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ON RATIONAL KAPS BETWEEN K3 SURFACES

v.v.Nikulin

To the memory of Constantin Caratheodory

§ 1. Introduction

Here, a K3 surfaee is a non-singular projeetive algebraic

surface X over complex numbers field C with the trivial spaee of

the regular I-dimensional differential forms: n1 [x]=o, and the

trivial sheaf of the regular 2-dimensional differential forms:

n~~ox' where the 0x is the sheaf of regular functions on x. The

last condition is equivalent to the existence of a regular non-zero

2-dimensional differential form Wx which has not zeros on x.

Thanks to global Torelli theorem due to I.I.Piateekii-Shapiro

and I.R.Shafarevich [PSh-Sh], we know very much about isomorphisms

between K3 surfaces over the complex numbers field 0::. Two K3

surfaces are isomorphie iff there periods are isomorphie.

Recently, I.R.Shafarevieh posed an analogous question about

rational rnaps between K3 surfaces: How can one know using periods

when does a rational map between two K3 surfaces exist? A

description of rational maps between K3 surfaces is interesting

maybe from the view-point of the Arithmetie of K3 surfaces.

Let X be an algebraic K3 surface (over 0::), let HX=H2CX,Z), and

let Sx and TX be respectively the lattiees of cohornology elasses of

algebraie and transcendental cycles on the surface X. By

definition, TX

respeet to the

is the orthogonal complement to

intersection pairing. Here and

Sx in

in what

H
X

with

follows

"lattiee" means a "non-degenerate symmetrie bilinear form over zn.

Hodge decomposition of HX@~ induces a Hodge decomposition of TX@~.
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1t is defined by one-dimensional linear subspace H2 , °(X) CT
X

0C.

1.R.Shafarevich posed the following

Question 1.1. 1s it true that a rational map between K3

surfaces X and Y (i.e. an inclusion over C of the fields ~(Y)c~(X)

of rational functions) exists iff there exist a positive AE~ and an

isomorphism rp:Ty@lD---+Tx@«) such that rp(X·y)=A(X·Y) for any x, y E

Ty@aJ (or rp is a similarity of quadratic forms over 0), and

rp(H2 ,O(y))=H2 ,O(X) ?

Let '1: X--->Y be a rational map between K3 surfaces. Then a

resolution of indefinite points of '1 gives a commutative diagram

Z
~/ \\~
x- I ->y

where Z is a non-minimal non-singular projective K3 surface, a is a

birational morphism and (3 is amorphism. 1t gives the inclusion

'1*=(a*)-lß*:Ty (d) ---+TX of the lattices of a finite index for which

'1* (H2 , °(Y) ) =H2 , 0 (X) (,* preservers periods) . Here d is the degree

of '1 and M(d) is the lattice obtaining multiplying by d of the form

of the lattice M. The inclusion 7* does not depend of a choice cf

Z, a and (3, and is the invariant of the rational map '1. Let d=d'm2 ,

where d' and mare the positive integers and d' is square-free.

Then '1* gives a canonical chain of inclusions
"1*

Ty(d')( mTy (d')=Ty (d'm2 ) )Tx

of lattices of finite index. Here, we use the following notations:

for mE~ the mM denotes the sublattice (or the overlattice) of the

lattice M which is mK={mVIVEM} with the form which is the

restriction on mM of the form of the lattice M. (We use the
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notation wn to denote the orthogonal sum of m exemplary of the

lattice M.) We canonically (by the obvious way) identify sublattice

mTy(d') of the lattice Ty(d') and the lattice Ty (d'm2). This chain

gives the isomorphismT*:Ty(d')0D~Tx0aJof forms over aJ, which we

call the modification corresponding to the rational map l'. At

first, the lattice TX i5 replaced on some sublattice TX'cTX (e.g.,

Tx'=1'*(Ty (d'm2 » or T*(Ty(d'»nTx)' then TX' is replaced on some

overlattice Ty (d'), and then Ty (d') is replaced on the lattice Ty

by dividing the form on d'.

We want to discuss here the following quest ion similar to the

question 1.1.

Question 1.2. Let X and Y be K3 surfaces, d' be a square-free

positive integer and ~:Ty(d')0~--~)TX@aJ be an isomorphism of

quadratic forms over ~ (i.g., ~ is an abstract modification of the

lattices T
X

and Ty ) and ~(H2,O(Y»=H2,O(X). Is it true, that then

there esists a rational map f: X--->Y such that rp = f'* ?

We say that an abstract modification ~ above is trivial for a

prime p iff p~d' and rp induces an isomorphism

~ :Ty(d')@Z )Tx@Zp of p-adic lattices. 1t is sufficient top p

prove the conjecture 1.1 for every prime p only, i. e. , for

modifications 'P, which are nontrivial for one prime p only

(One can deduce this frorn the epimorphicity of the Torelli map for

K3 surfaces [KU] and the following arithmetical fact: a primitive

embedding of a lattice sinto an unimodular indefinite lattice L

exists iff for an every prime p, a primitive embedding of the

lattice S01 into L0Z exists.)p p

The basic result of the paper is to show that the answer to

the Question 1.2 is positive if p=2 and rk Tx=rk Ty~5.
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Theorem 1.3. Let X and Y be algebraic K3 surfaces with rk Tx=rk

Ty S 5, and ~:Ty(d)@O~TX@O be an isomorphism of quadratic forms

over ~ (i.e., ~ i5 an abstract modification of the lattices TX and

· ( 2,0 2,0 I d' d ' h'Ty ) for WhlCh ~ H (Y))=H (X), d 2, an ~ ln uces an lsomorp 15m

~ :Ty(d)@l )TX@Z of p-adic lattices for any p~2.
p P P

Then there exists a sequence X=X1 , x 2 , ... ,xn+1=y of K3 surfaces

and rational maps f , : X, - ->X. +1 of degree 2 such that the1 1 1

rational map f=fn · ... ·f2 ·f1 induces the modification ~, i.e., ~=f*.

See the proof of the theorem 3.1 below.

The proof cf the theorem is based on twc cur old papers [N2]

and [N3]. If h:X- - ->y is a rational map cf degree 2 between K3

surfaces, then the Galois involution t of this map is a symplectic

involution of the surface X, i.e., t acts trivially in the space

H2 ,O(X)=n2 [x] of regular 2-forms of X. The map h is the composition

of the quotient map X~X/ {id, t} and the minimal resolution of

singularities Y~X/ { id, t }. So, to set up the rational map of

degree 2 of K3 surface X in other K3 surface, one should find a

symplectic involution on X. In [N2] symplectic involutions (and,

more generally, finite abelian symplectic groups) cf K3 surfaces

were described very completely, see § 2. To investigate

modifications under sequence of involutions of K3 surfaces, we use

discriminant form technique developed in [N3] . Cf cause,

constantly, we use global Torelli theorem for K3 surfaces [PSh-Sh].

We should say that results of [N2] and [N3] we have mentioned above

were used already by D.R.Morrison in [MO] to prove that for K3

surface X with rk T
X

S3 a rational map of degree 2 in Kummer K3

surface exists (to prove this fact, he used also results of [NI]

about the characterization of Kummer surfaces). But, to prove
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theorem 1.3, the more careful analysis than in [Mo] is required.

We want to remark, that also we prove the Theorem 2.2.7 below

which gives an effective criterion for the preserving periods

modification over 2 of transcendental periods of arbitrary K3

surfaces would be defined by a composition of degree two rational

maps between the K3 surfaces. We deduce the Theorem 1.3 from this

Theorem 2.2.7.

From the Theorem 1.3 and the characterization of Kummer

surfaces in [NI], see also [Mo], we obtain the following theorem

which was proved by I.R.Shafarevich and the author together.

Theorem 1.4 .(V. V.Nikulin and I. R. Shafarevich). Let X and Y be

algebraic K3 surfaces. Suppose that for all odd prime p there are

primitive ernbeddings of p-adic lattices:

3Ty 0Z c U 0Z ;
P P

and for p=2 there are embeddings of the quadratic forms over the

field 10 2 :

and

Here U is an even unimodular lattice of the signature (1, 1).

(Rougthly speaking, X and Y have"the transcendental lattices of the

Abelian surfaces over Zp for any p~2 and over 10 2 .)

Then the answer to the quest ion 1.2 is positive for the K3

surfaces X and Y. >

The proof of the theorem 1.3 shows that some success in the

investigation of rational maps between K3 surfaces is connected

with a construction of some concrete rational maps between K3

surfaces (similar to maps of degree 2, which we use here). They

should play the same role as the factorization of Abelian surfaces
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by the points of order p. Every rational map between Abelian

surfaces is a composition of such rational maps and of an

automorphism.

See some further remarks to the Theorems 1.3 and 1.4 in § 4.

At last, we would like to mention some results related with

rational maps between K3 surfaces. In the situation of the

question 1.2 (or 1.1), the cycle Z~e(TxeTy)e~ corresponding to ~

belongs to H2 ,2(XXY, ~). Suppose that d'=1. I.R.Shafarevich posed

the following conjecture [Sh], which is a particular case of the

Hodge conj ecture: the cycle Z~ is algebraic. This conj ecture is

proved now if rk TX $ 17, and more generally, if the lattice Sx

represents zero (or X has a peneil of elliptie eurves). See [Shi-I]

for rk TX=2, [Mo] for rk TX~3, [Mu] for rk TX~11, and [N4] for the

ease when the lattiee Sx represents zero. Thus, this more weak

conjecture is proved in much more generality now.

The Theorem 1.3 was inspired several our discussions with

I . R. Shafarevich (by his initiative) on the rational maps problem

for K3 surfaces. The Theorem 1.4 was deduces by I.R.Shafarevich and

the author together. These theorems would not be appeared without

Shafarevich' sinterest to this subj ect. We are very grateful to

I.R.Shafarevieh for his interest and support to this paper.

Notations for lattices and quadratic forms. Following to [N3],

we will use the following definitions and notations connected with

lattices and quadratic forms.

We denote a5 x·y the value of the form of the lattice M tor a

2pair x, y E M, and x =x·x.

The lattice M i5 ealled even ift x 2 i5 even tor any xeM.

The diseriminant group SM of a lattiee M is the gM=M*/M, where
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M*=Hom(M, Z).

a lattiee MThe diseriminant bilinear form bM of

symmetrie bil inear pairing bM: S"MxS"M -----+l)O/Z, where

is the

bM(x*+M,

y*+M)=X*·y*+Z, x*, y* e M*. Here we extend linearly the bilinear

form of M on the M*. The form bM i5 degenerate.

For an even lattiee M the diseriminant quadratic form

qM:S"M~/2Z 1s defined as qM(X*+M)=(x*)2+2Z for x*EM*. The

quadratie form qM has the bilinear form bM.

The symbol $ denotes the orthogonal sum of lattiees and

bilinear and quadratie forms .

.1The symbol (A)B denotes the orthogonal eomplement to A in B.

The diseriminant form of a lattiee M is the orthogonal sum of

its p-eomponents (the restrietions of the form on the p-eomponents

of the group SM)' which are defined by the diseriminant forms of

the p-adie lattiees M =M0Z .
P P

Every p-adie lattice is an orthogonal sum of the following

elementary p-adic lattiees: the lattiee K~P) (pk) of the rank 1 has

the matrix <spk>, seZp*i the 2-adic lattiee U(2) (2 k ) of the rank 2

has the matrix

/0 2
k\

<\2k O />
the 2-adie lattiee V(2) (2 k ) of the rank 2 has the matrix

1/ 2
k
+

1
2

k \>
'\ 2k 2k+1/

The diseriminant quadratie forms of the p-adie lattiees K~P) (pk),

U(2) (2 k ) and V(2) (2 k ), k~l, are denoted as q~P) (pk), ui2 ) (2 k ),

vl2 ) (2 k ) respeetively. Their bilinear forms are denoted as

b~P) (pk), u(:) (2 k ), v(:) (2 k ) respeetively.

7



In this article we consider only even lattices and even 2-adic

lattices. Thus, here, the term "discriminant form" denotes every

time discriminant quadratic form.

For an finite abelian group a the symbol l(a) denotes the

minimal number of generators of 8. For a form q on a finite abelian

group 8 we denote 8 =a and t(q) =l (8) •
q

The discriminant discr(S) of a lattice S is the determinant of

the matrix of S in sorne basis. A lattice S is called unimodular

iff discr S is invertible. The lattice U is an even unimodular

lattice of the signature (1, 1). It is unique up to isomorphism.

The lattice Es is an even unimodular lattice of the signature (0,

S). It is unique up to isomorphisms too. The signature (t(+), t(_),

t (0)) of a quadratic form over IR is the number of its positive,

negative and zero squares. We don' t show the number t (0) if the

form is non-degenerate.

The invariants of a lattice S is a triplet (t (+)' t (_)' q),

where the (t(+), t(_)) is a signature of the S and q~qs' where qs

is the discriminant form of the S. These invariants are equivalent

to the genus of the S.

An embedding NcM of lattices is called primitive iff the

quotient-module M/N is a free module.

§ 2. Compositions of degree 2 rational maps between K3 surfaces.

Following to [N2] (see [Mo] also), we will give here basic

constructions connected with symplectic involutions of K3 surfaces.

2.1. Let X be a K3 surface and let t be a symplectic involution

of X. The following results are contained in [N2].

Let
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(2.2)

and

T L={ XEHX I L(X)=X }.

The lattice S is a negative-definite lattice of the rk S =8, the
L L

discriminant group ~S Ei!: (Zj2Z) 8, and SL has not elements <3 with
L

square 8 2=-2. By the classification of the definite unimodular

lattices of rank ~ 8 (see [Se], for example), SL=E8 (2). The lattice

SL is the primitive sublattice of the lattice Sx The lattice Sx is

a primitive sublattice of the lattice HX=H2 (X, Z) also. Thus, we

have a sequence of primitive embeddings of lattices:

SLcSXcHX · (2.1)

The lattice HX is an even unimodular lattice of the signature (3,

19). It follows (see [Se], for example) that HxE!:U
3 eEs

2 The lattice

SL has the unique (up to isomorphism) primitive embedding into the

lattice, HX • It follows that TL=(SL)~X'" U
3a>Ea (2). By (2.1), then

TX=(SX)~ is a primitive sublattice of TL, and we have a sequence of
X

primitive embeddings of lattices:
L

TxcT cHX ·

vice versa, suppose we have a primitive embedding ScSX of lattices,

where S~E8(2). Then there exists WEW(2) (Sx), such that W(S)=SL for

some symplectic involution L of the X. Here W(2) (SX) is the group

generated by all reflections with respect to elements <3ES X with the

square <5
2=-2.

The symplectic involution L has precisely 8 fixed points, and

the Iocal action of L in these points is the mUltiplication on -1.

It follows, that Xj{id, L} has precisely 8 singular points of the

type ~1' which are the images under the quotient morphism

Tl: X~Xj {id, L} of the fixed points. Let (J': Y~Xj {id, L} be the
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minimal resolution. The pre-images u- l of the singular points of

XI {id, t} are non-singular rational curves r l' ••• , r s of Y with

divisor classes e
1

, ... , es' which generate the primitive negative

definite sublattice

(2.3)

with the form e.· e .=-20 . . of the lattice Sy' So, we have the
1. J 1.J

sequence of primitive embeddings ef lattices:

(2.4)

It fellows that the discriminant group 8 Q ~(Z/2Z)6, and the
t

discrirninant form qQ ~ui2) (2)3. Let Rt=(Q)i . By (2.4), we have
t t Hy

the sequence

(2.5)

of the primitive embeddings of the lattices. The lattices Q and RL
t

are the orthogonal complements one to another in the even

unimodular lattice HX' It follows [N3] that

q ~-q e:-u(2) (2)3~u(2) (2)3 the lattice Q has the unique up to
Rt Qt + +' t

isomerphism primitive embedding in Hy , and RL~U3®Qt'

Let "[=(j-Irr: X--->y be the corresponding rational map of the

degree 2. This map gives the embedding of the lattices

(2.6)

which has the obvious preperty:

't'*(H2 ,O(y))=H2 ,0(X) .

A lattice (ar an 2-adic lattice) F i5 called 2-elementary iff the

discrirninant group 8F~(Z/2Z)a. For 2-elementary lattices the

following duality takes place: To a 2-elementary lattice F, the

.2-elementary lattice FX=F*(2) is corresponding, and the canonical
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embedding FcF* gives the canonical ernbedding

F(2)cF*(2)=Fx , (2.7)

and we have the following duality property:

(Fx )x=(F*(2))*(2)=F. (2.8)

The fundamental fact is that the embedding (2.6) is extended to the

isornorphism (this extension is obviously unique) of the lattices:

T*:RL(2)c(RL)X~TL, (2.9)

where the embedding RL(2)c(RL)x is the canonical embedding (2.7).

Thus, by (2.7) and (2.9) we have the following canonical

isomorphisms of the lattices:

(2 • 10)

By ( 2 • 2) , ( 2 • 5) , (2.6), and (2.10), we have the following

isomorphism, which describes the modification corresponding to the

rational map T:X--->Y :

(2.11)

2. 2. Here, we want to deduce from the properties 2. 1 some

general statements connected with K3 surfaces with symplectic

involutions. It will be useful in what folIows.

2.2.1. Let us consider the following general situation,

connected with lattices. Suppose we have an even unimodular lattice

Land two primitive sublattices TeL, QcL which are orthogonal one

to another: TiQ. Let [T$Q] be the primitive sublattice in L

generated by TeQ. Then the subgroup

r[T$Q]=[TeQ]/(TeQ)cSTe8Q

is an isotropie subgroup with respect to quadratic form qT$~, and
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r[TmQ]n(gTmo)=r[TmQ]n(OmgQ)=omo. Let rrT and rrQ be the projeetions

in 8 T and gQ respeetively. Let

be the subgroup of a T . Then we have the inelusion

~: ~ ------+8Q

of the groups, where €=rrQ(rrT)-l, and € gives the inelusion of the

quadratie forms:

We would like to express the overlattiee Tc ( (Q)~) *n (T0aJ) of a

finite index of the T using the subgroup ~ .

.1
Lemma 2.2.1. «(Q)L)*n(T~aJ))/T= ~ c 8 T .

Proof. Let P=(T$Q)~. Then T@PeQcL is a sublattiee of a finite

index. For a sublattiee FeL, we denote by [F] a primitive

sublattiee [F]=Ln(F0D) of L generated by F. We have the subgroups

r[Tep]=[Tmp]/(Tmp)c8TeapcaT$spSSQ ,

r[TeQ]=[TSQ]/(TeQ)cSTm8QcaTe8psSQ ·

Here we identify 8 T=8TsOmO, Sp=Oe8pso, 8 Q=O@O@8Q. Let rrT , rr p ' rrQ be

the eorresponding projeetions in 8 T , 8 p ' 8 Q respeetively. The

subgroups r L' r [TeP]' and r [TeQ] are obviously isotropie with

respeet to the form qT$qp$~.

It follows, that we have to prove that

The lattice L is unimodular. It follows that
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(2.12)

which is an

This is equivalent to r Ln(8TE>Om8Q)=r[T$Q]. This evidently follows

from the faet that the [TmQ] is a primitive sublattice of the L. >

2.2.2. Now, let us eonsider the ease of the seetion 2.1 above

when K3 surfaee X has a sympleetie involution L, and speeify the

situation of the seetion 2.2.1 to the ease L=HX' T=TX' Q=st.

The primitive sublattiee M=[TxeS t ] in HX' whieh is generated

by the sublattiee TxmS
L

of the lattiee HX' is defined by the

inelusion of the forms

4
~:qT I~ ~ -qs =U+(2) ,

X L

where ~ is a subgroup of the diseriminant group ST . It is defined
X

by the graphie rl;=[Txe>St]/(Tx$St)c8TxE>iISt of the E:,

isotropie subgroup of the form ~ mqS in ST m8S . The diseriminant
X L X t

form

l.
qM=~ eqS I«r~)a_ sq /r~). (2.13)

X t --l'X S L

By (2.12), the ~ ~(Z/2Z)a is a 2-elementary group, a~8, and also

rE:~(Z/2Z)a. Let xl' ... ' xa be a basis of rE:. By the inelusion

(2.12), there exist a basis xl' ... ' Xa of the isotropie group r~

and elements Yl' · · · ,ya of the form qs sueh that we have with
t

respeet to the form qT eqS
X L

[Xi'YiJeui2) (2). It follows that

[x. ,y. ]l.[x. ,y,]
1 1 J J

if i;ej, and

and

if a:s;;4i

and qM=q'T if a > 4.
X

13
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We used here the fact that the orthogonal term ui2 ) (2) is splitting

off uniquely up to isomorphism fram a finite quadratic form. It

follows that

l(qM )=l(q(T ) ), if p~2;
P X P

and

t(qM )=l(q(T ) )+8-2a, if p=2.
2 X 2

Obviously,

rk M = rk TX + 8.

(2.16)

(2.17)

(2.18)

(2.20)

(2 . 19)

(2.21)

The following conditions are sufficient and necessary for the

existence of a primitive embedding of an even lattice with

invariants (t(+),t(_),q) into an indefinite even unimadular lattice

with signature (1(+),1(_)):

t(+)Sl(+), t(_)Sl(_);

t(+)+t(_)+t(q)~l(+)+l(_);

1 -t
( -1) (+) ( +) ICL1 I 1:1_ dl.'scr K ( ) d (Z*) 2~q qp roo p

(2.22)

if t(+)+t(_)+l(q2)=1(+)+1(_) and q2~q~2) (2)eq2'. Here K(qp) is a

p-adic lattice with the discriminant form q and rk K (q ) =t (8 )
P P qp

(the form K (qp) is unique up to isoroorphism). See [N3 , theorem

1.12.2].

By (2.14) - (2.22), the following conditions are sufficient and

necessary for the existence of a primitive embedding of the lattice

M corresponding to the isomorphism ~ into the lattice H
X

:
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rk TX + l(q(T ) ) ~ 14
X P

for all odd prime p, and

(2.23)

I~T I 5 -discr K(q(T ) ) mod(z*)2 (2.24)
X X P P

for all odd prime p for which rk TX + l(q(T ) ) = 14;
_ X P

and

a ~ (rk TX + l(q(T ) ))/2 - 3,
X 2

(2.25)

I~T I 9 ±discr K(q(T ) ) mOd(Z~)2
X X 2

(2.26)

if a = (rk TX + l(q(T ) ) )/2 - 3 and q(T ) ~~2) (2) $q'.
X 2 X 2

The conditions (2.25), (2.26) and the strong inequalities

rk TX + l(q(T ) ) < 14
X P

(2.27)

for all odd prime p are sufficient for the existence of a primitive

embedding of the lattice M into the lattice H
X

.

By the Lemma 2.2.1,

(2.28)

that defines the lattice (Tx~~)n(Tt)*. By (2.28) and (2.11) we

get

Lemma 2.2.2. The L*(Ty (2))cTX is defined by the following:

L*(Ty(2))=2((Tx0~)n(Tt)*)cTxC(Tx0~)n(Tt)*,

and

t
((Tx0~)n(T )*)/TX = ~ c ~T ·

X

2.2.3. We can repeat results of 2.2.2 to obtain similar results

for the K3 surface y which has a rational map of the degree two

L:X- - ->Y of a K3 surface X, defined by a symplectic involution t

15



(2.29)

of the X. Here we apply results of the 2.2.1 to L=Hy , T=Ty , and

Q=Q .
t.

The primitive sublattiee M=[Ty$Qt] in Hy , whieh i? generated

by the sublattiee Ty$Qt of the lattiee Hy , is defined by the

inelusion of the forms

3
~:~ I~ ~ -qQ =U+(2) ,

y L

where ~ 18 a subgroup of the diseriminant group 8 T . It is defined
y

by the graphie re=[TyeQL]/(TytBQt)dlTy$8Qt of the e, whieh is an

isotropie subgroup of the form ~ ~qQ in 8T e8Q . The discriminant
y L Y t

form

(2.30)

group,By (2.29),

re~(Z/2Z)ß. Similarly to the

qM~~ eui2) (2)3-ß ,
Y

and

case 2.2.2, we get:

if ß s 3; (2.31)

and also

It follows that

(2.32)

and

Obviously,

t(qM )=t(q(T ) ), if p~2;
P y P

l(qM )=l(q(T ) )+6-2ß, if p=2.
2 Y 2

rk M = rk Ty + 8.

(2.33)

(2.34)

(2.35)

By (2.19) (2.22) and (2.31) (2.35), the following

conditions are sUfficient are necessary for the existence of a

primitive embedding of the lattice M corresponding to the inclusion
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~ into the lattice Hy :
.
rk Ty + l(q(T ) ) ~ 14

Y P
for all odd prime p , and

(2.36)

(2.37)IST I ~ -discr K(q(T ) ) mOd(z*)2
y y p p

for all odd prime p for which rk Ty + l(q(T ) ) = 14;
y p

and

ß ~ (rk Ty + l(q(T ) ) )/2 - 4,
Y 2

(2.38)

(2.39)

if ß = (rk Ty + l(q(T ) ) )/2 - 4 and q(T ) ~~2) (2)G>q'.
Y 2 Y 2

The conditions (2.38), (2.39) and the strong inequalities

rk Ty + l(q(T ) ) < 14
Y P

(2.40)

for all odd prime p are suffieient for the existence of a primitive

embedding of the lattiee M into the lattiee Hy •

2.2.4. Let X be a K3 surface. The pair (TX' H2,0(X)cTX0~) is

ealled the transcendental periods of the X. For two K3 surfaees X a

Y, an isomorphism QL their transcendental periods is an isomorphism

rp:TX==Ty of the lattices such that (rp~~) (H2 ,0(X»=H2 ,0(y). We say

that a K3 surface X is defined Qy its transcendental periods iff

every K3 surface X' with the transcendental periods isomorphie tc

that cf X is isomorphie to X.

Lemma 2.2.3. Let Z be an algebraic K3 surfaee (over ~) whieh

either has a sympleetie involution or has a rational map cf the

degree 2 L:X- - ->Z cf a K3 surfaees X.

17



Then Z is defined by its transcendental periods, and for any K3

surface Z' and an isomorphism ~:TZ,~TZ of the transcendental

periods, ~=f* for some isomorphism f:Z~Z' of the surfaces.

Proof. Suppose that K3 surface X has a symplectic involution L

and let ~:TX~TX' be an isomorphism of the periods for K3 surface

x' .

From the analog of witt's theorem [N2], [N3], it follows that a

primitive embedding of an even lattice K into an even unimodular

lattice L is unique up to isomorphisms (for every two embeddings

i:KcL, i':KcL we have i'=gi for an automorphism g of L) if the

conditions a), b), c) below take place:

a) the lattice (K)~ is indefinite;

b) rk K + l(8
K

) :s rk L - 2 for all prime p~2;

p

c) either rk K + t(8
K

) :s rk L - 0: ' (2) ( )2 or qK -qK eu+ 2.
2 2 2

By (2.15) , (2.23), and (2.25), the conditions a) , b) and c)

above hold for the primitive ernbedding TxcHx . It follows that the

primitive embedding TxcHX is unique up to isomorphism. Thus, the

isomorphism tp: TX -----?T
X

'

cI>:HX~HX'·

Let for a K3 surface Z

of the lattices has an extension

2V(Z)={ XES Z0R I x > 0 }

and let v+(Z) be a half cone of the V(Z) which contains a

polarization of the Z.

Suppose that tIl (v+ (X) ) =v+ (X'). Then, there exists an element

WEW (2) (X) such that ~w (hx)=h
X

' for polarizations h
X

and hx, of X

and X'. The w is trivial in TX. Frorn the global Torelli theorem

[PSh-Sh], it follows that an isomorphism f:X'~X exists such that

18



f*=~w. It fellows that f*ITx=~.

Suppose that ~(V+(X» = -V+(X'). In this case, let us find an

automorphism ~ of the lattice HX such that and

~(V+(X»=-V+(X). Then we can replace ~ by ~~ to reduce the case to

the previews one.

.1
The discriminant ferm qs ~-~ because SX=(TX)H and the Sx is

X X X

primitive in HX. From this fact and (2.15), (2.23), (2.25), it

fellows that

fer all odd p~2, and

rk Sx ~ l (8 (S ) ) + 16 - 2a,
X 2

where a~8. By (2.15),

(2.41)

(2.42)

(2.43)_ (2) () ,q(S ) -u+ 2 $q, if a~5.
X 2

It follows (see [Kn] and [N3, theorem 1.13.2]) that a lattice with

the same invariants (t(+), t(_), q) as the lattice Sx is unique up

to isomorphisms. From this fact and the criterion ef the existence

of an even lattice with given invariants (t(+), t(_), q) (see [N3,

theorem 1.10.1]), it follows that

SX=Sl$S2' where Sl~U er Sl~U(2).

For the lattice SI the discrirninant greup 8 S ~(Z/2Z)a, a=O or 2, is
1

a 2-elementary group. It fellows that there exists the automorphisrn

~ of the HX which is the (-id) in SI and which is identical in

(S1)~ · The ~ gives an autemorphisrn which we look for.
X

In the case when Z=Y has a rational map of the degree twe

x- - ->Y

of the K3 surface X, the proof is the same if one uses 2.2.3. >
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The (2.11) and the Lemma 2.2.2 show that the modification

defined by a rational map of the degree two 1;: x- - ->Y of K3

surfaces is defined by a primitive embedding TXCT L of the lattices

where TL~u3eE8(2). The Lemma below shows that every such embedding

is possible and reduces the problem of the description cf

modifications to a

Let us denote

Lemma 2.2.4.

purely arithmetic

T~Tt:!!U3$E (2).
8

Let X be a K3

one.

surface and a

primitive embedding of lattices.

Then there exists a symplectic involution t of X such that for

the corresponding rational map of the degree two ~:x- - ->Y of K3

surfaces

Proof. In fact, in the proof of the Lemma 2.2.3, we have shown

that a primitive embedding TX~HX of the lattices is unique up to

isomorphisms, if a primitive embedding TxcT exists. It follows that

an extension TcHX of the natural primitive embedding TXcHX exists,

where an ernbedding TcHx is also primitive. The lattice T is 2

elementary. It follows tha t the involution 'ß cf the lattice Hx

exists, which is identical in the lattice T and is the

multiplication by (-1) in the lattice S=(T)~. The q5=-~=ui2) (2)4,

rk 5 = 8. Then the lattice S~S1(2) where the lattice 51 is an even

lattice. Particularly, the lattice S has not elements with the

square (-2). It follows [N2], that there exists WEW(2) (Sx) such

that w'ßw-
1 =t* for a symplectic involution l of the X. The

automorphism w gives the isomorphism w:T ~TL of the lattices

which is identical in the lattice TX. It follows that for the

rational map corresponding to L of the degree two -c:X- - ->Y of K3
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surfaces we have (see (2.11)) that

By the results above, we get

Theorem 2.2.5. Let X be an algebraic K3 surface.

If X has a rational map of the degree two ~:X- - ->y in a K3

surface Y then the following condition (i) holds:

(i) rk TX + l(q(T ) ) ~ 14 for all odd prime p, and
X p

IgT Im-discr K(q(T ) ) mod(z*)2 for all odd prime p for which
X X P P

rk TX + l(q(T ) ) = 14;
X P

If the condition (i) holds, then there is the bijection between

modifications ~*: T y (2) ---+)T
X

corresponding to rational maps of
.

degree two ~:X- - ->y between K3 surfaces X and Y, and pairs (~, ~)

defined below.

Here ~~(Z/2Z)a is 2-elementary subgroup ~c8(T) such that the
X 2

condition (ii) below holds.

(ii) There exists. an embedding ~:~ 1~~ul2) (2)4 of the
X

finite quadratic forms, and

a ~ (rk TX + l(q(T ) ))/2 - 3,
X 2

and

if a = (rk TX + l(q(T ) ))/2 - 3 and q(T ) ~qJ.2) (2) Ef>q'.
X 2 X 2

For the lattice TXc~cTx* defined by the equality ~/TX=~' the ~

i5 an isomorphism of the lattices
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such that "(H2 , 0 (Y) ) =H2 , 0 (X). For the ~ satisfying the condition

(ii) there exists a K3 surface Y and an isomorphism " with

these properties.

The " = ~* for a rational map ~:x- - -> Y of the degree two.

Proof. We leave the reader to deduce it from the Lemmas above.>

2.2.5. Let us define the composition of modifications which

will correspond to the composition of rational maps.

Let Tl' T2 , TJ be lattices and rpl :T1 (d1 ) 0lIJ ~T2@D,

T2 (d2 ) 04;) ~TJ0lC be isomorphisms of symmetrie bilinear forms over

lIJ, where d 1 , d 2 are square-free positive integers. In other words,

we have two abstract modifications of the lattices Tl' T2 , TJ . Let

d1d2=m2(dld2)' where m and (d1d 2 )' are the integers and (d1d 2)' is

square free. Then the sequence of inclusions of lattices

T1(d1d2)/)=(1/m)Tl(dld2)~Tl(d1d2)

is defined. It gives the identification of the forms over ~

T1«d1d2)')00=(l/In)T1(dld2)@D=T1(dld2)00,

and the isomorphism ~2~1 of the forms

which i5 called the composition of the modifications ~1' ~2.

Suppose that f 1 :X1- - ->X2 , f 2 :X2- - ->XJ are two rational maps

between algebraic surfaces. Then the modification f 2 f 1*
corresponding to the composition f 1 f 2 of the rational maps is

obviously the cornposition of the modifications Tl*, t; *.

2.2. 6. Using the results above, we want to describe

modifications corresponding to rational maps f:X- - ->Y between KJ

surfaces X and Y which are compositions f=fn · ... · f 1 of rational

maps f l , f 2 , ... , f n of the degree two. A composition of any two
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rational maps of this type i8 a rational map of this type also.

Thus, these rational maps define the category 1{ of the rational

maps.

Lemma 2.2.6. Let f:X--->Y be a rational map between K3 surfaces

X and Y, whieh 1s a eomposition f=fn· ... ·fl of the rational maps of

the degree two f l :XI =X--->X2 , , fn:Xn--->Xn+I=Y between the non-

singular algebraie surfaees Xl' ' Xn+l (i.e. feX).

Then the minimal models of the surfaees Xl' ... ' Xn+1 are K3

surfaees. So, we ean ehoose birationally the surfaees Xl'···' Xn+l

being K3 surfaces.

Proof. Rational maps f l , ... , f n give the isomorphisms

H2,O(X)=H2,O(XI)~H2,O(X2)e... ~H2,O(Xn+I)~H2,O(y),

beeause H2,O(X)~2,O(y)~c. It follows that Galois involutions

LI' ... ' Ln of the maps f l , ... , f n are trivial in the spaees

Then the involution LI is a sympleetic involution of the K3 surface

XI=X. Let Y be the minimal resolution of the singularities of

X/{id, L}. We know (see [N2] and also 2.1) that the surfaee Y is a

K3 surfaee. The surfaee X2 is birationally isomorphie to the

surface Y, and i ts minimal model is a K3 surfaee. Thus, we ean

suppose that X2=Y is a K3 surface. In such a way, we obtain the

proof using the induction. >

Using the Theorem 2.2.5 and the Lemma 2.2.6, we obtain the

following description of the modifications corresponding to

rational maps from the category 1{ between K3 surfaces.

Theorem 2.2.7. Let X be an algebraic K3 surface.

If X has a rational map f:X- - ->Y in a K3 5urface Y which i5 a
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composition of rational maps of the degree two, and deg f > I, then

the condition (i) of the theorem 2.2.5 holds for TX.

Let for TX the condition (i) of the theorem 2.2.5 holds, a

positive integer dl2, and Y is a K3 surface.

Then modifications f'* : Ty (d) @GJ ~TX@iD corresponding to

rational maps f:X- ->Y which are compositions f=fn ·· ·f1 of

rational maps f 1 , ... ,fn of the degree two (d=l if n is even, and

d=2 if n is odd) are defined "by sequences (Tl'~l)' (T2'~2)' ... '

(Tn'~n) of pairs and by the isomorphisms ~ defined below. An every

such sequence and an every ~ are possible.

Here, Ti' i=l, ... , n, are sublattices of the maximal rank in the

form TX@lIJ for i odd, and in the form TX(1/2) @!D for i even. Here
a.

~.~(1/2Z) 1 is a 2-elernentary subgroup ~ic8T .. The lattices Ti are
1 1

defined by the induction. The sublattice T1=TxcTX@O. For lsisn the

i i5 even. For the every pair

S./T. =~.. It gives the inclusion
1 1 1

sublattice T.+
I

(2)=2S.cT., where
111

Ti +l cTx (1/2)@lD if i is

Ti+lcTx(1/4)~lD=(1/2)TX@lD=Tx@GJ, if

odd, and the inclusion

(Ti'~i)' l~i~n, the condition (ii) of the Theorem 2.2.5 should be

true (one should replace in the condition the TX by Ti' and ~ by

~. ) .
1

The ~:Ty~Tn+l is an isomorphism of the lattices which

induces the isomorphism of the periods, i.e.

2 0 2 0
-ß(H ' (Y) )=H ' (X)cTX0C. For the sequence (Tl' ~1)' (T2 , ~2)' ... '

(Tn , ~n) satisfying the condition above there exists such K3

surface Y and an isornorphism ß.

The modification f* defining by the sequence and the ß is the

composition of the ß and of the inclusion of the sublattice
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mUltiplication of the forms by d=2 for n odd.

Proof. The Theorem follows from the Theorem 2.2.5 using

compositions of rational maps and modifications above (it is more

difficult to formulate this theorem then to deduce it from the

Theorem 2.2.5). >

Remark 2.2.8. From the theorem 2.2.7, we obtain the following

sequence of sublattices of the form TX~~:

where (1/2)T'+1(2)/T.=~. for all odd i, and T'+1(1/2)/T.=~. for i
1 1 1 1 1 1

even.

The theorem 2.2. 7 reduces the description of modifications

corresponding to rational maps between K3 surfaces from the

category ~ to the purely algebraic problem. We will use the Theorem

2.2.7 for the proof of the basic Theorem 3.1 of the paper (Theorem

1.3. of the Introduction) in the following paragraph.

§ 3. Rational maps between K3 surfaces

with the transcendental lattice of the rank s 5.

Here we prove the basic theorems (the Theorems 1.3 and 1.4 of

the Introduction) of the paper.

Theorem 3.1. Let X and Y be algebraic K3 surfaces with rk Tx=rk

Ty S 5, and ~:Ty(d)0~~TX~~ be an isomorphism of quadratic forms

over ~ (i.e., ~ i5 an abstract rnodification of the lattices TX and

2 0 2 0Ty ) for which ~(H ' (Y))=H ' (X), d12, and ~ induces an isomorphism

~p:Ty(d)@Zp )TX~Zp of p-adic lattices for any prime p~2.

Then there exists a sequence x=x
1

, X2 , ..• ,X
n

+1=Y of K3 surfaces

and rational maps f. :X.
1 1

->Xi +1 of degree

25
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rational map f=fn · ... ·f2 ·f1 induces the modification ~, i.e., ~=f*.

\

Proof. We divide it on several steps.

3. 1. We denote T=T
X

and T=~ (Ty ) cT0aJ (l/d). Using the Theorem

2.2. 7 and the Remark 2.2.8, one should find a sequence of the

Z-sublattices of the form T~aJ:

(3.1)

where n is odd if d=2, and n is even if d=l, such that the

conditions of the Theorem 2.2.7 hold. A sequence which satisfy the

conditions of the Theorem 2.2.7 is called further an acceptable.

By the condition of the Theorem 3. 1, T@/l =T0Z for any oddp p

prime p. According to the Theorem 2.2.7, quotient modules of the

modules of the sequence (3.1) should be 2-groups. Thus, one should

find the sequence (3.1) over ring Z2 only. One has the obvious

inequality t(8(T ) )~rk TXS5 for every p. Then l(8(T ) )+rk TX<14.
X P X P

Thus, the condition (i) of the Theorem 2.2.7 is true, and for a

construction of the sequence (3.1) we should satisfy to the

condition (ii) of the Theorem 2.2.7 only.

3.2. At first, for rk T ~ 5, we will construct an acceptable

sequence T=T1 , ... ,Tm+1=T' of lattices such that m is odd and

T'=2T(1/2)cT~aJ(1/2). Thus, the lattice, T'eT(2). We consider the

most difficult cases rk T =4 and 5.

Let rk T = 4.

Let (over Z2) T=SlG>S2eR (2) where SI' S2 are lattices cf the

rank 1, and R is an even lattice of the rank 2. Let {Cl} be a bases

of the SI' {C 2 } a basis of the S2' and {C3 , C4 } a basis of the

lattice R(2). Let us prove that the following sequence of lattices

is acceptable:
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T1=[(1' (2' (3' (4 J ,

T 3=[(1' 2(2' C3 ' (~J,

and, evidently, there exists an embedding of the forms

ctr I~l -----TUi2
) (2)4. We have: CX 1=2>1::::(rk Tl+l(qT ) )/2-3 since 4=rk

1 1

Tl ;:: t(ctr ). It proves the condition (ii) of the Theorem 2.2.7 for
1

the pair (Tl'~l). The lattice T2=Sl(2)mS 2 (2)sR, and a 2=1. In this

case ~2= [(1,2(2' <3' <4 J/[2<1' 2(2' (3' (4]' and evidently an

embedding qT 1~2~ui2) (2)4 of the forms exists. Since the lattice
2

T
2

is even then either R is unimodular or l(aR)=2. If the lattice R

is unimodular, then a =1
2 > (rk If R is not

unimodular, then we have the equality a
2
=1=(rk T

2
+i(ctr )/2-3. And

2

we should prove the congruence (where we consider the lattice T2 as

a lattice over Z):

laT I=±discr K(q(T ) ) mOd(Z2*)2.
222

In this case, K(q(T) )~(T2)2=T2@Z2' and this congruence holds
2 2

because

discr T2=± IaT I·
2

for the lattice T2 over Z. The a
3
=1, and the proof of the condition

(ii) for (T3 , ~3) is the same.

The same proof of the condition (ii) should be produced in all

cases which we consider below. We will leave this procedures to the

reader.

Now, suppose that the lattice T has not a representation of the

type above. From the decomposition of 2-adic lattices in an
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orthogonal sum of lattices of the rank 1 and 2, one obtains that it

is possible only in the following two cases which we consider at

once ..

The case T=RI (2m)$R2 (2 n ), where RI , R2 are an even unimodular

lattices of the rank two, m~O, n~O. Let {(I' (2) be a basis of the

lattice RI (2m) and {(I' (2) a basis of the R2 (2m). If m=n=O then

the sequence of lattices

is acceptable. 8uppose that n~l. Then the following sequence of the

lattices is acceptable:

TI =[<l' <2' (3' (4]'

T3=[2C 1 , 2(2' '3' (4]'

T2=[2C 1 , 2(2' (3' 2(4] (1/2),

T4= [ 2 Cl' 2<:2' 2 ( 3 ,. 2(4] (1/2) ·

The case T=8
1

$8 2sR, where 8
1

, 8 2 are even lattices of the rank

one, and R is an unimodular lattice of the rank two. If one of the

lattices 8 1 (1/2), 8 2 (1/2) i5 not even, then the following sequence

of the lattices is acceptable:

T1=T, T2=2T(1/2) ·

Now suppose that the lattice 8 2 (1/2) is even. Let {Cl} be a basis

of the 8 1 , '{(2) be a basis of the 8 2 , and {C3 ,C 4 } be a basis of the

lattice R. Then the following sequence is acceptable:

Let rk T = S.

8uppose that T=Sl$8 2$8
3

$S4$8
S

' where rk 8 i =1, and the lattices

8 4 (1/2) and 8 S (1/2) are even. Let {(i) be a basis of the 8 i . Then

the following sequence of lattices is acceptable:
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T3=[2<:1' <:2' <:3' <:4' <:s], T4=[2<:1' 2(2' 2(3' 2<:4' <:s] (1/2) ,

TS=[<:l' <:2' 2<:3' 2(4' (s J , T6=[2(1' 2(2' 2(3' 2(4' 2( S J (1/2) .

Let 5=5
1

$5
2

$53$R, where 51' 52' 53 are lattices of the rank 1,

rk R = 2, and the lattices 5 3 (1/2) and R(1/2) are even. Let {Cl} be

a basis of the 51' {(2} be a basis of the 52' {C 4 } be a basis of

the 53' and {C 4 , Cs } be a basis of the R. In this case the

following sequence of lattices i8 acceptable:

T1=[C1 , <2' <3' C4 , C5 J, T2=[2C 1 , 2C 2 , 2C 3 , <4' <5 J (1/2),

T3=[2C 1 , <2' C3 , (4' (5 J , T4=[2<1' 2(2' <3' 2C 4 , 2<5J (1/2),

Now suppose that the lattice T has not representations of the

types above. Then, only, the following cases are possible. We

consider them at once.

The case T=5$R
1

(2m) $R2 (2n ), m~O, n~O, where rk 5=1 and R1 , R2

are even unimodular lattices of the rank 2. Let {Cl} be a basis of

m nthe 5, {C 2 , C3 } of the R1 (2 ), {C 4 , (5} of the R2 (2 ). Suppose that

m~l. Then we obtain the following acceptable sequence:

T1=[(1' (2' (3' <4' <5 J , T2=[2<1' <2' <3' 2(4' 2( 5 J (1/2) ,

T3=[2<1' <2' <3' (4' <5 J , T4=[2C 1 , <2' 2C 3 , 2<4' 2es J (1/2) ,

TS=[2C 1 , (2' C3 ' (4' 2(SJ, T6=[2C 1 , 2(2' 2(3' 2(4' 2(5 J (1/2) ·

Suppose that m=n=O. If the lattice S(1/2) i5 not even, then we

obtain the following acceptable sequence:

T1=T, T2=2T(1/2).

If the lattice S (1/2) is even, then the following 5equence i5

acceptable:
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The case T=Re5
1

e5
2

e53 , where R is an even unimodular lattice of

the rank 2, and 51' 52' 53 are lattices of the rank one. The case,

when all lattices 5 1 (1/2), S2(1/2), S3(1/2) are not even is reduced

to the previous case, because then S1tDS2a>S3=R' (2) eS', ~here R' is

an even unimodular lattice of the rank 2 and 5' is a lattice of the

rank 1. Thus, we can suppose that the lattice S3(1/2) is even. Let

{Cl' C2 } be a basis of the R, {C3 } of the S1' {C 4 } of the 52' and

{Cs } of the 5 S • Suppose that one of the lattices S1 (1/2) or

S2(1/2) is not even. In this case, we have the following acceptable

sequence:

Suppose now that the lattice S2 (1/2) is even (together with the

lattice S3(1/2». Then the following sequence is acceptable:

T3=[C 1 , '2' 2'3' '4' '5]'

T 5=[{1' C2 , 2'3' 2'4' Cs]'

T4=[2(1' 2(2' 2'3' 2'4' (5](1/2),

T6=[2(1' 2{2' 2(3' 2(4' 2(5](1/2).

It finishes the proof of the statement.

3.3. Here, for a lattice T cf rk T s 5 and with an even lattice

T(1/2), we will construct an acceptable sequence T=T1 , ... , Tm=T" of

lattices such that m is odd and T"=T(1/2)cT@QJ(1/2).

Suppose that rk T s 4. Then the following sequence is

acceptable:

T1=T, T2=T(1/2).

Suppose that rk T = 5.
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Let T=R1 (2)eR2 (2)eS(4), where the lattices R1 , R2 , 5 are even

and rk R1=rk R2=2, rk 5=1. Let {Cl' C2 } be a basis of the R1 (2),

{(3' (4) be a basis of the R2 (2), and {CS} of the 5(4). Then the

following sequence is acceptable:

T1=[<1' <2' C3 ' <4' es],

T3=[(1' (2' <3' (4' <5/ 2 ],

T2=[2C 1 , 2C2, C3 , (4' (5] (1/2),

T4=[C 1 , <2' (3' <4' (5] (1/2).

Let T=R1 (2)eR2 (4)e5(2) where the lattices R1 , R2 , 5 are even.

Let {Cl' C2 } be a basis of the R1 (2), {C3 ' C4 } be a basis of the

R2 (4), and {es} be a basis of the 5(2). Then the following sequence

is acceptable:

Now suppose that the lattice T has not representations of the

type above. Then T=R1 (2)eR2 (2)eS(4), where R1 , R2 are even

unimodular lattices and rk R1 = rk R2 = 2, S is an odd unimodular

lattice and rk S = 1. Then the following sequence is acceptable:

T1=T, T2=T(1/2).

It finishes the proof of the statement.

3.4. Here we will finish the proof of the Theorem. We consider

the most difficult case rk TX = rk T = 5.

Let us reduce the case d=2 to the case d=l. Using 3.2, we can

find an acceptable sequence T=T1 , ... , T , such that T =2T(1/2). In
m m

the case d=2 both lattices Tm and T are contained in the one form

T00(1/2). It is sufficient to find an,acceptable sequence for T=Tm

and T where both lattices are contained in the one form T0~(1/2).

Thus, we have deal with the case d=l now.

Now suppose that d=l. Then both lattices T and T are lattices
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of the one quadratic form T0aJ. Let S=TnT. Thus, we have the

following sequence of inclusions of the lattices of the form T00:

T :> S c T.

Using results 3.2, we can find an acceptable sequence

T=T1 ,···, T2m=2TcT~O.

Using results 3.3, we can find an acceptable sequ~nce

2T=S1'···' S2n=TCT0D.

Thus, it is sufficient to find an acceptable sequence with the

first term 2T and with the final term 2T. The lattices 2T and 2T

are more convenient because the lattice 2T!:!!:T (4) and the lattice

2T~T(4) where T and T are even lattices.

Thus, it is sufficient to find an acceptable sequence for the

lattices Te:T' (4) and T~T' (4) where T' and T' are even lattices.

Further, we suppose that it is true.

The quotient group T/S is a finite abelian 2-group. It follows

that there exists a sequence of sublattices of the form T0D:

i=1, ... a-l. Let S.' be a sublattice of T~IC1.

which satisfies the condition:

S. => S1.'+1:> S.'=> 2S., and S.'/2S.;::;(Z/2Z)2.
1. 1. 1. 1. 1.

Then, evidently

Let us show that the sequence of the lattices

is acceptable.

The lattice Si=M(4) where M is an even lattice (since it is

true for the lattice T and S. cT). Then, the sublattice S.' is
1. 1.
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~~(Z/27l)2 andconstructed. from the subgroup ~=(1/2)Si'/Sidls.
1.

qS. I~=o. It follows that there exists an embedding of the forms:
1.

4
qs.I~~u+(2) ·

1.

We have: l(8(Si)2)=S because Si=M(4) where M is a lattice. So, we

have the equality: 2=(rk Si+l(8(Si)2)/2-3. Thus, we should prove

the congruence for the lattice Si over Z:

18 s .lg±discr K(q(S')2) mOd(Z2*)2.
1. 1.

since Si=Si'(4), in this case K(q(Si)2)~Si~Z2. It follows that

discr S. =± 18s I, and the condition (ii) of the Theorem 2.2.8 is
1. •

1.

true.

The lattice Si' (1/2) cS i (1/2) cT (1/2) =T' (2), where T' is an even

lattice. Using this fact, in the same way as above, one proves that

the sequence of the lattices S.' (1/2) ,
1. Si+1 is acceptable · The

corresponding to this sequence subgroup ~ of the discriminant group

of the lattice S.'(1/2) is ~=S'+1(1/2)/S.'(1/2)~(Z/2Z)2.
1. 1. 1.

In such a way, we obtain an acceptable sequence of sublattices

of T@ID:

The quotient group T/S is a finite abelian 2-group also. Then

we can find a sequence of sublattices of the form T@~:

S=PlcP2c ... cPb_lcPb=T

with Pi+1/Pi~Z/2Z, 1~i~b-1. Let Pi' be a sublattice of the form T01D

which satisfy the condition:

2Pi +1 c Pi' c Pi and Pi/Pi'~ (1/21) 2.

Let us show that the sequence of lattices
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is acceptable.

The lattice P.=M(4) where M is an even lattice, since it holds
1.

for T, and Pi is a sublattice of the T. Then the lattice Pi '(1/2)

is constructed from the subgroup ~=(1/2)P. '/P.cElp , ~l::§ (Z/2Z) 3 and
1. 1. •

1.

QP. I~=o. It follows that there exists an embedding of the forms:
1.

qp.l~ ~ui2) (2) 4.
1.

Since rk Pi =5, then we have the strong inequality:

3 > (rk Pi +l(8(Pi)2)/2 - 3 = 2.

It proves the condition (ii) of the Theorem 2.2.7, and the sequence

of lattices P., P.'(1/2) is acceptable.
1. 1.

The lattice Pi '(1/2) c Pi (1/2)=M(2), where the lattice M is

even. Using this fact, in the same way as above, one proves that

the sequence of the lattices Pi' (1/2), Pi+1 is acceptable. The

corresponding to this sequence subgroup ~ of the discriminant group

of the lattice Pi '(1/2) is ~=Pi+1(1/2)/Pi'(1/2)=(Z/2)3.

In such a way, we obtain an acceptable sequence of the

lattices of the form T@D:

This finishes the proof of the Theorem. >

From the theorem 3.1 and the theory of Kummer surfaces, we

obtain the following theorem (Theorem 1.3 of the Introduction).

This theorem was proved by I.R.Shafarevich and the author

together.

Theorem 3.2. (V.V.Nikulin and I.R.Shafarevich). Let X and Y be

algebraic K3 surfaces. Suppose that for all odd prime p there are

primitive embeddings of p-adic lattices:
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and for p=2 there are embeddings of the quadratic forms over the

field lC 2 :

and

Let for the positive square-free integer d we have an isomorphism

of quadratic forms over lD (an abstract

modification) and ~(H2,O(Y))=H2,O(X).

Then there exists a rational rnap f: X----::,Y such that rp = f*.

Proof. One can see very easy that for any odd prime p we have

an isomorphism: U~Zpe:U(2)@Zp' and that U~a;)2e:U(2)~a;)2. It folIows,

that for any odd prime p there are primitive ernbeddings

TX@Zp C U(2)3~Zp and Ty~Zp C U(2)3@Zp

and

and

The lattice U(2) 3 is unique in i ts genus ( i t follows from the

classification of the unimodular lattices). Then,. there exist

embeddings of the lattices TX C U(2)3 and Ty C U(2)3 such that

these embeddings are prirnit~ve over all odd prime p. Let Tl be the

primitive sublattice of U(2) 3, generated by TX' and T2 be the

primitive sublattice of U(2)3 generated by Ty . We have the natural

identifications TX~~=Tl@D and Ty~a;)=T2@~ of the quadratic forms over

a;) such that for all odd prime p we have Tx@Zp=T1@Zp and Ty@Zp=T2@Zp

under the identifications. Surfaces X and Y are algebraic. It

follows that rk TX=rk Ty S 5 since there are embeddings TXCU(2)3

and TyCU(2)3. Frorn the prove of the theorem 3.1, it follows that

there are K3 surfaces Xl and Yl' and rational maps gl:X--->Xl and
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g2 :Y1--->Y, which are compositions of the rational maps of the

degree two, and isomorphisms of the lattices ~l:TX ~Tl and
1

such that g1*= ~1@lD and~=" @lD2 2 under the

identifications above of the quadratic forms over 0: TX~~=T1~D and

Ty0lD=T20~. Under the identifications, the preserving periods

modification ~:Ty(d1)0~eTx0D defines the preserving periods

modification

-1 -1
~1=(~10aJ) o~o ("201) :Ty (d1 )0lD ~ Tx 010.

1 I

The lattices TX ~T1 and Ty ~T2 have primitive embeddings into the
I 1

lattice U(2)3. It follows from the criterion of [NI] for K3 surface

to be Kummer surface and [N3] (see [Mo]) that both K3 surfaces Xl

and YI are Kummer surfaces. We recall that if A 1s an Abelian

surface and t is a multiplication by -1 on the A, then the minimal

resolution Z of singularities of the surface A/{I, -I} is called

Kummer surface. This surface is an algebraic K3 surface. It is

not difficult to prove that the statement of the theorem is true

for the Abelian surfaces and homomorphisms of Abelian surfaces. The

transcendental lattices of Z and Aare naturally identified:

TZ=TA(2), and under this identification H2 ,O(Z)=H2 ,O(A). It follows

that the theorem is true for Kummer surfaces (an every homomorphism

between Abelian surfaces gives the rational map of the

corresponding Kummer surfaces and the corresponding modification of

their transcendental periods ). Thus, there exists a rational map

h:X1--->Y1 , andll*=cpl. Then the rational map g2oho9l:X--->Y gives

the modification ~. >

Remark 3.3. It is very easy to reformulate the conditions of

the theorem 3.2 using discriminant forms:
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rk Tx + l(q(T ) ) S 6
X P

for all odd prime p, and

18 I 9 -discr K(q(T ) ) mOd(Zp*)2
TX X P

for,all odd prime p for which rk TX + l(q(T ) ) = 6i
X P

rk TX + l(g(T ) ) S 6,
X 2

and

I~T I ä ± discr K(q(T ) )
X X 2

if rk Tx + l(q(T ) ) = 6 and (l(T ) ~ ~2) (2)eq'.
X 2 X 2

-(Here q is
(TX )2

the discriminant form of a maximal even overlattice of the lattice

TX~Z2)·

Remark 3.4. The condition of the Theorem 3.2 holds if rk Tx =

rk Ty S 3. Thus, in this case the theorem 3.2 is true.

§ 4. Several remarks.

We want to give here several remarks about results above.

4. 1. The Theorem 3.1 '(ot the Theorem 1.3 of the Introduction)

is not true for rk Tx = 6. If

cendition (ii) of the Theorem 2.2.5 does not hold. Thus,' the

surface X has not rational maps of the degree two into ether K3

surfaces, and the Theorem 3.1 is not true for the surface X and any

other K3 surface Y (for example for y=X).

4.2. Let us remark that an every abstract modification

~:Tl(d)~~~T20~ of the lattices defines the inverse modification

-1
~ : T2 (d) 0~ )T1*aJ. Their composition (in the sense of 2.2.5)

-1
~ .~ :T1~~ )T1*~ should be the identical map. Thus, a rational

rnap f:X--->Y of surfaces gives also an inverse
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modification f* -1: T
X

(d
1

) 010 )Ty *().

For the rk TX = rk Ty .= 6 we obtain the following variant of

the Theorem 3.1: An every abstract modification q>:TX(d)*aJ~Ty0aJ

satisfying to the conditions of the theorem 3.1 is a composition of

the modifications corresponding to rational maps of the degree two

between K3 surfaces and of their inverse. The proof of the

statement is similar to the proof of the theorem 3.1.

4.3. For the rk TX=7 the statement above is not true. There are

K3 surfaces with rk TX=7 such that for the lattice TX the condition

( i) of the theorem 2. 2 . 5 does not hold. This K3 surface has not

symplectic involutions and has not rational maps of the degree two

z--->x of a K3 surface Z.

4.4. Results of the paper show that it is very important in the

questions 1.1 and 1.2 constructing some exarnples of rational maps

between K3 surfaces. Here we used rational maps of the degree two

between K3 surfaces and rational ·maps between Kummer surfaces which

are induced by the homomorphisms between Abelian surfaces. All

other rational maps between K3 surfaces in this paper were

compositions of these rational maps.

It would be very interesting to describe rational 'rnaps f:X--->Y'

of the degree 3 between K3 surfaces. If f is Galois rnap then f is

defined by the action of the abelian symplectic group of the order

3 on the surface X, and all these actions and the correspönding

quotient maps f are described in [N2]. In this case, rk Tx=rk Ty ~

~ 10, and these maps are very rare. But a description of the non

normal rational maps f of the degree 3 is unknown now.

We don't know exarnples cf rational maps f:X--->Y of degree > 1

between general (with rk Sx = rk Sy = 1) K3 surfaces X and Y.
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