Newforms, geodesic:periodé;and

modular forms of half-integral weight

Winfried Kohnen

Universitdt Augsburg
Mathematisch-Naturwissenschaftliche Fakultdt
Memmingerstr. 6

8900 Augsburg, FRG

Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3, FRG

MPI 86-48



Introduction

In {3] an identity is given which relates the integral of a newforn
f of even integral weight and odd squarefree level N along a geodesic

period on the modular curve X,.(N) to the Fourier coefficients of a

0
modular form g of half-integral weight and level 4N associated with f
under the Shimura correspondence. This formula contains as a special
case a refinement of a result of Waldspurger [ 8] about the special values
of L-series attached to f at the central point.

The proof strongly depends on a "strong multiplicity 1" theorem for
a certain subspace of forms of nalf-integral weight, which so far is
known only when N is odd and squarefree, and therefore our identity could
be stated only in this case.

The main purpose of this note is to show that the restiriction to N
squarefree can be lifted and that our identity in the more general case
is essentially a consequence of results of Waldspurger [6,7,9].

Certainly our formula should be valid also for N even and probably

could be proved in a similar way as here.
1.Notations

We let [(1)=SL,(Z) operate on integral binary quadratic forms

2

[a,b,c](x.y)=ax2+bxy+cy by

[a,b,¢]* (5 £)(xsy) = [a,b,c] («x+By, yx+5y).
The symbol 4 denotes the upper half-plane. For zefy we write q=e21iz.

The letters k and N denote positive integers, N is always assumed to

be odd.



We write W] ¥ if N[N and (8,3 )=1.

We let M2k(N)(52k(N)) be the space of modular forms (cusp forms) of

new

weight 2k on the group FO(N)={(; 5)&F(1) 'N’J} and S,

(N)ecs,, (N) be the
subspace of cuspidal newforms.

For a prime p we denote by T2k(p) the Hecke operator acting on S2k(N:
by

T,y (P) > a(n)™ = 2 ( a(pn)+(%i)p2k'1a(%) )g"

n21 nz1

(with the convention a(%)=0 if pin). The Hecke operators leave SS;H(N)
stable.

For f,f’ SZk(N) we write .
£,0°> = tﬁTTT;TrTFXT _Y f(z)f’(z)yzk-zdxdy (z=xt+iy)
' *'o |B(NK$

for the Petersson product of f and f”.

We let G (4N) be the space of cusp forms of weight k+1/2 on

k+1/2
PO(AN) ((43) and Sk+1/2(N) be the subspace of forms whose nth Fourier
coefficients at infinity vanish for (-1)kn32,3(4) (£2]). For a prime p

. 2 .
we write 3&+1/2(p ) and Tk+1/2(p)' respectively, for the Hecke operators
acting on(5k+1/2(4N) and Sk+1/2(N) by

2 k
Tk+1/2(P2) ;§1 c(n)g® = 1 C(pzn)+(4g‘)(('1; DypX=Te(n)

n21

2
+HE)p? Ve (a/p?) )a”
and

T ( 2z (n)q® =
x+1/2(P) nx1, (-1)¥n=0,1(2) einia

2 k 2
(e (p?n)+ () (=1lmy k=10 )+ ()25 e (n/p2) )o®,
n?_'l.(-‘l )kn50,1(4) C(p .n') P ) P cin P P cin/p q

respectively (ecf.[%], §1. and [27],§3., Propos. and Remark, p.46).

For g-g’55k+1/2(4N) we denote by

{g,g’> = rpTTj?%ETINTT P0(4§)@3 g(z)g'(z)yk'3/2dxdy (z=x+iy)

the Petersson product of g and g’.



2. Statement of results

In 3] for every fundamental discriminant D with (-1)kD>O we defined
& Shimura 1lifting ¥ maPping sk+1/2(n) to sz(N) (to Sop (M) if k22 or if
. . . N » .
N is cubefree) and & Shintani lifting fD mapping SZk(N) to Sk+1/2(N)' and

?D angd ?5 were shown to be adjoint maps with respect to the Petersson

products. Explicitely, for g = 2 e(n)q” e S (N) one
na1, (-1)%n=0,1(4) k+1/2
has
$e=2 (2% (2)a*Te(1p1n?/4%) )q",

n21 din, (d,N)=1

and for fesgiw(N) a newform (the case we will be interested in) one has

10 = ()2 2

k (f; lDlm)qm.
w21, (-1)"wmz0,1(4)

T¥,N,D

Here for any positive integer 4 satisfying 4=0,1(4) and DlA we have put

(1) r (£34) = v w (@) § £(2)qz,1)¥ Y4z,
k,N,D @y o/ T D ¢ z

where qy /TP (N) is the set of FO(N)-classes of integral binary quadratic
L4
forms Q={a,b,c) with b2-4ac=£!and Nla, and where CQ is the image in

X, () (e) = FO(N)\%uP1(Q) of the semicircle alz]°+bRez+c=0 oriented from
-b-\g' to -b+ V3

2a 2a '

% to i@ if b>0 and from iw to -% if b<0, if a=0. Furthermore, “ is the

if a#0 or of the vertical line bRez+c¢=0, oriented from

genus character given by

B 0 if (a,b,c,D)%1
wa(Q) =

(g) if (a,b,c,D)=1, where Q represents n, (n,D)=1.

Remark. In [3],p.240 the factor (-1)[k/2]2k is missing in the definition

of ¥¥, and the orientation of Cq should be the opposite one for a=0, b<O.

Recall that for any positive number N° with N°I] N we have an Atkin-

Lehner involution Wy, on S, (N) leaving Sgiw(N) stable and defined by



-2k N z+f
Wi )" s

Suppose (D,N)=1. Then using the fact that Q(x,y)—QeW .(x.y)

£ o= WX (NzeN's (B, deZ, N'%;-NF=N'}.
,Q(N x+By,Nx+N°8y) induces a bijection of I, o/ To(N) and that w,(Q=W ,)
) (Q) it is easy to see that ?*f =0 for a normalized Hecke elgenform |
f in SSEW(N) unless we have wn’f=(ﬁ')f for all N and hence in pgrticular
Wy.f =f whenever N° is & square.
We define

(2)  spe¥ 0T = {eshE¥ ()| Wy £=5 whenever N’ is & square).

The main result of this paper then is:

Theorem. Let k21 and N odd, and let f be a normalized Hecke eigenform in

the space Snew(N) defined by (2). Then:

. . *
i) The subspace Sk+1/2(N)fCSk+1/2(N) generated bv the functions $Df. where

D runs through all fundamental discriminants with (-1)kD>O and (D,N)=1, is

of dimension 1.

ii) Let g = > c{m)q™ be a generator of S

(K).. Then for
21.(-1)km50,1(4) . k+1/2V 0 ————

8ll positive integers m and n with (-1)km50,1(4), (-T)kn50,1(4) and (-1)kn

'a fundamental discriminant we have

E
(3) °(m)°‘“) NPt LN k_(f;mn)
where Ty (_1)kn(f;mn) is the cycle integral defined by (1).

As already mentioned in the Introduction, the proof which will be
given in the next section, strongly depends on results of Waldspurger:
from the "weak multiplicity 1" theorem for Chyq/2 (4N) ([6,7]) it follows
that Sk+1/2(N)f is of dimension ¢1, and from the non-vanishing results for
L-series at the central point ([5,9]) that, in fact, it is of dimension 1.
Assertion ii) then can be deduced as in [3], using the fact the Shimura
liftings and the Shintani liftings are adjoint maps with respect to the

Petersson products.



For a fundamental discriminant D with (D,N)=1 let

(&) u(r,0s) = 2 Ba(m)a7® (Re s0)
n21 )

be the L-series of f(z)= 2 a(n)qn twisted with the quadratic character (2).
Recall that L(f,D,s) hasn§1holomorphic continuation to € and that
I*(£,D,8) = (27)"%(up%)%/2P(s)L(r,D, )
satisfies the functional equation
2 (£,0,8) = (-1)*EH) X (Wr,D,2k-5).

As in [ 3], setting m=n in (3) we can deduce a refined version of a

result of Waldspurger ([81):

Corollary. Let f and g be as in the Theorem, and let D be a fundamental

discriminant with (-1)ED>0 and (D,N)=1. Suppose that for all positive

integers N° with N°]| N we have Wpef = (%,)f. Then

le(IDIN 2 | po(i) (k=1)t \pik-1/2 L(£,D,k)
Tk

(818> <r,t>

where w{N) denotes the number of different prime divisors of N.

Of course, Corollaries 2~6 in [3] also have natural generalizations
to the more general situation here. However, we leave their explicit

formulation to the reader,

3. Proofs

Proposition. For all primes p and all fundamental discriminants D with

(-1)kD>0, (D,N)=1 one has

(5) Il (PIE = Ty yq /0 (p)¥E (¥ £esho¥(N)).

Remark. Formula (5) is also true if (D,N)>1, the proof is somewhat more

tedious.

Proof of Proposition. We may assume that f is a normalized Hecke eigenform.




If piN, then T2k(p) and Tk+1/2(p) are hermitean, and since ¥ and ?S'are
adjoint maps and fD commutes with the action of Hecke operators (immediate
verification), identity (5) is obvious in this case.
Next assume plN. Then by definition of i; and Tk+1/2(p) we must show
that
2y _ e : X __ '
rk’N’D(f.lDlmp ) = rk'N’D(T2k(p)f.lD|m) (¥ m21 with (-1)"m=0,1(4)).
According to Propos.7 in [ 3] .
. _ k-1/2
re xn,p(fs Dlm) =< (1D n) <0y oD, (c1) KD
- Yy l
where d) 1is a constant depending oniy on N and k and fk,N,D,(-1)km(z)
(ma1,(-1)km50,1(4);za%) is the modular form (cusp form if N is cubefree

or if kx22) in sz(N) defined by
Z  wo(Q)alz,1)7k .
ey pjn P if k>1
fkiNQDr('1)km(Z) =

lim Ei

- -5 . _
s¥0 QE?N,IDIm D(Q)Q(Z-1) 1Q(z, 1)l if k=1

(cf.{3,81.). In the following we will assume k22 (the case k=1 is entirely
similar). We will distinguish two cases.

Case i): ple. Then T2k(p)f=0 by £1], hence we must show

(6) <Ly wp, (o1)Egp2> = O

2

Since ple, the conditions b2-Aac=|D]mp » Nla imply pzla, plb, hence

fk.N;D.(-T)kmpz(Z) B (a,b c%%; , MD(pza.pb.c)(P2a32+pbz+c)'k
s Uy ‘N ,[Dlm

where N'=N/p2.

Since ptD, we have-ub(pza.pb.c)=ub(a,b.c); in fact, (a,b,c,D)=1 is
equivalent to (pza,pb,c,D)=1, and if [a,b,c] represents n, then [pza,pb,d]

o2

represents p n,

Hence

Fx, 0,0, (-1)¥0p? (2) = T wep, (21)k (P2)s
and since f is in Sgﬁw(N), (6) follows,
Case ii): pll N. By [1] we have T2k(p)f=-pk-1wpf, hence we have to show
that



-k
(7) CTofy yop, (-1)gp?> = P KW Ofy wop (L) -
2
If e,b,ceZ with b -4ac=|D)mp> and Nla, then it follows that p|b and either

p2]a or plla and plc. Hence setting N"=N/p we have

f 2(z) 2: w (p2a,pb.c)(p2a22+pbz+c)_k
X,N,D, (-1)¥a [a'b'deqN',”an D

’rp-k E:’ LL3D(pa,pb.pc)(az2+bz+c)'k.
a,b,ceZ,N" | a,pta

b2-4ac= |Dlo

As in case i) the first sum equals fk,N,D,(-1)km(pz)‘ Since ub(pa,pb.pc)

= (g)ub(a,b,c) the second sum equals

P-k(g)( feow, 0, (105 (20T w,p, (1) 5 (2) )

new

hence since feS,, (N) it follows that

<E,f p'k(§)<iuf

k.N,D,(—1)kmp2> k,N,D,(-1)km>“

By definition

W f k (z) = > -k
P k,N,D, (-1)%m"” £ wp(QeW ) (Qew ) (z,1)7F.

Q&QN.IDIm
Since acting by Wp is a permutation of 9y p  and ub(QDW ( )u3(Q)

for ptD we conclude that

e
Wplk, N, D, (-1) k0 = (p)fk.N,D.(-1)km'
and (7) follows, since Wp is hermitean. This concludes the proof of the

Proposition.

We shall now prove assertion i) of the Theorem, First 1e£ us show

_that dim Sk+1/2(N)f- . Put gD-fo Assume that T2k(p)f A f for all primes
2k - 1

p, and let 12 be a solution of the equation X -A2X+2 =0. P’t
= (ca, 4T, 1470 (4))g g
2ya =
Then from the Proposition we see that 5£+1/2(p )GD-APGD for all primes

2k -1
p3$2. Furthermore 3k+1/2(4)GD = 2 -

Gpy (observe that «.,%0): in fact,

2
2
it is easy to verify that the latter equation is equivalent to the

equation },- k+1/2(4)f k+1/2(4) f+22k 1f, which in turn follows . from

k+1/2(2)gD=>2gD by applying the operator 3k+1/2(4) on both sides.



From the "weak multiplicity 1" theorem for the space Gk+1/2(AN)
7([6.7]) it now follows that the €-linear span of all the functions GD
is of dimension £1.

Let pr be the orthogonal projection from Gk+1/2(AN) onto Sk+1/2(N)
([2J’§§20.30)- Then

_J_ZgD + pr~3'}'(+1/2(4)gD

i

pr GD

2
= (5A5-45)8p-

1, which contradicts

2 o k-
If'§)2-d2 were equal to zero, then )2~13 2
Deligne's theorem, previously the Ramanujan-Petersson conjecture. Hence
pr Gy is a non-zero multiple of gp and we see that dimmsk+1/2(N)f£1’ too.
_ th .
To show that actually dimmSk+1/2(N)f-1, we compute the D“ '-Fourier
coefficient of ?;f. By definition it equals

p(£:0%) = 2 % (Q) § £(z)e(z,1) dz.
Cq

r ¥
k, K, Qef.\]N’D2/ PO(n)

If we suppose that WN;f=(%;)f for all N with Nl N, then the same com-

putations as in [3],p.243 show that

8 ry g ptes0?) = 22 )EE oy Epaey iy K120, 0,1,

where L(f,D,s) is the L-function defined for Re s3>0 by (4) and w(N) is
the number of different prime factors of N,
But according to [9]), Thm.4 and [5], Thm.2.3. there is a fundamental

D
diseriminant D, with (-1)kD0>o, W ,f=(§9)f for all N° and L(f,Dg,k)40.

»*
D

N

Hence SY f is a non-zero function in Sk+1/2(N)f‘

0

Let us now prove ii). Since f and‘ﬁ(_1)kng have the same eigenvalues
under the Hecke operators, 3(_1)kng is a cusp form and is a multiple of
f by the "multiplicity 1" theorem for SSE”(N). Comparing the Fourier
coefficients at q we find that

From i) we have



>?T-1)knf=th

for some Pnec.

Now

_ . m . »
pnc(m)-coeffic1ent of g in $1—1)knf

S(-nB/Rhke Lk (F5mm).

On the other hand

Poe(n) <gig> =e(m)<$Y_1)k fog>
=c(m)< f'.f(_1)kng>
=c(m)<?(_n—)<f,f> ’

where in the last line we have used (9). Comparing these two formulas

we obtﬁin (3).

The Corollary to the Theorem, of course, follows from (8).
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