# Newforms, geodesic periods and modular forms of half-integral weight 

Winfried Kohnen

Universität Augsburg<br>Mathematisch-Naturwissenschaftliche Fakultät<br>Memmingerstr. 6<br>8900 Augsburg, FRG

Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3, FRG

Introduction

In [3] an identity is given which relates the integral of a newform $f$ of even integral weight and odd squarefree level $N$ along a geodesic period on the modular curve $X_{0}(N)$ to the Fourier coefficients of $a$ modular form $g$ of half-integral weight and level 4 N associated with $f$ under the Shimura correspondence. This formula contains as a special case a refinement of a result of waldspurger [8] about the special values of L-series attached to $f$ at the central point.

The proof strongly depends on a "strong multiplicity $1^{1 "}$ theorem for a certain subspace of forms of half-integral weight, which so far is known only when N is odd and squarefree, and therefore our identity could be stated only in this case.

The main purpose of this note is to show that the restriction to $N$ squarefree can be lifted and that our identity in the more general case is essentially a consequence of results of Waldspurger $[6,7,9]$.

Certainly our formula should be valid also for $N$ even and probably could be proved in a similar way as here.

1. Notations

We let $\Gamma(1)=\mathrm{SL}_{2}(Z)$ operate on integral binary quadratic forms $[a, b, c](x, y)=a x^{2}+b x y+c y^{2} b y$

$$
[a, b, c] \cdot(\alpha<\beta)(x, y)=[a, b, c](\alpha x+\beta y, \gamma x+\delta y) .
$$

The symbol $y^{\prime}$ denotes the upper half-plane. For $z \in l_{y}$ we write $q=e^{2 \pi i z}$.
The letters $k$ and $N$ denote positive integers, $N$ is always assumed to be odd.

We write $\mathrm{N}^{-} \| \mathrm{N}$ if $\mathrm{N}^{\prime} \mid \mathrm{N}$ and $\left(\mathrm{N}^{\prime}, \frac{N}{N^{\prime}}\right)=1$.
We let $M_{2 k}(N)\left(S_{2 k}(N)\right)$ be the space of modular forms (cusp forms) of weight $2 k$ on the group $\Gamma_{0}(N)=\left\{\left(\begin{array}{cc}\alpha & \beta \\ \delta & \delta\end{array}\right) k(1)|N| \gamma\right\}$ and $S_{2 k}^{n e w}(N) \subset S_{2 k}(N)$ be the subspace of cuspidal newforms.

For a prime $p$ we denote by $T_{2 k}(p)$ the Hecke operator acting on $S_{2 k}$ (N. by

$$
T_{2 k}(p) \sum_{n \geq 1} a(n) q^{n}=\sum_{n \geq 1}\left(a(p n)+\left(\frac{N^{2}}{p}\right) p^{2 k-1} a\left(\frac{n}{p}\right)\right) q^{n}
$$

(with the convention $a\left(\frac{n}{p}\right)=0$ if $p \mathcal{H}_{\mathrm{n}}$ ). The Hecke operators leave $\mathrm{S}_{2 \mathrm{k}}^{\mathrm{new}}(\mathrm{N})$ stable.

For $f, f^{\prime} \in S_{2 k}(N)$ we write
$\left\langle f, f^{\prime}\right\rangle=\left[\frac{1}{\left[\Gamma(1): \Gamma_{0}(N)\right]} \int_{\Gamma_{0}(N) h} f(z) \overline{f^{\prime}(z) y^{2 k-2} d x d y \quad(z=x+i y), ~}\right.$
for the Petersson product of $f$ and $f^{\prime}$.
We let $G_{k+1 / 2}(4 N)$ be the space of cusp forms of weight $k+1 / 2$ on $\Gamma_{0}(4 N)([4])$ and $S_{k+1 / 2}(N)$ be the subspace of forms whose $n^{\text {th }}$ Fourier coefficients at infinity vanish for (-1) ${ }^{k} \equiv 2,3(4)$ ([2]). For a prime $p$ we write $\Im_{k+1 / 2}\left(p^{2}\right)$ and $T_{k+1 / 2}(p)$, respectively, for the Hecke operators acting on $G_{k+1 / 2}(4 N)$ and $S_{k+1 / 2}(N)$ by

$$
\begin{aligned}
J_{k+1 / 2}\left(p^{2}\right) \sum_{n \geq 1} c(n) q^{n}= & \sum_{n \geq 1}^{k+1 / 2}\left(c\left(p^{2} n\right)+\left(\frac{4 N^{2}}{p}\right)\left(\frac{(-1)^{k} n}{p}\right) p^{k-1} c(n)\right. \\
& \left.+\left(\frac{4 N^{2}}{p}\right) p^{2 k-1} c\left(n / p^{2}\right)\right) q^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
& T_{k+1 / 2}(p) \sum_{n \geq 1,(-1)^{k}{ }_{n \equiv 0,1(4)} c(n) q^{n}=} \\
& \sum_{n \geq 1,(-1)^{k}}^{n \equiv 0,1(4)}\left(c\left(p^{2} n\right)+\left(\frac{N^{2}}{p}\right)\left(\frac{(-1)^{k} n}{p}\right) p^{k-1} c(n)+\left(\frac{N^{2}}{p}\right) p^{2 k-1} c\left(n / p^{2}\right) .\right) q^{n}, \\
& \text { respectively (cf.[4], §1. and [2], §3., Propos. and Remark, p.46). } \\
& \text { For } g, g^{\prime} \in G_{k+1 / 2}(4 N) \text { we denote by } \\
& \left\langle g, g^{\prime}\right\rangle=\frac{1}{\left[T(i): \Gamma_{0}(4 N)\right]} \int_{\Gamma_{0}(4 N \lambda y y} g(z) \overline{g^{\prime}(z)} y^{k-3 / 2} d x d y \quad(z=x+i y)
\end{aligned}
$$

the Petersson product of $g$ and $g^{\prime}$.

## 2. Statement of results

In [3] for every fundamental discriminant $D$ with $(-1)^{k} D>0$ we defined a Shimura lifting $\varphi_{D}$ mapping $S_{k+1 / 2}(N)$ to $M_{2 k}(N)$ (to $S_{2 k}(N)$ if $k \geq 2$ or if $N$ is cubefree) and a Shintani lifting $Y_{D}^{*}$ mapping $S_{2 k}(N)$ to $S_{k+1 / 2}(N)$, and $\varphi_{D}$ and $\varphi_{D}^{*}$ were shown to be adjoint maps with respect to the Petersson
 has

$$
\varphi_{D^{g}}=\sum_{n \geq 1}\left(\sum_{d \ln ,(d, N)=1}\left(\frac{D}{d}\right) d^{k-1} c\left(|D| n^{2} / d^{2}\right)\right) q^{n}
$$

and for $f \in S_{2 k}^{n e w}(N)$ a newform (the case we will be interested in) one has

$$
\varphi_{D^{f}}^{*}=(-1)^{[k / 2]_{2}^{k}} \sum_{m \geq 1,(-1)^{k}}{ }_{m \equiv 0,1(4)}^{r_{k, N, D}(f ;|D| m) q^{m} .}
$$

Here for any positive integer $\Delta$ satisfying $\Delta \equiv 0,1(4)$ and $D \mid \Delta$ we have put

$$
\begin{equation*}
r_{k, N, D}(f ; \Delta)=\sum_{Q \in \mathcal{Q}_{N, \Delta} / \Gamma_{0}(N)} \omega_{D}(Q) \int_{C_{Q}} f(z) Q(z, 1)^{k-1} d z \tag{1}
\end{equation*}
$$

where $G_{N, \Delta} / \Gamma_{0}(N)$ is the set of $\Gamma_{0}(N)$-classes of integral binary quadratic forms $Q=[a, b, c]$ with $b^{2}-4 a c=\Delta$ and $N\left(a\right.$, and where $C_{Q}$ is the image in $X_{0}(N)(\mathbb{C})=\Gamma_{0}(N) \backslash \operatorname{hol}^{1}(\mathbb{Q})$ of the semicircle $a|z|^{2}+b R e z+c=0$ oriented from $\frac{-b-\sqrt{a}}{2 a}$ to $\frac{-b+\sqrt{a}}{2 a}$, if $a \neq 0$ or of the vertical line bRez+c=0, oriented from $-\frac{c}{b}$ to im if $b>0$ and from ico to $-\frac{c}{b}$ if $b<0$, if $a=0$. Furthermore, $u_{D}$ is the genus character given by

$$
w_{D}(Q)= \begin{cases}0 & \text { if }(a, b, c, D) \neq 1 \\ \left(\frac{D}{n}\right) & \text { if }(a, b, c, D)=1, \text { where } Q \text { represents } n,(n, D)=1\end{cases}
$$

Remark. In [3], p. 240 the factor $(-1)^{[k / 2]}{ }_{2} k$ is missing in the definition of $\varphi_{D}^{*}$, and the orientation of $C_{Q}$ should be the opposite one for $a=0, b<0$.

Recall that for any positive number $N^{\prime}$ with $N^{\prime} \| N$ we have an AtkinLehner involution $W_{N}$ on $S_{2 k}(N)$ leaving $S_{2 k}^{\text {new }}(N)$ stable and defined by

$$
W_{1 j^{\prime}} f=N^{\prime k}\left(N z+N^{\prime} \delta\right)^{-2 k^{\prime}} f\left(\frac{N^{\prime} z+\beta}{N z+N^{\prime} \delta}\right) \quad\left(\beta, \delta \in Z, N^{\prime} \delta-N F=N^{\prime}\right)
$$

Suppose $(D, N)=1$. Then using the fact that $Q(x, y) \mapsto Q \circ W_{N}(x, y):=$ $\frac{1}{N} \cdot Q\left(N^{\prime} x+\beta y, N x+N^{\prime} \delta y\right)$ induces a bijection of $\sigma_{N, \Delta} / \Gamma_{0}(N)$ and that $\omega_{D}\left(Q \cdot W_{N},\right)$
$=\left(\frac{D}{N},\right) \omega_{D}(Q)$ it is easy to see that $\varphi_{D}^{*} f=0$ for a normalized Hecke eigenform $f$ in $S_{2 k}^{n e w}(N)$ unless we have $W_{N}, f=\left(\frac{D}{N},\right) f$ for all $N^{\prime}$ and hence in particular $W_{N}{ }^{\prime} f=f$ whenever $N^{\prime}$ is a square.

We define

$$
\begin{equation*}
S_{2 k}^{n e w}(N)^{+}=\left\{f \in S_{2 k}^{n e w}(N) \mid W_{N} f=f \text { whenever } N^{\prime} \text { is a square }\right\} \tag{2}
\end{equation*}
$$

The main result of this paper then is:

Theorem. Let $k \geq 1$ and $N$ odd, and let $f$ be a normalized Hecke eigenform in the space $S_{2 k}^{\text {new }}(N)^{+}$defined by (2). Then:
i) The subspace $S_{k+1 / 2}(N)_{f} c S_{k+1 / 2}(N)$ generated by the functions $\varphi_{D}^{*} f$, where $D$ runs through all fundamental discriminants with $(-1)^{k} D>0$ and $(D, N)=1$, is of dimension 1.
ii) Let $g=\sum_{m \geq 1,(-1)^{k} m \equiv 0,1(4)} c(\mathbb{m}) q^{\text {mI }}$ be a generator of $S_{k+1 / 2}(N)_{f}$. Then for all positive integers $m$ and $n$ with $(-1)^{k} m \equiv 0,1(4),(-1)^{k} n \equiv 0,1(4)$ and $(-1)^{k} n$ :a fundamental discriminant we have
where $r_{k, N},(-1)_{n}(f ; m n)$ is the cycle integral defined by (1).

As already mentioned in the Introduction, the proof which will be given in the next section, strongly depends on results of Waldspurger: from the "weak multiplicity 1 " theorem for $\mathcal{G}_{k+1 / 2}(4 N)([6,7])$ it follows that $S_{k+1 / 2}(N)_{f}$ is of dimension $\leq 1$, and from the non-vanishing results for L-series at the central point ( $[5,9]$ ) that, in fact, it is of dimension 1. Assertion ii) then can be deduced as in [3], using the fact the Shimura liftings and the Shintani liftings are adjoint maps with respect to the Petersson products.

For a fundamental discriminant $D$ with ( $D, N$ ) $=1$ let
(4) $L(f, D, s)=\sum_{n \geq 1}\left(\frac{D}{n}\right) a(n) n^{-s}$

$$
(\operatorname{Re} s \gg 0)
$$

be the L-series of $f(z)=\sum_{n} a(n) q^{n}$ twisted with the quadratic character ( $\underline{D}$ ) Recall that $L(f, D, s)$ has a holomorphic continuation to $\mathbb{C}$ and that

$$
L^{*}(f, D, s)=(2 \pi)^{-s}\left(N D^{2}\right)^{s / 2} \Gamma(s) L(f, D, s)
$$

satisfies the functional equation

$$
L^{*}(f, D, s)=(-1)^{k}\left(\frac{D}{-N}\right) L^{*}\left(W_{N} f, D, 2 k-s\right) .
$$

As in [3], setting $m=n$ in (3) we can deduce a refined version of a result of Waldspurger ([8]):

Corollary. Let $f$ and $g$ be as in the Theorem, and let $D$ be a fundamental discriminant with $(-T)^{k} D>0$ and $(D, N)=1$. Suppose that for all positive integers $N^{\prime}$ with $N^{\prime} \| N$ we have $W_{N^{\prime}} f=\left(\frac{D}{N^{\prime}}\right) f$. Then

$$
\frac{|c(|D|)|^{2}}{\langle g, g\rangle}=2^{0(N)} \frac{(k-1)!}{\pi^{k}}|D|^{k-1 / 2} \frac{L(f, D, k)}{\langle f, f\rangle},
$$

where $v(N)$ denotes the number of different prime divisors of $N$.

Of course, Corollaries 2-6 in [3] also have natural generalizations to the more general situation here. However, we leave their explicit formulation to the reader.
3. Proofs

Proposition. For all primes $p$ and all fundamental discriminants $D$ with $(-1)^{k} D>0,(D, N)=1$ one has

$$
\begin{equation*}
\varphi_{D}^{*} T_{2 k}(p) f=T_{k+1 / 2}(p) \varphi_{D}^{*} f \tag{5}
\end{equation*}
$$

$$
\left(\forall f \in S_{2 k}^{n e w}(N)\right)
$$

Remark. Formula (5) is also true if ( $D, N$ ) $>1$, the proof is somewhat more tedious.

Proof of Proposition. We may assume that $f$ is a normalized Hecke eigenform.

If $p \forall N$, then $T_{2 k}(p)$ and $T_{k+1 / 2}(p)$ are hermitean, and since $\mathcal{S}_{D}$ and $y_{D}^{*}$ are adjoint maps and $\mathcal{Y}_{\mathrm{D}}$ commutes with the action of Hecke operators (immediate verification), identity (5) is obvious in this case.

Next assume plN . Then by definition of $9_{D}^{*}$ and $T_{k+1 / 2}(p)$ we must show that

$$
r_{k, N, D}\left(f ;|D| m p^{2}\right)=r_{k, N, D}\left(T_{2 k}(p) f ;|D| m\right) \quad\left(\forall m \geq 1 \text { with }(-1)_{m \equiv 0,1(4)) .}^{k}\right.
$$

According to Propos. 7 in [3]

$$
r_{k, N, D}(f ;|D| m)=\alpha_{k}(|D| m)^{k-1 / 2}\left\langle f, f_{\left.k, N, D,(-1)^{k_{m}}\right\rangle, ~}\right.
$$

where $\alpha_{k}$ is a constant depending only on $N$ and $k$ and $f_{k, N, D,(-1)^{k}(z)}(z)$ ( $\mathrm{m} \geq 1,(-1)^{k} m \equiv 0,1(4) ; z \in y_{y}$ ) is the modular form (cusp form if $N$ is cubefree or if $k \geq 2$ ) in $M_{2 k}(N)$ defined by
$f_{k, N, D,(-1)^{k}(z)}\left(z= \begin{cases}Q \in \sum_{N,|D| m} \omega_{D}(Q) Q(z, 1)^{-k} & \text { if } k>1 \\ \lim \sum_{s \neq 0} \in \mathcal{M}_{N,|D| m} \omega_{D}(Q) Q(z, 1)^{-1}|Q(z, 1)|^{-s} & \text { if } k=1\end{cases}\right.$
(cf.[3], 81.). In the following we will assume $k \geq 2$ (the case $k=1$ is entirely similar). We will distinguish two cases.
Case i): $p^{2} \mid N$. Then $T_{2 k}(p) f=0$ by [1], hence we must show

$$
\begin{equation*}
\left\langle\mathrm{f}, \mathrm{f}_{\left.\mathrm{k}, \mathrm{~N}, \mathrm{D},(-1)_{\mathrm{mp}} \mathrm{k}_{\mathrm{mp}} 2\right\rangle=0 . . . . .}\right. \tag{6}
\end{equation*}
$$

Since $p^{2} \mid N$, the conditions $b^{2}-4 a c=|D| m p^{2}$, N|a imply $p^{2}|a, p| b$, hence
where $N^{\prime}=N / p^{2}$.
Since $p \neq D$, we have $\omega_{D}\left(p^{2} a, p b, c\right)=u_{D}(a, b, c)$; in fact, $(a, b, c, D)=1$ is equivalent to ( $\left.p^{2} a, p b, c, D\right)=1$, and if $[a, b, c]$ represents $n$, then $\left[p^{2} a, p b, c\right]$ represents $p^{2} n$.

Hence

$$
f_{k, N}, D,(-1)^{k_{m p}} 2(z)=f_{k, N^{\prime}, D},(-1)^{k_{m}}(p z)
$$

and since $f$ is in $S_{2 k}^{n e w}(N)$, (6) follows.
Case ii): p\|N. By [1] we have $T_{2 k}(p) f=-p^{k-1} W_{p} f$, hence we have to show that

$$
\begin{equation*}
\left\langle f, f_{k, N, D}(-1)^{k} m_{p}^{2}\right\rangle=-p^{-k}\left\langle W_{p}^{\prime} f, f_{\left.k, N, D,(-1)^{k} m\right\rangle .}\right. \tag{7}
\end{equation*}
$$

If $a, b, c \in \mathbb{Z}$ with $b^{2}-4 a c=|D| m p^{2}$ and $N \mid a$, then it follows that $p \mid b$ and either $p^{2} \mid a$ or $p l \mid a$ and $p / c$. Hence setting $N^{\prime}=N / p$ we have

$$
\begin{aligned}
& f_{k, N, D},(-1)^{k} \operatorname{mp}^{2(z)}=\sum_{[a, b, c] \in q_{N^{\prime}},|D| a} \omega_{D}\left(p^{2} a, p b, c\right)\left(p^{2} a z^{2}+p b z+c\right)^{-k} \\
& +p^{-k} \sum_{a, b, c \in \mathbb{Z}, N^{\prime} \mid a, p \nmid a} \omega_{D}(p a, p b, p c)\left(a z^{2}+b z+c\right)^{-k} \\
& b^{2}-4 a c=|D|_{m}
\end{aligned}
$$

As in case i) the first sum equals $f_{k, N, D},(-1)^{k}(p z)$. Since $\omega_{D}(p a, p b, p c)$ $=\left(\frac{D}{p}\right) \omega_{D}(a, b, c)$ the second sum equals

$$
p^{-k}\left(\frac{D}{p}\right)\left(f_{k, N^{\prime}}, D,(-1)^{k}(z)-f_{k, N}, D,(-1)^{k_{m}}(z)\right),
$$

hence since $f \in S_{2 k}^{\text {new }}(N)$ it follows that

$$
\left\langle f, f_{k, N}, D,(-1)^{k} m^{2}\right\rangle=-p^{-k}\left(\frac{D}{p}\right)\left\langle f, f_{k, N}, D,(-1)^{k} m\right.
$$

By definition

$$
W_{p} f_{k, N, D,(-1)^{k_{m}}(z)=}^{\sum_{Q \in Q} \sum_{N,|D| m} w_{D}\left(Q \circ W_{p}\right)\left(Q \circ W_{p}\right)(z, 1)^{-k} . . . . ~ . ~}
$$

Since acting by $W_{p}$ is a permutation of $q_{N},|D| m$ and $w_{D}\left(Q \cdot W_{p}\right)=\left(\frac{D}{p}\right) w_{D}(Q)$ for $\mathrm{p} \& \mathrm{D}$ we conclude that

$$
W_{p} f_{k, N, D},(-1)^{k_{m}^{\prime}}=\left(\frac{D}{p}\right)_{k, N, D,(-1)^{k}}{ }_{m}
$$

and (7) follows, since $W_{p}$ is hermitean. This concludes the proof of the Proposition.

We shall now prove assertion i) of the Theorem. First let us show - that $\operatorname{dim}_{\mathbb{C}} S_{k+1 / 2}(N)_{f} \leq 1$. Put $g_{D}=\mathcal{S}_{D}^{*} f$. Assume that, $T_{2 k}(p) f=\lambda_{p} f$ for all primes $p$, and let $d_{2}$ be a solution of the equation $X^{2}-\lambda_{2} X+2^{2 k-1}=0$. Put

$$
G_{D}=\left(-\alpha_{2}+J_{k+1 / 2}(4)\right) g_{D^{*}}
$$

Then from the Proposition we see that $J_{k+1 / 2}\left(p^{2}\right) G_{D}=\lambda_{p} G_{D}$ for all primes p $\ddagger$ 2. Furthermore $J_{k+1 / 2}(4) G_{D}=\frac{2^{2 k-1}}{\alpha_{2}} G_{D}$ (observe that $\alpha_{2} \neq 0$ ): in fact, it is easy to verify that the latter equation is equivalent to the equation $\lambda_{2} J_{k+1 / 2}(4) f=T_{k+1 / 2}(4)^{2} f+2^{2 k-1} f$, which in turn follows from $T_{k+1 / 2}(2) g_{D}=\lambda_{2} g_{D}$ by applying the operator $J_{k+1 / 2}(4)$ on both sides.

From the "weak multiplicity 1 " theorem for the space $G_{k+1 / 2}(4 \mathrm{~N})$ ( $[6,7]$ ) it now follows that the $\mathbb{C}$-linear span of all the functions $G_{D}$ is of dimension $\leq 1$.

Let pr be the orthogonal projection from $G_{k+1 / 2}(4 \mathrm{~N})$ onto $S_{k+1 / 2}(\mathrm{~N})$ ([2],852..3.). Then

$$
\begin{aligned}
\text { pr } G_{D} & =-\alpha_{2} g_{D}+\operatorname{pr} J_{k+1 / 2}(4) g_{D} \\
& =-\alpha_{2} g_{D}+\frac{2}{3} T_{k+1 / 2}(2) g_{D} \\
& =\left(\frac{2}{3} \lambda_{2}-\alpha_{2}\right) g_{D} .
\end{aligned}
$$

If $\frac{2}{3} \lambda_{2}^{-\alpha_{2}}$ were equal to zero, then $\lambda_{2}= \pm 3 \cdot 2^{k-1}$, which contradicts Deligne's theorem, previously the Ramanujan-Petersson conjecture. Hence $\operatorname{pr} G_{D}$ is a non-zero multiple of $g_{D}$ and we see that $\operatorname{dim}_{\mathbb{C}} S_{k+1 / 2}(N)_{f} \leq 1$, too.

To show that actually $\operatorname{dim}_{\mathbb{C}} S_{k+1 / 2}(N)_{f}=1$, we compute the $D^{\text {th }}$-Fourier coefficient of $\varphi_{D}^{*} f$. By definition it equals

$$
r_{k, N, D}\left(f ; D^{2}\right)=\sum_{Q \in \sigma_{N}, D^{2 /} \Gamma_{0}(N)} \omega_{D}(Q) \int_{C_{Q}} f(z) Q(z, 1)^{k-1} d z
$$

If we suppose that $W_{N^{\prime}} f=\left(\frac{D}{N^{\prime}}\right)$ f for all $N^{\prime}$ with $N^{\prime} \| N$, then the same computations as in [3],p. 243 show that

$$
\begin{equation*}
r_{k, N, D}\left(f ; D^{2}\right)=2^{v(N)}(-1)^{[k / 2]}(2 \pi)^{-k} \Gamma(k)|D|^{k-1 / 2} L(f, D, k) \tag{8}
\end{equation*}
$$

where $L(f, D, s)$ is the L-function defined for $R e s>0$ by (4) and $v(N)$ is the number of different prime factors of $N$.

But according to [9], Thm. 4 and [5], Thm.2.3. there is a fundamenta] discriminant $D_{0}$ with $(-1)^{k} D_{0}>0, W_{N^{\prime}} f=\left(\frac{D_{0}}{N^{\prime}}\right)_{f}$ for all $N^{\prime}$ and $L\left(f, D_{0}, k\right) \neq 0$. Hence $S_{D_{0}^{*}}^{*} f$ is a non-zero function in $S_{k+1 / 2}(N)_{f}$.

Let us now prove ii). Since $f$ and $\mathscr{\mathscr { Y }}(-1)^{k}{ }_{n}$ g have the same eigenvalues under the Hecke operators, $\mathscr{Y}^{(-1)} \mathrm{k}_{\mathrm{n}} \mathrm{g}$ is a cusp form and is a multiple of $f$ by the "multiplicity $1^{n}$ theorem for $S_{2 k}^{n e w}(N)$. Comparing the Fourier coefficients at $q$ we find that

$$
\begin{equation*}
\varphi_{(-1)} k_{n} g=c(n)_{g} \tag{9}
\end{equation*}
$$

From i) we have

$$
\varphi_{(-1)}^{*} k_{n} f=\beta_{n} g
$$

for some $\beta_{n} \in \mathbb{C}$.
Now

$$
\begin{aligned}
\beta_{n} c(\mathbb{m}) & =\text { coefficient of } q^{m} \text { in } \varphi_{(-1)^{k}}^{*} f \\
& =(-1)^{[k / 2]} 2^{k_{n}} r_{k, N,(-1)^{k}}{ }_{n}^{(f ; m n) .}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
\beta_{n} c(\mathbb{I})\langle g, g\rangle & =c(m)\left\langle\varphi_{(-1)^{*}}{ }_{n} f, g\right\rangle \\
& =c(m)\left\langle f, y_{(-1)^{k}} g\right\rangle \\
& =c(m) \overline{c(n)}\langle f, f\rangle,
\end{aligned}
$$

where in the last line we have used (9). Comparing these two formulas we obtain (3).

The Corollary to the Theorem, of course, follows from (8).

References
[1] A.O.L.Atkin and J.Lehner: Hecke operators on $\Gamma_{0}(\mathrm{~m})$, Math. Ann. 185 , 134-160 (1970)
[2] W. Kohnen: Newforms of half-integral weight, J. reine angew. Math. 333, 32-72 (1982)
[3] W. Kohnen: Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271, 237-268 (1985)
[4] G.Shimura: On modular forms of half-integral weight, Ann. Math. 97, 440-481 (1973)
[5] M.-F.Vigneras: Valeur au centre de symetrie des fonctions L associees aux formes modulaires, Séminaire de Théorie des Nombres, Paris 1979-80, Progress in Math. 12, pp.331-356, Boston: Birkhäuser 1981
[6] J.L.Waldspurger: Correspondances de Shimura et Shintani, J. Math. Pures Appl. 59, 1-133 (1980)
[7] J.L.Waldspurger: Correspondance de Shimura, Séminaire de Théorie de: Nombres, Paris 1979-80, Progress in Nath. 12, pp.357-369, Boston: Birkhäuser 1981
[8] J.L.Waldspurger: Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60, 375-484 (1981)
[9] J.L. Waldspurger: Correspondances de Shimura et quaterniöns, preprint (1985)

Universität Augsburg, Memmingerstr.6, 8900 Augsburg, FRG
and
Max-Planck-Institut für Mathematik, Gottfried-Claren-Str.26, 5300 Bonn 3, FRG

