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Abstract. We find an explicit expression for the zeta-regularized determinant of
(the Friedrichs extensions) of the Laplacians on a compact Riemann surface of genus
one with conformal metric of curvature 1 having a single conical singularity of angle 4π.

We discuss a generalization of this result to the case of metrics of curvature 1 with
conical singularities on hyperelliptic curves of genus g ≥ 2.

1 Introduction

Let X be a compact Riemann surface of genus one and let P ∈ X. According to [1],
Cor. 3.5.1, there exists at most one conformal metric on X of constant curvature 1 with
a (single) conical point of angle 4π at P . The following simple construction shows that
such a metric, m(X,P ), in fact always exists (and due to [1] is unique).

Consider the spherical triangle T = {(x1, x2, x3) ∈ S2 ⊂ R3 : x1 ≥ 0, x2 ≥ 0, x3 ≥ 0}
with all three angles equal to π/2. Gluing two copies of T along their boundaries, we get
the Riemann sphere P with metric m of curvature 1 and three conical points P1, P2, P3

of conical angle π. Consider the two-fold covering

µ : X(Q)→ P (1.1)

ramified over P1, P2, P3 and some point Q ∈ P \ {P1, P2, P3}. Lifting the metric m from
P to the compact Riemann surface X(Q) of genus one via µ, one gets the metric µ∗m on
X(Q) which has curvature 1 and the unique conical point of angle 4π at the preimage
µ−1(Q) of Q. Clearly, any compact surface of genus one is (biholomorphically equivalent
to) X(Q) for some Q ∈ P \ {P1, P2, P3}. Now let X be an arbitrary compact Riemann
surface of genus one and let P be any point of X. Take Q ∈ P such that X = X(Q) and
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consider the automorphism α : X → X (the translation) of X sending P to µ−1(Q).
Then

m(X,P ) = α∗(µ∗(m)) = (µ ◦ α)∗(m) .

Introduce the scalar (Friedrichs) self-adjoint Laplacian ∆(X,P ) := ∆m(X,P ) on X
corresponding to the metric m(X,P ). For any P and Q from X the operators ∆(X,P )
and ∆(X,Q) are isospectral and, therefore, the ζ-regularized (modified, i. e. with zero
modes excluded) determinant det∆(X,P ) is independent of P ∈ X and, therefore, is a
function on moduli space M1 of Riemann surfaces of genus one. The main result of the
present work is the following explicit formula for this function:

det∆(X,P ) = C1 |=σ||η(σ)|4F (t) = C2 det∆(0)(X)F (t), (1.2)

where σ is the b-period of the Riemann surface X, C1 and C2 are absolute constants,
η is the Dedekind eta-function, ∆(0) is the Lapalacian on X corresponding to the flat
conformal metric of unit volume, the surface X is represented as the two-fold covering
of the Riemann sphere CP 1 ramified over the poits 0, 1,∞ and t ∈ C \ {0, 1}, and

F (t) =
|t|

1
24 |t− 1|

1
24

(|
√
t− 1|+ |

√
t+ 1|)

1
4

. (1.3)

As it is well known, the moduli space M1 coincides with the quotient space

(C \ {0, 1}) /G ,

where G is a finite group of order 6, generated by transformations t→ 1
t and t→ 1− t.

A direct check shows that F (t) = F (1
t ) and F (t) = F (1 − t) and, therefore, the right

hand side of (1.2) is in fact a function on M1.

Remark 1. Using the classical relation (see, e. g. [2] (3.35))

t = −
(

Θ[10](0 |σ)

Θ[01](0 |σ)

)4

,

one can rewrite the right hand side as a function of σ only.

The well known (see [9]) relation det∆(0) = C |=σ||η(σ)|4 used in (1.2), implies that
(1.2) can be considered as a version of Polyakov’s formula (relating determinants of the
Laplacians corresponding to two smooth metrics in the same conformal class) for the
case of two conformally equivalent metrics on a torus: one of them is smooth and flat,
another is of curvature one and has one (very special) singular point.

The above construction can be generalized to hyperelliptic surfaces of genus g ≥ 2.
Namely, choose 2g−1 = (2g+2)−3 distinct points Q1, Q2, . . . , Q2g−1 in P\{P1, P2, P3}
and consider the two-fold covering

µg : X(Q1, Q2, . . . , Q2g−1)→ P

ramified over Q1, . . . , Q2g−1, P1, P2, P3. Lifting the metric m from P to the hyperel-
liptic curve X(Q1, Q2, . . . , Q2g−1) of genus g one gets a metric µ∗gm of constant cur-
vature 1 with conical points of angle 4π at 2g − 1 Weierstrass points of the curve
X(Q1, Q2, . . . , Q2g−1) (the hyperelliptic curve has 2g + 2 Weierstrass points, three re-
maining Weierstrass points are nonsingular points of the metric). Using the same meth-
ods as in the genus 1 case, one can derive an explicit expression for the determinant of
the Laplacian in the metric µ∗gm as a function on moduli space of hyperelliptic curves
of genus g. In the last section we write down such an expression for genus two case.

2



2 Metrics on the base and on the covering

Here we find an explicit expression for the metric m on the Riemann sphere P = CP 1

of curvature 1 and with three conical singularities at P1 = 0, P2 = 1 and P3 =∞.
The stereographic projection (from the south pole) maps the spherical triangle T

onto quarter of the unit disk {z ∈ C; |z| ≤ 1, 0 ≤ Arg z ≤ π/2}. The conformal map

z 7→ w =

(
1 + z2

1− z2

)2

(2.1)

sends this quarter of the disk to the upper half-plane H; the corner points i, 0, 1 go to
the points 0, 1 and ∞ on the real line. The push forward of the standard round metric

4|dz|2

(1 + |z|2)2

on the sphere by this map gives rise to the metric

m =
|dw|2

|w||w − 1|(|
√
w + 1|+ |

√
w − 1|)2

(2.2)

on H; clearly, the latter metric can be extended (via the same formula) to CP 1. The
resulting curvature one metric on CP 1 (also denoted by m) has three conical singularities
of angle π: at w = 0, w = 1 and w =∞.

Consider a two-fold covering of the Riemann sphere by a compact Riemann surface
X(t) of genus 1

µ : X(t)→ CP 1 (2.3)

ramified over four points: 0, 1,∞ and t ∈ C \ {0, 1}. Clearly, the pull back metric µ∗m
on X(t) is a curvature one metric with exactly one conical singularity. The singularity
is a conical point of angle 4π located at the point µ−1(t).

3 Determinant of Laplacian as function of critical value t

The analysis from [3] in particular implies that one can introduce the standard Ray-
Singer ζ-regularized determinant of the (Friedrichs) self-adjoint Laplacian ∆µ∗m in
L2(X(t), µ∗m)

det ∆µ∗m := exp{−ζ ′
∆µ∗m(0)} ,

where ζ ′
∆µ∗m is the operator zeta-function. In this section we establish a formula for the

variation of ζ ′
∆µ∗m(0) with respect to the parameter t (the fourth ramification point of

the covering (2.3). The derivation of this formula coincides almost verbatim with the
proof of [3, Proposition 6.1], therefore, we will give only few details.

For the sake of brevity we identify the point t of the base CP 1 with its (unique)
preimage µ−1(t) on X(t).

Let Y (λ; · ) be the (unique) special solution of the Helmholz equation (here λ is the
spectral parameter) (∆m − λ)Y = 0 on X \ {t} with asymptotics Y (λ)(x) = 1

x + O(x)

as x → 0, where x(P ) =
√
µ(P )− t is the distinguished holomorphic local parameter

in a vicinity of the ramifiction point t ∈ X(t) of the covering (2.3). Introduce the
complex-valued function λ 7→ b(λ) as the coefficient near x in the asymptotic expansion

Y (x, x̄;λ) =
1

x
+ c(λ) + a(λ)x̄+ b(λ)x+O(|x|2−ε) as x→ 0.
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The following variational formula is proved in [3, Propositon 6.1]:

∂t(−ζ ′∆µ∗m(0)) =
1

2
(b(0)− b(−∞)) . (3.1)

The value b(0) is found in [3, Lemma 4.2]: one has the relation

b(0) = −1

6
SSch(x)

∣∣∣
x=0

, (3.2)

where SSch is the Schiffer projective connection on the Riemann surface X(t).
Since λ = −∞ is a local regime, in order to find b(−∞) the solution Y can be

replaced by a local solution with the same asymptotic as x → 0. A local solution Ŷ
with asymptotic

Ŷ (u, ū;λ) =
1

u
+ ĉ(λ) + â(λ)ū+ b̂(λ)u+O(|u|2−ε) as u→ 0

in the local parameter u2 = z − s was constructed in [3, Lemma 4.1] by separation of
variables; here z and w = µ(P ) (resp. s and t) are related by (2.1) (resp. by (2.1) with
z = s and w = t) and b̂(−∞) = 1

2
s̄

1+|s|2 . One can easily find the coefficients A(t) and

B(t) of the Taylor series u = A(t)x + B(t)x3 + O(x5). As a local solution replacing Y
we can take A(t)Ŷ . This immediately implies b(−∞) = A2(t)b̂(−∞) − B(t)/A(t). A
straightforward calculation verifies that

b(−∞) = ∂t log
(
|t||t− 1|(|

√
t+ 1|+ |

√
t− 1|)2

)1/4
. (3.3)

Observe that the right hand side in (3.3) is actually the value of ∂w log ρ(w, w̄)−1/4 at
w = t, where ρ(w, w̄) is the conformal factor of the metric (2.2); this is also a direct
consequence of [8, Lemma 4].

Using (3.1) together with (3.2) and (3.3), we are now able to derive an explicit
formula for det∆µ∗m.

4 Explicit formula for the determinant

Equations (3.1), (3.2) and (3.3) imply that the determinant of the Laplacian det ∆µ∗m =
exp{−ζ ′

∆µ∗m(0)} can be represented as a product

det ∆µ∗m = C |=σ||τ(t)|2
∣∣∣∣ 1

|t||t− 1|(|
√
t+ 1|+ |

√
t− 1|)2

∣∣∣∣1/8 (4.1)

where τ(t) is the value of the Bergman tau-function (see [4], [5], [6]) on the Hurwitz
space H1,2(2) of two-fold genus one coverings of the Riemann sphere, having ∞ as a
ramification point at the covering, ramified over 1, 0,∞ and t. More specifically, τ is a
solution of the equation

∂ log τ

∂t
= − 1

12
SB(x)|x=0

where SB is the Bergman projective connection on the covering Riemann surface X(t)
of genus one and x is the distinguished holomorphic parameter in a vicinity of the
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ramification point t of X(t). We remind the reader that the Bergman and the Schiffer
projective connections are related via the equation

SSch(x) = SB(x)− 6π(=σ)−1v2(x)

where v is the normalized holomorphic differential on X(t) and that the Rauch varia-
tional formula (see, e. g., [4]) implies the relation

∂ log=σ
∂t

=
π

2
(=σ)−1v2(x)|x=0 .

The needed explicit expression for τ can be found e. g. in [6, f-la (18)] (it is a very
special case of the explicit formula for the Bergman tau-function on general coverings
of arbitrary genus and degree found in [5] as well as of a much earlier formula of Kitaev
and Korotkin for hyperelliptic coverings [7]). Namely, [6, f-la (18)] implies that

τ = η2(σ)

[
v(∞)3

v(P1)v(P2)v(Q)

] 1
12

, (4.2)

where P1 and P2 are the points of the X(t) lying over 0 and 1, Q is a point of X(t) lying
over t and∞ denotes the point of the covering curve X(t) lying over the point at infinity
of the base CP 1; v is an arbitrary nonzero holomorphic differential on X(t); and, say,
v(P1) is the value of this differential in the distinguished holomorphic parameter at P1.
(One has to take into account that τ = τ−2

I , where τI is from [6].) Taking

v =
dw√

(w(w − 1)(w − t)
,

and using the following expressions for the distinguished local parameters at P1, P2, Q
and ∞

x =
√
w; x =

√
w − 1; x =

√
w − t; x =

1√
w

one arrives at the relations (where ∼ means = up to insignificant constants like ±2, etc.)

v(P1) ∼ 1√
t
; v(P2) ∼ 1√

t− 1
; v(Q) ∼ 1√

t(t− 1)
; v(∞) ∼ 1.

These relations together with (4.2) and (4.1) imply (1.2).

5 Genus two case

Let
µ2 : X(t1, t2, t3)→ P = CP 1

be the two-fold covering ramified over (distinct) points t1, t2, t3, 0, 1 and ∞ of CP 1.
The same arguments as above lead to the following expression for the determinant of
Laplacian in the conical metric µ∗2m on the genus 2 curve X(t1, t2, t3):

det∆µ∗2m = C det=B|τ |2
3∏

k=1

{ρ(tk, t̄k)}1/8
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where B is the matrix of the b-periods of the curve X(t1, t2, t3) and τ is the Bergman tau-
function on the Hurwitz space H2,2(2) of meromorphic functions on Riemann surfaces
of genus 2 of degree two and having one double pole. According to [4] (see formulas
(2.40), (2.36) and (2.37)), one has

τ =

∏
β

Θ[β]((0|B)


1
5 ∏
m<n

(λm − λn)
1
20 ,

where β runs over the set of 10 even characteristics and λ1 = t1, λ2 = t2, λ3 = t3,
λ4 = 0, λ5=1. Thus,

det∆µ∗2m = Cdet=B

∏
β

∣∣∣Θ[β](0|B)
∣∣∣


2
5

×

∏
m<n

|λm − λn|
1
10

3∏
k=1

1

|tk|1/8|tk − 1|1/8(|
√
tk − 1|+ |

√
tk + 1|)1/4

.

This implies the final expression for the determinant

det∆µ∗2m = C F2/5Φ(t1, t2, t3), (5.1)

where
F = (det=B)5/2

∏
β

|Θ[β](0|B)|

is the Petersson norm ||∆2|| of the Siegel cusp form ∆2 =
∏
β Θ[β](0|B) and

Φ(t1, t2, t3) =
|t1t2t3(t1 − 1)(t2 − 1)(t3 − 1)|−

1
40 |t1 − t2|

1
10 |t1 − t3|

1
10 |t2 − t3|

1
10∏3

k=1(|
√
tk + 1|+ |

√
tk − 1|)

1
4

It is straightforward to check that the right hand side of (5.1) is a function on the
moduli space M2 of compact Riemann surfaces of genus 2 (i. e. that the relations
Φ(t1, t2, t3) = Φ( 1

t1
, 1
t2
, 1
t3

) = Φ(1− t1, 1− t2, 1− t3) hold true).
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