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ELLIPTIC GENERA, INVOLUTIONS, AND HOMOGENEOQUS SPIN-MANIFOLDS
by

F. Hirzebruch and P. Slodowy

Introduction

The elliptic genus ¢ of Ochanine (see [Och 1], [La]) is a homomorphism of the oriented
bordism ring to the ring of modular forms for I';(2). On the complex projective spaces
P, (C) it takes values given by the formula

1
5 2k 2 4[_2
Y PPy (O = (1-268t° + €t”)
k=0

where 6 and € are modular forms of weights 2 and 4 respectively. The elliptic ge-
nus of a 4k—dimensional manifold X is a modular form of weight 2k. We shall study

the genus

¢ =yle

which (for k even) is a modular function for 1"0(2). It will also be called elliptic genus.
According to Witten [Wit], p. 173, the modular function $(X) has (in one of the 2
cusps of FO(2)) a q—development which can be regarded as the equivariant signature of

the free loop space of X with respect to the natural action of S1 on the loop space. We

take this g—development (see 1.2(5)) as definition of #(X).
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If X is a homogeneous space G/H where G and H are compact Lie groups (G con-
nected), then we have the equivariant elliptic genus §(X) g which is a function of
(r.g) EHx G where M is the upper half plane and q = e21ri'r. According to the
rigidity theorem of Witten—Taubes—Bott [BoTa] the number <5(X)g does not depend on
g if G/H is a Spin-manifold. We shall show (Theorem 2.3) that it also does not de-
pend on 7 in this case, i.e. the coefficients of q”(n > 0) vanish (the constant term
equals the signature sign (G/H) of G/H) .If G/H is not a Spin—manifold, then in

general both statements are wrong. If, for example, X = sz(C), then &(X)_ depends

g
non-trivially on g and 7.

The basic tool for our study is the formula
¥(X), = $(Xx8 o X8)

for an orientation preserving involution g on an oriented differentiable manifold X
which generalizes a formula for the signature ([Hir 2], [AS] Proposition 6.15). After in-
troducing some material on elliptic genera, it will be deduced in section 1. Here we will
also develop other consequences of the Atiyah—Bott—Singer index theorem which are

needed later.

Section 2 deals with homogeneous Spin—manifolds X = G/H . Qur main result

(Theorem 2.3) follows by induction once we have shown that the self-intersection
X8 o X8 can itself be realized as a finite union of homogeneous Spin—manifolds. We also
derive a formula for the signature of a homogeneous space G/H (hence for #(G/H) in

the Spin—case) generalizing an old formula for complex homogeneous spaces ( [BH 2] ).
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In the last section, 3, we will have a closer look at specific involutions on homogeneous
spaces. These investigations were originally motivated by the search for a formula for
the signature and finally led to our Theorem 2.5, now proved by different methods. How-
ever, as already indicated by some examples, the methods in section 3 together with
Theorem 1.5 (or [Hir 2]) might provide a more effective way to compute &(X) (or
sign (X)). We have not pursued this here but hope to come back to this point at another

occasion.

A general reference for the theory of elliptic genera are the Proceedings of the Princeton
Conference of 1986 [Proc) edited by Landweber.

1. Elliptic genera and involutions

1.1. We recall the theory of genera [Hir 1] for compact oriented 4k—dimensional diffe-
rentiable manifolds. For such a manifold X of dimension 4k we write the total

Pontrjagin class in the form

2k
(1) p(X)=1+p1+p2+...='|_]_(1+x?)
j=1
where P € H4i(X,Zl) and where the X; are the formal roots considered as 2—dimen-

sional cohomology classes in some extension of the rational cohomology ring of X . Con-

sider a power series

Qx) = 3 + 3 x + agx® + ...
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with coefficients a; in some commutative algebra A over €. Suppose that Q is even.

Then the genus vqQ of X belonging to the power series Q is defined by
2k

(2) 0 = (T T Q) X
j=1

We did not request here that ag = 1. Therefore, it is important to have the formal
roots X in (1) indexed from 1 to 2k where dim X = 4k.

The genus Q is a homomorphism from the bordism ring 2® € to the ring A .1t is
defined also for non—connected manifolds of mixed dimension not necessarily divisible by

4 . If the dimension is not divisible by 4, then the genus is 0.

If the coefficient a; of Q(x) is invertible in A , then the power series aalQ(an)
defines the same genus. The normalized power series (with constant term equal to 1) are
in one—to—one correspondence to all possible genera. For a normalized power series one
can use in (1) formal roots X indexed from 1 to r provided r 2 k. The signature of
X equals the genus belonging to the power series (see [Hir 1] §8)

(3) x _ _l+e ™ &2 4 /2

=X =X
tgh x/2 l—eX ex/2_e—x/2

with constant term 2 or equivalently to the normalized power series x(tgh x)—l . The
power series in (3) is more natural because it indicates that for a complex manifold the
signature equals the holomorphic Euler number with coefficients in the exterior algebra
of the dual tangent bundle, or in other words the value of the Xy~ genus for y=1. For

Spin—manifolds equation (3) indicates that the signature is the index of the Dirac opera-
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tor twisted with the full spinor bundle (compare [Wit]).

Let W be a complex vector bundle over X . Then the signature of X with coefficients

in W can be defined as follows

(@ SER0KW) = W)+ T Ty
j=1

where X has dimension 2n . We use the splitting (1) , and ch(W) denotes the Chern
character of W . Indeed, sign (X,W) is an integer. It equals the index of some elliptic
operator, obtained by twisting the signature operator ([AS] §6) with W. For complex
manifolds and a holomorphic bundle we have sign (X,W) = x,(X,W), see [Hir 1] and
[Hir 3] . For odd dimensional manifolds sign(X,W) = 0.

1.2. We shall define the elliptic genus $(X) using Witten’s g—development. For a com-

plex vector bundle W of dimension n

n
_ iy i
AtW—Z AW -t
i=0

where A'W and S'W are the exterior and symmetric powers of W . Let T be the
complex extension of the tangent bundle of X . The definition of &(X) as a formal

powér series in q with integral coefficients is the following.
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5) 8(X) = sign(X, T TA T T TS T).
n=1 9 n=1 94

In fact, #(X) is the genus with respect to the power series Q(x) = x/f(x) where

O 1% 1—g%"
n=1 14q% ™ 14q°"

(6) f(x) = 1

—X

This follows from (3), (4) and (5) using the formulas for the Chern character of the
exterior and symmetric powers of T . For convenience we compare with the notation of
[Hir 3]: The power series Q(x) corresponds to Q(x) in (15) of [Hir 3] for y = 1. The
genus @ corresponds to ?52 (the level N equals 2) . The complex extension T of the
tangent bundle of X corresponds to T ® T* in [Hir 3]. There T was the complex
tangent bundle of a complex manifold.

1.3. Let us now recall the modular properties of the elliptic genus. If we put q = eZﬁT
with 7 €H (upper half plane), then the infinite product in (6) is compact uniformly

convergent in Hx € where 7 €MH and x € €. The power series Q(x) has constant

term e_“l/ 4 where

L 7o ()8
7 €=
") B 1+q™

n=1

is the well—known modular form of weight 4 for the group I'j(2) (denoted by eg in
[Za} (19)). The power series ¢!/ 4-Q(x) is the normalized power series used for the
usual definition of the elliptic genus of a 4k—dimensional manifold as a modular form of

weight 2k for 1"0(2). Therefore €%/ 2-6()() is a modular form of weight 2k for



7=

['((2), whereas €(X) is a modular function for ['y(2) (if k is even). In general, 6()()2
is a modular function for T}5(2) . For brevity, we shall call $(X) a modular function
for every k.

The modular properties stem from the fact that f(x) as defined in (6) is attached to the
lattice L =2 (Z7 + 7). The function f(x) has zeros of order 1 in L and poles of

order 1 in i + L . The function f(x) satisfies
fix + 2x) =1(x), f(x+ 27i7)=-(x).

It is elliptic for the lattice 2xi(Z-27 + Z) . The following property will be very impor-

tant
(8) f(x + xi) - f(x) =1.

The modular function #(X) is holomorphic in H and also in the cusp given by q =10
in (5) . It assumes the signature of X as value in this cusp. In the other cusp of F0(2)
the function &(X) has a pole of order < 15- if dim X = 4k.

In fact, we can transform the other cusp in such a way that the g—development becomes

(the local coordinate in this cusp is again denoted by q, not to be confused with the q

in (5))

9) §(X) = ¢ ¥/2 . I\(x,m A_an- T] san)

n odd n even
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Putting q = 2m7 , this is again a modular function for T';(2) . But as definition of
®(X) we always use (5). Remember that the q in (5) and (9) are local coordinates in
different cusps. For the development (9) see [La] and [Wit]. For (6) and (9) compare

the formulas (16) and (6) in [Za].

Observe that the A—genus with coefficients in a complex vector bundle W (denoted by
A(X,W)) is well—-defined even if X is not a Spin—manifold. Formally it equals the
Riemann—Roch number T(X,W) in [Hir 1], § 21, (1*), if one puts ¢, = 0. The coef-
ficients of the q—development in (9) are integral if X is a Spin—manifold. Then they are
indices of the Dirac operator twisted with certain vector bundles [AS]. In general, the

coefficients are integral except at the prime 2 (see [BH 2] § 25).

14. Let G be a compact Lie group operating on the differentiable manifold X by
orientation preserving diffeomorphisms. The coefficient of q™ in (5) is of the form

sign (X,R ) where R is a G-bundle over the G-manifold X, e.g.
Ry=1, Ry =2T, Ry=2(T+T®T)
For g € G, the equivariant signature

sign(X,Rm)g

is defined and therefore also the equivariant elliptic genus

1]

m
m=0
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as a power series in q with complex coefficients which, in fact, are algebraic integers.
The equivariant genus is defined for manifolds of all dimensions. It vanishes for odd

dimensional manifolds.

According to the fixed point theorem of Atiyah, Bott, and Singer [AS] we can calculate
@(X)g in terms of the fixed point set X® of g and the action of g in the normal
bundle of the submanifold X8 of X .

We shall study this in the case where g is an (orientation preserving) involution. The
submanifold X& is not necessarily orientable and, of course, in general not connected.
The embedding X5 — X has an approximation j: X8 — X which is also an em-
bedding and is transversal to X8 . Then j 1(X8) = X& N j(X8) has as normal bundle in
X8 the restriction E of the normal bundle of X8 in X to X8 N j(X8) . The normal
bundle of X&N j(X8) in X is isomorphic to E®E and hence canonically oriented
because E is even—dimensional. Also X8 N j(X&) is canonically oriented and its orien-
ted cobordism class does not depend on j. We denote it by X8 o X8 (self intersection).
In [Hir 2] it was pointed out that

(10) sign(X), = sign(X8 o X8) ,

for this formula Janich and Ossa [J4Os] gave an elementary proof without using the
fixed point formula. The following theorem generalizes (10) to the elliptic genus.

THEOREM. Let g be a differentiable orientation pregerving involution on X . Then

(11) B(X), = 3(X8 o X8 .
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Proof: We can assume that X is even—dimensional. Let 2t = dim X8 (depending on
the component of X8) and 2r = dim N&(—1) where N8(—1) is the normal bundle of
X8 in X . We use here the notation of [AS], p. 582. Write formally

j=1
Then
t X, r i(y.)
(12) s(xBox8)=(TT X ‘TT 55X x8] .
j=1 j=1 J

This is true though our power series Q(x) = 1-’(:;)- is not normalized. The reason is that
t —r is half the dimension of X8 o X8 . According to the formula of [AS], p. 582, we

have

sign(X), = {u-e(N&(-1))} [XE]

x
where e(N8(—1)) is the twisted Euler class, u some element of H (X8), and [X&]
the twisted fundamental class of X8 . By the general equivariant index theorem

(twisting with R~ and its equivariant Chern character)

sign(X,Rp,), = {ch(R_, | XE)(g) - u - e(NB(-1))} [XB] .



-11 -

Standard properties of the twisted Euler class yield
sign(X,R ;) = {ch(Ry, | XB)(g) - u} [XBo XE] .

The class u (see [AS], p. 582) is given by

t X.
=TT 1
",1 %517? yjtghly;+m)/2
J=

x. T tgh y/2
TT

{
=T Tz

j=1 i=1
We have

o

u- ) ch(R |XE)g) - " =

n=0

I

X.
1
SRS

j=1

s
I as
i

which proves the result in view of (8) and (12).

1.5, If the involution g is homotopic to the identity, then
sign()()g = sign(X) = sign(X® o X&) . This is not true for the elliptic genus.

Example. Let X be the complex projective plane and g a projective involution with
X8 consisting of a projective line and a point. Then X8 o X8 is a point (with positive

orientation) and

$(X) g= 1 (independent of q),
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whereas

é
¢(X)=—=1+432q+ ...

3

where 6 = ;II + 6(q + q2 + 4q” + ...) is a modular form of weight 2 for I‘O(z), deno-

ted by 6 in [Za]. We have for example sign(X,T) =16 and sign(X,T) g= 0.

If a compact connected Lie group G acts differentiably on the Spin—manifold X, then
(f()()g does not depend on g for g € G . This is the fundamental rigidity theorem on
elliptic genera conjectured by Witten and proved by Taubes and by Bott—Taubes
[BoTa]. As a corollary of the rigidity theorem we have

THEOREM. Let g be an involution contained in the compact connected Lie group G
acting differentiably on the Spin—manifold X, then

(13) #(X) = §(X8 o XB) .

The involution g belongs to a circle group contained in G . The circle action is either
even or odd (see [AH] Lemma 2.4). (Assume that X is connected.) Therefore, all com-
ponents of X8 have a codimension = 0 mod 4 (even action) or a codimension = 2 mod 4
(odd action). In the odd case all codimensions of X8 o X8 are =4 mod 8. By (13) and
(9) the order of the pole of #(X) for dim X = 4k is half-integral and integral. There-
fore (X) =0 which is well-known. The vanishing of $(X) means that all coefficients
in (9), in particular A(X) and A(X,T), vanish. Of course, also the coefficients in (5)

vanish, in particular sign(X) and sign(X,T). We now consider even actions. By
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codim X8 > 4r we mean that the codimension of each component of X8 is greater equal

to 4r.

COROLLARY. Let g be an involution contained in the compact connected Lie group
G acting differentiably on the 4k—dimengional Spin—manifold X. If the action is odd,
then &(X) = 0. Suppose the action is even and codim X8 > 4r. Then #(X) has in the
gecond cusp a pole of order ﬁ%—r . Therefore, in the Laurent series (9) ghe first r
coefficients beginning with A(X) vanish. If r>0, then A(X)=0.If r> 1, then
A(X,T)=0.If r>2 then A(XA’T)=0.1f r>%, then #X) does not depend on
q, it equals the signature of X. If r > 12‘- , then &(X) =0.

The corollary generalizes the theorem on the vanishing of the A~genus [AH].

1.6. The quaternionic projective spaces Pk(H) are 4k—dimensional Spin—manifolds.
They admit projective involutions with a quaternionic hyperplane Pk—l(H) and a point
as fixed point set. The theorem in 1.5 (formula (13)) yields

$(P (H)) = (P _o(H))

and hence ®(P,(H)) =1 for k evenand =0 for k odd. Since P,(C) and the P, (H)
generate the cobordism algebra 1® €, the elliptic genus ¢ is characterized by

3(P,(C)) = 6/
$(P,(H)) =1 for k even
$(P,(H)) =0 for kodd,

a well-known fact.
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For the Cayley plane W of dimension 16 (cf. e.g. [BH 1] § 19) we get in a similar way
d(W)y=1.
1.7. We mention some facts which will be of use later.

a) Let us consider the situation as in the theorem of 1.5. Then g respects the Spin—
structure of X, because the set of possible Spin—structures is discrete. Then by a
theorem of Edmonds used and proved again in {BoTa] (Lemma 10.1) the fixed point set
X8 is orientable. The normal bundle of X8 0 X8 in X (see1.4)is E@E where E is
orientable in our case (wl(E) =0) . Therefore the total Stiefel-Whitney class
w(E®E) = w(E)2 equals 1 + w2(E)2 + higher terms. Hence E ® E is a Spin—~bundle.
Therefore X8 o X8, or more precisely X8 N j(X8), is a Spin—manifold, because X is a

Spin—manifold.

b) Let X be a compact oriented 2n—dimensional differentiable manifold with a circle
action with isolated fixed points. In each fixed point x the tangent space TxT splits as
an $'-module

n
T X = i:1 V(m,)

where V(mi) is isomorphic as a real sl-module to € on which z € S acts by

vi—z v (vECQ).
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If we choose the rotation numbers m, € Z in such a way that the usual orientations on
the summands V(mi) o € induce the given orientation on T_X, then they are uniquely
defined up to an even number of sign changes. In particular, their product

m .. my € T is well-defined.

Consider a polynomial P(pl""’pk) of weight k in the universal Pontrjagin classes. For

each fixed point x we consider the number

1

P =————P(og,...,00)
X mym,..m, 1 k

2

where o is the j—th elementary symmetric function in the m L

If we now replace the

universal p i by the Pontrjagin classes of X , then we have for n = 2k

(14) P(p..p)IX]= ) lPx-
| xEXS

This formula and similar formulas for Chern numbers are due to Bott [Bo] and can be
deduced from the fixed point formula of Atiyah—Bott—Singer:

Every Pontrjagin number P(pl,...,pk)[X] is a linear combination of numbers
sign (X,W) where W is associated to the tangent bundle of X by some complex repre-
sentation. The finite Laurent series sign (X,W), (for a general element A of Sl) can
be calculated by the fixed point theorem for isolated fixed points. Then specializing to
A =1 gives (14).

If the action has no fixed points (though it is not necessarily free) it follows that all
Pontrjagin numbers and hence all genera of X are 0. Then the manifold X represents

the 0 of the bordism ring 1@ €.
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Remark: If n # 2k, we can still ask for a meaning of the right hand side of (14). The
answer (which can also be obtained from the fixed point formula) is the following.
Consider the universal Sl—bundle E over the infinite dimensional complex projective
space with g€ H2(Pm(¢),ﬂ) being the standard generator. Take the associated bundle
Ey with X as fibre using the Sl-action on X. Then P(pl""’pk) taken for the bundle
along the fibres of E,. defines a 4k—dimensional cohomology class of E, which can be
integrated over the fibre to give a (4k—2n)—dimensional class of Pm(di) which equals

( 2 1 Px) . g2k—n
xEXS

Compare [Och 2]. In particular (see [Bo])

2 P =0 for 2k<n.
1 X
xEXS

¢) The signature has the following very special property: The equivariant signature does
not depend on A . The rigidity is an immediate consequence of the topological definition

of the signature and implies that for the L—polynomials

) 1(Lk)x=0 for 4k # dim X .
x€XS

This corresponds to the strict multiplicativity of the L—polynomials ([BH 2] §28.4). The
rigidity of the signature is also a consequence of the fixed point theorem: The contri-

bution for sign (X) ) coming from a fixed point equals
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—1m.

n 1

14+
(15) TT 2%
i=1 1—x !

The basic idea i to consider sign(X), as a rational function in A (compare [AH]). As
a finite Laurent series it can have poles only in 0 and o whereas the contribution
coming from the fixed points have poles only in roots of unity. Hence sign(X) ) i8a con-
stant whose value can be obtained for A — o in (14). The limit of (15) for the rotation

numbers m, in the fixed point x equals

(_1)#(")
where

plx) = # {i|m; < 0} .

Note that the parity of u(x) is well-defined. Thus the following formula results. It was
mentioned in [AH] p. 26 and earlier in [AS] p. 594.

(16) g ()=} (-1)Hx)
xEXS

2. Homogeneous spaces

Let X be a compact Spin—manifold homogeneous under the action of a compact Lie
group G. The aim of this chapter is to show that the elliptic genus $(X) is a constant

modular function. If one defines the elliptic genus as a modular form (see 1.3), then this
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elliptic genus of X equals a constant times a power of .

2.1. Let X be an arbitrary homogeneous space of the compact Lie group G, and let

I' C G be an arbitrary subgroup (not necessarily Lie). Then the centralizer
M=Cq(l)={g€G|lgy=1g forall 7ET}

is a closed subgroup of G, thus a compact Lie subgroup (see e.g. [Ad] 2.26, 2.27).
Similarly, the fixed point set Y = X! = {x € X|7x =x forall 7€ T} is a closed sub-

manifold of X (without loss of generality we can replace I' by its closure T in G

which is a compact Lie subgroup, see above). It is clear that M actson Y.

PROPOSITION. The manifold Y decompoges into a finite union of M—orbits.
Proof: Since M and Y are compact, it is sufficient to show for any point y € Y that

the dimension of the M—orbit Z = M-y of y equals the dimension of Y in y, or, that

the tangent spaces TyZ and TyY coincide. Consider the map
p:G—X, ¢lg) =gy
and its differential in the unit element e of G:
D ¥ 8 — Tyx

(here g=LieG=T eG). Welet ' acton G by conjugation and on g by the induced

adjoint action. With respect to the natural action of I' on X and TYX the map ¢
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and hence D ¥ become I'—equivariant. Since we can replace I' by its compact closure

T we get splittings of "'—modules

g=m®n, TyX y NyY
where m = gP = Lie K and TyY = (Tyx)r. By I'—equivariance we get
D p(m) C TyY and Dega(n) C NyY .

Since X is homogeneous, D ¢ is surjective. Thus TyZ =D ego(m) = TyY which had to
be shown.

Remark: The proof of the proposition above goes through for algebraic groups G over

algebraically closed fields of characteristic zero provided one assumes TI', or its Zariski

closure I' in G, to be reductive. (Of course, X 1is assumed to be algebraic, too, i.e.

H C G has to be Zariski closed).

2.2. The following transversality result will be useful in the next section.

PROPOSITION. Let G be a Lie group, X a homogeneous space of G,and YCX a
submanifold. Then there exist g € G guch that Y and its tranglate gY intersect
transversally.

Proof: Themap ¥: G xY — X, ¥(g,y) = gy, is a submersion. Thus

7=9(Y) = {(gy) € G x Y|gy € Y}
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is a submanifold of GxY. Let x:Z — G, =(g,y) = g, denote the first projection and
let g € G be a regular value of r which exists by Sard’s theorem. The regularity of g
is equivalent to the transversality of Z and {g} xY in Gx Y. Since ¥ is submer-

sive, this implies the transversality of the submanifolds
Y =¥Z) and gY=¥({g}xY) in X.

Remarks: 1) If Y C X is equidimensional of codimension k, then
YNgYy= lI!(zr_l(g)) is a submanifold of codimension 2k in X (or empty).

2) By Sard’s theorem the set of g € G with Y and gY transversal is dense in G. If
G,X and Y are algebraic, it is also Zariski—open. For an elaboration of that situation
cf. [K]] from which we have taken the basic idea of the proof (cf. also [GG] II §4, Remark
after Lemma 4.6).

2.3. We can now establish our main result.

THEOREM. Let X be a connected homogeneous space of a compact Lie group G.
Assume that X is oriented and admits 3 Spin—gtructure. Then the elliptic genus &(X)
is a congtant modular function

(17) #(X) = sign(X) .

If dim X # 0 mod 8, then &(X) = sign (X) = 0.



—-91 -

Proof: If &(X) is a constant, then it equals sign(X) by 1.3. We shall proceed by in-
duction on the dimension of X, the case dim X = 0 being trivial. We may assume that
G is connected and that it acts faithfully on X. Let 4 € G be a non—trivial involution

in G and Y = X7 its fixed point set. According to Theorem 1.5 we have
(X)=%Y"'Y).

By Proposition 2.2 we can realize Y-+Y as the transversal intersection of Y with a
generic translate gY, g € G . The intersection Y N gY equals xF where T" is the sub-
group of G generated by . ¥ and g'yg_l. Thus, by Proposition 2.1, the intersection
Y NgY is a finite union of homogeneous spaces under the compact group M = CG(F)
(or its identity component MO). According to 1.4 and 1.7a) the connected components
of YN gY are canonically oriented and Spin—manifolds. We conclude the proof of (17)
by applying the induction hypothesis to these components. If 7 is an odd involution,
then &(X) =0 (see 1.5). If 7 is even, then dim X =dim (Y N gY) mod 8, possibly
YNgY is empty, and induction can also be used to prove &X)=0 for
dim X # 0 mod 8.

2.4. Many homogeneous manifolds bound modulo torsion, i.e. they represent the 0 of

the bordism algebra 1 ® € . All genera vanish on these manifolds.

LEMMA. Let X=G/H be a connected homogeneous space under the compact Lie
group G. Assume rank (H) < rank (G). Then X admits an Sl—gggign with empty

Sl
fixed point set, X* = ¢.
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Proof: Let T CH be a maximal torus of H contained in a maximal torus S CG of
G andlet W =N4(S)/S be the Weyl group of § in G. Let

X(T) = Hom(Sl,T) C Lie(T) and X(S) = Hom (Sl,S) C Lie (S) denote the lattices of
co—characters. Since ranky(X(T)) = rank (H) < rank (G) = rankz(X(S)) we can find a
homomorphism A : S1 — S corresponding to a point in the complement of the finite

union

U wX(T)
wEW

(note that W acts on X(S) by conjugation). We claim that the sl-action on X in-
duced by A has no fixed point on X. Otherwise A(Sl) would be conjugate into H,
thus into T. However, elements of X(S) are G—conjugate if and only if they are

W—conjugate. Thus A € U w.X(T) contradicting our choice of A. (For the con-
wEW

jugacy results used, cf. [Ad] 4.21 and 4.33).
Remark: 1) The result above is due to Hopf and Samelson, [HS] § 6.

2) Note that the Sl—action constructed above need not be free. For example, all in-
volutions of SU(n) are conjugate into the subgroup SO(n). Thus any involution of

SU(n) has a fixed point on X = SU(n)/SO(n).

Let G CH be compact connected Lie groups with rank(G) = rank(H) and a common
maximal torus TCH . Let X(T,H) and X(T,G) denote the corresponding root
systems in X*(T) = Hom(T,Sl) . Wecal H gmall in G if there exists a root
a € X(T,G) which is orthogonal to all roots in I(T,H) .



—923 —

PROPOSITION. Let X = G/H be a connected homogeneous space under the compact
Lie groyp G and assume that either rank(H) < rank(G) or that H jg smallin G.
Then X bounds modulo torsion, and all genera, in particular the elliptic genys ¥(X) ,
vanish.

Proof: If rank(H) < rank(G) combine the above lemma with 1.7 b). If H is small in
G let aeXI(T,G) be a root orthogonal to I(T,H) and let G, CG denote the
rank—1—subgroup of G corresponding to a (G, 2 SU(2) or SO(3)) . Then G, and
H commute, and their product forms a closed subgroup H’ of G with
rank(H’) = rank(G) . The natural projection G/H — G/H’ realizes X as a
G-bundle over G/H’ with fiber H//H®G_/G NTxS%. Thus X bounds the
associated G-bundle over G/H’ with fiber the 3—disk D> .

Remarks: 1) The proposition shows that our theorem in 2.3 is interesting only for
X =G/H where G and H have equal rank and where H is large (i.e. not small) in
G.

2) A necessary condition for H to be small in G is that the rank of the root system
(T,H) is strictly smaller than the rank of I(T,G) . This condition is by no means suf-
ficient (for example, U(2) x U(2) C U(4) and, more generally, U(2)" C U(2n) are not
small).

2.5. As another application of the Atiyah—Bott—Singer fixed point theorem we will now
derive a formula for the signature of a homogeneous space X = G/H under a compact
connected Lie group G. By our results in 2.4 we may concentrate on the case

rank (G) = rank (H). We may also assume that X is simply connected which, in this

case, is equivalent to H being connected.
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*
Let TCHCG be a common maximal torus and X (T) = Hom(T,S') its character
lattice which is in W—equivariant duality to the lattice X(T)= Hom(S',T) of

co—characters

X (T) x X(T) —— T

(@,d) ——— <a,A>
defined by
a(A(z)) = g SEHA>
forall @€ X (T), A € X(T), z € SL.

The root system L’ = E(T,H) of H is contained in the root system

£ =X(T,G) CX (T) of G. Welet W’ = W(H) = Ng(T)/T and

W = W(G) = No(T)/T denote the corresponding Weyl groups. Let Tt CE bea
system of positive roots with basis A CE¥ of simple roots. Then L t_p'net isa
system of positive roots in £’ . Let A’ CL’ * be the basis of simple roots (we need
not have A’ CA!). Let ¥={a€ gt | a L’} denote the set of complementary

positive roots. For any subset 1 C £t and any w €W we put
Qw) = {a €0 | wi(a) gTT}.

The following result may in principle be deduced from the orientability of X. However,

it may be quite satisfactory to have a purely root—theoretic proof.
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PROPOSITION 1. Let w€ W and u(w) = card ¥(w). Then u(vw) = p(w) mod 2
forall ve W’.

Proof: Let £=1£,:W—N and £’ =¢,,: W’ — N denote the length functions
on the Weyl groups corresponding to the systems of simple roots A and A’. For any
wEW and vEW’ we have (cf. [Bou] Cor. 2, p. 158)
_ + ’ _ '+
£(wy=cardE"(w) and £'(v) =cardZ’ " (v).

Thus, for all v € W’

p(v) = &(v) = £'(v).

* *

Since any reflection in W has determinant —1 {on X (T) C (Lie T) ) we have

(0" = get(v) = ()4 )

and hence u(v) =0 (mod 2) for all v € W’. From this we can deduce the general case

of our assertion. Let v € W’. We decompose

¥ = ¥(v) U ¥(v)°
¥ = —¥(v) U —3(v)°

where ‘l(v)0 ={a€V¥| v_l(a) €2t} Since ¥U-¥=% \ I’ is stable under W’

we get
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(*) v(2¥(v)) = 7¥(v)
v(28()%) = #(v)".

Now let w € W. We consider the induced decompositions

¥(w) = (¥(w) N ¥(v)) U (¥(w) 0 ¥(v)°)
9(vw) = (¥(vw) N ¥(v)) U (¥(vw) N ¥(+)°).

From (*) it is clear that

card(¥(vw) N ¥(v)?) = card(¥(w) N ¥(v)°)
and
card(¥(vw) N ¥(v)) = card{8 € —¥(v) | w 1(8) € =T}
= card{a € ¥(v) | w *(a) €T}
= card ¥(v) — card(¥(w) N ¥(v)) .

Since card ¥(v) = u(v) is even we finally get
card ¥(vw) = card ¥(w) (mod 2) .

Remark: Incase £’ is rationally closedin ¥ weget A’ C A. Then ¥ is stable under
W’ and we even have u(vw) = u(w) forall w € W, v € W’. Examples (e.g.
Ay x A; CB,) show that, in general, ¥ need not be stable under w’.

The following result is well known. Let A € X(T) = Hom(Sl,T) be a regular one—

parameter subgroup into G and denote the fixed point set of A(Sl) on X=G/H by

XA
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PROPOSITION 2. We have

A

X =XT = (wHEG/H | weEW}.

In particular, X* is a finite set in bijection to W(G) / W(H).

Proof: (Compare [HS] 8§ 5, 7) The inclusions "J" are obvious. Conversely, let
x=gHE x*. Then A(Sl) C gHg_l. Let T’ C gHg_1 be a maximal torus containing
,\(Sl). Since T’ is a maximal torus of G, too, and since A(Sl) is contained in a
unique maximal torus of G (see e.g. [Ad] 4.35, 4.41) we must have T =T’ C gHg"1
or g 'Tg CH. Let h € H besuch that h g 'Tgh =T C H (use [Ad] 4.23), i.e. such
that gh € N(T). If we denote by w the image of gh in w we have (with the usual

abuse of language)

x =gH =ghH = wH
which had to be shown.
With the notations introduced above we can now prove:

THEOREM. Let X =G/H a simply conn homogeneous space under the com-
pact Lie group G and assume rank (H) = rank (G). Then

i) eX)=#(W(G)/W(H))

ii) =*sign(X) = #VV%HI 2 (—1)"“(w) .
wEW
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Proof: i) is a classical result due to Hopf and Samelson (see Remark 1 below). To prove
ii) we first fix an orientation on X (for which the positive sign will result). It is suf-
ficient to fix an orientation on the tangent space THX ~ g/h which decomposes under

the action of T into a direct sum

ToX= & V

H™ " geg @

where the summand V o M3y be identified as an R — T — module with € on which T

acts by the root a

tv=a(t)-v (ET,vEC).
Via this identification each Va and thus THX obtain an orientation. Now choose a
regular A € X(T) inside the fundamental chamber. Then the rotation numbers of
A(Sl) in the fixed point H € X = G/H are given by the strictly positive numbers

<a,A>,a€V.

Computing the rotation numbers in another fixed point w_lH € X is equivalent to

computing the rotation numbers of w(A) in H € X which are
<a,w(A)> = <w_1(a),,\>, a€V.

Thus there are u(w) negative rotation numbers of A in w 'H and we obtain ii) from

Proposition 2 above and 1.7 c), (16).
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Remarks: 1) We have also mentioned i) since, in the context of our proof of ii), it can
be deduced from the classical Lefschetz fixed point formula (for more details compare
[HS], see also [Ad] proof of 4.21, where G/T is treated).

2) Note that G/H carries no canonical orientation. Therefore we have admitted both
signs of sign (X). If G/H admits a homogeneous complex structure, one can fix an

orientation by fixing such a structure.

3) In this last case, our formula for sign (X) is already proved in [BH 2], Theorem 24.3,

where the Hodge—theoretic expression for the signature gives:

n
sign(X) = 2 (—l)pb2p
p=0

(n= djch, b2p = 2p — th Betti number). This formula is not valid any more in our
general context (e.g. conmsider X = st = SO(5)/SO(4)). In the complex case L’ is
rationally closed in E. Thus ¥ is W’—stable and the numbers u(w) (not only
(—1)”(W)) are invariants attached to the fixed points W_IH, wEW.

4) Our use of the function u(w) related to w 'H instead of pl(w) = p(w_l) related

to wH follows tradition.

5) Our formula for sign (X) remains valid for not necessarily simply connected spaces
X = G/H aslongas X is orientable. In this case W(H) need not be a Weyl group of a
root subsystem. Note that we have made no use of Proposition 1 in our proof of ii). In-

stead, Proposition 1 is a corollary of the orientability of X.
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6) To evaluate sign (X) requires a summation over the W(H)-right cosets of W(G)
only. Nonetheless, this may not be easily manageable in complicated cases (e.g.
G =Eg ). In our table at the end, we list the (positive) value of sign (X), X a

symmetric space, provided its value has been computed.

2.6. The rigidity theorem [BoTa] and our Theorem 1.5 hinge on the existence of a
Spin—structure on the manifold X . Here we specify the well known existence criteria for
such a structure in the situation where X is a homogeneous space of the form G/H

with rank(G) = rank(H).
We fix a common maximal torus T C H C G, root systems
*
¥/ =3%(TH)CZE=X%(T,G)CX (T) and systems of positive roots £t and

t=x'nzt . Let v=3" \ £/F denote the complementary positive roots. To

any subset Q C ¥ we attach a "spin weight"

which is an element of X (T)® Q.

PROPOSITION. Set G be a connected, gimply connected, compact Lie group, H a

0 nnected subgroup with rank(H) =rank(G) , and X =G/H . Then the
following conditions ar ivalent:
i) X admits a Spin—structure.

ii) X admits a unique Spin—gtructure.
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iii) Th nd Stiefel—Whitney cl wz(X) yanighes.
iv) The tangential representation 7: H — SO(TyX) lifts to the corresponding
Spin—group:
Spin(TgX)
g / \lna.t.
H T » SO(TgX) -
*
V) pgy €X (T).
i €X(T

vi) A (T).

Proof: For the equivalence of i), ii), iii) see [BH 2], p. 350 and [Mi] (note that X is
simply connected under our assumptions). It is obvious that iv) implies i). Conversely,
le¢ P—X denote the principal Spin(TyX)-bundle "restricting" the principal
SO(THX)-bundle Q =G xHSO(THX) — X of some G—invariant Riemannian metric

on X.Since G is simply connected we get compatible G—actions on the triangle

P

Q

(use [AH], Proposition 2.1). Thus P is associated to the H—principal bundle
G—G/H and alift ¢:H— Spin(TgX) of 7:H-— SO(TKX) . Condition v) is a
well known reformation of iv) in terms of the weights of 7 . Finally, v) and vi) are equi-

valent since
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p L =p ,+p
*
is an element of X (T) (again since G is simply connected).

A number of cases can be dealt with quite easily.

COROLLARY. Let G and H be as in the proposition. Assume that H containg no
simple factor of type AP,(E odd) , BI. , CQ(QE 1,2(4)) , Dt(f,:_-"2,3(4)) , Or
E, .Then X = G/H admits a Spin—structure.

Proof: A glance at the tables of Bourbaki ([Bou] Planches, entry (VII)) shows that
*
P, + €ZX’ CX (T) under these conditions (partly, one might also invoke that the
¥
order of the fundamental group of an adjoint group of type A, g B Eg F Gy 18 odd).
In the tables at the end of our article we have indicated by a + (resp. —) the existence

(resp. non—existence) of a Spin—structure on symmetric spaces of the form G/H ,

rank(H) = rank(G) .

To illustrate the use of condition vi) let us deal with the symmetric space
X= Bf’/Bq x Dp , p+q=1L,0r X=S50(2L + 1)/SO(2q + 1) x SO(2p) . We can
choose bases of simple roots according to the following extended Dynkin diagram (nota-

tions of {Bou] ):
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[

a
1
>——-o . 80— |—o—|—e ... e="rrm=g
~ [0 a
- 2 P at
D

p q

*
The weight lattice X (T)=P(By) of Spin(2f +1) is generated by the roots
aj, .. ,ap and the spin weight w,; = % (@) +2a9 + ... + Lay) . Let Q(By) denote

the root lattice, generated by the a; only. Then we have (in obvious notation)
—plp-1 vy
pp =B (@, -&) =0 mod Q(B,)
p

qu = % (ap+1 toy g+t a({(—l)) mod Q(By) -

Thus
pP_,4=Pp *rp E%(ap_l_l + ... +a£(_1))mod Q(BP.)'
by P q

*
This element lies in X (T) = P(By) exactly when p =0 (which we need not consider)

orwhen p=~£ ,i.e. q=0. Hence
X = S0(2¢ + 1)/SO(2q + 1) x SO(2p)
admits no Spin—structure for q > 0, whereas

X = SO(2¢ + 1)/S0(2¢) = 52¢
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admits a Spin—structure (which is of course also clear by condition iii).

In the other cases of our table one can either use the corollary or a similar reasoning. In
addition, note that for hermitian symmetric spaces one may also employ the computa-
tion of the first Chern class ¢,(X) € H2(X,II) in [BH] 16.1 since w,(X) is the image
of ¢;(X) under the natural map B2(X,I) — B(X,Z/2I).

3. Involutions on homogeneous spaces, examples.

We will have a closer look now at involutions on a homogeneous space X and we will
show how formula (10) in 1.4, resp. Theorem 1.5, leads, in some cases at least, to an

effective determination of the signature, resp. the elliptic genus &(X) .

3.1. As already before we may restrict our attention to spaces of the form X = G/H
where G and H are compact of the same rank. Then the center of G is contained in

H and we may choose the global structure of G according to convenience.

Let us now assume that G is of adjoint type (thus semisimple). We will recall some
facts about the involutions of G and the associated symmetric spaces. Let 7e G be a

non—trivial involution and K = C;(7) its centralizer in G . Then 5= G/K is a com-

pact symmetric space with simply connected covering S = G/K0 (cf. [He] Chap. VII).
Let g 'yg_l and gKg_1 be generic conjugates of v and K under G . Then the inter-

section

M =K N gKg ™" = Cqyll)
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(where T is the subgroup of G generated by 7 and g« g-l ) can be regarded as a
generic isotropy group (i.e. a principal isotropy group) for the left—action of K on
S = G/K . According to the theory (cf. [He] VII, §§ 3, 8) this group can be described

as the centralizerin K
(18) M= CK(A) =KnN CG(A)

of maximal 7 —split torus A C G . Here a torus A C G is called «— split if

7a.7_1=a_1 forall a€A

(this notation follows [Sp] and is motivated by the relative theory of reductive groups
over arbitrary fields, cf. e.g. [Ti 1], [Ti 2]}, [Se]). All maximal < —split toriin G
are conjugate by an element of K° (cf. [He] Chap. V, Lemma 6.3) and M plays an
important part in the classification theory of involutions (¢f. [Sp]). In the table at the
end of the paper we have listed all conjugacy classes of involutions in simple groups to-

gether with associated invariant objects and numbers:

The affine coordinate diagram allows to specify a representative < of the conjugacy
class in the following way. Let T CG be a maximal torus and A = {qa, ... ,at} a

system of simple roots. Then < is determined as an element of T by the conditions

m.
(19) a(M=(-1) 1, i=1..L,
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where m, is the coefficient attached to the simple root a; in the diagram. (If —a de-

notes the negative of the highest root, then we will automatically have

~N

(-8 = 1®

where m is the coefficient of the extra node —& in the affine diagram). The affine
coordinate diagram was introduced by V. Kac in the more general context of classifying
elements of finite order in G (cf. [He] Chap. X, § 5). It also determines the infinitesi-
mal structure, i.e. the Lie algebra ¢ of K = CG('y) whose Dynkin diagram is provided
by the subdiagram formed by the vertices with O-coefficient. Of course
dim § = dim G —dim K is known then.

The index diagram attached to <7 can be derived as in [Sp] (where it is called Araki
diagram) or in the following way. Let G denote the real algebraic group (of adjoint
type) giving rise to the non—compact symmetric space S dual to S (see for example
[He] Chap. V, §§ 2, 5; note that G need not be connected as a real Lie group). Then
the index diagram is the index in the sense of Tits (cf. [Ti 1], [Ti 2], [Se]) attached
to G . The dimension of a maximal 4 —split torus A ,ortherankof S and S, is

then given by the number of circles in the index diagram, i.e. 2 in the example

.L‘\)

G}_
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The Dynkin diagram of the semisimple part of C5(A), or M = Cy(A) (or Cé(X) ,
where X is a maximal R-split torus of € corresponding to A ) is the subdiagram
formed by the uncircled vertices. The Lie algebra m of M is obtained from
¢ = Lie C5(A) by splitting of the Lie algebra a of A . Global information on M can
be deduced from the following result:

PROPOSITION. The following properties hold:

i) Ci(A) is connected.
ii) The commutator subgroup of CG(A) is contained in K .
iii) The center of C5(A) isa y-stable torus of the form

(Sl x Sl)a. x (Sl)b ,

where a + b=dim A and where 7 acts (by conjugation) as follows: on a

factor S' x S! by (5,t) = (t,5) , ona factor S* by t =t L.

Proof: i) follows since C;(A) is the centralizer of a torus (cf. [He] Chp. VII, 2.8), ii)
and iii) follow from analogous statements for Cé(l) in [Se] II, 2.2 and 4.1 which are

easily transferred to our situation.

We remark that also the relative root system and the Weyl group Ny (A)/Cy(A) of S
can be derived from the index (cf. [Ti 2], [He] Chap. X, Table VI).
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3.2. We keep the general assumptions and nbtations from 3.1. Since the self—intersection

X7 0 X7 relevant in Theorem 1.5 can be realized in the form Xr

(' asin 3.1) and
since X! consists of a finite union of orbits under M = Cg(T) (Prop. 2.1) it is natural

to look for involutions 7y with M as small as possible.

An involution e G 1is called gquasi—gplit if the centralizer CG(A) of a maximal
v —split torus A C G is a maximal torus of G . It is called split if there is a maximal
torus of G which is - — split.

Remark: These definitions are inspired by those of [Ti 2]. It is easily seen that they are
equivalent to those of [Sp] when transferred to the compact case. Note that any split

involution is quasi—split.

The classification of involutions shows that any simple adjoint group G contains
exactly one conjugacy class of quasi—split involutions (characterized by an index dia-
gram all of whose vertices are encircled, cf. also [Sp]). These involutions are split
exactly when the "opposition involution" of the corresponding diagram is trivial, that is
if G is of type AI’BE,’CP,'DP. (£ even), E7,E8,F4,G2 . In these cases we get
Cg(A) = A, a maximal torus of G, and

M=Cu(A)=KNA={acA|yay =2t =a}
consists of the 2—torsion points of A, i.e.

’

(20) M (Z/20) | ¢ = rank(G) .
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In the other cases, A,(€22), Dy (& odd) , Eg , we have CG(A) =T, A $ T,
where T is a maximal torusof G,and M = CK(A) =KNT is of the form

(21) M = (s1)® x (z/22)°,

where a+b=dimA and 2a+b=dimT (the values (ab) are (n,0) for A, ,
(n,1) for A2n+1, (1,£-2) for D, (£ odd), and (2,2) for EB)'

3.3. In this section we will exploit the existence of split involutions in certain groups.
Welet G, HCG, 7v¢e G, TCG,and M= CG(I‘) be as in 3.1. We further assume
in this section that H is connected, i.e. that X = G/H is simply connected. Since
genera behave multiplicatively under coverings, results for non—simply connected spaces

may be derived immediately.

LEMMA. The group T has a fixed point on X = G/H if and only if the centralizer

CG(H) of H in G is conjugate to a subgroupof M.

Proof: A point g H e X is fixed under I' exactly when T CgH g-l , which is equi-
-1
valent to M =C(I') I gC(H)g ~ .

THEOREM. Let G be simple. Assume that G has a split inyolution, i.e. that G ig
of type Al’BP.’CR.’Dt (£ even) , E7,E8,F4,G2, and that CG(H) is not an elementary

abelian 2—group. Then the signature sign (X) of the homogeneous space X = G/H
vanighes. If in addition wo(X) =0, then ¥(X) = sign(X)=0.

Proof: Let 7 e G be a split involution in G . Then, in the earlier notations,
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sign(X) = sign(xr)
or, if wy(X)=0,
$(X) = a(x))

(by 1.4 (10), resp. Theorem 1.5, (13)). By our assumption on C(H) and the previous

lemma we get Xr = ¢ , thus our assertion.

We have some special cases:

COROLLARY 1. Let G be as in the theorem and assume that X = G/H admits a

. homogeneous complex structure. Then sign(X) =0 . If in addition w,(X) =0, then
B(X)=0.

Proof. According to a theorem of H.C. Wang (cf. [BH 1] Prop. 13.5) H is the centra-

lizer of a torus, now.

Remark: If X is hermitian symmetric, then this result agrees with those in [Hirl] p.
163. The computations there as well as our later results show that the existence of a split

involution in G is crucial.

COROLLARY 2. Assume that G is simple, that H C G is maximal of maximal rank,
and that X = G/H is not symmetric. Then ®(X) = sign(X)=0.

Proof. According to the classification of maximal subgroups H with

rank(H) = rank(G) by Borel and de Siebenthal ([BS] § 7) G is now of exceptional
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type and H is the connected centralizer of an element of order 3 or 5. Checking through
the tables of loc. cit. and using the criteria of 2.6 one easily verifies w2(X) =0 in all
cases. Moreover, the only case not covered by our theorem is that of G = Eg ,

H=A, x A, x A, . But here dim G/H = 54 which also leads to

&(X) = sign(X) = 0.

Remark: The spaces X in Corollary 2 where our methods are effectively needed, i.e.
where dim X is divisible by 8, are Eg/A; and Eg/A, x A, of dimension 168, resp.
200. The space F 4/ Ag x A, is of dimension 36 and thus covered by our Theorem 2.3.

In the remaining cases we have dim X = 2(4) .

3.4. Our last section dealt with cases where XL s empty. Since xb s always a finite
union of M-orbits , it is clear that Xr consists of at most a finite number of points
whenever M is finite, i.e. when M belongs to a split involution 7 e G . However, we
will show that this is still true for quasi—split involutions. We keep the previous nota-

tions and assumptions (in particular, H is connected and rank(H) = rank(G)) .

LEMMA. The connected centralizer CG(M)O of M=Cq(T) in G acts trivially on
\
Xt

Proof. Let C= Cp(H) denote the center of H . Since rank(H) = rank(G) we have
H = Cg(C)” by [BS] Theoréme 5. Let gH € X be fixed under T, thus

rC gHg_1

or
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-1 -
M = Cg(T') ) gC(H)g ™ JgC¢™" .
Centralizing once more gives
-1
Cg(M) C BC(;(C)B
hence
0-1 -1
CgM)’ CgCq(0) g = gHg .
But this means that gH € X is fixed under CG(M)O .

PROPOSITION. Let 7€ G he a quasi—gplit involution, A C G a maximal 7 — gplit
torus and T =Cg(A) its centralizer. Then the generic self-intersection
XP = X7 0 X7 is contained in XT . In particular, XP consists of at most finitely

man ints.

Proof: By definition , T is a maximal torus of G . Since M=KNTCT we have
TC CG(M)O . By the lemma we get

and by 2.5 Proposition 2 these sets are finite.

There is no loss in generality by assuming that the isotropy group H of X = G/H con-
tains T . Then
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xT = {wH|we W}
by 2.5 Proposition 2, and by Lemma 3.3 (proof) we have
r -1
X" = {wH|Cq(H) Cw "Mw}

(since T acts trivially on M C T, the notation w_le is independent of the repre-

sentative of w in NG(T)) .
We distinguish two cases, again:

1) If 4 issplit, then M consists of all 2—torsion points of T and is stable under W .

I' _ XT . The situation where X\ = X1

Hence we have either X! = ¢ or X is related
to our approach to the signature formula in 2.5 by means of a regular sl—action on X

1
with fixed point set X5 = X1

. By choosing suitable representatives for 7 and a
generic conjugate s*ys'l (ie. v asaliftof —~1eW to NG(T) and s € T such that
5% s regular) one can determine the canonical orientation of a point w 'H as com-
ponent of the self-intersection xI' = x70 X7 (cf. 1.4) and compare it with the global

orietation (i.e. the orientationon T _, X given by the orientation of X) . It turns
w H

out that both differ by the factor (— 1YX¥) (or its negative, if the other global orienta-
tion is chosen). Thus one obtains a second proof (in fact, our original one) of Theorem
2.5, in this case at least. In view of the proof of formula 1.4 (10) in [J&0s], which
avoids the use of the Atiyah—Bott—Singer index theorem, this derivation may be called

elementary.
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2) If « is not split (but quasi-split) the group M = T N K is stable only under the

subgroup
W7 = {we W|Ad(y)w = w Ad(7) on T}

which may be identified with the "little" Weyl group Ny (A)/Cy(A) of the symmetric
space G/K (cf. [He] VII, 8.10 and use that W(m,) of loc. cit. is trivial since 7 is

quasisplit). Obviously, the condition
(22) Cg(E) C w Mw

is a condition on the double cosets W'w W(H) only. In general, XL will have less
points then XT , however, we don’t know, a priori, how many double cosets actually

satisfy (22). In the following examples there will be only one, or none.

Examples: 1) Let us consider the GraBmannian X = G, (C") of complex k—planes in
€" which is homogeneous under the projective unitary group PU(n) of type A E
Since X is hermitian symmetric its signature can be computed by Hodge theory (see
[Hir 1] p. 163). By the same reason, our methods developed above simplify since all
self—intersection points in xF =x70 X7 are positively oriented, now (X7 is a

complex submanifold of X) . Hence sign(X) equals the cardinality of xL.
For convenience, let us work with U(n) instead of PU(n) (their differences can be
neglected in this context), and let T C U(n) denote the standard maximal torus con-

sisting of all diagonal matrices

1
6(31, ,an) ) B € ST.
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The element

is a quasi—split involution of U(n) and a maximal 4—split torus is
A= {6(ay, .. 2,18, . a7}
(here n=2m or 2m + 1) . We have C,(A) =T and
M={teT{nt=t7}= {é(a,, ... ,am,(am+l),am, -~ s39)} -
Let H = U(k) x U(n —k) be the isotropy group of G =U(n) on X = Grk((ln) . Then

k n-k

b, ... ,b)[a,b e S},

[N—

and we have
wC(HE)w 1 CM
G

for some we W(G)=S_ if and only if at least one of k or n—k is even. Thus

n
sign(X) =0 if n is even and k is odd. Assume now, without loss of generality, k to

be even, k = 25, and H to be replaced by a conjugate such that
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CG(H) = {é(a,...,a,b, ...,b,a,...,3)}.

8 n-28 8

We shall identify X' = {wH|w e W} with the quotient W/W(H)=S5_/S, x S__,

and consider the map
W/W(H) <4 {wCa(H)w " |we W} .

If k#n-—k this is a bijection, whereas for kX =n—k it is two—to—one. Assume

k#n-k first. Then wCg(H)w " CM if and only if w is of the form w,w, with
w, e W(H) and w, e wlwos m (acting by permutation on the first m coordinates
and by the reflected permutation on the last m coordinates of T) . Accordingly, there
are [T] different W—conjugates of CG(H) in M.If k=n-—k we only get half the

number of conjugates but this is made up for by ¢ being 2:1 , so that

0 n even, k odd
(23) sign(Gr, (C")) =

m' n= 2m or 2m + 1
28 = k orn - k

which agrees with [Hir 1] p. 163.

2) In a similar way we can deal with the hermitian symmetric spaces for G of type

D and EG which are

2m+1

Q= SO(4m + 2)/SO(4m) x SO(2)
(complex quadric, dimg = 4m)
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F, ., =SO0(4m + 2)/U(2m + 1)

(dimg = m(2m + 1))

2m+1

. 1
W = E¢/Spin(10).5
(complexified Cayley plane, dimg = 16) .

If we realize these spaces in the form G/H, G adjoint, H connected, then

1
Cg(H) 25" and H=Cqy(Cqy(H)) . We also have N(H) = Ng(Cg(H)) = H except
for Q, where H isofindex 2in N(H).

Fix a maximal torus T of G . Then a quasisplit involution e NG(‘I‘) can be ob-
tained as a lift of wy € W =Ng(T)/T (w, is the longest element in W with respect

to some basis of simple roots; we have Wy =—t= ch/ 2

, where ¢ is the opposition in-
volution, ¢ a Coxeter element, h the Coxeter number). With this choice T contains a
maximal 7 —split torus A (of rank 2m resp. 4 for type D,

that C5(A)=T and

41 Tesp Eg ) such

(@ 2m* ™ xst (D, )

M=T7

e

@/2m)® x s!

1
x §° (Eg)
With the help of the affine coordinate diagram (attached to G/H , now) it is seen that
M contains one (resp. no, resp. 3) conjugate(s) of C(M) ¥ ! in the case of Q Am

(resp. F,  ,.7esp. W¢ ). Dueto |N(H)/H| =2 in the first case, we get

2m+

s1g0(Quy) = 8(Qppy) = 2,
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sign(F2m+1) = ‘I)(F2m+1) =0,
which, again, may be found already in [Hir 1] p. 163 (for sign).

Remarks: 1) Another way to deduce the signature of X = Grk(tn) from formula (10)
in 1.4 is the following. Let o denote the usual complex conjugation on X (which is not
homotopic to the identity). Then X7 is the real GraSmannian Grk(IRn) of which X is
the complexification. Accordingly, the normal bundle of X? in X is isomorphic to the

(real) tangent bundle of X7 . This gives
sign(X” o X%) = (- )42 - ¢(x7)
where d = dich (note that we have kept the usual complex orientation on X , com-
pare [Ja0Os] § 3). Since all homology classes of X can be represented by algebraic
cycles defined over R , the involution ¢ acts on H d(X,[R) by multiplication with
(- l)dl2 . Thus
sign(X) = (- 1)% Zsign(X)_,

hence by (10)

sign(X) = e(X7) .
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The same reasoning works in the case of Q'4m and We.In the first case one has to
choose a complex conjugation associated to a split real form. In the second case the real

form is the Cayley plane W =F,/Spin(9) with e(W) =3.

2) Along the lines of the examples above one may also attack the non—hermitian gym-
metric spaces of type D2m 41 and EG . In these cases XP is always reduced to an
orbit under the "small" Weyl group W7 ( W(B, ), W(F,)) and the signature can
be expressed as a sum of terms (— 1)“(w) , W ranging over representatives of this orbit
(e.g. for X = Eg/A, x A, there are 12 terms). Though this is a reduction compared to
the number of terms occuring in the formula of Theorem 2.5 it is still messy for compu-

tation.

3) In the above developments (from 3.2 on) we have concentrated on quasi—split in-
volutions < only, the advantage being the discreteness of XF . On the other hand, the
associated orientation sums are hard to compute (in case X is not complex) and one
would like to cluster together groups of points of XF to sum in two steps . In a sense
this is achieved by considering the self-intersection sets X7 0 X7 for involutions 7
with "big" group M . The result of the first summing process is then given by the
signature of the components of X7 o X7 (which are homogeneous under M ). We have
studied a number of such involutions, in particular the natural symmetries on symmetric
spaces (where X7 is an antipodal set). Here, the determination of the components of
X7 and X7 o X7 requires quite detailed and specific information on conjugacy classes
and centralizers in G . The problem of computing orientation numbers remains, and, at
this moment, we have not got beyond the known cases. However, we hope to complete
these investigations (with which we originally started) and to report about them at some

other occasion.
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4. Tables

Below we have listed the table of conjugacy classes of involutions in simple (adjoint)
groups. The first six columns are explained in 3.1. The + (resp. —) in the Spin—column

indicates the existence (resp. non—existence) of a Spin structure on the simply connected
symmetric space S = G/ KY . Column 8 gives the Euler number

e(S) = |W(G)/W(K0) | of S, column 9 the signature as far as we know it (in the case
of the real and quaternionic GraBmannians we have refrained from inserting the value
for obvious cases, like spheres, projective spaces, Spin—manifolds of dimension # 0 (8) ,

etc.).



TABLE
q affine coordinate diagram R dim § index diagram c 0 spin e | sion®)
A
1 % ! R 2 ® R o . . .
AT -+ +—t - - . ,
) p p ( \
Ay (2>1) Ap_l ] Al_p 8 R ; By o @R A29.—2p$IR + (L odd) e
2pq -+ :) $---7 [ P see 3.4
(su(f+1)) sutp)@su(q)® R g_.__..u P - (L even)
su ptq = L+1 ;ﬁ< (9.+1)/(2\ ~
: 1 G S = =°
p i
(1 Sp s (L+1)/2) i e + 4
p = (2+1)/2
! 00 0 0.0 5 e .
By (221) | AT = x ® Dok ,
1
= 9- . ) |
(s0(20+1)) " : solp)@so(a) O-o-8--6—+ - B, OR By . + (k=0) ’{i]
SO
— 0 p = 2k+1 — .
0 010 0 T minipa)
B (8,=0) >
0 —_— :
sk <1 K
LR e S S T T v | -G080 | ® S PR
o i : atin - (2 even)
(sp(%)) 9,0 0 9 4¢ o0 ¢ ey, - P
sp(p)@sp(q) | OO @ - | 2™ R | Cogp™y ' M 2
P - - I 4pq — v— J p
(1 $p £ 2/2) p+q = £ J 2p

- 19—



g affine éoordina;te diagram k dim(§) index diagram c m Spin e(8) sign(8)
Ko o o o0 A0 B - D o R°P D +
D, Dp ® D2m—p 4pq '@‘@—" 2m-2p 2m-2p 2[2m) o
mn Y p
1 0 2 =
(m 2 2) (p=1) P (D=0
so(2p)@so(2q) (1 £p £m
(E(‘lm)) p+q = 2m
Koo 10 0o 2
. ; ;o
p-1
(2 £ p £m) ff)
~2m-1
1 00 0o 0 1 even, for m odd Am &)]Rm Am + < 0
..... a ® R 2m(2m-1) 1 1
2m-1 both diagrams are
0 0 interchanged)
1 o (u(2m))
0 0 Q0
A o R 2m(2m-1) F@—'—@
2m-1 B
0 1
1 0 2
D 00 00
2m+1 >—4~4—< Po ® Poms1p
1 0
(m 2 2) 4 o6 B+ 2p + | - f{2men)
(p=1) 2(29)632(2@} Pd ) om-2p+1 &R Dom-2p+1 o |
(so(4m+2)) p+q = 2m+1 J 2p (D, =R 1)
0
>O' Ol , '< (1 £p £m ?
—
0
p- 1
(2 €p<m
m m+1
- A, @R A, B R
0 0 0o A1 A, ®R 2m(2m+1) l—@—l—@f @—@ 1 + | L2 0
0 (u(2m+1))
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