^{k} \sum_{\substack{m \ge 1, (-1)^{k} m \equiv 0, 1(4)}} r_{k,N,D}(f; |D|m)q^{m}.$

Here for any positive integer Δ satisfying $\Delta \equiv 0, 1(4)$ and $D|\Delta$ we have put (1) $r_{k,N,D}(f;\Delta) = \sum_{Q \in \mathfrak{G}_{N,\Delta}/\Gamma_{O}(N)} \sum_{D}^{\omega} (Q) \int_{C_{Q}} f(z)Q(z,1)^{k-1}dz,$

where $\mathcal{A}_{N,\Delta}/\Gamma_0(N)$ is the set of $\Gamma_0(N)$ -classes of integral binary quadratic forms Q=[a,b,c] with b²-4ac= Δ and N|a, and where C_Q is the image in $X_0(N)(\mathbb{C}) = \Gamma_0(N)/f_0\mathbb{P}^1(\mathbb{Q})$ of the semicircle $a_1z_1^2$ +bRez+c=0 oriented from $\frac{-b-\sqrt{\Delta}}{2a}$ to $\frac{-b+\sqrt{\Delta}}{2a}$, if a=0 or of the vertical line bRez+c=0, oriented from $-\frac{c}{b}$ to im if b>0 and from im to $-\frac{c}{b}$ if b<0, if a=0. Furthermore, w_D is the genus character given by

$$\omega_{D}(Q) = \begin{cases} 0 & \text{if } (a,b,c,D) \neq 1 \\ (\frac{D}{n}) & \text{if } (a,b,c,D) = 1, \text{ where } Q \text{ represents } n, (n,D) = 1. \end{cases}$$

<u>Remark</u>. In [3], p.240 the factor $(-1)^{\lfloor k/2 \rfloor} 2^k$ is missing in the definition of \mathcal{G}_D^* , and the orientation of C_Q should be the opposite one for a=0, b<0.

Recall that for any positive number N' with N'll N we have an Atkin-Lehner involution W_N , on $S_{2k}(N)$ leaving $S_{2k}^{new}(N)$ stable and defined by

$$W_{N} f = N'^{k} (Nz + N'\delta)^{-2k} f \left(\frac{N' z + \beta}{Nz + N'\delta} \right) \qquad (\beta, \delta \in \mathbb{Z}, N'^{2}\delta - N\beta = N').$$

Suppose (D,N)=1. Then using the fact that $Q(x,y)\mapsto Q\circ W_N^{(x,y)}:=\frac{1}{N}Q(N'x+\beta y,Nx+N'\delta y)$ induces a bijection of $\mathcal{G}_{N,\Delta}/\Gamma_0(N)$ and that $\omega_D(Q\circ W_N^{(x)})=(\frac{D}{N})\omega_D(Q)$ it is easy to see that $\mathcal{G}_D^{*}f=0$ for a normalized Hecke eigenform f in $S_{2k}^{new}(N)$ unless we have $W_N^{(x)}f=(\frac{D}{N})f$ for all N' and hence in particular $W_N^{(x)}f=f$ whenever N' is a square.

We define

(2) $S_{2k}^{new}(N)^{+} = \{f \in S_{2k}^{new}(N) | W_{N}, f = f \text{ whenever } N' \text{ is a square} \}.$ The main result of this paper then is:

Theorem. Let k≥1 and N odd, and let f be a normalized Hecke eigenform in the space $S_{2k}^{new}(N)^+$ defined by (2). Then: i) The subspace $S_{k+1/2}(N)_f c S_{k+1/2}(N)$ generated by the functions $\mathcal{G}_D^* f$, where D runs through all fundamental discriminants with $(-1)^k D>0$ and (D,N)=1, is of dimension 1. ii) Let $g = \sum_{m\geq 1, (-1)^k m\equiv 0, 1(4)} c(m)q^m$ be a generator of $S_{k+1/2}(N)_f$. Then for all positive integers m and n with $(-1)^k m\equiv 0, 1(4), (-1)^k n\equiv 0, 1(4)$ and $(-1)^k n$ is fundamental discriminant we have (3) $\frac{c(m)\overline{c(n)}}{\langle g,g \rangle} = \frac{(-1)^{\lfloor k/2 \rfloor} 2^k}{\langle f,f \rangle} r_{k,N,(-1)} k_n(f;mn),$

where $r_{k,N,(-1)}^{k} (f;mn)$ is the cycle integral defined by (1).

As already mentioned in the Introduction, the proof which will be given in the next section, strongly depends on results of Waldspurger: from the "weak multiplicity 1" theorem for $\mathcal{G}_{k+1/2}(4N)$ ([6,7]) it follows that $S_{k+1/2}(N)_f$ is of dimension ≤ 1 , and from the non-vanishing results for L-series at the central point ([5,9]) that, in fact, it is of dimension 1. Assertion ii) then can be deduced as in [3], using the fact the Shimura liftings and the Shintani liftings are adjoint maps with respect to the Petersson products. For a fundamental discriminant D with (D,N)=1 let

(4)
$$L(f, D, s) = \sum_{n \ge 1} (\frac{D}{n}) a(n) n^{-s}$$
 (Re s>0)

be the L-series of $f(z) = \sum a(n)q^n$ twisted with the quadratic character $(\frac{D}{2})$. $n \ge 1$ Recall that L(f,D,s) has a holomorphic continuation to C and that

 $L^{+}(f,D,s) = (2\pi)^{-s} (ND^2)^{s/2} \Gamma(s) L(f,D,s)$

satisfies the functional equation

 $L^{*}(f,D,s) = (-1)^{k} (\frac{D}{-N}) L^{*}(W_{N}f,D,2k-s).$

As in [3], setting m=n in (3) we can deduce a refined version of a result of Waldspurger ([8]):

Corollary. Let f and g be as in the Theorem, and let D be a fundamental discriminant with $(-1)^k D > 0$ and (D,N)=1. Suppose that for all positive integers N' with N'|| N we have W_N , f = $(\frac{D}{N})$ f. Then $\frac{|c(1Di)|^2}{\langle g,g \rangle} = 2^{v(N)} \frac{(k-1)!}{\pi^k} |D|^{k-1/2} \frac{L(f,D,k)}{\langle f,f \rangle},$

where v(N) denotes the number of different prime divisors of N.

Of course, Corollaries 2-6 in [3] also have natural generalizations to the more general situation here. However, we leave their explicit formulation to the reader.

3. Proofs

Proposition. For all primes p and all fundamental discriminants D with $(-1)^{k}$ D>0, (D,N)=1 one has (5) $\mathcal{Y}_{D}^{*}T_{2k}(p)f = T_{k+1/2}(p)\mathcal{Y}_{D}^{*}f$ ($\forall f \in S_{2k}^{new}(N)$).

<u>Remark</u>. Formula (5) is also true if (D,N)>1, the proof is somewhat more tedious.

Proof of Proposition. We may assume that f is a normalized Hecke eigenform.

5

If $p \notin N$, then $T_{2k}(p)$ and $T_{k+1/2}(p)$ are hermitean, and since \mathcal{L}_D and \mathcal{L}_D^* are adjoint maps and \mathcal{L}_D commutes with the action of Hecke operators (immediate verification), identity (5) is obvious in this case.

Next assume plN. Then by definition of \mathfrak{T}_D^* and $T_{k+1/2}(p)$ we must show that

 $r_{k,N,D}(f; |D|mp^2) = r_{k,N,D}(T_{2k}(p)f; |D|m)$ ($\forall m \ge 1$ with $(-1)^k m \equiv 0, 1(4)$). According to Propos.7 in [3]

 $r_{k,N,D}(f; |D|m) = d_k(|D|m)^{k-1/2} \langle f, f_{k,N,D}, (-1)^k_m \rangle$, where d_k is a constant depending only on N and k and $f_{k,N,D}, (-1)^k_m(z)$ $(m \geq 1, (-1)^k m \equiv 0, 1(4); z \in J_0)$ is the modular form (cusp form if N is cubefree or if $k \geq 2$) in $M_{2k}(N)$ defined by

$$f_{k,N,D,(-1)^{k}m}(z) = \begin{cases} Q_{\epsilon}q_{N,|D|m}^{\sum} \omega_{D}(Q)Q(z,1)^{-k} & \text{if } k > 1 \\ \\ \lim_{s \neq 0} \sum_{Q \in q_{N,|D|m}} \omega_{D}(Q)Q(z,1)^{-1}|Q(z,1)|^{-s} & \text{if } k = 1 \end{cases}$$

(cf.[3],§1.). In the following we will assume $k \ge 2$ (the case k=1 is entirely similar). We will distinguish two cases.

<u>Case i</u>: p^2 |N. Then $T_{2k}(p)f=0$ by [1], hence we must show

(6) $\langle f, f_{k,N,D}, (-1)^{k}_{mp}^{2} \rangle = 0.$ Since p^{2}/N , the conditions $b^{2}-4ac=|D|mp^{2}$, N/a imply p^{2}/a , p/b, hence

$$f_{k,N,D,(-1)}k_{mp}^{2}(z) = \sum_{[a,b,c]\in [N',[D]m} \omega_{D}(p^{2}a,pb,c)(p^{2}az^{2}+pbz+c)^{-k}$$

where $N'=N/p^2$.

Since $p \nmid D$, we have $\omega_D(p^2a, pb, c) = \omega_D(a, b, c)$; in fact, (a, b, c, D) = 1 is equivalent to $(p^2a, pb, c, D) = 1$, and if [a, b, c] represents n, then $[p^2a, pb, c]$ represents p^2n .

Hence

 $f_{k,N,D,(-1)}^{k} p^{2(z)} = f_{k,N',D,(-1)}^{k} (pz),$ and since f is in $S_{2k}^{new}(N)$, (6) follows. <u>Case ii</u>): p[| N. By [1] we have $T_{2k}(p)f = -p^{k-1}W_{p}f$, hence we have to show that

(7)
$$\langle f, f_{k,N,D,(-1)}^{k} m p^{2} \rangle = -p^{-k} \langle W_{p}f, f_{k,N,D,(-1)}^{k} m \rangle$$
.
If a,b,c $\in \mathbb{Z}$ with b^{2} -4ac= $|D|mp^{2}$ and N|a, then it follows that p|b and either $p^{2}|a$ or p||a and p|c. Hence setting N'=N/p we have

$$f_{k,N,D,(-1)^{k}mp^{2}(z)} = \sum_{\substack{(a,b,c] \in \mathcal{G}_{N'}, |D|m}} \omega_{D}(p^{2}a,pb,c)(p^{2}az^{2}+pbz+c)^{-k}$$

$$\frac{1}{p^{-k}} \sum_{\substack{a,b,c \in \mathbb{Z}, N' \mid a, p \neq a \\ b^2 - 4ac = |D|m}} \omega_{D}(pa, pb, pc)(az^2 + bz + c)^{-k}.$$

As in case i) the first sum equals $f_{k,N,D,(-1)}^{k}m^{(pz)}$. Since $\omega_{D}^{(pa,pb,pc)} = (\frac{D}{p})\omega_{D}^{\omega}(a,b,c)$ the second sum equals

$$p^{-k}(\frac{D}{p})(f_{k,N',D,(-1)}^{k}(z)-f_{k,N,D,(-1)}^{k}(z)),$$

hence since $f \in S_{2k}^{new}(N)$ it follows that

$$< f, f_{k,N,D}, (-1)^{k} m p^{2} > = -p^{-k} (\frac{D}{p}) < f, f_{k,N,D}, (-1)^{k} m > .$$

By definition

$$w_{p}^{f}k, N, D, (-1)^{k}m^{(z)} = \sum_{Q \in Q_{N, |D|m}} \omega_{D}(Q \circ W_{p})(Q \circ W_{p})(z, 1)^{-k}.$$

Since acting by \mathbb{W}_p is a permutation of $\mathcal{P}_{N,[D]m}$ and $\omega_D(\mathbb{Q} \circ \mathbb{W}_p) = (\frac{D}{p})\omega_D(\mathbb{Q})$ for p D we conclude that

$$W_{p}f_{k,N,D,(-1)}k_{m} = (\frac{D}{p})f_{k,N,D,(-1)}k_{m}$$

and (7) follows, since W_p is hermitean. This concludes the proof of the Proposition.

We shall now prove assertion i) of the Theorem. First let us show that $\dim_{\mathbb{C}} S_{k+1/2}(N)_{f} \leq 1$. Put $g_{D} = \mathscr{G}_{D}^{*}f$. Assume that $T_{2k}(p)f = \lambda_{p}f$ for all primes p, and let a_{2} be a solution of the equation $X^{2} - \lambda_{2}X + 2^{2k-1} = 0$. Put

$$\begin{split} \mathbf{G}_{\mathrm{D}} &= (-\mathbf{a}_{2} + \mathcal{T}_{\mathrm{k}+1/2}(4))\mathbf{g}_{\mathrm{D}}. \end{split}$$
 Then from the Proposition we see that $\mathcal{T}_{\mathrm{k}+1/2}(\mathbf{p}^{2})\mathbf{G}_{\mathrm{D}} = \lambda_{\mathbf{p}}\mathbf{G}_{\mathrm{D}}$ for all primes p#2. Furthermore $\mathcal{T}_{\mathrm{k}+1/2}(4)\mathbf{G}_{\mathrm{D}} = \frac{2^{2\mathrm{k}-1}}{42}\mathbf{G}_{\mathrm{D}}$ (observe that \mathbf{a}_{2} #0): in fact, it is easy to verify that the latter equation is equivalent to the equation $\lambda_{2}\mathcal{T}_{\mathrm{k}+1/2}(4)\mathbf{f} = \mathcal{T}_{\mathrm{k}+1/2}(4)^{2}\mathbf{f} + 2^{2\mathrm{k}-1}\mathbf{f}$, which in turn follows from $\mathcal{T}_{\mathrm{k}+1/2}(2)\mathbf{g}_{\mathrm{D}} = \lambda_{2}\mathbf{g}_{\mathrm{D}}$ by applying the operator $\mathcal{T}_{\mathrm{k}+1/2}(4)$ on both sides.

From the "weak multiplicity 1" theorem for the space $G_{k+1/2}(4N)$ ([6,7]) it now follows that the C-linear span of all the functions G_D is of dimension ≤ 1 .

Let pr be the orthogonal projection from $G_{k+1/2}(4N)$ onto $S_{k+1/2}(N)$ ([2],§§2..3.). Then

$$pr G_{D} = -42g_{D} + pr \mathcal{T}_{k+1/2}(4)g_{D}$$

= $-42g_{D} + \frac{2}{3}T_{k+1/2}(2)g_{D}$ ([2],§3.,p.42]
= $(\frac{2}{3}\lambda_{2} - 42)g_{D}$.

If $\frac{2}{3}\lambda_2 - \alpha_2$ were equal to zero, then $\lambda_2 = \pm 3 \cdot 2^{k-1}$, which contradicts Deligne's theorem, previously the Ramanujan-Petersson conjecture. Hence pr G_D is a non-zero multiple of g_D and we see that dim_CS_{k+1/2}(N)_f ≤ 1, too.

To show that actually $\dim_{\mathbb{C}} S_{k+1/2}(N)_{f}=1$, we compute the Dth-Fourier coefficient of $\mathfrak{F}_{D}^{*}f$. By definition it equals

$$\mathbf{r}_{k,N,D}(\mathbf{f};D^2) = \sum_{\substack{Q \in \mathcal{G}_{N,D}^2 / P_0(N)}} \omega_D(Q) \int_C \mathbf{f}(z)Q(z,1)^{k-1} dz.$$

If we suppose that W_N , $f = (\frac{D}{N})f$ for all N' with N' || N, then the same computations as in [3], p.243 show that

(8)
$$r_{k,N,D}(f;D^2) = 2^{\nu(N)}(-1)^{\lfloor k/2 \rfloor}(2\pi)^{-k}\Gamma(k)|D|^{k-1/2}L(f,D,k),$$

where L(f,D,s) is the L-function defined for Re $s \gg 0$ by (4) and $\circ(N)$ is the number of different prime factors of N.

But according to [9], Thm.4 and [5], Thm.2.3. there is a fundamental discriminant D_0 with $(-1)^k D_0 > 0$, $W_N f = (\frac{D_0}{N'}) f$ for all N' and $L(f, D_0, k) \neq 0$. Hence $S_{D_0}^* f$ is a non-zero function in $S_{k+1/2}(N)_f$.

Let us now prove ii). Since f and $\mathcal{S}_{(-1)}^{k}n^{g}$ have the same eigenvalues under the Hecke operators, $\mathcal{S}_{(-1)}^{k}n^{g}$ is a cusp form and is a multiple of f by the "multiplicity 1" theorem for $S_{2k}^{new}(N)$. Comparing the Fourier coefficients at q we find that

(9)
$$\mathcal{G}_{(-1)}^{k_n g = c(n)g}$$
.

From i) we have

$$\mathcal{G}_{(-1)}^{*} k_n f = \beta_n g$$

for some $\beta_n \in \mathbb{C}$.

Now

$$\beta_{n}c(m) = \text{coefficient of } q^{m} \text{ in } \mathcal{L}_{(-1)}^{*} h_{n}^{f}$$
$$= (-1)^{\lfloor k/2 \rfloor} 2^{k} r_{k,N,(-1)} h_{n}^{(f;mn)}.$$

On the other hand

$$\beta_{n}c(m) < g,g > = c(m) < \mathscr{L}_{(-1)}^{*}k_{n}f,g >$$
$$= c(m) < f, \mathscr{L}_{(-1)}k_{n}g >$$
$$= c(m)c(n) < f,f > ,$$

where in the last line we have used (9). Comparing these two formulas we obtain (3).

The Corollary to the Theorem, of course, follows from (8).

References

- [1] A.O.L.Atkin and J.Lehner: Hecke operators on $\Gamma_0(m)$, Math. Ann. 185, 134-160 (1970)
- [2] W.Kohnen: Newforms of half-integral weight, J. reine angew. Math. 333, 32-72 (1982)
- [3] W.Kohnen: Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271, 237-268 (1985)
- [4] G.Shimura: On modular forms of half-integral weight, Ann. Math. 97, 440-481 (1973)
- [5] M.-F.Vigneras: Valeur au centre de symetrie des fonctions L associees aux formes modulaires, Séminaire de Théorie des Nombres, Paris 1979-80, Progress in Math. 12, pp.331-356, Boston: Birkhäuser 1981
- [6] J.L.Waldspurger: Correspondances de Shimura et Shintani, J. Math. Pures Appl. 59, 1-133 (1980)
- [7] J.L.Waldspurger: Correspondance de Shimura, Séminaire de Théorie de: Nombres, Paris 1979-80, Progress in Math. 12, pp.357-369, Boston: Birkhäuser 1981

- [8] J.L.Waldspurger: Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60, 375-484 (1981)
- [9] J.L. Waldspurger: Correspondances de Shimura et quaternions, preprint (1985)

Universität Augsburg, Memmingerstr.6, 8900 Augsburg, FRG and

Max-Planck-Institut für Mathematik, Gottfried-Claren-Str.26, 5300 Bonn 3, FRG