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Introduction

The elliptic genus '{J of Ochanine (see [Och 1), [La)) is a homomorphism of the oriented

bordism ring to the ring of modular fonns for r 0(2). On the complex projective spaces

P2k(() it takes values given by the formula

where Ö and € are modular forms of weights 2 and 4 respectively. The elliptic ge­

nus of a 4k-dimensional manifold X is a modular fonn of weight 2k. We shall study

the genus

k/2t = tp/€

which (for k even) is a modular function for r0(2). It will also be called elliptic genus.

According to Witten (Wit], p. 173, the modular function ~(X) has (in one of the 2

cusps of r0(2)) a q-development which can be regarded as the equivariant signature of

the Iree loop space of X with respect to the natural action of SI on the loop space. We

take this q-development (see 1.2(5)) aB definition of t(X).
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If X ia a homogeneous space GIB where G and B are compact Lie groups (G con­

nected), then we have the equivariant elliptic genus t{X)g which is a function of

(T,g) EIH x G where IH ia the upper half plane and q = e2ri
T. According to the

rigidity theorem of Witten-Taubes-Bott [BoTa] the number t(X)g does not depend on

g if GIB is a Spin-manifold. We shall show (Theorem 2.3) that it also does not de­

pend on T in trus case, Le. the coefficients of qn{n > 0) vanish (the constant term

equals the signature sign (GIB) of GIB). H GIB is not a Spin-manifold, then in

general both statements are wrong. If, for example, X = P2k{()' then t{X)g depends

non-triviallyon g and T.

The basic tool for our study is the formula

for an orientation preserving involution g on an oriented differentiable manifold X

which generalizes a formula for the signature ([HiI 2], [AS] Proposition 6.15). Mter in­

troducing some material on elliptic genera, it will be dedueed in section 1. Here we will

also develop other consequences of the Atiyah-Bott-Singer index theorem which are

needed later.

Seciion 2 deals with homogeneou8 Spin-manifolds X = GIH . Dur main result

(Theorem 2.3) follows by induction onee we have shown that the self-intersection

xg 0 xg can itself be realized as a finite union of homogeneous Spin-manifolds. We also

derive a formula for the signature of a homogeneous space GIH (hence for ~(G/H) in

the Spin--ease) generalizing an old formula for complex homogeneous spaces ([BH 2] ).
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In the last seetion, 3, we will have a closer look at specifie involutions on homogeneous

spaces. These investigations were originally motivated by the seareh for a {ormula for

the signature and finally led to our Theorem 2.5, now proved by different methode. How­

ever, as already indicated by some examples, the methods in section 3 together with

Theorem 1.5 (or [Hir 2]) might provide a more effective way to compute ~(X) (or

sign (X)). We have not pursued this here but hope to eome back to this point at another

oceasion.

A general referenee for the theory of elliptic genera are the Proeeedings of the Princeton

Conference of 1986 [Proe] edited by Landweber.

1. Elliptie genera and involutions

!.J.. We recall the theory of genera [Hir 1] for compaet oriented 4k-dimenaional diffe­

rentiable manifolds. For such a manifold X of dimension 4k we write the total

Pontrjagin dass in the form

(1)
2k 2

p(X) = 1 + PI + P2 + ... = TI (1 + X j )
j=l

where Pi E H4i (X,ll) and where the x j are the formal roots considered as 2-dimen­

sional eohomology classes in some extension of the rational cohomology ring of X . Con­

sider apower series
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with coefficients a. in some commutative algebra A over (. Suppose that Q is even.
1

Then the genus ~Q of X belonging to the power series Q is defined by

2k
(2) ~Q(X) = ( TI Q(xj )) [X] .

j=l

We did not request here that aO= 1 . Therefore, it is important to have the formal

roots x. in (1) indexed from 1 to 2k where dim X = 4k .
J

The genus ~Q is a homomorphism from the bordism ring nS ( to the ring A. It is

defined also for non--connected manifolds of mixed dimension not necessarily divisible by

4 . If the dimension ia not divisible by 4, then the genus is O.

If the coefficient aO of Q(x) is invertible in A, then the power series a(j1 Q(aox)

defines the same genus. The normalized power series (with constant term equal to 1) are

in one-to-one correspondence to all possible genera. For a normalized power series one

can use in (1) formal roots xj indexed from 1 to r provided r ~ k . The signature of

X equals the genus belonging to the power series (see [Hir 1] §8)

(3)

with constant term 2 or equivalently to the normalized power series x( tgh x)-l . The

power series in (3) is more natural because it indicates that for a complex manifold the

signature equals the holomorphic Euler number with coefficients in the exterior algebra

oI the dual tangent bundle, or in other words the value of the Xy - genus for y = 1 . For

Spin-manifolds equation (3) indicates that the signature is the index of the Dirac opera-
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tor twisted with the full spinor bundle (compare [Wit]).

Let W be a complex vector bundle over X. Then the signature of X with coefficients

in W can be defined as follows

(4)
n x.

sign(X,W) = (ch(W) · TI tgh x~72)[X]
j=1 J

where X has dimension 2n. We use the splitting (1) ,and ch(W) denotes the ehern

character oI W. Indeed, sign (X,W) is an integer. It equals the index oI some elliptic

operator, obtained by twisting the signature operator ([AS] §6) with W. For complex

manifolds and a holomorphic bundle we have sign (X,W) = Xl(X,W), see [Hir 1] and

[Hir 3] . For odd dimensional maniIolds sign(X,W) = O.

U. We shall define the e1liptic genus t(X) using Witten's q-development. For a eom­

plex vector bundle W oI dimension n

n

AtW = 1: AiW· ti

i=O

(D

StW = l SiW · ii

i=O

where AiW and SiW are the exterior and symmetrie powers oI W. Let T be the

complex extension of the tangent bundle of X. The definition of t(X) as a formal

power series in q with integral eoefficients ia the following.
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lD m
~(X) = sign(X, TI A nT • TI S nT) .

n=1 q n=1 q

In fact, t(X) is the genus with respect to the power series Q(x) = x/f(x) where

(6)

This follows !rom (3), (4) and (5) using the formulas for the ehern eharacter of the

exterior and symmetrie powers of T. For convenience we compare with the notation of

[Hir 3]: The power series Q(x) corresponds to Q(x) in (15) of [Hir 3] for y = 1 . The

genus ~ corresponds to ~2 (the level N equals 2). The complex extension T of the

*tangent bundle of X corresponds to T EB T in [Hir 3]. There T was the complex

tangent bundle of a complex manifold.

U. Let us now recall the modular properties of the elliptie genus. H we put q = e21ri
T

with T E [H (upper half plane), then the infinite product in (6) ia compact uniformly

convergent in [H)( ( where T E IH and x E ( . The power series Q(x) has constant

term f -1/4 where

(7) f=1 n[~J8
I6" l+qn

n=1

is the well-known modular form of weight 4 for the group r 0(2) (denoted by f S in

[Za] (19)). The power series fl/4. Q(x) ia the normalized power series used for the

usual definition of the elliptic genus of a 4k-dimensional manifold as a modular form of

weight 2k for r 0(2). Therefore fk/2. t(X) is a modular form of weight 2k for
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r0(2), whereas t(X) is a modular function for r0(2) (if k is even). In general, t(X)2

is a modular function for r 0(2) . For brevity, we shall call t(X) a modular function

for every k.

The modular properties stern from the fact that f(x) as defined in (6) is attached to the

lattice L = 2n (7/.r + 7/.) . The function f(x) has zeros of order 1 in L and poles of

order 1 in n + L . The function f(x) satisfies

f(x + 2ri) = f{x) , f(x + 2nT) =-f(x) .

It is elliptic for the lattice 2:ri(1l· 2T + ll) . The following property will be very impor­

tant

(8) f(x + ri) · f(x) = 1 .

The modular function t(X) is holomorphic in (J-I and also in the cusp given by q = 0

in (5) . It assumes the signature of X as value in tbis cusp. In the other cusp of r 0(2)

the function t(X) has a pole of order ~ ~ if dim X = 4k.

In fact, we can transform the other cusp in such a way that the q-development becomes

(the Ioeal coordinate in this cusp is again denoted by q, not to be confused with the q

in (5))

(9) ~(X) = q-k/2 · A(X,T1 A nT· TI S nT)
n~i -<I n~2 q

n odd n even
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Putting q = e21rir , this is again a modular function for r 0(2) . But as definition of

~(X) we always use (5). Remember that the q in (5) and (9) are Iocal coordinates in

different cusps. For the development (9) see [La] and [Wit]. For (6) and (9) compare

the formulas (16) and (6) in [Za].

'"
Observe that the A-genus with c0ef6cients in a complex vector bundle W (denoted by
'"

A(X,W)) is well-defined even if X ia not a Spin-manifold. Formal1y it equals the

*Riemann-Roch number T(X,W) in [Hir 1] , § 21, (1 ), if one puts cl = O. The coef-

ficients of the q-development in (9) are integral if X is a Spin-manifold. Then they are

indices of the Dirac operator twisted with certain vector bundles [AS]. In general, the

coefficients are integral except at the prime 2 (see [BH 2] § 25).

1.4. Let G be a compact Lie group operating on the differentiable manifold X by

orientation preserving diffeomorphisms. The coefficient of qm in (5) is of the form

sign (X,Rm) where Rm is a G-bundle over the G-manifold X J e.g.

For g E. G , the equivariant signature

8ign(X,Rm)g

is defined and therefore also the equivariant elliptic genus

lJ) m
~(X)g = 1: sign(X,Rm)gq

m=Q
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aB apower series in q with complex coefficients which, in fact, are algebraic integers.

The equivariant genus is defined for manifolds of all dimensions. It vanishes for odd

dimensional manifolds.

According to the fixed point theorem of Atiyah, Bott, and Singer [AS] we can calculate

fJ>(X)g in terms of the fixed point set Xg of g and the action of g in the normal

bundle of the submanifold Xg of X .

We shall study this in the case where gis- an (orientation preserving) involution. The

submanifold Xg is not necessarily orientable and, of course, in general not connected.

The embedding Xg --+ X has an approximation j: Xg --+ X which is also an em­

bedding and is transversal to xg. Then j-1(Xg) = Xg nj(Xg) has aB normal bundle in

Xg the restrietion E of the normal bundle of Xg in X to Xg nj(Xg) . The normal

bundle of Xg nj(Xg) in X is isomorphie to E Ei E and hence canonieally oriented

because E is even~mensiona1. Also xg nj(Xg) ia canonically oriented and its orien­

ted cobordism dass does not depend on j. We denote it by Xg
0 Xg (self intersection).

In [Hir 2] it was pointed out that

(10) sign(X) = sign(Xg 0 Xg) ,
g

for this formula Jänich and Ossa [JäOs] gave an elementary proof without using the

fixed point formula. The following theorem generalizes (10) to the elliptic genus.

THEOREM. Let g be a differentiable orientaUon preserying involution on X. Then

(11)
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Proof: We can assume that X ia even-dimensional. Let 2t = dim Xg (depending on

the component of xg) and 2r = dim Ng(-l) where Ng(-l) ia the normal bundle of

xg in X. We use here the notation of [AS] , p. 582. Write formally

t
p(xg) = TI (1 + x~)

j=1

r
p(Ng(-1)) = TI (1 + y~) .

j=1

Then

(12)

This is true though our power series Q(x) = f(X) ia not normalized. The reason is that

t - r ia half the dimension of Xg
0 xg . According to the formula of [AS], p. 582, we

have

*where e(Ng(-1)) ia the twisted Euler dass, u some element of H (Xg) ,and [Xg]

the twisted fundamental dass of Xg . Ey the general equivariant index theorem

(twisting with Rm and its equivariant ehern character)

sign(X,R ) = {ch(R IXg)(g) · u · e(Ng(-1))} [XgJ .mg m
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Standard properties of the twisted Euler dass yield

The dass u (see [AS] J p. 582) is given by

t x
J
. r 1

u - -r-T - - n --:-~"""":""""""""TJIr'
- I I tgh x./2 y.• tgh(y .+111)/2

j=l J j=l J J

t x· r tgh y./2
--r-T J -n J
- I I tgh x.f2 y.

j=l J j=l J

Wehave

m

u· ~ eh(R IXg)(g) • qR =n ..5.. ·n _....--1~l n flx;) y. -f(Y·+1n)
n=ü j = 1 J j = 1 J J

which proves the result in view of (8) and (12).

1.5. If the involution g is homotopic to the identity, then

sign(X) = sign(X) = sign(Xg 0 xg) . Trus is not true for the elliptic genus.g

Example. Let X be the complex projective plane and g a projective involution with

xg consisting of a projective line and a point. Then xg 0 xg ia a point (with positive

orientation) and

(independent of q) ,
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whereas

6
~(X) = - = 1 + 32q + ...

Vi·

where 6 = ~ + 6(q + q2 + 4q3 + ...) is a modular form of weight 2 for r 0(2), deno­

ted by 6s in [Za]. We have for example sign(X,T) = 16 and sign(X,T)g = 0 .

If a. compact connected Lie group G acts differentiably on the Spin-manifold X, then

t(X)g does not depend on g for g E G . This is the fundamental rigidity theorem on

elliptic genera conjectured by Witten and proved by Taubes and by Bott-Taubes

[BoTa]. As a corollary of the rigidity theorem we have

THEOREM. Let g be an involution contained in the compact connected Lie group G

acting differentiably on the Spin-manifold X, then

(13)

The involution g belongs to a circle group contained in G. The circle action is either

even or odd (see [AH] Lemma 2.4). (Assume that X is connected.) Therefore, all com­

ponents of xg have a codimension :: 0 mod 4 (even action) or a codimension :: 2 mod 4

(odd action). In the odd case all codimensions of Xg
0 Xg are :: 4 mod 8. Hy (13) and

(9) the order of the pole of t(X) for dim X = 4k ia half-integral and integral. There­

fore t(X) = 0 which is well-known. The vanishing of t(X) means that all coefficients

in (9), in particular A(X) and A(X,T), vanish. Of course, also the coefficients in (5)

vanish, in particular sign(X) and sign(X,T). We now consider even actions. Hy
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codim Xg ~ 4r we mea.n that the codimenBion of each component of xg ia greater equal

to 4r.

COROLLARY. Let g be an involution contained in the compact connected Lie group

G acting differentiably on the 4k-dimensional Spin-manifold X. If the action is odd,

then t(X) = O. Suopose the action is even Allil codim Xg ~ 4r. Then t(X) haB in the

second cusp a pole of order ~ ~ - r . Therefore, in the Laurent series (9) the first r
A A

coefficients beginning with A(X) vanish. If r > 0, then A(X) = 0 . If r > 1, then
A A 2 k
A(X,T) = 0 . If r > 2, then A(X,A T) = O. If r ~ 2' ,then t(X) does not depend on

q, it equals the signature of X. If r > ~ ,then t(X) = O.

A

The corollary generalizes the theorem on the va.IDshing of the A-genus [AB].

U. The quaternionie projective spaces Pk(H) are 4k-dimensional Spin-manifolds.

They admit projective involutions with a quaternionie hyperplane Pk- 1(H) and a point

aB fixed point set. The theorem in 1.5 (formula (13)) yields

and hence t(Pk(H)) = 1 for k even and = 0 for k odd. Since P2(() and the Pk(H)

generate the cobordism algebra n~ (: , the elliptic genus ; ia characterized by

t(P2(()) = 6/{i

t(Pk(H)) = 1 for k even

t(Pk(H)) = 0 for k odd ,

a well-known fact.
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For the Cayley plane W of dimension 16 (cf. e.g. [BH 1] § 19) we get in a similar way

t(W) = 1 .

.LI. We mention some facts which will be of use later.

a) Let us consider the situation a.s in the theorem of 1.5. Then g respects the Spin­

structure of X, because the set of possible Spin-structures is discrete. Then by a

theorem of Edmonds used and proved again in [BoTa] (Lemma 10.1) the fixed point set

xg is orientable. The normal bundle of Xg
0 xg in X (see 1.4) is E Ei E where E is

orientable in our case (w1(E) = 0) . Therefore the total Stiefel-Whitney class

w(E Ei E) = w(E)2 equals 1 + w2(E)2 + higher terms. Hence E Ei E ia a Spin-bundle.

Therefore Xg
0 Xg

J or more precisely Xg nj(Xg)J is a Spin-manifoldJ because X ia a

Spin-manifold.

b) Let X be a eompact oriented 2n~mensional differentiable manifold with a cirde

action with isolated fixed points. In each fixed point x the tangent space TxT splits a8

an SI-module

n
T X= Ei V(m.)

x . 1 1
1=

where V(m
i
) is isomorphie as a real SI-module to ( on which z E SI acts by

m·
1

v~z V (v E G:) .



-15-

If we choose the rotation numbers m. E"D. in ·such a way that the usual orientations on
1

the summands V(mi) ~ (: induce the given orientation on TxX, then they are uniquely

defined up to an even number of sign changes. In particular, their product

m l · .... mn E "D. is well-defined.

Consider a polynomial P(Pl '.'.,11c) of weight k in the universal Pontrjagin classes. For

each fixed point x we consider the number

1
P = · P( tT1, ... ,tTk)x m1m2 ...mn

where q. is the j-th elementary symmetrie funetion in the m~. If we now replace the
J 1

universal Pj by the Pontrjagin c1asses of X , then we have for n = 2k

(14) P(Pl,,·Pk)[X] = 1: t x .

xEXS

This formula and similar formulas for ehern numbers are due to Bott [Ba] and can be

deduced from the fixed point formula of Atiyah-Bott-Singer:

Every Pontrjagin number P(Pl,.oo,Pk)[X] is a linear combination of numbers

sign (X,W) where W is associated to the tangent bundle of X by sorne cornplex repre­

sentation. The finite Laurent series sign (X,W)~ (for a general element ~ of 51) ean

be calculated by the fixed point theorem for isolated fixed points. Then specializing to

~ = 1 gives (14).

H the action has no fixed points (though it is not necessarily free) it follows that all

Pontrjagin numbers and hence al1 genera of X are O. Then the manifold X represents

the 0 cf the bordism ring ns ( .
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Remark: If n =f: 2k, we can still Rsk for a meaning of the right hand side of (14). The

answer (which can also be obtained from the fixed point formula) is the following.

Consider the universal Sl-bundle E over the infinite dimensional complex projective

space with g EH2(P (G:),ll) being the standard generator. Take the associated bundle
Q)

EX with X as fibre using the Sl-action on X. Then P{P1"",Pk) taken for the bundle

along the fibres of EX defines a 4k-dimensional cohomology class of EX which can be

integrated over the fibre to give a (4k-2n)--dimensional class of P (G:) which equals
(I)

( \ P). g2k-n .
l 1 x

xEXS

Compare [Och 2]. In particular (see [Ba])

\ p = 0 for 2k < n .
l 1 x

xEXS

c) The signature has the following very special property: The equivariant signature does

not depend on '\. The rigidity is an immediate consequence of the topological definition

of the signature and implies that for the L-polynomials

LI (Lk)x = 0 for 4k t dim X .

xEXS

This corresponds to the strict multiplicativity of the L-polynomials ([BH 2] §28.4). The

rigidity of the signature is also a consequence of the fixed point theorem: The contri­

bution for sign (X),\ coming from a fixed point equals
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-mo
n 1+~ 1

TI -mo
i=l 1-~ 1

The basic idea is to consider sign(X) ~ as a rational function in ~ (compare [AH]). As

a finite Laurent series it can have poles only in 0 and (IJ whereas the contribution

coming from the fixed points have poles only in roots of unity. Hence sign(X)~ is a con­

staut whose value can be obtained for ~ -+ m in (14). The limit of (15) for the rotation

numbers IDi in the fixed point x equals

(_l)~(X)

where

JJ(x) = # {i IIDi < O} .

Note that the parity of ~(x) ia well-defined. Thus the following formula results. It was

mentioned in [AR] p. 26 and earlier in [AS] p. 594.

(16)

2. HOffiogeneous spaces

sign (X) = 1: (_l)JL(x)
1

xEXS

Let X be a compact Spin-manifold homogeneous under the action of a compact Lie

group G. The &im of this chapter is to show that the elliptic genus ~(X) is a constant

modular function. If one defines the elliptic genus as a modular form (see 1.3), then this
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elliptic genus of X equals a constant times apower o! E.

2.1. Let X be an arbitrary homogenoous space o! the compact Lie group G, and let

f (G be an arbitrary subgroup (not necessarily Lie). Then the centralizer

M = CG(f) = {g E Glg;= jg !orall jE r}

is a closed subgroup oI G, thus a compact Lie subgroup (see e.g. [Ad] 2.26, 2.27).

Similarly, the fixed point set Y = X
r = {x E X I;X = x for all jE r} is a closed sub-

manifold oI X (without loss of generality we can replace r by its closure r in G

which is a compact Lie subgroup, see above). It is clear that M acts on Y.

PROPOSITION. The manifold Y decomposes into a finite union oIM~.

Proof: Since M and Y are compact, it is sufficient to show for &Oy point y E Y that

the dimension oI the M-orbit Z = M· y oI y equals the dimension of Y in y, or, that

the tangent spaces TyZ and TyY coincide. Consider the map

'P : G -+ X, ,(g) = g. y

and its differential in the unit element e oI G:

D~:a--+TXe y

(here g = Lie G = TeG). We let r act on G by conjugation and on g by the induced

adjoint action. With respect to the natural action 01 r on X and TyX the map ~
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and hence De~ become r--equivariant. Since we can replace r by ita compact closure

r- we get splittings of r -modules

g=men, T X=T yeN yy y y

where m = gr = Lie K and T Y = (T X)r. By r~quivariance we gety y

D ~m) ( T Y and De~n) ( NY.e y y

Since X is homogeneous, De~ is surjective. Thus TyZ = De~m) = TyY which had to

be shown.

Remark: The proof of the proposition above goes through for algebraic graups G over

algebraically closed fields of characteristic zero provided one assurnes r, or its Zariski

closure r in G, to be reductive. (Of course, X ia assumed to be algebraic, too, Le.

H (G has to be Zariski closed).

2.2. The following transversality result will be useful in the next section.

PROPOSITION. Let G be a Lie grauD, X a homogeneous SPice of G, and Y (X B:

submanifold. Then there exist g E G such that Y and Ha translate gY intersect

transyersally.

Proof: The map t: G )( Y ---+ X, t(g,y) = gy, is a submersion. Thus

Z = w-1(y) = {(g,y) E G )( Ylgy E Y}
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is a submaniIold oI GxY. Let Ir: Z --4 G, r(g,y) = g, denote the first projection and

let g E G be a regular value of Ir which exists by Sard's theorem. The regularity of g

is equival.ent to the transversality oI Z and {g} x Y in G x Y . Since • is submer­

sive, this implies the transversal.ity of the submaniIolds

Y = t(Z) and gY = t({g} xY) in X.

Remarks: 1) If Y (X is equidimensional oI codimension k, then

Y ngY =w(r-1(g)) is a submanifold oI codimension 2k in X (or empty).

2) By Sard's theorem the set oI g E G with Y and gY transversal is dense in G. If

G,X and Y are algebraic, it is also Zariski-open. For an elaboration oI that situation

cf. [KI] from which we have taken the basic idea of the proof (cf. also [GG] II §4, Remark

after Lemma 4.6).

U. We can now establish our main result.

THEOREM. Let X be a connected homogeneous SPiee of a compact Lie group G.

Assume that X is oriented and admits a Spin-structure. Then the elliptic genus t(X)

i§. a constant modular function

(17) t(X) = sign(X) .

If dim X ;. 0 mod 8, then t(X) =sign (X) = O.
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Proof: If t(X) is a constant, then it equals sign(X) by 1.3. We shall proceed by in­

dnction on the dimension of X, the case dim X = 0 being trivial. We mayassume that

G is connected and that it acts faithfully on X. Let 7 E G be a non-trivial involution

in G and Y = X 1 its fixed point set. According to Theorem 1.5 we have

t(X) = t(y· Y) .

By Proposition 2.2 we can realize y. Y as the transversal intersection of Y with a

generic translate gY, g E G . The intersection Y ngY equals Xr where r is the sub­

group of G generated by . 1 and 818-1. Thus, by Proposition 2.1, the intersection

y ngY is a firn te union 01 homogeneous spaces nnder the compact group M = CG(r)

(or its identity component MO). According to 1.4 and 1.7a) the connected components

of Y ngY are canonically oriented and Spin-manifolds. We conelnde the proof of (17)

by applying the induction hypothesis to these components. If 1 is an odd involution,

then t(X) = 0 (see 1.5). If 1 is even, then dim X =dim (Y ngY) mod 8, possibly

Y ngY is empty, and induction can also be used to prove t(X) = 0 tor

dim X ;. 0 mod 8.

2.4. Many homogeneous manifolds bound module torsion, Le. they represent the 0 of

the bordism algebra n€O ( • All genera vanish on these manifolds.

LEMMA. k1 X = GIB be a connected homogeneous space under the compact Lie

grünp G. Assnme rank (B) < rank (G).~ X admits an SI-action with empty

SI
fixed point set, X = t/J.
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Proof: Let T CH be a maximal torus of H contained in a maximal torus S C G of

G and let W = NG(S)/S be the Weyl group of S in G. Let

X(T) = Hom(Sl,T) C Lie(T) and X(S) = Hom (51,S) ( Lie (S) denote the lattices of

co-<haracters. Since rankll(X(T)) = rank (H) < rank (G) = rankll(X(S)) we can find a

homomorphism A: Sl --+ S corresponding to a point in the complement of the finite

union

U w.X(T)
wEW

(note that W acts on X(S) by conjugation). We claim that the Sl-action on X in­

duced by A has no fixed point on X. Otherwise A(SI) would be conjugate into H,

thus into T. However, elements of X(5) are G-eonjugate if and only if they are

W-eonjugate. Thus A E U w.X(T) contradicting our choice of A. (For the con-
wEW

jugacy results used, cf. [Ad] 4.21 and 4.33).

Remark: 1) The result above is due to Hopf and Samelson, [HS] § 6.

2) Note that the SI-action constructed above need not be !Iee. For example, all in­

volutions of SU(n) are conjugate into the subgroup SO(n). Thus any involution of

SU(n) has a fixed point on X = SU(n)/SO(n).

Let G (H be compact connected Lie groups with rank(G) = rank(H) and a common

maximal torus T (H . Let E(T,H) and E(T,G) denote the corresponding root

* 1systems in X (T) = Hom(T,S ) . We ca1l H B.ID.aJl in G if there exists a root

a E. E(T,G) which ia orthogonal to all roots in E(T,H) .
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PROPOSITION. I&1 X = G/H be a connected homogeneous spare under thc compact

Lie group G and assume that either rank(H) < ra.nk(G) or that H is small in G.

Then X bounds rnodulo torsion, and al1 genera, in particular the elliptic genus <I-(X) ,

vanish.

Proof: If rank(H) < rank(G) combine the above lemma with 1.7 b). If H is small in

G let a E. E(T,G) be a root orthogonal to E(T,H) and let Go (G denote the

rank-1--fiubgroup of G corresponding to 0 (Go ~ SU(2) or 80(3)) . Then Ga and

H commute, and their product forms a dosed subgroup H I of G with

rank(B / ) = rank(G) . The natural projection GIB --+ GIRI realizes X aB a

G-bundle over GIB I with fiber BI IH ~ G IG nT ~ S2 . Thus X bounds the
- 0 0 -

associated G-bundle over G/R I with fiber the 3-disk n3 .

Remarks: 1) The proposition shows that our theorem in 2.3 is interesting only for

X = GIB where G and H have equal rank and where H is large (Le. not small) in

G.

2) A necessary condition for B to be small in G is that the rank of the root system

E(T,H) is strict1y smaller than the rank of E(T,G). This condition is by no means suf­

ficient (for example, U(2)( U(2) C U(4) and, more generally, U(2)n (U(2n) are not

small).

2.5. As another application of the Atiyah-Bott-8i,nger :6xed point theorem we will now

derive a formula for the signature of a homogeneous space X = GIB under a compact

connected Lie group G. By our results in 2.4 we may concentrate on the case

rank (G) = rank (H). We may also aBsume that X is simply connected which, in this

case, is equivalent to H being connected.
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Let T eHe G be a common maximal torus and X*(T) = Hom(T,SI) its character

lattice which is in W-equivariant duality to the lattice X(T) = Hom(SI,T) of

co-characters

*X (T) )( X(T) -----+ 1I.

(a,~) I <a,'\>

defined by

a('\(z)) = z<a,~>

for all a E X*(T),'\ E X(T), z E SI.

The root system EI = E(T,H) of H ia contained in the root system

*E = E(T,G) CX (T) of G. We let W I = W(H) = NH(T)/T and

W = W(G) = NG(T)/T denote the corresponding Weyl groups. Let E+ (E be a

system of positive roots with basis 4 CE+ of simple roots. Then EI + = EI nE+ is a

system of positive roots in EI . Let ä I (EI + be the basis of simple roots (we need

not have &I C!J. !). Let t = {a Er:+ I 0 ~ EI} denote the set of complementary

positive roots. For any subset nC E+ and any w E W we put

The following result may in principle be deduced from the orientability of X. However,

it may be quite satisfactory to have a purely root-theoretic proof.
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PROPOSITION 1. !&1 w E W B:illl ~(w) = card t(w). Then ~(vw):: ~(w) mod 2

f2rall vEW / .

Proo{: Let l = lt:,. : W -+ IN and l' = lt:,. I : w' -+ [N denote the length {unctions

on the Weyl groups corresponding to the systems of simple roots A and t:,.'. For any

w E W and v EW' we have (cf. [Bau] Cor. 2, p. 158)

l(w) = card E+(w) and l' (v) = eard E' +(v) .

Thus, fOI all v EW'

#(v) = l(v) - t' (v) .

* *Since any reflection in W has determinant -1 (on X (T) ( (Lie T) ) we have

(_l)l(v) = det(v) = (_I)l' (v)

and hence #(v):: 0 (mod 2) for all v EW'. From this we can deduce the general case

of our assertion. Let v EW' . We decompose

w= w(v) 0 t(v)O

· 0-t = -t(v) lJ -t(v)

where t(v)O = {a E t I v-1(a) EE+}. Since tU -t =E \ E' is stable under W'

weget
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v(:t(v)O) = :t(v)O .
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Now let w E W. We consider the induced decompositions

w(w) = (t(w) n t(v)) 0 (t(w) n t(v)O)

• 0t(vw) = (t(vw) n t(v)) 0 (t(vw) n t(v) ).

From (*) it is clear that

and

card(t(vw) nw(v)) = card{ß E -t(v) I w-l(ß) E -E+}

=card{a E i(v) I w-l(a) EE+}

= card t(v) - card(t(w) n t(v)) .

Since card w(v) = jJ(v) is even we finally get

card t(vw) :: card t(w) (mod 2) .

Remark: In case E' is rationally closed in E we get & I ( &. Then t is stable under

W ' and we even have p,{vw) = ,u(w) for all w EWJ v Ew /. Examples (e.g.

.Al x Al CB2) show that, in general, t need not be stable under W / .

The foIlowing resu1t is weil known. Let ~ EX(T) = Hom(SlJT) be a regular one­

parameter subgroup into G and denote the fixed point set of A(Sl) on X = G/R by

XA .
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PROPOSITION 2. We have

~ T
X =X ={wB E GIB I w EW} .

In narticular, X~ is a finite set in bijection to W(G) I W(H).

Proof: (Compare [HS] §§ 5, 7) The inc1usions ")11 are obvious. Conversely, let

x = gH E X~. Then ~(Sl) ( gHg-1. Let T' (gHg-1 be a maximal torus containing

~(Sl). Since T' is a maximal torus of G, too, and since ~(Sl) is contained in a

unique maximal torus of G (see e.g. [Ad] 4.35, 4.41) we must have T = T I (gHg-1

OI g-lTg ( H. Let h E H be such that h-lg-lTgh = T (H (use [Ad] 4.23), Le. such

that gh E NG(T). If we denote by w the image of gh in w we have (with the UBual

abuse of language)

x = gH = ghH = wH

which had to be shown.

With the notations introduced above we can now prove:

THEOREM. Let X = GIB be a simply connected hOffiogeneous space under the com­

pa.ct Lie group G and assume rank (B) = rank (G). Then

i) e(X) = #(W(G)/W(H))

11") :1::' (X) - 1 '( l)Jl(w)slgn - #W(H) L - .
wEW
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Proof: i) is a classical result due to Bopf and Samelson (see Remark 1 below). To prove

ii) we first fix an orientation on X (for which the positive sign will result). It ia suf­

ficient to fix an orientation on the tangent space THX ~ g/ll which decomposes under

the action of T into a direct sum

TBX= m V ,
oEt 0

where the summand V0 may be identified as an IR - T - module with ( on which T

acta by the root Q

tv = o(t) • v (t ET, v E G:) .

Via tbis identification each Va and thus TBX obtain an orientation. Now choose a

regular ~ E X(T) inside the fundamental chamber. Then the rotation numbers of

~(Sl) in the fixed point B EX = GIB are given by the strictly positive numbers

<a,~> , a E t.

Computing the rotation numbers in another fixed point w-IB E X is equivalent to

computing the rotation numbers of w(~) in B EX which are

<Q,w(~» = <w-l(Q),~>, a EW.

Thus there are J.I.(w) negative rotation numbers of ~ in w-IB and we obtain ii) !rom

Proposition 2 above and 1.7 c), (16).
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Remarks: 1) We have also mentioned i) since, in the context of our proof of ii), it can

be deduced horn the c1assical Lefschetz fixed point formula (for more details compare

[H8] , see also [Ad] proof of 4.21, where G/T is treated).

2) Note that G/H carries no canonical orientation. Therefore we have admitted both

signs of sign (X). If G/H admits a homogeneous complex structure, one can fix an

orientation by fixing such a structure.

3) In this last case, our formula for sign (X) is already proved in [BH 2]' Theorem 24.3,

where the Hodge-theoretic expression for the signature gives:

n

sign(X) = l (-I)Pb
2P

p=o

(n = dim(X, b2p = 2p - th Betti number). This formula is not valid any more in our

general context (e.g. consider X = 84 = 80(5)/80(4)). In the complex case E' is

rationally closed in E. Thus t is W' -titable and the numbers #(w) (not only

(_I)Jl(w)) are invariants attached to the fixed points w-IH, w EW.

4) Our use of the function Jl(w) related to w-IH instead of Jl' (w) = Jl(w-1) related

to wH follows t radition.

5) Our formula for sign (X) remains valid for not necessa.rily simply connected spaces

X = G/H as lang as X is orientable. In tbis case W(H) need not be a Weyl group of a

root subsystem. Note that we have made no use cf Proposition 1 in our proof of ii). In­

stead, Proposition 1 is a corollary of the orientability of X.
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6) Ta evaluate sign (X) requires a summation over the W(H)-right coscts af W(G)

only. Nonetheless, this may not be easily manageable in complicated cases (e.g.

G = ES). In our table at the end, we list the (positive) value of sign (X), X a

symmetric space, provided its value has been computed.

M. The rigidity theorem [BoTa] and our Theorem 1.5 hinge on the existence of a

Spin~tructure on the manifold X. Here we specify the weIl known existence criteria for

such a structure in the situation where X is a homogeneous space of the fonn G/H

with rank(G) = rank(H).

We fix a common maximal torus T ( H ( G I root systems

EI = E(T,H) (E = E(T,G) (X*(T) and systems afpositive roots E+ and

EI + = EIn E+ . Let q, = E+ \ EI + denote the complementary positive roots. Ta

auy subset n (E+ we attach a "spin weight"

*which is an element of X (T) ~ Tl ~ .

PROPOSITION. Set G be a connected. simply connected. compact Lie group, H !

closed. connected Bubgroup with rank(H) = rank(G) ,9llil X = G/H . Then the

following conditions are equiYalent:

i) X admits a Spin-ßtructure.

ii) X admits a umgue Spin-jltructure.
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iü) The second Stiefel-Whitney dass w2(X) yanishes.

iv) The tangential renresentation T: H ---+ SO(THX) lifts to the corresponding

Spin-group:

Spin(THX)

u / ~nat.
H T I SO(THX)

v)

vi)

*PlI! EX (T) .

*
P + EX (T) .
~'

Proof: For the equivalence of i), ii), iii) see [EH 2] , p. 350 and [Mi] (note that X is

simply connected under our assumptions). It is obvious that iv) implies i). Conversely,

let P ---+ X denote the principal Spin(THX)-bundle "restricting" the principal

SO(THX)-bundle Q = G xHSO(THX) ---+ X of sorne G-invariant Riemannian metric

on X. Since G is simply connected we get compatible G-actiona on the triangle

(use [AH] , Proposition 2.1). Thus P ia a8sociated to the H-principal bundle

G ---+ G/H and a lift u: H ---+ Spin(THX) of T: H ---+ SO(THX) . Condition v) is a

well known reformation oI iv) in terms or the weights of T. Finally, v) and vi) are equi­

valent since
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P + = P 1+ + PiME E

*is an element of X (T) (again since G is simply connected).

A number of cases can be dealt with quite easily.

COROLLARY. Let G and H be aB in the proposition. Assume that H contains no

simple factor of type AtCl odd), Bt , Ct(t == 1,2(4)), Dt(l == 2,3(4)) , Q!

E7 .Then X =GIH admits a Spin-Btructure.

Proof: A glance at the tables of Bourbaki ([Bou] Planches, entry (VII)) shows that

*P + E 71 E'e X (T) under these conditions (partly, one might also invoke that the
:E'

order of the fundamental group of an adjoint group of type A2t,E6,ES,F4,G2 is odd).

In the tables at the end of our artiele we have indicated by a + (resp. -) the existence

(resp. non-existence) of a Spin-Btructure on symmetrie spaces of the form G/H,

rank(H) = rank(G) .

To illustrate the use of condition vi) let us deal with the symmetrie space

X = Bt/Bq )( Dp ' P + q = t , OI X = SO(2t + 1)/SO(2q + 1) )( SO(2p) . We can

choose bases of simple roots according to the following extended Dynkin diagram (nota­

tions of [Bou]):
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~------------...."

*The weight lattice X (T) = P{Bt ) of Spin{2t + 1) is generated by the roots

01' ... ,at and the spin weight Wt = ~ (al + 202 + ... + .tat) . Let Q(Bt ) denote

the root lattice, generated by the ai only. Then we have (in obvious notation)

Thus

_1
P + = PI) + Pß = 2" (a +1 + ... + °t{_l))mod Q(Bt ) .
~' p q P

*This element lies in X (T) = P{Bt ) exactly when p = 0 (which we need not consider)

or when P = t ,Le. q = 0 . Hence

X = SO(2t + 1)/SO(2q + 1) )( SO{2p)

admits no Spin-structure for q > 0 , whereas

X = SO(2t + 1)/SO(2t) = S2t
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admits a Spin-structure (which is of course also clear by condition iii).

In the other cases of our table one can either use the corollary or a similar reasoning. In

addition, note that for hermitian symmetric Spates one may also employ the computa­

tion of the first Chern class cl(X) E H2(X,11) in [BH] 16.1 since w2(X) is the image

of cl(X) under the natural map H2(X,l1) --+ H2(X,111211) .

3. Inyolutions on homogeneous Spates. examples.

We will have a eloser look now at involutions on a homogeneous spare X and we will

show how formula (10) in 1.4, resp. Theorem 1.5, leads, in some cases at least, to an

effective determination of the signature, resp. the elliptic genus cI»(X).

il. As already before we may restrict our attention to spaces of the form X = G/H

where G and H are compact of the same rank. Then the center of G is contained in

H and we may choose the global structure of G according to convenience.

Let UB now assume that G is of adjoint type (thuB semisimple). We will recall some

facts about the involutions of G and the associated symmetric spaces. Let 1 E. G be a

non-trivial involution and K = GG(1) its centralizer in G. Then S = G/K ia a com-
N

pact symmetric space with simply connected covering S = G/KO (cf. [He] Chap. VII).

Let gig-1 and gKg-1 be generic conjugates of 1 and K under G. Then the inter-

section

M = K ngKg-1 = CG(r)
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(where r ia the subgroup of G generated by i and gig-1) can be regarded as a

generic isotropy group (Le. a principal isotropy group) for the left-a.ction of K on

S = G/K . According to the theory (cf. [HeJ VII, §§ 3, 8) tbis group can be described

as the centralizer in K

(18)

of maximal 1- split torus A C G . Here a torus A C G ia called 1- split if

1 a ,-1 = a-1 for all a E A

(this notation follows [Sp] and is motivated by the relative theory of reductive groups

over arbitrary fields, cf. e.g. [Ti 1J, [Ti 2], [Se]). All maximal 1- split tori in G

are conjugate by an element of KÜ (cf. [He] Chap. V, Lemma 6.3) and M plays an

important part in the classification theory of involutions (cf. [Sp]). In the table at the

end of the paper we have listed all conjugacy classes of involutions in simple groups to­

gether with associated invariant objects and numbers:

Thc affine coordinate diagram allows to specify a representative '"1 of the conjugacy

dass in the following way. Let T CG be a maximal torus and tJ. = {al' ... ,at} a

system of simple roots. Then '"1 is determined as an element of T by the conditions

(19)
m.

a i (,) = (- 1) 1, i = 1, ... ,t ,
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where mi ia the coefficient attached to the simple root 0i in the diagram. (If - a de­

notes the negative of the highest root, then we will automatieally have

N

(
Nm

- 0)(7) = (-1)

where ~ ia the coefficient of the extra nooe - Q in the affine diagram). The affine

coordinate diagram was introduced by V. Kac in the more general context oi classifying

elements oi finite order in G (cf. [He] Chap. X, § 5). It also determines the infinitesi­

mal structure, Le. the Lie algebra t of K = CG(7) whose Dynkin diagram is provided

by the subdiagram formed by the vertiees with O-eoefficient. Of course

dim S = dirn G - dirn K ia known then.

The index diagram attached to 'Y can be derived as in [Sp] (where it is called Araki

diagram.) or in the following way. Let G denote the real algebraie group (of adjoint

type) giving rise to the non-eompact symmetrie apace S dual to S (see for example

[He] Chap. V, §§ 2, 5; note that G need not be eonneeted as a real Lie group). Then

the index diagram is the index in the sense oi Tits (cf. [Ti 1], [Ti 2], [Se]) attached

to G. The dimension of a maximal 1- split torus A, or the rank of S and S, ia

then given by the number of circles in the index diagram, Le. 2 in the example

8,----·
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The Dynkin diagram of the semisimple part of Ca(A) ,or M = CK(A) (or CG(A) ,

where I is a maximal IR-split torus of G corresponding to A) is the subdiagram

formed by the uncircled vertices. The Lie algebra m of M is obtained from

c = Lie CG(A) by splitting of the Lie algebra a of A. Global information on M can

be deduced from the following result:

PROPOSITION. Thc following properties hold:

i) CG(A) is connected.

ii) The commutator subgroup of Ca(A) ia contained in K .

iii) The center of CG(A) ~ '}'-Stahle torus of the form

where a + b = dim A Md where 1 acts (by conjugation) as folIows: on a

factor SI)( SI ~ (s,t)~ (t,s) , on a factor SI ~ t~ t-1 .

Proof: i) follows since CG(A) is the centralizer of a torus (cf. [He] Chp. Vll, 2.8), ii)

and in) follow from analogons statements for CG(A) in [Se] II, 2.2 and 4.1 which are

ea.sily transferred to our situation.

We remark that also the relative root system and the Weyl group NK(A)/CK(A) of S

can be derived from the index (cf. [Ti 2], [He] Chap. X, Table VI).



-38-

U. We keep the general assumptions and notations from 3.1. Since the self-intersection

Xi 0 Xi relevant in Theorem 1.5 can be realized in the form Xr (r aB in 3.1) and

since Xr consists of a finite union of orbits under M = Ca(r) (PlOp. 2.1) it is natural

to look for involutions 1 with M aB small as possible.

An involution i E. G is called guasi-=split if the centralizer CG(A) of a maximal

i - split torus A (G ia a maximal tOTUS of a . It is called mlli. if there is a maximal

torus of G which is i - split.

Remark: These definitions are inspired by those of [Ti 2] . It is easily seen that they are

equivalent to those of [Sp] when transferred to the compact case. Note that any split

involution is quasi,plit.

The classification of involutions shows that any simple adjoint group G contains

exactly one conjugacy class of quasi-=split involutions (characterized by an index dia­

gram all of whose vertices are encircled, cf. also [Sp]). These involutions are split

exactly when the "opposition involution" of the corresponding diagram is trivial, that is

if G is of type Al'Bt ,Ct ,Dt (t even), E7,ES,F4,G2 . In these cases we get

Ca(A) = A , a maximal torus of G, and

consists of the 2-torsion points of A , Le.

(20) M ~ (71/271)l, t = rank(G) .
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In the other cases, At(t ~ 2), Dt (t odd) J Ea , we have CG(A) = T, A ~ T ,

where T is a maximal torus of G , and M = CK(A) = K nT is of the form

(21)

where a + b = dim A and 2a + b = dim T (the values (a,b) are (n,O) for A2n ,

(n,1) for A2n+1 , (l,t-2) for Dt (t odd), and (2,2) for E6) .

.a.&. In this section we will exploit the existence of split involutions in certain groups.

We let G, H ( G J i€. G, r ( G , and M =CG(r) be as in 3.1. We further assume

in this section that H ia connected, Le. that X = G/H is simply connected. Since

genera behave multiplicatively under coverings, results for non~imply' connected Spates

may be derived immediately.

LEMMA. The group r has a fixed point on X =GIH if and only if the centralizer

CG(H) Qf H in G ia conjugate to a subgroup of M .

Proof: A point g H €. X ia fixed under r exa.ctly when r ( g Hg-1 , which is equi­

valent to M = CG(r) ) g CG(H)g-1 .

THEOREM. Let G be simple. Assume that G has a solit involution, Le. that G i§.

of type Al'B t ,Ct ,Dt (t even) , E7,ES,F4,G2, and that CG(H) is not an elementary

abelian 2----grQlW. Then the signature sign (X) of the hOIDogeneous spate X =GIH

yanishes. Ir in addition w2(X) = 0 , then cI»(X) = sign(X) = 0 .

Proof: Let 'Y €. G be a split involution in G. Then, in the earlier notations, ,



-40-

sign(X) = sign(Xr )

or, if w2(X) = 0 ,

(by 1.4 (10), resp. Theorem 1.5, (13)). By our aBsurnption on CG(H) and the previous

lemma we get Xr = r/J , thus our aBsertion.

We have same special eaBes:

COROLLARY 1. Let G be aB in the theorem and aBsume that X = G/H admits a

. homogeneous eomplex strueture. Then sign(X) = 0 . If in addition w2(X) = 0 , then

<I>(X) = 0 .

Proof. Aeeording to a theorem of H.C. Wang (cf. [BH 1] Prop. 13.5) H is the eentra-

lizer of a torus, now.

Remark: If X is hermitian symmetrie, then this result agrees with those in [Hir1] p.

163. The computations there aB well aB our later results show that the existence of a split

involution in G is erucial.

COROLLARY 2. Assurne that G is simple. that H C G is maximal of maximal rank,

and that X = G/H is not symmetrie. Then <I>(X) = sign(X) = 0 .

Proof. Aeeording to the claBsifjeation of maximal subgroups H with

rank(H) = rank(G) by Borel and de Siebenthal ([BS] § 7) G is now of exeeptional
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type and H is the conneeted eentralizer of an element of order 3 or 5. Checking through

the tables of loe. cit. and using the criteria of 2.6 one easily verifies w2(X) =0 in all

cases. Moreover, the only case not covered by our theorem is ihat of G = E6 '

H = A2 )( A2 )( A2 . But here dim GIB = 54 which also leads to

<p(X) = sign(X) = 0 .

Remark: The spaces X in Corollary 2 where our methods are effectively needed, Le.

where dim X is divisible by S, are Es/AS and ES/ A4 )( A4 of dimension 16S, resp.

200. The space F4/A2 )( A2 is of dimension 36 and thus covered by our Theorem 2.3.

In the remaining tases we have dim X == 2(4) .

M. Dur last section dealt with cases where Xr ia empty. Sinee Xr is always a finite

union of M~rbits, it is clear thai Xr consists of at most a finite number of points

whenever M is finite, i.e. when M belongs to a split involution 1 E. G . However, we

will show that tbis is still true for quasi-Bplit involutions. We keep the previous nota­

tions and assumptions (in particular, H ia connected and rank(H) =rank(G)) .

LEMMA. The connected eentralizer GG(M)O Qf M = Ca(r) in G acts triyially on

Xr .

Prcof. Let C = CH(H) denote the center of H. Since rank(H) =rank(G) we have

H =Ca(C)O by [BS] Theoreme 5. Let gH E. X be fixed under r, thus

or
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Centralizing anee more givea

hence

( )0 ( )0 -1 -1CG M ( gCa C g = gHg .

Bnt this means that gH E. X is fixed nnder Ca(M)O.

PROPOSITION. Let i E. a be a guasi-fiplit involution, A Ca a maximal i - m!i1

torus and T = CG(A) its eentralizer. Then the generic self-intersection

Xr = Xi 0 Xi ia contained in XT . In particular, Xr consists cf at most finitely

many points.

Proof: By definition, T is a maximal torus of G . Sinee M = K nT (T we have

T ( Ca(M)O . By the lemma we get

and by 2.5 Proposition 2 these sets are finite.

There is no lass in generality by a8suming that the isotropy group H of X = G/H con­

tains T. Then
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T
X ={wBIWE.W}

by 2.5 Proposition 2, and by Lemma 3.3 (proof) we have

(since T acts triviallyon M ( T , the notation w-IMw ia independent of the repre­

sentative of w in NG(T)) .

We distinguish two cases, again:

1) H 1 ia split, then M consists of all 2-torsion points of T and ia stable under W.

Bence we have either Xr = fjJ or Xr = XT . The situation where Xr = XT is related

to our approach to the signature formula in 2.5 by means of a regular Sl-action on X

1
with fixed point set xS = XT . By choosing suitable representatives for "I and a

generic conjugate sfS-1 (Le. "I as a lift of - 1 E. W to NG(T) and s E. T Buch that

s2 is regular) one can determine the canonical orientation of a point w-lB as com­

ponent of the self-intersection Xr = X"l 0 X"l (cf. 1.4) and compare it with the global

orietation (Le. the orientation on T -1 X given by the orientation of X) . It turns
w B

out that both differ by the factor (- 1y4..w) (or its negative, if t he other global orienta-

tion ia chosen). Thus one obtains a second proof (in fact, our original one) of Theorem

2.5, in this case at least. In view of the proof of formula 1.4 (10) in [JäOs], which

avoids the use of the Atiyah-Bott-5inger index theorem, this derivation may be called

elementary.
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2) If "'1 is not split (but quasi-fiplit) the group M = T nK is stable only under the

subgroup

whieh may be identified with the "little" Weyl group NK(A)/CK(A) of the symmetrie

space G/K (cf.. [HeJ VII, 8.10 and use that W(mO) of loe. cit. is trivial since "'1 is

quasisplit ). 0 bviously, the eondition

(22)

is a condition on the double eosets W"'1w W(H) only. In general, Xr will have les8

points then XT , however, we don't know, apriori, how many double eosets aetually

satisfy (22). In the following examples there will be only one, or none.

Examples: 1) Let us eonsider the Graßmannian X = Gk((n) of eomplex k-planes in

(n whieh is homogeneous under the projeetive unitary group PU(n) of type An- 1 .

Sinee X is hermitian symmetrie its signature can be eomputed by Hodge theory (see

[Hit 1J p. 163). By the same reason, our methods Ideveloped above simplify since all

self-intersection points in Xr = X"'1 0 X"'1 are positively oriented, now (X"'1 is a

eomplex submanifold of X) . Henee sign(X) equals the cardinality of Xr .

For convenience, let UB work with U(n) instead of PU(n) (their differences ean be

neglected in this eontext), and let T (U(n) denote the standard maximal torus con­

sisting of all diagonal matrices
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The element

is a quasi-split involution of U(n) and a maximal ;-split tOfUS is

(here n = 2m or 2m + 1) . We have CG(A) = T and

Let H = U(k) x U(n - k) be the isotropy group of G = U(n) on X = Grk((n) . Then

Ca(H) = {6(a, ... ,& , b, ... ,b) Ia,b E. SI} ,
'i 'I (

k n-k

and we have

for some W E. W(G) = Sn if and only if at least one of k or n - k is even. Thus

sign(X) = 0 if n is even and k is odd. Assume now, without loss of generality, k to

be even, k = 2s ,and H to be replaced by a conjugate such that
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Ca(H) = {6(~, ... ,~,?, ... ,?,~, ... ,~)} .
, i i

S n-2s s

We shall identify XT = {wH Iw E. W} with the quotient W /W(H) = Sn/Sk x Sn-k

and eonsider the map

W /W(H)~ {wCa(H)w-11 W E. W} .

If k =F n - k tbis is a bijeetion, whereaa for k = n - k it is two-tQ-()ne. Assume

k f n - k first. Then wCa(H)w-1 CM if and only if w is of the form w1w2 with

w2 e. W(H) and WIE. W
'
~ Sm (acting by permutation on the first m coordinates

and by the reflected permutation on the last m coordinates of T) . Aceordingly, there

are [,:] different W-eonjugates of CG(H) in M. If k = n - k we only get half the

number of conjugates but this is made up for by c being 2:1 , so that

(23)
n even, k odd

n = 2m or 2m + 1
2s = k or n - k

whieh agrees with [Hir 1] p. 163.

2) In a similar way we can deal with the hermitian symmetrie spaces for G of type

D2m+1 and E6 whieh are

Q4m = SO(4m + 2)/SO(4m) x 80(2)

(complex quadric, dim( = 4m)
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F2m+l = SO(4m + 2)/U(2m + 1)

(dim( = m(2m + 1))

w( = E6/Spin(10).SI

(complexified Cayley plane, dim( = 16) .

If we realize these spaces in the form G/B, G adjoint, H connected, then

CG(H) ~ 51 and H = CG(CG(H)) . We also have NG(H) = NG(CG(H)) = H except

for Q4m where H is of index 2 in NG(H) .

Fix a maximal torus T of a. Then a quasisplit involution i E. Na(T) can be ob­

tained aB a !ift of Wo E. W = Na(T)/T (wO is the langest element in W with respect

to same basis of simple rootsj we have Wo = - l, = ch/ 2 ,where l, is the opposition in­

volution, c a Coxeter element, h the Coxeter number). With this choice T contains a

maximal i - split torus A (of rank 2m resp. 4 for type D2m+l resp. E6 ) such

that Ca(A) = T and

[

(71/271)2m-l )( SI (D
2m

+
l
)

M=Ti~

(71/2"0.)2 )( SI )( SI (Ea)

With the help of the affine coordinate diagram (attached to G/B, now) it ia seen that

M contains one (resp. no, resp. 3) conjugate(a) of Ca(M) ~ 51 in the case of Q4m

(resp. F2m+l , resp. W ( ). Due to ING(H)/H I = 2 in the first case, we get
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sign(W() = cJ(W().= 3 ,

whieh, again, may be found already in [Hir 1] p. 163 (for sign).

Remarks: 1) Another way to deduee the signature of X = Grk((n) !rom formula (10)

in 1.4 is the following. Let u denote the usual complex eonjugation on X (whieh is not

homotopic to the identity). Then XU is the real Graßmannian Grk(lRn) of whieh X ia

the eomplexifieation. Aecordingly, the normal bundle of XU in X is isomorphie to the

(real) tangent bündle of XU
. This gives

where d = dim(X (note that we have kept the usua! complex orientation on X, com­

pare [JäOs] § 3). Since all homology classes cf X can be represented by algebraie

cycles defined over IR 1 the involution U acts on Hd(X,IR) by multiplieation with

(_1)d/2 . Thus

sign(X) = (- 1)d/2sign(X) ,
(J'

hence by (10)

sign(X) = e(XU) .
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The same reasoning works in the case of Q"4m and W( . In the first case one has to

choose a complex conjugation associated to a split real form. In the second case the real

form is the Cayley plane W = F4/Spin(9) with e(W) = 3 .

2) Along the lines of the examples above one may also attack the non-hermitian sym­

metrie spaces of type D2m+1 and E6 . In these eases Xr is always redueed to an

orbit under the "small ll Weyl group W7 (~ W(B2m)) W(F4)) and the signature can

be expressed aB a sum of terms (- l)p{w) , w ranging over representatives of this orbit

(e.g. for X = E6/ AS x Al there are 12 terms). Though this is a reduetion compared to

the number of terms oecuring in the formula of Theorem 2.5 it is still messy for eompu­

tation.

3) In the above developments (from 3.2 on) we have eoncentrated on quasi~plit in­

volutions 1 only, the advantage being the disereteness of Xr . On the other hand, the

associated orientation sums are hard to coropute (in case X is not eomplex) and one

would like to cluster together groups of points of Xr to suro in two steps . In a sense

this is achieved by considering the self-interseetion sets X1 0 X1 for involutions 1

with "big" group M. The result of the first summing proeess is then given by the

signature of the eomponents of X1 0 X1 (whieh are homogeneous under M). We have

studied a number of such involutions, in parlieular the natural symmetries on symmetrie

spaces (where X1 is an antipodal set). Here, the determination of the eomponents of

X1 and X7 0 X1 requires quite detailed and specifie information on eonjugacy classes

and eentrallzers in G. The problem of computing orientation numbers remains, and, at

this moment, we have not got beyond the known cases. However, we hope to complete

these investigations (with whieh we originally started) and to report about them at some

other oeeasion.
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4. Tables

Be10w we have listed the table oI eonjuga.cy classes oI involutions in simple (adjoint)

groups. The first six eolumns are explained in 3.1. The + (resp. -) in the Spin-eolumn

indieates the existence (resp. non-existence) of a Spin structure on the simply connected
N

symmetrie space S = G/KO. Column 8 gives the Euler number
N N

e(S) = IW(G)/W(KO) I oI S , column 9 the signature aB far aB we know it (in the case

of the real and quaternionie Graßmannians we have refrained from inserting the value

for obvious cases, like apheres, projeetive spaces, Spin-manifolds of dimension 't 0 (8) ,

ete.).
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