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In (3J an identity is given which relates the integral of a newform

f of even integral weight and odd squarefree level N slong a geodesic

period on the modular curve XO(N) to the Fourier eoefficients of a

modular form g of half-integral weight and level 4N assoeiated with f

under the Shimura eorrespondence. This formula eontains as a special

ease a refinement of a result of Waldspurger [8J about the special values

of L-series attached to f at the central point.

The proof strongly depends on a 'Istrang mul tiplici ty 1 n theorem for

a certain subspace" of forms of half-integral weight, whieh so rar is

known only when N is odd end squarefree, and therefore our identity eould

be stated only in this case.

The main purpose of this note is to show that the restrietion to N

squarefree ean be lifted and that our identity in the more general ease

is essentially a eonsequenee of results of Waldspurger [6,?,9J.

Certainly our formula should be valid also for N even and probably

eould be proved in a similar way as here.

1.Notations

We let r(1)=SL2 (Z) operate on integral binary quadratie farms

[a,b,e] (x,y)=ax2tbxytcy2 by

] J.. 13 J[a,b,c Cl (~ [, )(x,y) = [a,b,e (c(x+~y,~·x+~y).

2TizThe symbol~ denotes the upper half-plane. Far ZE~ we write q=e

The letters k and N denote positive integers, N is always assumed to

be odd.
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We wri te lJ' 11 N if N' J N and (l~',*, )=1 •

W~ let M2k (N)(S2k(N» be the space of modular forms (cusp farms) of

weight. 2k on tl1e group ro(N)={(~ f )~r(1)' Nlz} and S~~W(N)cS2k(N) be the

subspace of cuspidal newforms.

FOT a prime p we denote by T2k (P) the Hecke operator acting on S2k(N:

by

(with the convention a(~)=o if pin). The Hecke operators leave S~~W(N)

stable.

( ) -,-(-) 2k-2 df z f z y dx y (z=x+iy)

(z =xtiy)

for the Petersson product of fand f'.

We letG k +1/ 2 (4N) be the space of cusp forms of weight k+1/2 on

rO(4N) ([4J) and Sk+1/2(N) be the subspace of forms whose n
th

Fourier

coefficients at infinity vanish for (-1)kn =2,3(4) ([2J). For a prime p

we vrite ~k+1/2(p2) and Tk +1/ 2 (P), respectively, for the Hecke operators

ac~ing on Gk +1/ 2 (4 N) and Sk+1/2(N) by
2 k

T
kt1

/
2

(p2) I c(n)qn = i (c(p2n )t(4N )((-1) n)pk-1 c (n)
n~1 n~1 P p

2
+(~)p2k-1c(n/p2) )qD

p

and

respectively (cf. (41) §1. and [2],§3., Propos. and Rema"rk, p.46).

For g, g'E Gk +1 /2 (4N) we denote by

<grg > = tr('J):b
o

C4Nl] 5 g(z)g'(z)yk-3/2dxdy
r0 (4N 1\.e.a.

the Petersson product of g and g'.
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2. Statement of results

In [3J for every fundamental discriminant D with (_1)k D>0 we defined

h Shimura lifting ~D mapping Skt1/2(N) to M2k (N) (ta S2k(N) if k~2 or if

N ia cubefr~e) and a Shintani lifting ~i mapping S2k(N) to Skt1/2(N), and

f n and ~~ were ahown to be adjoint maps w1th respect to the Petersson

products. Explicitely, for g :: L k c(n)qn E: Sk+1/2(N) one
n~1,(-1) n=0,1(4)

has

'f g
D = L

n~1

and for fE:S~~W(N) a newform (the ease we will be interested in) one has

i~f = (-1 )[k/2]2k L k rk,N,D(f; IDI m)qm.
D m~1, (-1) m:O,1 (4)

Here for any positive integer ~ satisfying ~=O,1(4) and D'~ we have put

(1) rk,N,D(f;,d) = L LUD(Q) S f(z)Q(z,1 )k-1 dz ,
QE Cf N, ~ / r0 ( N ) CQ

where C#-N,/j/ rO(N) is the set of rO(N)-elasses of integral binary quadratic

forms Q= (ft,b,cJ with b2 -4ac=LJ and Nla, and where CQ is the image in

XO(N)«(t) = ro(N)\?v{p1 (~) of the semicircle alz,2+bRez+c=0 oriented from

- b- {E t - b+ 'fli2a 0 2a-' if a*O or of the vertical liDe bRez+c=O, oriented from

-~ to im if b>O and from ioo to -~ if b<O, if a=O. Furthermore, ~ 1s the

genus character given by

{0 if (a,b,c,D}:t1
W (Q) =

(D)D if {a,b,e,D)=l, where Q represents (n,D)=1.n n,

Remark. In [J],p.240 the faetor (_1)[k/2J2k 1s missing in the definition

of ~;, and the orientation of CQ should be the opposite one for a=O, b<O.

Recall that for any positive number N' with N'II N we heve an Atkin

Lehner involution WN, on S2k(N) leaving S~~w(N} stable and defined by
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wu,r = N,k(NZ+N'6)-2kr(~:~~~) (~,g~ZJ, N'~ -Nf=N').

Suppase (D,N)=1. Then using the fact that Q(x.Y)~QoWN'(x,y):=

~,Q(N'x+13y,Nx+N'öy) induees a bijection of C11'J.&1/rO(N) and that WD(QSlW
N
,)

=(~,)wD(Q) it i8 easy to see that ~;f=O for a normalized Hecke eigenform

f in S~~W(N) unless we have WN,f=(~,)f for all N' end henee in particular

WN,f =f whenever N' is a square.

We define

(2 ) Snew(N)+ = {feS~~W(N)IWN,f=f whenever N' is a sq uare} •2k

The main result of this paper then i8:

Theorem. Let k~1 and N odd, and let f be a normalized Hecke eigenform in

new ( )+. ( ')the space S2k N deflned by2 • Then:

i) The subspace Sk+1/2(N)fcSk+1/2(N) generated bv the functions ~;f, where

D runs through all fundamental discriminants with (_1)k D>O and (D,N)=1, ~

of dimension 1.

ii) Let g = ~ k c(m)qm be a generator of Sk+1/2(N)f. Then for
- m~1,(-1) m:O.1(4)

:8 fundamental discriminant we have

c(m)c(n) _ (_1)[k/2J 2k •
<g,g> - (f,f> rk,N, (-1 )kn (f,mn),

where rk,N, (_1)kn (f;mn) i8 the eycle integral defined by (1).

As already mentioned in the Introduction, the proof which will be

given in the next section, strongly depends on results of Waldspurger:
-

fram the "weak multiplicity 1" theorem for ~k+1/2(4N) ([6,7J) it follows

that Sk+1/2(N)f 1s of dimension ~ 1, and from the non-vanishing results for

L-series at the central point ([5,9J) that, in fact, it is of dimension 1.

Assertion ii) then ean be deduced as in [3J, using the fact the Shimura

liftings and the Shintani liftings are adjoint maps with respeet to the

Petersson products.
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For a fundament~l discriminant U with (D.N)=1 let

:[ (D)a(n)n- S

>1 nn_

be the L-series of f(z)= ~ a(n)qn twisted with"the quadratic character (D),
n~1

Recall that L(f.D.s) has a holomorphic continuation to t and that

L#t (f. D. B) = (211")-s (ND2 )S/2 r (s )L(f ."D, s)

satisfies the functional equation

Lif (f,D,s) = (-1 )k(~N)L* (WNf,D.2k-s) ..

As in [3J, setting m=n in (3) we ean deduce a refined version of a

result cf Waldspurger ([aJ):

Corollary .. Let f and g be as in the Theorem, and let D be a fundamental

diseriminant with (_1)kD>O and (D.N)=1 .. Suppose that for all positive

D
integers N' with N'II N we have WN,f = (N,)f .. Then

\e(lDI )1
2

= 2~(N) (k-1 )! \Dlk-1/2 L(f.D.k)
.(g.g> 1rk <f.~>

where ~(N) denotes the number of different prime divisors of N..

Of course, Corollaries 2-6 in [3J also bave natural generalizations

to the more general situation here .. However, we leave their explieit

formulation to the reader.

3. Proofs

Proposition. For all primes p and all fundamental discriminants D with

(-1 )kD>O, (D,N)=1 Olle has

(5 )

Remark .. Formula (5) is also true if (D,N»1, the proof is somewhat more

tedious.

Proof of Proposition .. We may assume that f is a normalized Hecke eigenform.



6

If p}N, then T2k (P) and Tkf1 / 2 (P) are hermitean, and since jn and ~; are

adjoint maps and ~D commutes with the action of Hecke operators (immediate

verification). identity (5) is obvious in this case.

Next 8ssume piN. Then by definition of~; and Tk +1/ 2 (P) we must show

that

rk,N.n{f; IDI mp2) = r k ,N,n(T2k (P)f; IDI m) (\Q m~1 with (-1 )km: O, 1 (4».
According to Propos.? in [3J .

k-1/2
rk,N,D(f; \Dlrn) = d. k {lDlm) <.r,fk ,N,D,{_1)km), ,

where ~k i8 a constant depending on1y on N and k and f k ,N,D,(_1)km(z)

(m~1,{-1)kmsO,1(4);ZE~)~s the modular form (eusp form if N is eubefree

or if k~2) in M2k (N) defined by

if k >1

if k=1

(ef.(31§1.). In the following we will assume k~2 (the ease k=1 i8 entirely

similar). We will distinguish two eases.

ease i): p2 1N • Tben T2k {P)f=ü by [1J, henee we must show

(6) < f ,fk,N,D, (-1 )kmp2) = O.

Since p2 ,N , the eonditions b2-4ae=IDlmp2 , Nla imply p2,a, plb, benee

= L 2 2 2 -k
[ b C

' . wn(p a,pb,e) (p az +pbz+c)
a , , JE ·:N' , IDI m

, / 2where N =N P •

Sinee

equiva1ent

represents

Henee

Pi- n, wehave -~ (p2a , pb, e ) =1J (a, b, e ); in fa c t , ( a , b , c , D) =1 i s

to {p2a ,pb,c,D)=1, and if [a,b,c] represents n, then [p2a ,pb,c]

2
p n.

fk,N,D, (-1 )k mp2(z) = fk,N' ,D, (-1 )km(pz),

and sin ce f is in S~~w (N), (6) follows.

Gase ii): pli N. By [1J we have T2k(P)f=-pk-1Wpf, hence we have to show

that



-k
(7) (f,fk ,N,D,(_1)k mp2> = -p (\\'pf,fk ,N,D,(_1)k m>

? 2
If a,b,e~a with b~-4ae=IDlmp end Nla, then it follows thet plb end eitheI

p21a or pli a and pie. Henee setting N'=N/p we have

'" 2 2 2 -kf k ,N,D,(_1)k mp2(z) = L- wn(p a,pb,e)(p az +pbz+e)
[ a, b, c] E: <1' N' , t nI ßJ

-ktp ~ w n (pa,Pb,pc)(az 2 +bz+c)-k.
a,b,cEß',N'Ia,pi-a

b
2 -48e = IDirn

As in ease i) the first Bum equals f k ,N,D,(_1)km(pz). Sinee ~(pa,pb,pe)

n= (p)wn(a,b,c) the second sum equals

p-k(~)( fk,N' ~D, (-1 )km(z)-fk,N,D, (-1 )km(z) ),

hence sinee feS~~W(N) it follows that

-k(D)
<f,fk,N,D, (-1 )k mp2.> = -p p <f,fk,N,D, (-1 )k m)·

By definition

Wpf k ,N,n,(_1)km(z) = Q Q L: wD(Q~W )(QoW )(z,1)-k.
t N,IDlrn p P

Since acting by Wp is apermutation of ~N,IDlm and ~(Q~Wp) = (~)wD(Q)

for plD we conelude that

D
W f k N D ( 1)k.: = (-)fk N D ( 1)k ,P ",- m p ",- m

end (7) folIows, sinee W is hermitean. This concludes the proof of the
p

Proposition.

We ahall now prove assertion i) of the Theorem. First let us show

that dim~Skt1/2(N)f~1. Put gD=~~f. Assume that~T2k(P)f=Apf ror all primas
2 2k-1p, end let ~2 be a solution of the equation X -A2X+2 =0. Put

GD = (-~ +'Jk+1/2 (4) ) g D··

Then from the Proposition we see that ~k+1/2(p2)GD=~pGD for all pri~es

T 22k- 1
Pl2. Furthermore . k+1/2(4)Gn = ~ GD (observe that ~2*0): in fact,

2
it is easy to verify that the latter equation is equivalent to the

t · \!J"" (4) _.;'l ()2 2k-1eq ua ~on A2- k +1/2 f -:.Jk +1/2 4 f+2 I f, which in turn folIows. from

Tk+1/2(2)gD=~2gD by applying the operator rk +1/ 2 (4) on both sides.
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Frorn the "weak multiplicity 1" theorem for the space b
k

+1/
2

(4N)

([6,7J) it now follows that the ~-linear span of all the funetions GD

i s of dimensi on :: 1 •

([2],§3.,p.42)

Let pr be the orthogonal projeetion from Gk +1/ 2 (4N) onto Sk+1/2(N)

([2J,§§2.,3.). Then

pr GD = -~gD + prJ~k+1/2(4)gD

2= -~gD + 3Tk+1/2(2)gD
2

= (3..\2 - d.2 )gD •
2 ).. k-1Ir 3~-d.2 were equal to zero, then -2=13.2 , whieh contradiets

Deligne's theorem, previously the Ramanujan-Peter8son conjecture. Henee

same com-

~ UJ
D

( Q ) S f ( z ) Q ( Z J 1 ) k - 1d z •
Q~OJN,n2/ rO(N) CQ

DWN,f=(N,)f for all N' with N'lI N, then the

pr GD is a non-zero multiple of gn and we see that dim~Sk+1/2(N)f~1, too.

To show that actually dim~Sk+1/2(N)f=1, we eompute the nth-Fourier
.. *

eoefficient of ~Df. By definition it equals
2

rk,H,D(f;D ) =

If we suppose that

putations as in [3J,p.243 show that

(8) r
k

,N,O{f ö02 ) = 2 \)(N) (-1 )[k/2] (21T)-kr{k) Inl k-1/2 L{f,O,k),

wbere L(f,D,s) is the L-function defined for Re s >~o by (4) and ~(N) is

the number of different prime factors of N.

But according to (9J, Tbm.4 and [5J, Thm.2~3. there i8 a fundamentaJ
D

discriminant Da with (-1)kDO~O, WN,f=(~)f for all N' and L(f,DO'~)*O.

Henee S; f 18 a non-zero function in Sk+1/2(N)r.
a

Let us now prove ii). Sinee f and ~(_1)kng have the same eigenvalues

under the Hecke operators, ~(_1)kng is a cusp form and is ~ mul~iple of

f by the "multiplicity 1" theorem for S~~w(N). Comparing the Fourier

coefficients at q we rind that

(9) ~(_1)kng=e(n)g.

From i) we have
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"*~ (-1 )knf=png

for some ~nt: a:.

NOlJ

~ ne (m) =eoeffieien t of q rn in :1'" (-1 )k nf

[k/2] k
= ( - 1 ) 2 r k , N, (_ 1 ) k n(f ; ron ) •

On the other hand

Pn e (m) <g , g> =c (m ) <::;r,(_1 ) k n f , g >
=e(m)<: f,'5(_1 )kng '>
=e(m)c(n)<r,f> ,

where in the last line we bave used (9). Comparing these two formulas

we obtain (3).

The Corollary to the Theorem, of course, follows from (8).
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