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Abstract

This paper introduces new techniques for the efficient computation of a Fourier transform on a finite group.
We present a divide and conquer approach to the computation. The divide aspect uses factorizations of group
elements to reduce the sum of products for the Fourier transform to simpler sums of matrix products and is the
separation of variables algorithm. The conquer aspect is the final computation of matrix products which
we perform efficiently using a special form of the matrices. This form arise from the use of subgroup-adapted
representations and their structure when evaluated at elements which lie in the centralizers of subgroups in a
subgroup chain. We present a detailed analysis of the matrix multiplications arising in the calculation and obtain
casy-to-use upper bounds for the complexity of our algorithm in terms of representation theoretic data for the
group of interest.

Our algorithm encompasses many of the currently known examples of fast Fourier transforms. We recover the
best known fast transforms for some abelian groups, the symmetric groups and their wreath products, and the
classical Weyl groups. Beyond this, we obtain greatly improved upper bounds for the general linear and unitary
groups over a finite field, and for the classical Chevalley groups over a finite field.

This is part | of a two part paper. Part II will present a refinement of these techniques which results in further

savings.

1 Introduction

Recently, increased attention has been paid to the problem of finding cfficient algorithms for the computation of
Fourier transforms on nonabelian groups. The abelian case has a long history, and since the publication of the
Cooley-Tukey fast Fourier transform (FFT) {20] has been at the heart of digital signal processing (see for example
[26, 3] and the many references contained therein). The nonabelian cases have also been motivated by applications.
They have been found useful in new approaches to data analysis [22], VLSI design [10], the design of matched filters
[36] and efficient group convolution algorithms [16, 44]. In the continuous setting, there are applications to comnputer
vision, geophysics and climate modeling (cf. [25, 31]).

Apart from applications, these algorithms contribute to the understanding of the representation theoretic content
of the fast Fourier transform. Although abelian groups have a unique Fourier transform, nonabelian groups have an

* A preliminary version of some of this work appears as an extended abstract, “Adapted Diameters and the Efficient Computation of
Fourier Transforms of Finite Groups” in the Proceedings of the 1995 ACM-5[AM Symposium on Discrete Algorithms.
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infinite number of Fourier transforms which correspond to different choices of bases for the irreducible representations
of the group, G. The complexity of the group is defined as the least upper bound of the complexities of the algorithms
computing Fourier transforms, over all choices of bases, and is bounded by |G |2. This bound follows from a direct
approach to the computation. It is conjectured that all finite groups have complexity O(]G|log® |G|) (for some
universal constant ¢), and this has already been proved for many diflerent classes of nonabelian groups [17, 45, 46, 7).

We present a divide and conquer strategy for computing nonabelian Fourier transforms, which encompasses many
known FFTs, and provides new fast algorithms in other cases. [t has two main components. First, we use a set of
factorizations of elements of G to write the matrix sum of products that defines the Fourier transform in terms of
a sequence of sums of products which are easier to compute. We call this technique separation of variables and the
correspouding algorithm is the separation of variables algorithm.

The second part of our strategy uses a subgroup chain for the group and the notion of a subgroup-adapted
set of representations. When computing with a subgroup-adapted set of representations the matrix multiplications
that occur in the separation of variables algorithm have a highly structured and sparse form and may therefore be
computed efficiently. We provide a thorough analysis of the structure of these matrices and operation count of the
corresponding matrix multiplications. The main tool used here is a form of Schur’s Lemma which determines the
structure of the representation matrix of a group element which commutes with a subgroup. The bulk of the new
computational savings of this paper come from this use of commutativity. We believe this is a new contribution to
the subject, although it does appear implicitly in the work of Clausen and Baum on the symmetric group [17] and
that of Rockmore on wreath products [46].

Our techniques are quite general. We obtain upper bounds for the complexity of the Fourier transform of any
group in terms of representation theoretic data. These bounds are expressed in terms of multiplicities of restrictioas
of irreducible representations from one subgroup to another. We thereby obtain a general procedure for bounding the
complexity of the Fourier transform on a group which enables us to find explicit bounds even when the representation
matrices are extremely complicated. Thus we derive both previously known and new results as part of a general
theory, instead of using ad hoc techniques.

This paper does not use the full strength of the separation of variables approach, but despite this we recover the
best known algorithms for many abelian groups, the symmetric groups, and their wreath products. Furthermore, we
obtain new fast algorithms for matrix groups over finite fields. A more detailed analysis of the computation improves
the results; that is the content of part II of this work, currently in preparation [39]. By dividing the work in this
way we hope to present general results of interest without obscuring them with the technical machinery needed for
more refined results.

We start the paper in section 2 with the definitions of Fourier transform, complexity, and adapted representation.
Then, in section 3, we explain the previously known technique of reducing to subgroups. Section 4 forms the
theoretical core of the paper; it contains the definition of the separation of variables algorithm, the analysis of matrix
products, and the general complexity results that we use in our examples. Following this, section 5 develops results
on the complexities of specific groups. We start, it by deriving the Cooley-Tukey algorithm in the context of finite
abelian groups, the results of Clausen and Baum [17] on the syminetric group, results on classical Weyl groups, and
the results of Rockmore [46] on wreath products. We then give algorithms for the general linear and unitary groups
over a finite field, and finish our examples with some results on classical Chevalley groups over finite fields. Finally
we summarize the consequences of this work and indicate the contents of part I1 [39] of this paper.

Our bounds depend on some explicit knowledge of the restrictions to a subgroup and often involve the number
of conjugacy classes in a group (i.e. the number of irreducible representations). For some of our results we need
asymptotics for these quantities. To avoid interrupting the flow of the paper we have postponed this discussion to
an appendix following the applications section (Section 5) of this paper.

Acknowledgement. Special thanks to Tom Hagedorn for explaining his interesting recent. work on multiplicities
for restricted representations. Thanks also to Herr Prof. Michacl Clausen for some very helpful conversations.

2 Background

2.1 Nonabelian Fourier transforms

The familiar discrete Fourier transform (DFT) of a finite set of evenly spaced data and its efficient computation
via the Cooley-Tukey fast Fourier transform [20] has a natural formulation in terms of the representation theory of



cyclic groups. This larger framework is necessary for posing the general problem of efficient computation for Fourier
transforms on finite nonabelian groups. What follows is a brief review of the basic concepts and definitions necessary
for the formulation of this problem. For a complete introduction to the representation theory for finite groups Serre’s
book [47) is a good reference.

Recall that a (complex) matrix representation of a finite group G is a map p from G into the group of d x d
invertible matrices with complex entries, GL4(C), such that

p(st) = p(s)p(t)

for every s, € . In this case d is called the degree or dimension of the representation p, and is denoted d, and
V = C¢ is called the representation space of p.

Two representations p; and p, are said to be equivalent if they differ only by a change of basis, i.e. if there exists
an invertible matrix A such that p;(s) = A~!p,y(s)A for all s € G. Notice that 1-dimensional matrix representations
are uniquely determined by their equivalence class, whereas multidimensional represeniations have an infinite number
of equivalent realizations.

A subspace W C V = C9 is said to be G-invariant if for all s € G, p(s)W C W. The representation p is said
to be irreducible if V = C? has no G-invariant subspaces other than the trivial subspaces {0} and ¥ and reducible
otherwise. Up to equivalence there are only a finite number of irreducible representations of any finite group — in
fact there are as many as there are conjugacy classes in the group. Irreducible represenlations are the fundamental
building blocks of all representations of a finite group. That is to say that any representation is equivalent to the
direct sum of irreducible representations, where the direct sum of two representations is the matrix direct sum of the
representations.

There are several equivalent definitions of the Fourier transform for a finite group [16, 10, 23]. The following is
the most convenient for this paper.

Definition 1 (Fourier Transform) Let G be a finite group and f be a complez-valued function on G.

i. Let p be a malriz representation of G. Then the Fourier transform of f at p, denoted f(p) is the matriz
sum,

flo) =3 Fs)e(s). (1)

1€G

i1. Let R be a set of matriz representations of G. Then the Fourier transform of f on R is the set of Fourier
transforms of [ at the representations in R.

Fast Fourier transforms or FFTs are algorithms for computing Fourier transforms efficiently.

The most important case of a Fourier transform occurs when the set R 1s a complete set of inequivalent irreducible
representations of . In this situation we shall simply refer to such a calculation as the computation of a Fourier
transform. A Fourier transform determines f through the Fourier inversion formula.

Theorem 2.1 (Fourier inversion formula) (see e.g. [22], p. 13) Let G be a finite group, f a complex-valued
function on G, and R a complete set of irreducible matriz representations of G. Then,

1 N -1 .
7(s) = @Edpzrnce(f(p)p(s ) 2)

where d, = dim(p).

Example: The “usual” discrete Fourier transform. The irreducible matrix representations of the cyclic group
Z/nZ ={0,1,...,n— 1}, are all one-dimensional. For each integer j with 0 < j < n — 1, define the representaticn
Cj, by ((k) = exp(z—'r"&) for k € Z/nZ. The set of such representations is a complete set of inequivalent irreducible
representations for Z/nZ and the corresponding Fourier transform is usually known as the discrete Fourter transform.
This computation is central to the subject of digital signal processing (cf. [43]).

The arithmetic complexity for computing a Fourier transform conceivably depends on the choice of basis for the
irreducible representations. The notion of the complexity of a finite group provides a classification of finite groups
according to the complexity of the most efficient algorithm to compute some such transform on the group.



Definition 2 (Complexity) Lel G be a finite group, and R any set of matriz representations of G. Let Tg(R)
denole the minimum number of operations needed to compute the Fourier transform of [ on R via a struight-line
program for an arbitrary complez-valued function f defined on G. Tg(R) is called the complexity of the Fourier
transform for the set R. Define the complexity of the group G to be

C(G) = min{TG(R)}
where R varies over all complete sets of inequivalent irreducible matriz representations of G.

The computational model used here is a common one in which an operation is defined as a single complex multipli-
cation followed by a complex addition.

Elementary representation theory shows that the sum of the squares of the degrees of a complete set of irreducible
representations of G is equal to |G| (see e.g. [47], p. 18). Consequently dircct computation of any Fourier transform
gives the upper and lower bounds

1G] < C(G) < IGP

where the lower bound reflects the size of the input. As mentioned in Section 1, the techniques introduced in this
paper show how structural properties of the group and a judicious choice of the set of representalions R, provide
significantly betier upper bounds for group complexity. When bounding T¢(R) it is often easier to work with a
related quantity, t(R), called the reduced complexity and defired by

tg(R) = Te(R)/ |G| (3)
This definition simplifies the statements and proofs of many following results.

Remark. Another common interpretation of the Fourier transform is as a change of basis for the group algebra
C[(], from the basis of point masses on G to a basis of matrix coefficients coming from a complete set of inequivalent
irreducible representations. When this point of view is adopted, the complexity of the Fourier transform can be
measured as the c-linear complexity of the associated change of basis matrix [8]. The c-linear complexity of a
group G is defined to be the minimum c-linear complexity of any such matrix for G. Assuming a choice of unitary
representations (which is always possible) the results stated here can all be interpreted as statements about the
2-linear complexity of finite groups.

2.2 Adapted sets of representations

As remarked earlier, there are an infinite number of matrix representations equivalent to any given multidimensional
matrix representation, all related by a change of basis. Even among equivalent representations the complexity of
the associated Fourier transform might vary. For this reason and others, subgroup-adapted sets of representations
have been found to be useful for efficiently computing Fourier iransforms. Use of these representations permits the
computation of a Fourier transform on a finite group, G, to be built up from the computation of several Fourier
transforms on a chosen subgroup, H.

To briefly explain the idea, let H be a subgroup of a group G. An H-adapted set of representations of G
has the property that when considered as representations of H via restriction, they may be constructed as matrix
direct products of representations from a fixed complete set of inequivalent irreducible matrix representations of
H. 1t is clear that for a function defined on H, the computation of the Fourier transforms at the (smaller) set
of irreducible representations is is computationally equivalent to computing the Fourier transform at the set of
restricted representations. As shown in [23] (which we explain in the next section), a Fourier transform on G always
can be factored as a sum over a set of matrix multiplications against Fourier trausforms at the restrictions of the
representations to the subgroup H. By requiring that the restriction is Hf-adapted the computation of the Fourier
transforms on F at the restricted representations is further reduced to several Fourier transforms on H.

Definition 3 (Subgroup-adapted representations) Let G be a finite group and R. be a sel of matriz represen-
tations of G and let H be a subgroup of G. If p s a representation of G, let p | H denote the representation of H
obtained by restricting p to . We say that R is H-adapted if there is a sel Ry of inequivalent irreducible malriz
representations of H such that the sel of restricted representations

(RyH)={plH|peR}

15 a matriz direct sum of representations in Ry



Notice that if R is f{-adapted, then the set Ry is uniquely determined by R. When H = G, the property of being
G-adapted allows us to reduce the computation of the Fourier transform of f on R to a Fourier transform on G at
a set of inequivalent irreducible representations.

Lemma 2.2 If R is a G-adapted set of matriz representations of G then Tg(R) = Te(Ra).

Remark. The FF1 algorithms presented in the following sections all assume the use of adapted sets of representa-
tions. The requirement of adaptability does not limit us, as any set of representations is equivalent to an adapted set
of representations. To see this, it is easiest to work with the related concept of an adapted basis (also known as a
Gelfand basis). A basis for a representation space is adapted to a subgroup if the matrix representation oblained by
expressing the representation in coordinates for this basis is also adapted. Adaptedness for a set of bases is defined
similarly. Adapted bases always exist and in fact, can always be constructed. Assuming that some complete set of
irreducible matrix representations of (' is known, then a change of basis can be computed so that the resulting set
of representations are H-adapted for any fixed subgroup H.

To outline one such construction, we collect several previously known results. Babai and Rényai [4] have shown
that a complete set of irreducible representations of a finite group (f can be constructed in polynomial time from the
multiplication table of . Further techniques from {4] or [5] provide efficient algorithms for decomposing represen-
tations into their irreducible constituents. By applying these results to the original set of representations restricted
to the subgroup H, a complete set of irreducible representations for A is then found. A change of basis Lo insure
that all representations of G are Ff-adapted i1s computed by the construction of certain projection operators. This
last step is detailed in the fairly recent book of Fassler and Sticfel [27] which also provides a wealth of examples of
uses of adapted bases in a variety of computational problems.

3 Coset decompositions and the Fourier transform

In previous work, adapted representations have already been used to speed the computation of Fourier transforms
by factoring the computation through a subgroup [23]. The idea is to use the coset decomposition of elements in the
group to relate a Fourier transform on G to Fourier transforms on a subgroup H. This may be thought of as the
simplest example of the separation of variables technique (cf. Section 4).

To explain, let H be a subgroup of G and Y C G be a set of cosel representatives for (G/H. Thus, G can be
factored as the disjoint union of subsets yH = {yh | h € H} for all y € Y. For any representation p of G we can use
the relation p{ab) = p(a)p(b) to produce a factorization of f(p) by

> f(s)els)

36G ('1)

o) > f(De()

yey telf

ll

f(p)

1

where for each y € Y, f is the function on H defined by f,(t) = f(yt) for allt € H. Consequently, with the notation
of (4) we can rewrite f(p) as a sum of Fourier transforms on H,

HOEDINOIACIN) (5)

yey

If we had computed the Fourier transform of f, on R | H for a complete set of irreducible representations R of &
and for all y € Y, then the individual Fourier transforms _ﬁ,(pi,]‘!) could be glued together by the ”twiddle factors™!
p(y), to build each f(p) and thus the complete Fourier transform of f on R.

In general, a restricted representation pl H is reducible, even when p is irreducible, and is equivalent to the direct
sum of a collection of irreducible representations of the subgroup H. The number of times any given equivalence
class occurs in this decomposition is independent of the actual decomposition and is called its multiplicity. If
gl H is not only equivalent to, but also equal to a matrix direct sum of irreducibles, and all equivalent irreducible

! The terminology " twiddle factor” comes from the usual signal processing situation in which & is an abelian group. Then all icreducible
representations are one-dimensional and the matrices p(y) are gimply roots ol unity.



representations that occur in this sum are equal, then f(pl H) can be constructed as a block diagonal matrix from
the matrices of the appropriate Fourier transform of f, on /7. In the language of Section 2.2, this is precisely ihe
condition that the set of representations R, is H-adapted.

The discussion above directly yields an algorithm for computing the Fourier transform of any function f on G
using any set of H-adapted representations of G:

(1) Choose a set of coset representatives Y for G/H, and for a fixed set R of H-adapted irreducible representations
of G, and for each y € Y compute the Fourier transform of fy, on Ry.

(2) For each p € R build the restricted transforms ﬁ,(pl HY). These will be block diagonal matrices with blocks
given by the individual Fourier transforms of f, at the representations of Ry.

(3) Compute the products p(y)ﬁ,(pj, H) and add them together.

To obtain an upper bound for the complexity of this basic algorithm it is useful to introduce some notation. Let
R be a set of matrix representations of G and let Y be any subset of G. For each p € R and y € Y let F(y, p) be an
arbitrary d, x d, matrix. Then we define

the minimum number of operations required

Mg(Y,R) := ¢ to compute the collection of sums, (6)
{Zyey p(W)F(y,p)lp € R}.
Similarly, define a “reduced” version of (6) by
ma(Y,R) := MEI(GY[—R) (7

Theorem 3.1 ([23], Proposition 1} Let H be a subgroup of G and let R be a complete set of inequivalent irreducilie
H -adapted matriz representations of G. Let Y C G be a set of cosel representalives for G/H. Then with the notation

of (6} and (7)

Te(R) < |% Ty(Ry)+ Ma(Y,R) (3)

or equivalently

ta(R) <tua(Ru)+ma(Y,R). (9)

A better bound may be obtained using the block diagonality of f;(pi H). We take this into account in Sections 4.2
and 4.1.

The inequalities (8) and (9) can be viewed as recurrences which bound the complexity of a group in terms of the
complexity of a subgroup. The recurrence may be iterated through a chain of subgroups for G. For example considar
the chain of subgroups

G=K,>Kn_1 > > Kp. (10)

We say that R, a set of irreducible representations of G, is adapted to the chain (10} provided R is K;-adapted
for each subgroup K in the chain. Using the notation of Definition 3, this implies that each Ry, is Kj-adapted for
j < i. Theorem 3.1 now generalizes immediately.

Theorem 3.2 Let G have the chain of subgroups (10) and for i =1,...,n, let Y; be a set of coset representatives
for Ki/Ki_y. If R is a set of malriz representations of G adapted to this chain, then

ta(R) < tro(Rio) + 3 mi; (Yi, Ry). (11)

i=1

When G = H x K is a direct product we get a special case of Theorem 3.1. The irreducible representations of
G may all be obtained as tensor products of those of H and K| and the product basis constructed by the tensoring
of a basis for the irreducible representations of H with those of K yields irreducible representations which are both
H-adapted and K -adapted, up to a relabeling of the matrix rows and columns (cf. [11], Satz 5.8). If R', R are scis
of matrix representations of representations of H and K respectively then let. R’ ® R” be the sel of matrix tensor
products of representations in R’ with those in R”.



Theorem 3.3 (i) If R, R' are sets of matriz representations of representations of H and K respectively, then
thxx(R@R) < th(R)+tk(R')

(ii) Let p be an irreducible K -adapted matriz representation of Hl x K. Then there are irreducible matriz represen-
tations, pg, px, of H and K respectively such that p = py ® px, as matriz representalions, and hence p 1s
also H -adapted.

(iii) Let R be a complete set of irreducible representations of H x K. If R is both H-adapted and K -adapted then
there are sets, Ry, Ry, of irreducible matriz representations of H and K respectively, such that R = R @Ry,
as sets of malriz representations.

(iv) Let R be a set of irreducible matriz representations of a finite group G with center Z. Then R is Z-adapted.
Therefore tf G = H x K is a product of groups and H s abelian, then R is H-adapled.

Proof: (i) is a result of Beth [11]. (ii} and its corollaries, (iii) and (iv), are simple consequences of Schur’s lemma
(Lemma 4.2).

QED

Theorems 3.1 and 3.2 suggest that one approach to minimizing an upper bound of t5, and hence Tg, is to
attempt to efficiently evaluate sums of the form EyE)’ p(y)F(y), where the [7(y) are d, x d, matrices. Towards this
end several possibilitics are evident. The subgroup chain can be varied, as can the choice of coset represenlatives, so
as to obtain matrices p(y) with useful computational properties. Another idea is to attempt to use the properties of
the matrix elements of p(y) as special functions on the set Y. In this paper we explore the first approach.

Convention. Almost all of the results in remaining sections depend only on the adaptability of the representations
and not the particular choice of adapted representation. For this reason explicit reference to a fixed R is often
superfluous and we suppress this in much of the notation (e.g. we will write tx for tg (Ri) and mg (Y;) for m(Y, Rk)).

4 The main idea - Separation of variables

In this section we present the main new computational techniques for efficiently compuling nonabelian Fourier
transforms. We start by generalizing the approach of Section 3 to the separation of variables algorithm. This
algorithm reduces the computation of a sum of products to other, potentially smaller, repeated sums of products.
We then give a detailed analysis of the complexity of matrix multiplication when the matrices have a special structure
-related to a subgroup-adapted representation. These results on matrix multiplication produce the bulk of the new
computational savings presented in this paper. The key idea here is that if representations are adapted to a subgroup,
then any element in the centralizer of this subgroup is, by Schur’s Lemma, guaranteed to have a sparse representation
matrix. If coset representatives can be factored as products of such elements, then multiplication by the representation
matrices of these coset representatives may be performed efficiently. When these elements are also contained in a
proper subgroup of the group for which the representation remains adapted, the representation matrices are even
sparser. FFinally, we look at the effect of using a subgroup chain in this setting and present some general results on
the complexities of our algorithms.

4.1 Sums of Products — the separations of variables idea

Let G be a finite group, ¥ a subset of G, p a matrix representation of G, and for each y € Y, let F(y) be a d, x d,
matrix. In this section we focus on a method for computing sums of the form

> pW)Fy). (12)
yeyY

This is a general setting which encompasses the algorithmic issues which we treal in this paper. For example, if we
take ¥ = G and F(y) = f(y) -Idpz, for some complex-valued function, f on (¢, then the sum (12) is f(p). If we let

2For any positive integer d, I4 will denote the d x d identity matrix.

|



Y be a set of coset representatives of a subgroup, H < (, and F(y) = f;(le), where fy(h) = f(y-h)lorye ¥
and h € ff, then we are precisely in the setting of Theorem 3.1. Thus the results of this section may be applied both
directly to the computation of Fourier transforms and indirectly in conjunction with the methods of Section 3.

We shall now define an algorithm for computing (12), which we call the separation of variables algorithm. [ts
definition depends on a choice of a set of words X, in elements of G, such that the associated set of group elements
obtained by multiplying out the formal products is equal to Y. Let S denote the set of group elements which occur
as symbols in the words of X, together with the identity, which we denote as e. For simplicity, assume that X has
the same cardinality as Y. Thus, the words in X may be thought of as a choice of factorization for the elements of
¥ in terms of S. In practice S is usually choosen before X.

Let 4 be the maximum length of any word in X. To avoid the need for special conventions to deal with the empty
word, it is useful to assume that all words in X have length %. This can be achieved by “padding” on the left with
the identity if necessary. Call the resulting set of words Xj.

For each i define X; to be the set of subwords of Xy obtained by removing the rightmost 7 symbols from each
word of Xp. Note that X; is a set of words of length ¥ — 7 in S. Let f be a complex-valued function on ¢ and p
a matrix representation of G of degree d. Tor w in Xy define Fo(w) = f(w)ls4 where f(w) is the value of f on the
group element represented by w and Iy denotes the identity matrix of dimension d = d,. The separation of variables
algorithm proceeds in ¥ steps, computing for each ¢ from 1 to v, the recursively defined matrix-valued functions Fj
on X,',

Flw)= Y p(s)Fici(ws) (13)

sESwEEX

for any win X;. The algorithm completes by computing £, which is, by the following lemma, the constant function
whose value is the sum (12) with domain Xy, consisting of only the empty word.

Lemma 4.1 The separation of variables algorithm described above computes EyEY p(¥) Fly). Le., with all notation
as above
Fy=Y" p(y)F(y).
yey
Proof: We show by induction that for 0 < ¢ < v,
Y pw)Fi(w) = pw)F(v) (14)
weX; yey

To start, note that (14) holds for i = 0 by the definition of Xy and Fy. Now let 1 < < v, and assume the induction
hypothesis for i — 1. Then by (13)

> plw)Fi(w) > p(w) > plsic1)Fir(wsizy)

weXi weEX; wei1€EX i

Z plwsi—1) Fi~1(ws;_q)

wai—1EX;_

S p(w) Fema (),

weXN;—,

When ¢ = v the only word in Xy is the empty word, and F, = p(e}F,. This proves the lemma.
QED

The expression (13) shows the recursive nature of the separation of variables approach, as this sum may be
rewritten in the same form as the original problem (12): by writing

Fi(sy-osi)= 3. p(s)Fici(sy...5i+8) (13)

sEX (a5 ai)

where Xi_1(sy---5) = {s € §:sy---si5 € Xj_1}, we reduce the original problem to vy subproblems of the same
form. Hence we may apply the separation of variables algorithm to any of these subproblems, provided we first



choose a finer factorization of the elements X;_;(sy---s;). The separation of variables algorithm is the “divide”
portion of a divide and conquer strategy for computing Fourier transforms; it reduces the computation of sums of
products to the computation of other sums of products. Its construction only relies on having chosen factorizations
for elements of the set Y. On the other hand, the “conquer” part of our strategy, which we treat in Section 4.2, uses
subgroup chains and adapted bases.

It is easy to see how the separation of variables algorithm leads to the results of Section 3. Fix a subgroup # < G
and a set of coset representatives, Z, for G/H. Then let Y = G, and for any y € Y, let F(y) = f(y) - [4,. Let X be
the set of all words, z - A, of length two with z € Z and h € H. Then for z € Z we have Xp(z) = H, X1 = Z, and

Fi(z) =3 p(h)f(z - h) = Fa(p L H). (16)

hell

When i = 2 we obtain

Fy=flp) =3 plz)Fi(2) (17)
IEZ

and the separation of variables algorithm for computing f{p) is exactly the algorithm considered in Section 3.

Separation of variables may be applied to the computation of both of the sums (16) and (17) by using factorizations
of elements of H and of elements of Z respectively. The resulting composite algorithm is precisely the separation of
variables algorithm for the set of words obtained by taking pairwise products of the padded words (i.e. the elements
of X) used in both the algorithms for computing (16) and (17). This is a general property of the separation of
variables technique; using it recursively is equivalent to using a single algorithm for a different set of words.

The applications of Section 5 will always proceed by using coset representatives to obtain a coarse [actorization
of group elements and then refining this factorization by factoring the coset representatives themselves,

4.2 Products of pairs of matrices

The results introduced in Sections 3 and 4.1 have focused on rewriting the Fourier transform as a recursively structured
summation of matrix products. This is the “divide” component of our divide and conquer strategy. In this section
we consider conditions that will ensure that a matrix product involving p(a) for a representation p and element a of
G may be computed efficiently. This is the “conquer” portion of our divide and conquer strategy.

The main tool we use is a form of Schur’s Lemma. This sinple result pins down the structure of intertwining
matrices for a given matrix representation.

Lemma 4.2 (Schur) (see e.g. [47], p. 18} Let K be a subgroup of G and p a K-adapted represeniation of G such
that p=m @ - - & ---Bn D--- D1 whereny, ..., n are inequivalent irreducible malriz representations of I,
and 7; occurs with mulliplicity m;. Then the centralizer of the collection of matrices p(K) is

(Maty,, (C)® 4, ) & @ (Maty, (C)© Iy, ) (18)

where I, denotes the k x k identity matriz, @ the usual tensor product of matrices, and Mat,,(C) is the algebra of
n X n matrices.

If a € (7 in the centralizer of a subgroup &', then its representation matrix, p(a), is in the centralizer of p(KX).
If p is a K-adapted representation, then p(a) has the form 18 after some fixed permutation of rows and columns.
We interpret this as saying the matrix p(a) is sparse and as such can be multiplied efliciently against an arbitrary
dp x d, matrix,

Corollary 4.3 Let all notation be as in Lemma 4.2, and let a be a group element lying in the centralizer of K. Then
for an arbitrary d, x d, matriz F, the product p(a)F" can be computed in at most d, (3; dy,m?) operations.

Proof: The bound comes from considering the number of nonzero entries of the matrix p(a). There are at most
3, dy;m? nonzero entries and each nonzero entry occurs at most d, times — one for each column — in the expression
for the matrix product p{a)F.

QED



When a is in a proper subgroup of GG, Corollary 4.3 can be improved. To explain, let. / > K and let p and n be
representations of A and K respectively. Define

M(p,n) = the multiplicity of  in pl K. (19)

Also define
M(H,K) = n;zi.’xM(p, 1) (20)

as p and 7 run over complete sets of irreducible representations of /# and K respectively.

Corollary 4.4 Let H > K be subgroups of G, R a complete set of irreducible representations of G adapted to the
chain G > H > K, and suppose that for each p in R, F(p) is a d, x d, matriz. Let a be in the centralizer of K in
H. Then the set of matriz products {p(a) - F(p)lp € R} may be computed in at most |G} - M(H, K) operations.

Proof: TFor any p in R, M(/, K) is an upper bound for the number of nonzero entries in any column of p(a).
Hence the number of operations needed to compute any entry of the matrix p(a) - F(p) is bounded by M(H, K).
There are dﬁ such entries so the computation of this matrix product takes M(H, K)d:ﬁ operations. Summing over
all representations and using the relation 3~ .5 d2 = |G| gives the result.

QED

For most purposes the upper bounds of Corollaries 4.3 and 4.4 are all we require to get good bounds for group
complexity. However, in some situations a more detailed analysis of the matrix multiplications is necessary. We shall
now consider the multiplication of two matrices which are block diagonal according to some subgroup restrictions
and also have the block scalar form (18}, though possibly for different subgroups.

To state these results, let ¢ > H > K, and let p be a representation adapted to this chain. We introduce the
notation

Endg(p) H) = spang (p(H)) N Centralizer (p( X))

so Endg(pl H) is the algebra matrices with block diagonal form according to p | H that also have the form (18)
up to a fixed permutation of rows and columns. In particular, if @ € H is in the centralizer of K, then p(a) is in
Endg (pd H).

Suppose Fi € Endg,(pl Hy) and F» € Endg,(p| H2), where the subgroup chains H; > K, and H; > K> both
occur as subchains of some fixed subgroup chain of G for which p is adapted. We wish to examine the complexity
of the matrix multiplication Fy - /2. There are a number of special cases to consider corresponding to the different
possible orderings of the subgroups H,, K, Hg, K2, in the subgroup chain. By exchanging F; and 3 the number
of cases under consideration is reduced from six to three. We shall consider one of these cases in detail and then
indicate the adaptations needed to treat the other two.

Theorem 4.5 Let Hy > H, > Ky > K2 be a chain of subgroups of G, and let p be a representation of G adapted to
this chain. Suppose that for i = 1,2, F; € Endg,{p| H;). Then the malriz multiplication Fy - F3 can be computed in
no more than

Z Mpn,, pr, M (P, pE )M Py, P1) M (PHS, P O)M (PR, PKS) (21)

OH| \PHLPK PR,

scalar operations, where for L € {H,, H2, K1, K2}, the index p;, runges over all irreducible representalions of the
subgroup L (up to equivalence) having nonzero multiplicity in pl L.

Proof: Both matrices Fy and I%; belong to Endy(p) #1,) and are therefore block diagonal with blocks corresponding
to the restriction of p to Hy. By considering the matrix multiplication one block at a time we may restrict ourselves
to the case where H; = (G and p is an irreducible representation of (7. Even with this reduction, the proof involves
some tedious indexing of the rows and columns of an adapted representation, so to keep the length of our formulae
to a reasonable size, we shall restrict ourselves to the case K9 = 1; the general result is obtained by an analogous
argument. So from now on we assume that Gy, = G = Hy, Gs = Hy, G3 = K, and G4 = Ky = 1.

In this situation 1t is useful to index the rows or columns of the chain-adapted representation p by a 5-tuple,
A = (A2, p2, A3, p3, A1), where for i = 2 or 3, p; is an irreducible representation of G; occurRing as a matrix direct
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summand of p;_; | Gi, where py = p and A; is a variable indexing the particular occurrences of p; as a matrix
direct summand of p;.;. When i = 4, A4 simply indexes a basis of p3 of dimension M(p3,1), where 1 is the trivial
representation of the trivial group. Said differently, A, indexes the blocks of p| Hs which contain copies of ps and
Az indexes the blocks of ps | Ky which contain copies p3. By Lemma 4.2 the entries of a matrix /) € Endg (plG)
have the form

[FI]A'AI =h ('\2: ,21p21p121)‘3:)"3! p3) ! JPJ,PQJAMA:

for some complex-valued function fi, and the entries of a matrix, F2, in End;(p) H) have the form

[FQ]A',‘\' = JAQ,X; ° Jpg,p;fZ(pZ» ’\3) /\S:PS: p:ﬂ,; /\4: ’\:1)

for some complex-valued function fz. Therefore, the expression for the matrix product entry [Fy - Fa], 4, is

ZII ()‘21 XZ! P2:P’2: ’\3"\ga P:}) ' f2(p’21 ’\gr ’3“03: P:’-;;/\-h ’\fl) (22)
AY

The variables appearing in the expression (22) range over values according to Diagram 1.

P2

Diagram 1.

In Diagram 1 a directed edge ,B(A—a indicates that § 1s an irreducible representation which occurs as a matrix direct
summand of the restriction of «, and that A is a variable indexing the copy of # in this restriction. The number
of operations required to compute the matrix product I - Fy is then bounded by the number of distinct ways of
assigning values to Az, A5, pa, ph, As, Aj, AY, p3, pi, Aq, Ay consistent with the conditions represented by Diagram 1.

To count this number, fix the two representations g} and p3 and count the number of ways, if any, that the
remaining variables may be assigned values in a manner consistent with the diagram. These variables may be
collected into five sets corresponding to the five edges in Diagram 2; each set consists of the variables thatl label the
path in Diagram 1 corresponding to the edge in Diagram 2.

P3

1
Diagram 2.

Pa
These sets of variables are {Az, p2, Az}, {Ay}, {A5}, {A4}, and {X], p4, Ay}, For a given choice of p} and ps, the
choices of values for variables in different sets are completely independent. Hence the choice of A} is independent
of the choice of Aj. Now consider the set of variables, {A2, p2, A3} which corresponds to the edge from p3 to pin
Diagram 2. Each different way of choosing values of these three variables, consistent with Diagram 1, corresponds
to a choice of a copy of p3 appearing as a matrix direct. summand of the restriction of p to (73, and hence there are
M(p, p3) possible choices. Similarly, the number of ways of choosing values for the variables in the set corresponding
to any edge directed edge from o to § in Diagram 2 is M(a, ). Therefore the total number of ways of assigning

values to all variables in Diagram 1 is
>[I Me.p) (2%)

Po.Pa atf

11



where the product in (23) is over all directed edges from 8 to « in Diagram 2. This is precisely
Y Mip, p3)M(ph, 1)M(p, po) M(p}, p3) M(ps, 1)
P40
Substituting prr, = p, prr, = ph, pr, = p3 and pg, = 1 proves the theoremn.
QLD
The two other cases we need consider are

Hy > Hy 2 Ky 2 K

and
Hy > Ky > Hy > K.

The remaining three cases follow by symmetry. Extending the proof of Theorem 4.5 to these two other cases is
strictly routine; the important difference is that other diagrams must be considered. For example, in the case
Hy > Hy > Ky > Kq, Diagram 2 must be replaced by

P2 P3

P1 P4
Diagram 3.

but the procedure for obtaining the complexity bound from the diagram is the same.

Theorem 4.6 Let Hy > K, and Hy > K3 be subgroups of (i occuring in some chain of subgroups fo which the
representalion p is adapted. Suppose thal for i = 1,2, F; is a matriz in Endg,(pl H;).

(i} When Ho > Hy > Ky > K», the malriz mulliplication Fy - Fy can be compuled in no more than

Z Mpn, pr )M prz,; P )M (pHy, pr )M (pH,, PR )M PRy PRS) (29)

PHY \PH3 PK L PKy
scalar operations.

(ii} When H, > Ky > Hy > K3, the matriz multiplication I - Fy can be computed in no more than

Z M(PHI,PKl)zM(PHg:PKa)Z (25)

PG PG 1PG3 PG
scalar operations.

For L € {H,, Ha, K1, K2}, the inder pr in the above sums ranges over all irreductble representations of the subgroup
L (up to equivalence} having nonzero multiplicity in p| L.

Thus, Theorems 4.5 and 4.6 give exacl operation counts for the appropriate matrix multiplications. Tt is useful
to provide some notation for these counts.

Definition 4.1 Let H, > K| and Hy > K3 be a chain of subgroups of G and let p be a representation of G. Define
C([); Hl, .Kl; 11"2, 1{2) to be

1. the sum (21) when Hy > Hy > Ky > Ko,
2. the sum (24) when Hy > Hy > K1 > K2, and

3. the sum (25) when Hy > Ky > Hy > K.

12



We extend this definition to include the three other possible arrangements of Hy, H,y, K1, K in the subgroup chain,
by the symmetry condition
Clp; Hy, Ky; Hay Ko) = Cp; Ha, Ko Hy, K))

It is clear that C(p; H1, K1; Ha, K3) is an upper bound for the complexity of the matrix multiplication of a matrix
in Endg, (p) A1) with a matrix in Endg,{p| H3), whatever the order of the subgroups appear the subgroup chain.
The next theorem gives another useful bound.

Theorem 4.7 Let H, > Ky and Hy > Kq be subgroups of G occuring as subchains of some chain of subgroups to
which the representation p is adapted. Let G, > Gy > G3 > (4 be the rearrangement of the H; and K; into a single
chain. Then

Clp; Hy, Ky; Ha, K3) < M(G2,Gs). Y Mlpa,, pa,)*

PG, PG,

where pg, ranges over inequivalent irreducible representations of G having nonzero multiplicity in p, and pg, ranges
over inequvalent irreducible representations of (G4 having nonzero multiplicily in pg, .

Proof: For simplicity we only consider the case when A, > Hs > K > K; all the other cases use a similar line of
proof. First note that if p is a representation of G, px is a representation of a subgroup of G, and I is a subgroup
of G containing K, then

Mip,pi) =Y Mlp, prr)M{pn, pic)

PH

By Theorem 4.6 we may bound C(p; Hy, K; Ha, K2) as follows

Clp; Hy, K13 Hp, Ka) = ) M pu,, prc )M pitss pic )M pnty s prs )M (puy, pic )M (pxc,, prca)

PH PHLPK PR

< M(Hy Ky D | 3 Mlpay, pu)MUpms,pxa) | | D0 Mlpn,, pr )M (px, s pxa)
PH11PKg \PH3 T‘hOK1

= M(Hy, K1) Y. Mlpn,, px,)
PHlpPKQ

QED

The diagrammatic techniques introduced in the proof of Theorem 4.5 inay be generalized and used to prove even
better complexity results for finite groups than those given in this paper. This approach to Fourier transforms on
finite groups is explained in the sequel [39]. In particular, an appropriate setting for discussing multiplication of
block scalar matrices is a tower of multi-matrix algebras (cf. [34]).

4.3 Complexity of the algorithm

We now combine the ideas of Sections 4.1 and 4.2 to obtain some general upper bounds for the complexity of a
Fourier transform. Assume all notation is as in Section 4.1, so that for a fixed subset ¥ C &, X is a set of words
from a subset S C G, whose products equal Y, Xy is obtained by padding the words of X with copies of the identity
element on the left until they all have the same length -, and X is obtained from X, by deleting & symbols from
the right of each word. Furthermore, let X* denote the set of words obtained from words of X by deleting the vy — i
leftmost symbols.

Let K,, > --- > Ko be a chain of subgroups of G, and assume that p is adapted to to this chain. Given any
g € G, define the indices ¢ (g) and ¢~ (g) by

Ke+(gy = the smallest subgroup in the chain containing g and,

(25)

K.-(qy = the largest subgroup of K +(g) in the chain which commutes with g.
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So p(g) € Endg , (pd K- (g)). Let bt and by be such that F(y) € Endk (pl Kbg) for each y € Y. Then for any
i between 0 and ¥ we let ’

b = max{b},ct(g): g € X'}

b = min{by,c(9) 19 € X'}
By Definition 4.1 the number of operations needed to perform the matrix product p(so) - Fi—(sn - - -5)) appearing

in the algorithm (13) is no more than C(p; Ket(s0); Ke-(s0); K+ K= ) operations.
=1 =1

Theorem 4.8 Let p be ¢ matriz representation of G which is adapted to a chain of subgroups, K, > - > K. Let
Y C G and for each y €Y let F(y) € Endk , (pl K-). Then the sum (12) may be calculated in less than
o 0

=1
Yo Y Clpi Keteny Kem(uo) Koy Ky) (27)
k=0 -n”"ge-‘k

ppEe

scalar operations.

Proof: By the definition of C' (Definition 4.1) and Theorem 4.5, the sum (27) is an upper bound for the number
of scalar operations needed for all the matrix multiplications occurring in the separation of variables algorithm. We
now have to include the matrix additions as well. The proof of Theorem 4.5 shows that for each nonzero entry
of the matrix products, the number of scalar multiplications used in the computation of that entry is one more
than the number of scalar additions. When we include the scalar additions used to compute the matrix additions
occurring in our algorithm we sec that the total number of additions used is still no greater than the total number

of multiplications. Hence the complexity of the algorithm is the same as the total number of multiplications and is
bounded by the sum (27).

QED

We now give several simpler bounds that are direct corollaries of Theorem 4.8 and the results of Section 4.2.
For this, it is useful to introduce the multiplicity function M, defined on G. For a fixed chain of subgroups
G> Ky, > ---> Ky define

K, K- if 1
M(g) ={ M( c+(g0)1 ‘e [g)) 1 gf ) (23)
ifg=1.
For any subset S C G define
M(S) = mea:qu(s). . (29)

Corollary 4.9 Let R be a complele sel of inequivalent irreducible malriz representations for (G, adapted to the
subgroup chain K, > --- > Ry. Let H be a subgroup of (i, Y a complele set of cosel representatives for G/ H, and
X a set of factorizations of elements of Y in terms of elements from a subset S C . Let v be the mazimum length
of any word in X. Then

T—1
YT Miso) (30)

k=0gs,.50eX,

-1
M(8) [Z n|] (31)

k=0

m(R,Y, H)

IA

IA

where X, is obtained from X by deleting k elements from the right of each word and then deleting all occurrences of
the identity as symbols in these words.

Proof: This is an immediate consequence of Theorem 4.8, Theorem 4.7 and the definition of M.

QED



Remarks. 1. Applications. Corollary 4.9 is the primary result for the applications of Section 5. It has the virtue
of simplicity, but when R is {-adapted, it does not use the block diagonal form of the Fourier transforms of the
restricted representations on ff. To take this into account, Theorem 4.8 must be used direcily.

2. General results. Corollary 4.9 might be useful in the search for general results on the complexity of Fourier
transforms on any finite group, possibly improving on the general bounds of Clausen [19], or those of Diaconis and
Rockmore [23]. As a first step in this direction, let g s(y) be the minimum non-negative integer, I, such that y is
in the same coset of G/H as some product of [ elements of S. The generatling function Pgyyy (1) = Zye}’ a9 g
independent of the choice of coset representatives and is sometimes called the Poincaré polynomial of G/H with
respect to S. Note that pIG/II,S(l) = 2 yey {n,s(y), is the sum of the lengths of minimal coset representatives for
G/H.

Corollary 4.10 Let R be a complete set of inequivalent irreducible matriz representations for G, adapted to the
subgroup chain Kp > .- > Ko. Let H be a subgroup of G, and Y a set of minimal cosel representatives for G/ H,
relative to the subset, S of G. Then

’n('R‘rYrH) S M(S).pé}'/H,S(l)
G

H

IA

M(S).y.

where v is the mazimum length of any element of Y in S.

Notice that this is a general upper bound, depending only on a set of generators for a finite group, and a subgroup
chain.

3. Adapted diameters. In order to use Corollary 4.10 in conjunction with Theorem 3.2, we must assume that for
each 7, a set of coset representatives for K;/K;_; can be expressed in terms of SN K;. In this case we say that S is
a generating set for the chain of subgroups (32).

G=FKp> > Ko (32)

When the subgroup chain contains both the whole group, G, and the trivial subgroup, 1, a generating set for the
chain is called a strong generating set for G with respect to the chain of subgroups (32). Strong generating sets
arise naturally in the context of many algorithmic issues in computational group theory [48]. In particular, fast
algorithms for their construction for stabilizer subgroup chains in permutation groups are a cornerstone for many
important techniques [2].

Using the bounds of Corollary 4.10 in Theorem 3.2, we obtain an upper bound on the complexity of GG in terms
of the quotient sizes |K;/K;—1|, multiplicity data M(S) and combinatorial data in the form of the maximum lengths
needed to construct the coset representatives at each level. This last aspect is nicely encapsulated in the notion
of the adapted diameter of a group with respect to a generating set for a given chain of subgroups (cf. [40] for
details).

4. Choosing the generating set or subgroup chain. The complexity bounds of Theorem 4.8, Corollary 4.9,
and Theorem 3.1 only depend on the choice of subgroup chain and on the choice of factorization for group elements,
e.g. they do not depend on the choice of a particular adapted basis. We now discuss some ideas which guide these
choices with the aim of minimizing the complexity (27) of the separation of variables algorithm.

For a lixed factorization, refining the subgroup chain always decreases the bound (27). This is because the
complexity for the matrix product, C(p; H1, L1; Hz, L3), is decreased if we increase L; or Lo or if we decrease H,
or Hy. Refining the subgroup chain therefore decreases C(p; Kc+(a4)s Ko (s0); Kb?.l‘Kb.-Zl)' Of course, this is also
changing the original problem, as we must assume our representations are adapted to the new subgroup chain, so
that Theorem 4.9 applies; this is an additional hypothesis.

It is conceivable that for a given group, a natural chain of subgroups may be given; in this case we are faced with
the problem finding a factorization of group clements that makes ihe separation of variables algorithm efficient. If
we plan to apply separation of variables recursively through the chain,

G=Kn>Knoy> 2> Ko=1, (32)



then the factorization we use must be a refinement of a factorization using coset representatives, and the set of
generators, S, for the factorization is necessarily a strong generating set (cf. Remark 3).

We now construct a strong generating set with minimal M(S). For any subgroups H > L in the subgroup chain,
this set will also minimize the quantity

r&anC(p; Ket(s), Ke=(a); H, L) (24)

over all strong generating sets for the chain (33). We start by defining §(0) = Ky = 1, which clearly solves this
problem for the trivial group. Then we define §(¢}) = S N K; inductively by

S(i) = S(i — 1) U (K; N Centralizer(K;))

where j is chosen to be maximal with respect to the property that S(i) generates K;. By induction, S(¢) is a strong
generating set for the chain K > --- > Ry and S = S(n) minimizes both A(5) and (34) amongst strong generating
sets. Note that we do not need to calculate any restriction multiplicities to find this generating set.

Minimizing M(S) places a restriction on the generators which increases the lengths of factorizations. In practice
it seems that the advantage of smaller multiplicities outweighs the disadvantage of long factorizations.

The converse problem is to construct a subgroup chain from a generating set so the complexity of the separation
of variables algorithm is small. Suppose now, that we are given a minimal generating set, S. Then an arbitrary
ordering of elements of S as sy, ..., s,, defines a subgroup chain via K; = {s1,...5;). It is clear that ¢*(s;} =i for
this subgroup chain. If we draw a graph with vertices corresponding to elements of § and edges between elements
that do not commute then ¢~ (s;} can be read straight from the graph as the largest 7 such that s; is not connected
to any of s1, ...s; by an edge. Ordering S corresponds to labeling the vertices of this graph with numbers from 1
to n. Finding an ordering of S such that the numbers c*(s;) — ¢~ (s;) are minimized is related to the problem of
drawing the graph in a form which is “close” to a chain.

5 Applications

The resulls of Seclion 4 may be immediately applied to derive uselul upper bounds for the complexities of many
families of finite groups. We first show how our general machinery reobtains the best known FI'T’s for some abelian
groups, the symmetric groups and their wreath products. We then move on to derive new results for some of the
families of classical groups over finite fields as well as their various generalizations.

Our usual approach is via Corollary 4.9. Thus in each situation we require a chain of subgroups with accompanying
sequence of coset representatives. For families of groups which nest naturally (e.g. symmetric groups, general linear
groups) the subgroup chains contain the nesting and we get a recursive description of the algorithm. To take full
advantage of Corollary 4.9 the coset representatives should admit a factorizalion in terms of a generating set such
that the value of A on the generators is small.

5.1 Finite abelian groups

Applications in digital signal processing and data analysis motivated the need for a fast cyclic discrete Fourier
transform (cf. the example of Section 2.1) and more generally a fast Fourier transform on any abelian group [26, 43].
Application of Corollary 4.9 immediately gives us some well-known results bounding the complexity of the Fourter
transform on any finite abehan group.

Theorem 5.1 Let A be a finite abelian group whose order has the prime factorization |A| = pi* .. .ply. Then for
any complete set of irreducible representations R of A,

Ca <Ta(R) < VAID  rips.
i=1

Proof: Since A is abelian, the irreducible representations of A are all one-dimensional. Thus, the unique complete
set of irreducible representations is adapted with respect to any chain of subgroups of G. Let S = A be the generating
set for A. As all representations of A are one-dimensional, M(S5) = 1 with respect to any chain of subgroups. Let
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A=K, > .- > Ky = {1} be any chain of subgroups ol A. For a fixed ¢ let ¥; be any complete set of coset
representatives for K;/K;_y and let X = Y; be the set of trivial factorizations of elements of Y; (i.e. each element
in Y; is represented by the one element word consisting of itself). Clearly, X; = # so that m(Rk,, ¥;, Ki_1) < [¥3],
by Corollary 4.9. Applying Theorem 3.2 then yields

z l[f,‘l
tg < — .
o IRl

(35)

The right-hand side of (35) is a sum of divisors of |A| whose product is equal to |4|. Such a sum is minimized
precisely when each term |K;|/|K;_1| is prime. This type of chain can always be found in an abelian group and any
chain of subgroups of A may be refined to such a chain. Hence the theorem is proved. .

QED

This is essentially the derivation of the well-known Cooley-Tukey FF'T [20]. Note that when |A| = 27 we find that
C(A) < n-2™ = |A|log, |A]. For primes greater than 2 other techniques have been discovered for further optimizing
the discrete Fourier transform (see e.g. [26]). For any abelian group A, C(A) < 8 [A|log, |A| {cf. [9]).

5.2 FFTs for S, and other Weyl groups

Applications in data analysis as well as the analysis of certain random walks related to card shuffling (cf. [2%])

have motivated recent work related to FFT’s for the symmetric group. For a survey of some approaches to these

algorithms see [17]. In this section we show how the most efficient known algorithm due to Clausen (cf. [17]) can be

rederived by our general approach and then show how our techniques extend directly to the other Weyl groups.
For the symmetric group we use the natural chain of subgroups

Sp>S1> > 5 = {1} (36)

where Sy is identified with the subgroup of S, of elements fixing each of the points £+ 1,...,n. This chain has a
natural generalization in the other Weyl groups.

Theorem 5.2 Let S, denote the symmetric group on n elements. If R is any complete set of trreducible represen-
tations of S, adapted to the chain of subgroups (36). Then

(n+4 1ln(n-1)

C(Sn) <T5.(R) < 2 -nl. (37)
Proof: Take as generating set the pairwise-adjacent transpositions, S = {f2,...,t,}, where t; denotes the trans-
position (7 — 1, j). Note that
t; € S; and
t; commutes with Sy for & < j — 1.
Thus, in the notation of Section 4.1
Ketryy = 5; and

Ke-@yy = Si-2

Furthermore, it is easily derived from the combinatorics of Young tableaux and “Young’s rule” (cf. [32], p. 51) that
the maximum multiplicity occurring in the restriction of any irreducible representation from Si to Si_p is 2, i.2.
M(Sk, Sk—2) = 2, so that M(L;) = 2. Lastly, note that coset representatives for S,/S,_; of minimal length in the
generating S are given by the elements

Y o= {Litntacitn, . tae o tn)
{Lirn=1),(n=2n—-1n),...,(1 - n)}

If we let X be the corresponding set of words, then in the notation of Section 4.1

‘Xk = {I'n—k)' "’t2' : 'tn—k}
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and the longest product in X has length v = n — 1. Therefore

-1
TZ|X,,|= nn 1)
k=0 2

Plugging this data into Corollary 4.9 gives the recurrence tg, < ts _, + n(n — 1) which is easily iterated to finish
the proof.

QED

Remark. The bound of Theorem 5.2 is on the order of n!{log, n!)3. In this case the representations given by
Young’s orthogonal form or Young’s seminormal form (cf. {32], p. 114) are adapted for the chain of subgroups (36)
for S,. The resulting algorithm ts the best known for computing a Fourier transform on S, [17].

The above discussion for S, generalizes naturally to all Weyl groups. The pairwise adjacent transpositions
correspond to simple reflections, and the chain of subgroups (36) is the corresponding chain of parabolic subgroups.
I’rom this point of view the coset representatives we use are quite natural: they are the minimal coset representatives
for the chain of parabolic subgroups, and their factorization comes from the Bruhat order by taking subwords of the
unique minimal coset representative of maximal length. In this language ("The book [35] is a good reference for the
basic material) the generalization of Theorem 5.2 to the Wey! groups B, and D, is straightforward.

We shall consider the chains of parabolic subgroups

Bn>Bn—1 >y

38
Dy >Dpcy > -+, (38)

and the generating sets consisting of the simple reflections. The minimal coset represeniatives with respect to (38)
are well-known as are explicit expressions for the corresponding Poincare series. There are explicit formulae for the
multiplicities of the restrictions of the classical Weyl groups to any parabolic subgroup in terms of the Littlewood-
Richardson coefficients .

The results we obtain for the groups B, and D, are superseded by the results on wreath products in the next
section (cf. Theorem 5.6). However, the techniques used here illustrate the combinatorial methods used in .our
construction of FIPI's on Chevalley groups (cf. Section 5.6).

Theorem 5.3 Consider the Weyl groups By, and D,. If Rp and Rp are complete sets of irreducible representations
of By and D, respectively, each adapted to the appropriate chain of subgroups (88). Then

(n+ 1n{dn —1)

(0) C(Bn) < Ts, (Rp) < . 1Bl
and
(i) R(D) < Tp,(Rp) < 22t Unln=1) 5

3

Before we prove Theorem 5.3 we state some lemmas which provide the data needed to apply Corollary 4.9 to this
situation,

Lemma 5.4 (i) The mazimum multiplicity occurring in a restriction of any irreducible representation of S, to
Sn—1, Bn to Bu_y, or Dy to Dy #s 2, i.e. M(Sy, Sn-1), M(Bn, Bn-1), M(Dy, Dy_y) < 2.

(i) The mazimum dimension of a representation of D3y = Sy is 3.
Proof:

(1) It is well-known that for the restriction of an irreducible representation of Sy, to Sp—1 is multiplicity-free (see
e.g. [32]) as is that of B, to B,y (see e.g. [55]). The result for D, follows easily from that of B, and the
fact that D, is of index 2 in B,,.

(ii) This follows from the hook formula, see ([32], p. 77).
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QED
The minimal coset representatives and the sums of their lengths may be found using the following lemma.

Lemma 5.5 (cf. [35]) Let W be a Weyl group with S its set of simple reflections. For any subset J C S let W5
denote the corresponding parabolic subgroup. Let Pw,w, 5(t) denotes the Poincare polynomial of W/W in the
variable {. Then the sum of the lengths of the minimal coset representatives of W /W is given by

1|W
/ —
Pww, s =3 |w;

where P' denotes the derivative with respecl tot and where Ng and N are the numbers of reflections in W, W and
hence the lengths of the longest elements in W and W ; respectively. In addition the minimal coset representatlives
Jor W /W ; and their minimal factorizalions all occur as subwords of a minimal factorization for wswy, where wg
is the longest element in W and wy is the longest word in W5,

[Ns — Ny]

In Table 1 we summarize the data required to bound the complexities for the Weyl groups.

W W, [ M(S) | (W] Ns P‘VV/W,,,S(I)
Sn | Sn-t 2 n! n(n—1) | 3n(n—1)
B, | Ba_1 2 27! n? n(2n —1)
D, | Dh_ 3 2=Inl | n(n-1) 2n(n—1)

Table 1: Combinatorial data for the Weyl groups.

It is now straightforward to use to obtain recursive bounds for the reduced complexities of these chains of groups.
Proof: [of Theorem 5.3] From the data in Table 1, Corollary 4.10, and Theorem 3.1, we obtain the recurrences

tp, <lp,_,+2n(2n—1) and ip, < ip,_, +6n(n —1). Iteraling the recurrence for ¢y, gives the result for that
series of groups, but for tp, we need a more careful count.

Let s1,...,8, denote the simple reflections for Dy, in the order shown in diagram 4. Then M(s;) = 2 for
i>4, M(sa) =3 and M(s;) = 1for ¢ =1 or ¢ = 2. The maximal minimal coset representative for D,/Dp_1 is
§n + -+ 53828183 -+ S, and the minimal coset representatives have minimal factorizations given as follows.

1, Sn, Sn—1Sn, ..., 83" *Sn, 8283 -8p, 8183 -Sn, 515253 Sn, 83518253 Sn, .., Sp 638281838, (39)

The number of times s3 occurs in these words is exactly equal to the number of times s; and s2 occur 1n total, so the
average value of M over all occurrences of symbols in the set of minimal factorizations is 2. The sum of the lengths
of the minimal coset representatives of D, /D,_; is 2n{n — 1). Therefore if we let X be equal to the set of words

(39), then we have
n=-2

o > Miag) =4n(n—1).

k=0 a,-—-ap€X,

Applying Corollary 4.9 and Theorem 3.1 gives us ¢{p, < ip,_, +4n(n — 1). Solving this recurrence completes the
proof.

QED
We have already given the minimal coset representatives for S, /S,-1 and D,,/D,_,. For D, /D, they are
1, $n, Sn=1Sn, ---, 81" 8n, 5281 *"Spn, ..., Sp '8 8p

where s3,...8, are the si!np|c reflections of B,, labelled according to diagram 4.
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Diagram 4: Labelling the simple roots.

5.3 Wreath products of the symmetric group

For wreath products of the form G[S;], a decomposition similar to that used for Weyl groups is used. Wreath
products are of interest in data analysis as the symmetry groups of nested designs (42] and in structural chemistry as
the automorphism groups of non-rigid molecules [54]. They are often studied as the automorphisin groups of graphs
obtained by “composition” (cf. [30]).

Abstractly, G'[Sn] has the structure of a semidirect product G" x S, in the following way. Elements of this group
may be described by pairs (f; o) where f: {l,...,n} — G, and S, acts on G" by

76 = £ 5)
for 7 € 5, and f € G™. Multiplication is defined by
(fim)-(g50) ={J - g";m0)

where f-¢"(j) = f(7)g7 (7). In this notation it is clear that both S, and G" are naturally identified with subgroups
of G[Sy] and that under such an identification G™ is a normal subgroup and the group so defined is a semidirect
product of these subgroups. [t is not too difficult (o see that such a construction makes sense for any permutation
group H < S,. A thorough but accessible treatment of wreath products may be found in [37].

A slight modification of the techniques used in Section 6.2 for the symmetric group yields comparable results for
their wreath products. In this case we will use the chain of subgroups

G[Sa] > G % G[Sa_1] > G[Sna] > -+~ (40)

where G[Sn_1] < G[Sn] denotes the subgroup of elements (f; o) for which ¢ lies in S,_; and f(n) is the identity
element of G.

Theorem 5.6 Let G[S,] denote the wreath product of S, by the finite group G and let dg denote the mazimum
dimension of an irreducible representation of G. Let R is any complete set of irreducible representations of G[Sa]
adapted to the chain of subgroups (40). Then,

(n+n(n-1)

3 (dc:)z + nig|.

C(G[Snl) < TG[S.](R) < IG[Sn”

Proof: Note that coset representatives for G[Sp]/G x G[Sn—1] can be chosen to be the same as for S,/Sn-| 80
that these coset representatives can be written as words in S, the set of pairwise-adjacent transpositions in S,. The
transposition ¢; lies in G[S;] and commutes with G{S;_,]. So if we use the chain of subgroups

G[Sj] > G % G[Sj_l] > G[Sj-ll > G % G[Sj-z] > G[Sj_g]

and the fact that the restriction of representations from G[S;] to G x G[S;-;} is multiplicity-free (see e.g. [37]) Le
find that M(S) is 2d%, for dg the maximum dimension of an irreducible representation of . Using the minimal
coset representatives for S, /S,_; as coset representatives for G[S,]/G x G[Sn—1] we obtain the relation

to1s.] < laxG(sa_i] +n(n —1)(dg)?
< 1gsa_) e+ n(n - 1)(dg)*.
Applying this inequality recursively proves the theorem.

QED

Remark. Given a subgroup chain for ¢ it is possible to construct a chain of subgroups of G[S,] refining the chain
(40). Bases adapted to the subgroup chain (40) have been constructed and the above discussion recovers the best
known algorithm for wreath products of the form G[S,] (cf. [46]).
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5.4 A new FFT for the general linear group over a finite field

Let GL,(q) denote the group of invertible n x n matrices with entries in the field of ¢ elements where ¢ is a prime
power. For data analysis, these groups and their generalizations are of interest as the automorphism groups of the
many designs based on finite geometries and codes (see e.g. [1]). Throughout this section all matrix groups are
assumed to be over Fg, the finite field of ¢ elements. Thus, GL, = GLx(g), etc.

To apply the results of Section 5 to these groups, we will consider the chain of subgroups

Gln > P> Gl g XGLy > GLpoy > > Gy (41)

where P, is the subgroup of G'L, of all block matrices of the form

* *
(0...0 *) (42)

and GLg x GLq is identified with the subgroup of block diagonal tnatrices of the form Diag(A, bg, In_x4.1) with A in
GLy and b in GL; and I, denoting the r x r identity matrix. 3

Theoremn 5.7 Let R be any complete set of irreducible representations of G La(q) adapted to the chain of subyroups
{41). There is a positive constant, K, independent of n and q, such that for anyn > 2, ¢ > 2,

1 -
C(GLa(9)) £ ToL,(@)(R) < 5270 (1 + Kq™°) - [GLn(4)] (43)

We postpone the proof of Theorem 5.7 in order to first collect the preliminary results necessary for applying
Corollary 4.9. As before, we seek generators for the successive sets of coset representatives for which the values of
M are low.

Let E;; be the matrix that is zero everywhere except for a 1 in the 7,j entry. For any x in Fy define X; j(z) =
I +zE;; when i # j, and let X7 ;(z) = I+ (z — 1}E;;. Also let t; denote the transposition matrix E;_; ; + E; ;1.
These elements generate G L, [33) and will serve as our generating set.

Factorizations of coset representatives of G L, /P, are easily derived from the Bruhat decomposition for G L, (sce
(33, 15]) Those for P, /(G L, x GL1) may be derived using some simple matrix algebra.

Lemma 5.8 (1) GL, = H:=1(Xk,k+1tk+1) o ~(Xﬂ_.1’,,f.u).Pn.
(i1) Po = Xnotn(Xnosnottno1) - (X1.582)ds - -too1-Xnc1.n(1)-(GLn1 x GL1).

We now need to calculate the the value of M on the elements X;;_;. X;_y, and ;. As a first step note that all
these elements are in GL; and commute with GL;_,. Hence we must bound M(GL,,GL,_2). Furthermore,
X7, lies in the centre of GL,_1xGL;.

Lemma 5.9 (i) The mazimum multiplicity occuring in the restriction of any representation GL, to GL,_y no
more than 2"~1,

(it) There is a constant, K > 0, such that for any n > | and ¢ > 2, the number of conjugacy classes of GLy(q) is
less than ¢" + Kq™~3.

(iti} The mazimum multiplicity occuring in the restriction of any representation of GL, to GL,_3 is less than
22n—3(qn—l + [i'qn—‘l)'

Proof: (i) follows straight from the paper of Thoma [50]. (ii) follows more or less directly {rom the asymptotics of
Stong [49]. For the sake of completeness we prove this here, bul postpone the proof to the appendix which follows
this section. (iii) then follows from (i} and (ii) by noting that M(GL,,GLs_3) is bounded by the product of the
number of representations of GL,_y with M(GL,,GL,_1) and M{(GL,_1,GL,_32).

QED

31n general, it will be useful to adopt the standard notation that if By, ..., Br are square matrices of dimensions dy,...,dr, then let
Diag(B),...,Br) = (B ® --- @& B,) denote the block diagonal matrix with i*# block equal to B;.
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The following corollary is an immediate consequence ol Lenmima 5.9.
Corollary 510 (i) MX},;
(ii) Let g € GL; and commute with GL;_». Then M(g) < 2%-3(¢'~1 + ¢'—%).

We are now ready to prove Theorem 5.7.

Proof: [of Theorem 5.7.] Applying Corollary 4.9 to the factorization of the first part of Lemma 5.8, gives us that

k=1
tP,. +E22k -3 q +I\qk 3). (qu)
i=1
4
15

Applying the same result to the second factorization of Lemma 5.8 gives

IA

LGl

< 214 KT,

n—1t
tpy S LGLa_y xGLy + 0" T M(GLp, GLnoo) + > ¢* M(GLx, GLi +Zq - M(G Ly, GLg—2).
k=2 k=3

By Theorem 3.3
tGLooaxGLy, S tGLa_y T 1GLy,

so for n > 2 we obtain

1
tp, StaL,_, +tar, + =22 ¢*" 1+ Kq72).

5

Now we use these inequalities recursively. In the case of GL; we use the naive bound of ¢ — 1 for {gr,. A careful
look at the inequalities above shows that we have dropped several negative terms along the way, and that these terms
dominate all the Gy, terms that appear. Thus we may ignore the {51, terms that appear during the recursion and
at the bottom of the recursion. Summing all the other terms that appear gives the final result

tar, < %22"02"_2(1 + Kq7%).
QED

Remarks. 1. The constant. There is nothing particularly special about the exponent —3 appearing in the factor
(1+ Kq~3). We have shown, using a computer algebra package, that this can be replaced by a factor of (14 Kg¢=F)
for k < 200 and we conjecture that in fact we may take /{ = 0. This conjecture has been verified by computer for
2 < n < 200.

2. Further improvements. By improving the bound for tgy, we can improve on Theorem 5.7. Application of
the results of [38] show that tgr, < 200glogg. In fact, a generalization of our methods, applied to the appropriate
subgroup chain of G Ly shows that {7, may be bounded by bg — 3; for details see [39].

3. Variations of the algorithm. There is of course nothing canonical about cither the gencrators chosen here for
G L, or the subgroup chain. [t seems highly likely that better choices for either are possible. Always, commutativity
will need to be exploited and here it may be necessary to effectively compute the centralizers of various subsets of

elements. Towards this end, recent advances in computational group theory for matrix groups [6] may prove useful.

4. Other work. The problem of finding an efficient algorithm for computing a Fourier transform for G L, (q) was
first considered in [41]. There an algorithm is proposed which uses “models” (direct sums of induced one-dimensional
representations which contain cach irreducible of the group exactly once) to compute a Fourier transform flor G L.
In so doing the algorithm proceeds in two parts: (1) Computing the Fourier transform at reducible representations
which are given by monomial matrices and then {2) applying projection operators to these reducible matrices in
order to obtain collection of unique irreducible Fourier transforms. Some simple asymptotics for the bounds they
obtain yield an estimate for the complexity of their algorithm to be

ndean

O(IGLa(g}le™ ).
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5. Direct approach. It is also necessary to compare our algorithm with the algorithm which uses the subgroup
chain but does not factor the coset representatives and thus performs direct matrix multiplication of the twiddle
factors. Straightforward analysis then shows that such an algorithm yields an upper bound which depends on the
maximum degree of an irreducible representation of GL,, which is of the order of q%(”n‘”). This direct algorithm
gives an upper bound of

O(ng 3™ = NG L, (g))).

5.5 The unitary group over a finite field

Let U,(¢?) denote the group of unitary n x n matrices with entries in the field of ¢ elements, relative to the field
automorphism of order 2, where ¢ is some prime power. We shall often abbreviate this to U/;. To simplify our
calculations we shall always assume that ¢ is odd. We consider the chain of subgroups

Up>Upnr > >0 (44)
where Uy is identified with the subgroup Diag{Uy, k) of Uy.

Theorem 5.11 Let R be any complete set of irreducible representations of U,(q?) adapted to the chain of subgroups
(44). There is a posilive constant, K, such thal for anyn > 2, ¢ > 2,

12 . _ P
CUn (%) £ Ty, (¢(R) < IUn(q)|7q3" 14207 + 4972+ Kq73). (45)

We shall first prove the following weaker but simpler result:

Claim: With all notation as in Theorem 5.11,
ty, < 243"4(1 +2¢7" +497% + Kq70). (46)

To prove the Claim we proceed as in the case of (7L,, and obtain a factorizalion of any element of U, as a
product of matrices which are either diagonal or have a single 2 x 2 block with ones on the diagonal elsewhere. The
multiplicity results we will need are given in the following lemma.

Lemma 5.12 (i} The mazimum multiplicity occuring in the restriction Up LUs-y is 1.

(i) There is a constant, K > 0, such that for any n > | and q > 2, the number of conjugacy classes of Un(q2) is
less than q™ -+ 2"~ 1 4+ 4g"~2 4 K¢™—3.

n—3

iti) The maztmum multiplicity occuring in the restriction U, L Ua_o is less than ¢" +2¢" "1 4+ 4¢" "2 4+ K
q q q

Proof: (i) is a result of Hagedorn [29]. (ii) is proved in the appendix which [ollows this section. (iit) is a direct
consequence of (1) and (ii).

QED

So as to not unduly interrupt the flow of the section the necessary factorization of coset representatives of Uy, /Uy -1

is obtained using some stmple geometry in the appendix which follows this section. To state the result succinctly,
we let u;(z1, z2) be the block diagonal matrix with 1’s on the diagonal except for a 2 x 2 block of the form

-7 z;
z{ oz
This matrix is in Un(q"’) provided that zi"'q + z;‘“’ =1.

Lemma 5.13 Let N be the group homomorphism on F* given by N(a) = o'*9 and let R be a complete set of
cosetl representatives for F* [ker N. Then every coset of U, /U, has al least one coset representative of the form
€-ay---a,, where € is an element of F satisfying e'79 = 1 and for 2 < i < n — 1, the malriz a; has one of the
following forms
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(A} a; = ui(r,z) for somer € R, z € F such that r'*9 4 gt+9 =1,
(B) a; = tigaui(r, c) for somer € R, £ € F such that r'19 4 149 =1,
(C) a; = titip1u;i(r,v8), where r is the unique element of R with r1%9 = -IL;, and § € F satisfies 6119 = 1.

The factor a,, has the form (A).

We can now prove the claim.
Proof: [of the Claim.] Applying Corollary 4.9 to the factorization of ‘Lemma 5.13, shows that,

IA

n-1
t, ooy +4"7He = (=1)") |1+ g01(6") +3 D g-a(d”)
k=2

< g, +4¢" 7 14+ 2¢7 4 4g7E 4 K ¢7P)

for some constant K, where gi(g?) denotes the number of conjugacy classes of U,(g?). Using this inequality
recursively and noting that {y, < ¢+ 1 gives the result (46).

QED

With these preliminary results in hand we now easily prove Theorem 5.11.
Proof: [of Theorem 5.11.] The improvement on the Claim comes from looking at the matrix multiplications
in the separation of variables algorithm more carefully. Suppose we are computing the Fourier transform at the
adapted irreducible representation, p. At some point in the algorithm we will calculate matrix products of the form
plas)-h(plUs-1), where a, € U, commutes with U, _3 and h(plUs_1) isin (End Vf’)llfn_l' T'o obtain the complexity
result (46} we used the bound of M(a,)d3 for the complexity of such a matrix multiplication—a bound which comes

without assuming any special form of the matrix fl(p.l. Un—1). However, we could get a better result by using part
Theorem 4.7 to bound the complexity of that matrix multiplication:

C(p; Un,Un—z;Un-h]-) S dg

Using this new complexity gives us

n—1
e £ tua, +¢"H" = (D) 14143 gemi(d?)
k=2
<ty +6¢°" 731+ 207 4+ 4¢72 4 Kag™?)

Using this bound recursively proves the theorem.

QED

5.6 Chevalley groups

The techniques used to compute a Fourier transform in GL, may be extended in a relatively straightforward manner
to Chevalley groups and other finite groups of Lie type. We refer the reader to the book of Carter [14] for definitions.
We limit the current discussion to the classical Chevalley groups although the techniques generalize in a natural way
to other finite groups of Lie type.

As usual, let A, (q), Bn(g), Cnlq), Dn(q) denote the simply connected forms of the Chevalley groups over a finite
field with g elements. Any Chevalley group, G, has a subgroup chain analogous to (41), where P,_; is replaced
by a maximal parabolic subgroup GL,_y x GL; by its reductive part, and GL,_-; by the semisimple part of the
parabolic subgroup. More specifically, we shall label the simple roots of a rank n group from 1 to n in the order
shown in Diagram 4. Then Py will denote the parabolic subgroup corresponding to the set of simple roots labeled
from 1 to k with reductive part L and semisimple part G (not to be confused with the exceptional group G»). For
any Chevalley group G the chain of subgroups we shall use in the construction of a fast Fourier transform on G, will
always be

anpﬂ—lZLH—IZGH—12°“ZGI (47)
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Theorem 5.14 There exisl positive conslants Ky, such that foranyn > 2, ¢ > 2,
(i) Tang) € Kng®™* | Au(g)]
(it) T, (q) < Kng® 3. |B.(q)|

(iii) Tc,(q) € Knd®*~3.|Cu(q)|

(iv) Tp,(¢) < Knq®" "% |Dulq)l, for n > 4, and Tp,(q) < Ksq'°. [Ds(g)], for n =4

where the complexities are Laken with respect to a complete set of representalions adapted to the chain (47).

We shall give the proof of Theorem 5.14 after we have collected some lemmas on multiplicities and factoring
elements in these groups.

We refer the reader to [14] for all the relevant notation. For any root « in the root system of G,, we let X,
denote the corresponding root subgroup. We also let s, denote the corresponding involution in the Weyl group, and
let n, be an element of N mapping onto s, where N comes from the BN-pair for G,. We shall denote the simple
roots ay, ..., @, according to Diagram 4. With the exception of the root oy of D3, we know that Xy, and ng, liein
(i and commute with Gj_2. Consequently, the construction of an FFT using a factorization in terms of the X4, or
Nq;, will require that we understand the maximum multiplicity M(G;, Gi—4).

Lemma 5.15 Let G| K be one of the restrictions, An(q) | An—2(q), Balg) | Brnoa(q), Culg) L Cn-2(q) or Dn(q}i
Dy-2(q). Then for fized n the marimum multiplicity M(G, K) is bounded by a function of q of the form O(q°(GK}),
where

1
c(G,K) = 3 [dim G — rank G — dim K — rank K].

Proof: This 1s proved in the appendix following this section using an argument due to Tom Hagedorn. Sec also
[29].

QED

The other piece of information we need concerns the factorization of coset representatives in terms of the elements
Xa; and ng,.

Lemma 5.16 Let G be a simply connected Chevalley group with Weyl group W and let J be eny subset of the set
of simple roots of W. Let W denote the parabolic subgroup corresonding to J and WY the the set of minimal coset
representatives for W /W ;. We let N, N; denote the number of positive roots of W, W ; respectively. Also lel P;
denotle the parabolic subgroup of G corresponding to J, let Ly and Uy be its reductive and mazimal normal unipotent
parts, let Z(Ly) be the center of Ly and Gy be the semisimple part of Ly. Then

(i)

G= I (Xg,np) - (Xpunp)| - Py
we WY
w = sﬁ] o 'sﬁk

where the w = s, - - 5, is a reduced expression for w in lerms of simple reflections.
(ii) Py=Uj-Ljand|Uy| = qN_N".

(i11) If G is not of type G4, then there is a sequence, f1,...,Bm of simple roots such that Uy C [, Xg, over any
field of odd characteristic.

(iv) Ly = Z,.G; and |L; /G| = (g — 1)k G-I,

Proof: (i}, (ii) and (iv) follow from the first two chapters in Carter’s book [14]. (iii) follows frmo the Steinberg
commutator relations in the form given in ([15],Theorem 12.1.1).
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. QED
Proof: [of Theorem 5.14.] We let Ny denote the number of positive roots of Gi. First we assume that n > 2 in the
cases where G, is of type A, B, or C, and n > 4 in the case that G has type D. Irom the lemma it is clear that
|G/ Pn| is a polynomial of degree Ny, — Ny_; in ¢ and that any coset of G,/ P, has a coset representative of length
no more than N, — Np_; in the generators (Xqng). Therefore

Gn

Py
S O(an-N‘—‘-}'U(G"’G"_?))+t}7“.

IA

tG,. (Nn - Nn—l) M(GmGn-2) +tP,.

Now let U/, denote the maximal normal unipotent subgroup of P, and let v, be such that U, is contained in a
product of no more than v, simple root subgroups (independent of ¢), then

Tn ]Untv’w(cm Gn—Z) +tL.
O(an_Nn—l‘H’(Ga.C"u—Z)) + iLn

tp,

IAIAIA

O(an—Nn—l‘l'o'(Ga.Gn—ﬂ)) + tG .
and therefore tg, < O(gN»~Ne-140(GnGaza)y 445 A quick glance at Table 2 verifies that for all the series of
groups, Ny, — Np_1 + 0(Gp,Gr—2) is an increasing function of n, and hence that

tg, < O(an-Na-l'l‘a(G-.G.-n)) +tg,

for the series A, B, C. For these three series, Gy = A1(¢) and hence g, is bounded by O(¢®) using a naive method
of calculating a Fourier transform. For the D series of groups and n > 4 we have

tp, < 0@ %) + tp,

and tp, may be bounded by O(qwj using similar techniques. Hence we see that when n > 2, in the A, B, or C case,

or n > 4 in the D case, we have
tg, < O(an-Nn—l+a(Ga|Gn—ﬂ))'

QED
Gn N, 7(GpyGn—2) | Np— Nu—1+ 0(Gn, Gn2)
An(g) -;-n(n—}- 1) n+1 2n+1
Bn(q) n? 3n -2 5n —3
Calq) n? 3In—2 5n—3
D, nf—n 3n—4 5n—6

Table 2: Combinatorial data for Chevalley groups.

Appendix A: Proofs of the technical lemmas

Now we shall indicate the proofs of some lemmas used in the explicit calculations of Section 5. These concern
estimates of the number of the number of conjugacy classes of the general linear and unitary groups, the derivation
of the factorization for coset representatives of U, /U,_1, and bounds for the multiplicity of restriclions between
Chevalley groups.

A.1 Conjugacy classes
The generating functions for the number of conjugacy classes of G'L,(g), the number of canonical forms of n x n
matrices over F, and the number of conjugacy classes of Uy, (¢?) are closely related. Define

[ee]

1+ ot
Fo(a,t) =[] T—F

n=1
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and let f.(g; ) be the coefficient of " in the cxpansion of F,(q,1) considered as a power series in ¢. Then by results
of [49] and [53] fa(g;—1) is the number of conjugacy classes of G'L(g), fu(g;0) is the number of canonical forms of
n X n matrices over Fy, and f,(g;1) is the number of conjugacy classes of U, {g?); The first result we need to bound
fnl(g; @) is an asymptotic result due to Stong.

Lemma 5.17 (Stong)

1 1
wlg;=1)=¢" + =
fule;-1)=¢ +3 -

+ (="

T 9% + 0(q¥)

as n tends to infinity, for fired q.

Proof: F_;(g,t) is a meromorphic function of ¢ in |t| < 1 with isolated poles at the k-th roots of 47! for & > 1.
The asymptotics come from considering the behavior at the poles ¢~ !, q‘*, and q“*. See [49] for details.

QED

Corollary 5.18 Define

o0 g
14 at
Bat) = [[ T
k=1
Then B, (l) 1s an analytic function of t in |t| < 1, provided that o > —1. We have Fo(q,t) = Bo(t)F-1(g,1), and
hence

1 Brx(q-#)

—q 3
Jalg;0) = Balg™")a" + 5 Ba(=g

+ (=1 ) 3 +0(%)

1-g} 14 ¢
as n tends to infinity, for fired q and fized o > —1.

Proof: The residues of Fo(q,t) at ¢~ % differ from those of F_;(g,t) by a factor of B,(g~%).

QED

To obtain more useful bounds for f,; (¢; ) we now consider some explicit formulae. Let P(n, k) denote the number
of partitions of n into k parts. For any nonnegative integer, m, define

M 4 ag™ 1 when m > 1 and
h(gi0) =4 ! - (48)
1 when m = 0.
Next, for any partition, g = 1™12m33™> ... define
hu{g; o) = H R, (45 ©0).
i>1
Then is is clear that
falgio) =D hulg;e).
nkn
If we now define
Fapl@io) = Y hulgie)
HEP(n k)
then fo(g; ) = Y p_; fak(g; @), and it is easy to see that f, , satisfies the recurrence relation
Sk =qfactk—1+ fackp Fafaki-1 (49)

This in turn shows that for k > 5 and p=n —~k + 1 we have

Jolg; a) = qn_2p+1f2p—l.p(q'; a)

so the high order coeflicients of the polynomial f,(g; @) are independent of n.
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Theorem 5.19 There is a constant K, independent of n and ¢ such that
Jalg;@) S ¢" +(@+1)¢" "+ 2 (a+ 1" 2 + (e + 1)(a +3)¢" > + Kag"™*
foranyn>1and g > 2.

Proof: First we prove the case where o > 0. I[n this case f,(¢;a) is a polynomial in ¢ of degree n with positive
coefficients. Using the recurrence relation (49) we see that for fixed n and o

falgia) <"+ 2.(a+ g™+ (a+ 1)(a+ 3)¢" % + pa-a(g; @)

where pn_4(¢; @) is a polynomial of degree n — 4 in ¢. By Lemma 5.17 we know that for each « and g there is a
constant K4 (q) such that

Jalgia) < Balg™")q"™ + Kalg)g®.

But ¢*=" - p,_4(g; @) is a decreasing function of ¢, so

n-a Ba(271)2" + Ka(9)27/?
q : gn—4

IA

Pn—-4

< Kq- ¢t

where K4 = 16 (3(2") + Ka(?)).

Now consider the case when a is less than zero. In this case it’s clear that (g o) < far(g;0). Hence

Joplga) < (Z fn,k(q§a))+pn-4(Q§0)
k

=n=-3
n
< ( Y Janle a)) + Ko™ ™"
k=n-3
QED
The same techniques can be used to find any finite number of the highest degree coefficients of f,(g; ). In the
case @ = —1 we conjecture that f,(¢; —1) has coefficient 0 in all degrees strictly greater than % but strictly less than
n. This has been verified for n < 400 and 1s equivalent to the following statement.
(8]
Conjecture. In the ring of formal power series in g7 !, Zq*zpfgp_lm(q; -1 =gq"".
p=1

A.2 Coset representatives for U, /U,_;

The group U, _1(g?) acts transitively on the unitary unit n-sphere, consisting of all column vectors (21, .. . xa)T with
entries in Fga such that 3, z,{,"‘q = 1. The stabilizer of the point (0,...,0,1)7 is U,_1. To obtain a factorization
of coset representatives according to Lemma 5.13, it sullices to show how to use the inverses of elements of the forms
(A), (B), or (C), referred to in that lemma to rotate an arbitrary vector in the unitary sphere onto (0,...,0,1)T. We
assume we are working in odd characteristic.

As in the statement of Lemma 5.13, we let N denote the group homomorphism N (a) = a!*9. N is an epimorphism
onto the group of nonzero elements of the subfield of ¢ elements. We let R be a complete set of coset representatives

of F;‘,/ ker N.

Now consider an arbitrary clement, = (21,...2,)T of the unitary unit sphere. If the vector (z1, z9) has nonzero
unitary norm, then choose an element, s € R such that N(s) = z}T? + 379, Hence (z)/s,23/s) is a unit vector
and so by the transitivity of U, on the unitary 2-sphere, it is clear that we can choose y € Fg2 and r € R such that
uz(r,y)~! maps (z1,z2) onto a multiple of (0, 1).

In the case where 2119 + 2377 = 0 it is possible that cither z;77 + z3%9 or 2377 + 2377 is nonzero. In the first
case multiplying = by t3 brings the vector into a form where the vector of the first two components has a nonzero
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norm, and in the second case multiplication by {3 - {2 achieves this. If neither of these three cases hold, then the
vector (zy, 3, £3) must be zero (this requires that the characteristic is not 2). Therefore it is always possible to map
z onto a vector with zero first component, using the inverse of a matrix of form (A), (B) or (C), provided n is greater
than 2.

Now we may apply the same method to map x onto a vector with the first two entries zero, the first three, and so
on. Finally we ontain a vector with only the last two entries nonzero. Clearly we can use the inverse of an element
of form (A) to map this vector onto a vector with only the last entry nonzero. As the vector so obtained is a unit
vector, it must have the form (0,...0,¢) for some ¢ with !9 = 1.

A.3 Multiplicities of restrictions in Chevalley groups

Now we shall prove Lemma 5.15 on the multiplicities of restrictions in Chevalley groups. The proof we use was
suggested by Tom Hagedorn and follows the line of argument of his thesis [20]. We shall limit ourselves to a brief
sketch of this argument. As usual we shall always assume the characteristic 1s odd.

First we note that if G > H > K, then ¢(G,K) = ¢(G,H) + o(H, K) + rank H where o is as in Lemma 5.15.
But .

, M(G, K) < M(G, HYM(H, K) |f1|
where H denotes the set of equivalence classes of irreducible representations of H. The bounds we need follow from
the same result for the restriction of irreducible representations from A, (¢} to An,_1(¢), Bn(gq) to Ba_1(g), Cn(g) to -
Cn-1(g) or Dyn(q) to Du—i(q).

The problem of bounding multiplicities can also be reduced, as follows, to bounding the pairing of a Deligne-
Lugztig character of G, restricted to /M, with a Deligne-Lusztig character of H: let us say that a linear combination
is bounded if the number of terms may be hounded independently of ¢ and the coeflicients may also be bounded
independently of g. Then for any irreducible character, x, of G (or of /) there is a bounded linear combination of
Deligne-Lusztig characters which is the character of a representation containing .

We shall now let G and /1 denole connected reductive algebraic groups of classical type over an algebraically
closed field of odd characteristic, and we let F be a Frobenious map. Suppose 1", T’ are F-stable maximal tori of
G and H respectively and 0, § are irreducible characters of 7% and (T’)F respectively. As usual, Ry g denotes tlie
Deligne-Lusztig character associated to T and 0 (cf. [21] for the complete definitions). Then the pairing of Ry L HF
with Ry g has the form

Cg(ﬂ)(u)ngﬂr(ﬂ)(u)

(RrodHY, Ryigr) = ZZ Z a(s, w,w', u) T - (50)

3 u wuw' GC;'{(J)F(U)|

where s varies over HY conjugacy classes of elements in (T’)F, u varies over unipotlent conjugacy ciasses of the
connected centralizer C%(s)f'; T,,, T, are F-stable maximal tori in C&(s), C¥(s) respectively, and the Q’s are
Green polynomials. For a given s, u, Ty, T}, the term

Q5E) () QSH ) ()
16'0?,(5)F(")|

(51)

is a function of ¢ that can be bounded by O(¢°(GH)-a(3:4)} where
Vpy . .
(s, u) = 2 [dlmG —dimH — (dlmccg(,}(u) —dim ch’(,)(u))]

and for any given s the inner summations in (50) are a bounded linear combination of terms of the form (51);
a(s, w,w', u) may also be bounded independently of s. Note that there are only finitely many (a number bounded
independently of ¢) different forms that the term (51) can have given G and H.

Therefore, to obtain a bound for the pairing (50) it suffices to bound «(s, u) and then determine how many s this
bound applies to.
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To bound dim Cco (,)(u) —dim Cge (,) (1) we can reduce to the case where ¢ and H come from one of the series of
classical groups: SL(n), SO(2n+ 1), Sp(2n), or SO(2n). In this case the connected centralizer, C, (s) is determined
up to isomorphism by the characteristic polynomial of s considered as an element of H; up to isogeny it is simply
a product of groups corresponding to different eigenvalues of s. The characteristic polynomial of s considered as an
element of G may be obtained from its characteristic polynomial as an element of H by multiplying by either 1 or 2
factors of (1 —1); 1 factor in the case of restricting from A, to A, and 2 in the cases of restricting from B, to B,_1,
Cp to Cn—y and D, to D,_;. Hence the centralizer, C&(s), only differs from C%(s) in the factor that corresponds
to the eigenvalue 1 of s. Having obtained the form of the centralizers, the formulas in [14] p. 398 (sce also the article
of Springer and Steinberg in [12]), may be used to compute the dimensions of centralizers of unipotent elements, in
order to bound dim Cge (,)(#) — dimCgo (,y(u) in terms of the multiplicity, m, of 1 as an eigenvalue of 5. We call
this bound 8,,.

Hence we can bound a(s, u) from below by a function, a,,, of m and the number of s in (7")F with a given m
can be bounded by O(g™) for some easily determined function +,,. To prove the theorem we need only verify that
@ — Ym > 0 for all possible values of m. We present this verification in the form of a table.

Restriction B O Ym Oy — Ym | Maximum m
ApnlAn_1 | 2m+1 n—m max{n —m,0} lord n
BolB,_y, {2m+1 2n—m n—l—mT_1 n—%—% 2n—1
CplChny | 2m+3 | 2n—m =2 n—1-72 n—%— - 2n=2
DalDpy | 2m41 | 2n=m -2 n—-1-~-% n—2 -1 2n — 2

Table 3: Verification of Lemma 5.15.

For the proof to make sense for Dq | D; we have to replace 12; by a 1 dimensional torus. We liave now proved the
lemma.

6 Further improvements and directions

Theorem 4.8 and Corollary 4.9 are particularly easy to use bul are by no means the best results possible. We no
briefly describe some of the improvements we have obtained, which will appecar in the second part of this paper [39].

6.1 Variations on the main results

In many cases, further savings can be realized in the the Fourier transform is treated as a collection of scalar
equations rather than as a matrix equation. The separation of variables idea still applies to the scalar setting, but
now a recursive sum of products of numbers, as opposed o matrices, is obtained. These products may be computed
in any order. Consequently, the scalar separation of variables algorithm possesses a {lexibility which is not present in
the matrix separation of variables algorithm: the ability to choose the order in which the factors are summed over.
Roughly speaking, this flexibility allows us to sum over [actors with a low value of M first, successively building
the complete computation. In practice the first summations we perform occur the most times in the separation of
variables algorithm (in the matrix case, this amounts to saying that the sets X get smaller as k increases), so by
ensuring these sums are done quicker, we make the whole algorithm more efficient.

The sums that occur in the scalar separation of variables algorithm are generalizations of the sum (22), and the
factors that appear are indexed by collections of representations which satisfy relations generalizing the relations
represented by Diagramn 1. The diagrammatic methods used in the proof of Theorem 4.5 generalize to this situation,
so complexity bounds for the new algorithms may be obtained explicitly. A useful combinatorial tool here is to treat
the indices as injections from the diagrams describing the relations into the Bratteli diagram for the subgroup chain.
The explicit expressions for the complexity of the algorithm has a form similar to, but generalizing, the expressions
in Theorems 4.5, 4.6, and 4.8.

We use the techniques just described to refine the results we have already obtained in section 5. For example, we
get a better bound for the complexity of the Fourier transform on GL,(¢) using the same bases as in Section 5.



Theorem 6.1 For any n, there is a positive constant, K,,, such that
Teraq < Knq" |GLn(q)]

for any g greater than or equal to 2.

Similar improvements hold for the unitary groups and Chevalley groups. We also prove a general theorem, bounding
tg in terms of the complexities of two subgroups and the number of double cosels. This result works particularly
nicely when the subgroups are abelian, and in that case it yields new results for SL,(¢) and for the symmetric groups.

6.2 Homogeneous spaces

For many statistical applications, data on homogeneous spaces is of primary interest, rather than data on the full
group. In brief, a homogeneous space for a finite group is simply a set on which the group acts transitively as
permutations. A common example is the action of the finite affine group on point-line pairs and more generally, the
action of an automorphism group of a design on its block-point pairs. I[n this case generalizations of the “usual”
analysis of variance for data on such sets require the computation of projections of the data vector onto group-
invariant subspaces.

The scalar separation of variables algorithm generalizes easily to the context of homogeneous spaces. This is in
contrast to the techniques of section 4, which do not improve on a naive algorithm (such as a directly computed
matrix-vector product). The idea in the improved algorithms is to write the associated spherical functions of the
homogeneous space as a sum of products, with a small number of terms in the sum. The separation of variables
algorithm then amounts to calculating the inner product of a function and an associated spherical function by
summing over one factor in the product at a time. This provides speed-ups of the most efficient algorithms currently
known (cf. [24] and references therein). This material will also appear in [39].
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