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ON RATIONAL MAPS BETWEEN K3 SURFACES

V.V.Nikulin
To the memory of Constantin Carathéodory

§ 1, Introduction

Here, a K3 surface is a non-singular projective algebraic
surface X over complex numbers field C with the trivial spaée of
the regular 1-dimensional differential forms: Ql[X]=0, and the
trivial sheaf of the regular 2-dimensional differential forms:
Qisox, where the Ox is the sheaf of regular functions on X. The
last condition is equivalent to the existence of a regular non-zero
2-dimensional differential form Wy which has not zeros on X.

Thanks to global Torelli theorem due to I.I.Piateckii-Shapiro
and I.R.Shafarevich [PSh-Sh], we know very much about isomorphisms
between K3 surfaces over the complex numbers field C. Two K3
surfaces are isomorphic iff there periods are isomorphic.

Recently, I.R.Shafarevich posed an analogous question about
rational maps between K3 surfaces: How can one know using periods
when does a rational map between two K3 surfaces exist? A
description of rational maps between K3 surfaces 1is interesting
maybe from the view-point of the Arithmetic of K3 surfaces.

Let X be an algebraic K3 surface (over C), let HX=H2(X,Z), and
let SX and Tx be respectively the lattices of cohomology classes of
algebraic and transcendental cycles on the surface X. By
definition, Ty is the orthogonal complement to Sy in Hy with
respect to the intersection pairing. Here and in what follows
"lattice" means a "non-degenerate symmetric bilinear form over Z".

Hodge decomposition of H_eC induces a Hodge decomposition of T eC.
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It is defined by one-dimensional linear subspace Hz’o(X)chac.
I.R.Shafarevich posed the following

Question 1.1. Is it true that a rational map between K3
surfaces X and Y (i.e. an inclusion over T of the fields C(Y)cC(X)
of rational functions) exists iff there exist a positive A2€@ and an
isomorphism w:TYGQ-——»TXau such that ¢(x-y)=a(x-y) for any x, y €
TY®® (or ¢ 1is a similarity of quadratic forms over @), and

o (a2 % (y))=n2""°

(x)y ?
Let 7:X--->Y be a rational map between K3 surfaces. Then a

resolution of indefinite points of ¥ gives a commutative diagram

Z
o,/
N
x- L >y
where Z is a non-minimal non-singular projective K3 surface, «a is a
birational morphism and B8 is a morphism. It gives the inclusion

1*=(a*)_13*:TY(d)-——+T of the lattices of a finite index for which

X
7*(H2'0(Y))=H2’0(x) (¥* preservers periods). Here d is the degree
of ¥ and M(d) is the lattice obtaining multiplying by d of the form
of the lattice M. The inclusion 7* does not depend of a choice of
Z, o« and B, and is the invariant of the rational map 7. Let d=dh@,
where d’ and m are the positive integers and d' is square-free.
Then 7* gives a canonical chain of inclusions

1*
, " , 2
Ty (d') e——mTy (d') =T, (d'm") ——T,

of lattices of finite index. Here, we use the following notations:
for me@ the mM denotes the sublattice (or the overlattice) of the

lattice M which is mM={mv|veM} with the form which is the

restriction on mM of the form of the lattice M. (We use the



notation M"™ to denote the orthogonal sum of m exemplary of the
lattice M.) We canonically (by the obvious way) identify sublattice
mTY(d') of the lattice TY(d') and the lattice TY(th). This chain

gives the isomorphism'?izTY(d’)an-——%T o0 of forms over ©, which we

X
call the modification corresponding to the rational map ¥. At

first, the lattice T, is replaced on some sublattice TXQ:TX (e.g.,

X
I_ ’ 2 — r r .
Tx—q*(TY(dnl)) or 1*(TY(d))nTX), then Tx is replaced on some

overlattice TY(d'), and then TY(d’) is replaced on the lattice Ty
by dividing the form on 4d’.

We want to discuss here the following question similar to the
guestion 1.1.

Question 1.2. Let X and Y be K3 surfaces, d' be a square-free
positive integer and w:TY(df)@n-—~—+TX®® be an isomorphism of
quadratic forms over @ (i.g., ¢ is an abstract modification of the
lattices Ty and TY) and w(Hz'O(Y))=H2'O(X). Is it true, that then
there esists a rational map f:X--->Y such that ¢ = £* ?

We say that an abstract modification ¢ above is trivial for a
prime p iff pid’ and ® induces an isomorphism
wp:TY(d')@zp-———eTxelp of p-adic lattices. It 1is sufficient to
prove the conjecture 1.1 for every prime p only, i.e., for
modifications ¢, which are nontrivial for one prime p only
(O0ne can deduce this from the epimorphicity of the Torelli map for
K3 surfaces [Ku] and the following arithmetical fact: a primitive
embedding of a lattice S into an unimodular indefinite lattice L
exists iff for an every prime p, a primitive embedding of the
lattice Sslp into Lezp exists.)

The basic result of the paper is to show that the answer to

the Question 1.2 is positive if p=2 and rk Ty=rk Ty <5.
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Theorem 1.3. Let X and Y be algebraic K3 surfaces with rk Tx=rk
T, s 5, and ¢:TY(d)eﬂ-——4Tx@0 be an isomorphism of quadratic forms
over @ (i.e., ¢ is an abstract modification of the lattices Tx and
TY) for which w(Hz'o(Y))=H2'O(X), d|2, and ¢ induces an isomorphism
:T,(d)eZ_ —T,e8Z_ of p-adic lattices for an =2,
0o Ty(d) ez x®L, °f P Y P

Then there exists a sequence X=X =Y of K3 surfaces

10 Xyreeo X

and rational maps fizxi- - =->X of degree 2 such that the

i+l
rational map £=f ... f, £, induces the modification ¢, i.e., p=Ff*.

See the proof of the theorem 3.1 below.

The proof of the theo;em is based on two our old papers [N2]
and [N3]. If h:X- - ->Y is a rational map of degree 2 between K3
surfaces, then the Galois involution ¢ of this map is a symplectic
involution of the surface X, i.e., t acts trivially in the space
H2'0(X)=02[X] of regular 2-forms of X. The map h is the composition
of the quotient map X —X/{id, ()} and the minimal resolution of
singularities Y—X/(id, tL)}). So, to set up the rational map of
degree 2 of K3 surface X in other K3 surface, one should find a
symplectic involution on X. In [N2] symplectic involutions (and,
more generally, finite abelian symplectic groups) of K3 surfaces
were described very completely, see § 2. To investigate
modifications under sequence of involutions of K3 surfaces, we use
discriminant form technique developed in [N3]}. ©Of cause,
constantly, we use global Torelli theorem for K3 surfaces [PSh-Sh].
We should say that results of [N2] and [N3] we have mentioned above
were used already by D.R.Morrison in [Mo] to prove that for K3
surface X with rk Tys3 a rational map of degree 2 in Kummer K3

surface exists (to prove this fact, he used also results of [N1]

about the characterization of XKummer surfaces). But, to prove



theorem 1.3, the more careful analysis than in [Mo] is required.

We want to remark, that also we prove the Theorem 2.2.7 below
which gives an effective criterion for the preserving periods
modification over 2 of transcendental periods of arbitrary K3
surfaces would be defined by a composition of degree two rational
maps between the K3 surfaces. We deduce the Theorem 1.3 from this
Theorem 2.2.7.

From the Theorem 1.3 and the characterization of Kummer
surfaces in [N1], see also [Mo], we obtain the following theorem
which was proved by I.R.Shafarevich and the author together.

Theorem 1.4 (V.V.Nikulin and I.R.Shafarevich). Let X and Y be
algebraic K3 surfaces. Suppose that for all odd prime p there are

primitive embeddings of p-adic lattices:

3 3
T,2Z c U eZ and T,®Z_ «c U eZ_;
X p p Y 'p p

and for p=2 there are embeddings of the quadratic forms over the
field 02:

3 3
Txeﬂz c U @02 and TYQDZ c U @@2.

Here U is an even unimodular lattice of the signature (1, 1).
(Rougthly speaking, X and Y have the transcendental lattices of the
Abelian surfaces over Zp for any p#2 and over @2.)

Then the answer to the question 1.2 1is positive for the K3
surfaces X and Y. »

The proof of the theorem 1.3 shows that some success in the
investigation of rational maps between K3 surfaces is connected
with a construction of some concrete rational maps between K3

surfaces (similar to maps of degree 2, which we use here). They

should play the same role as the factorization of Abelian surfaces



by the points of order p. Every rational map between Abelian
surfaces 1is a composition of such rational maps and of an
automorphism.

See some further remarks to the Theorems 1.3 and 1.4 in § 4.

At last, we would like to mention some results related with
rational maps between K3 surfaces. In the situation of the
question 1.2 (or 1.1), the cycle Z¢E(TXGTY)®D corresponding to ¢

belongs to H2'2

(XxY, @). Suppose that d'=1. I.R.Shafarevich posed
the following conjecture (Sh], which is a particular case of the
Hodge conjecture: the cycle Z@ is algebraic. This conjecture is

proved now if rk T, < 17, and more generally, if the lattice Sy

X
represents zero (or X has a pencil of elliptic curves). See [Shi~I]

for rk T =2, [(Mo] for rk T

X <3, [Mu] for rk T

X Xsll, and [N4] for the
case when the lattice SX represents 2zero. Thus, this more weak
conjecture is proved in much more generality now.

The Theorem 1.3 was inspired several our discussions with
I.R.Shafarevich (by his initiative) on the rational maps problem
for K3 surfaces. The Theorem 1.4 was deduces by I.R.Shafarevich and
the author together. These theorems would not be appeared without
Shafarevich’s interest to this subject. We are very grateful to
I.R.Shafarevich for his interest and support to this paper.

Notations for lattices and quadratic forms. Following to [N3],
we will use the following definitions and notations connected with
lattices and quadratic forms.

We denote as x-y the value of the form of the lattice M for a
pair x, y € M, and x2=x-x.

The lattice M is called even iff x° is even for any xeM.

The discriminant group 8y of a lattice M is the EM=M*/M, where




M*=Hom (M, Z).

The discriminant bilinear form bM of a lattice M is the

symmetric bilinear pairing bM:ﬁMxﬂM-———eﬂ/Z, where bM(x*+M,

y*+M)=x*-y*+Z, x*, y* € M*. Here we extend linearly the bilinear
form of M on the M*. The form by, is degenerate.

For an even lattice M the discriminant gquadratic form

qM:HM-——em/ZZ is defined as qM(x*+M)=(x*)2+22 for x*eM*., The
quadratic form dy has the bilinear form by.

The symbol e denotes the orthogonal sum of lattices and
bilinear and quadratic forms.

The symbol (A); denotes the orthogonal complement to A in B.

The discriminant form of a lattice M is the orthogonal sum of

its p-components (the restrictions of the form on the p-components

of the group #A which are defined by the discriminant forms of

)
the p-adic lattices Mp=M@Zp.

Every p-adic lattice is an orthogonal sum of the following
elementary p-adic lattices: the lattice Kép)(pk) of the rank 1 has
the matrix <epk>, eezp*; the 2-adic lattice U(2)(2k) of the rank 2

has the matrix
L3
\2¥o0 /

the 2-adic lattice V(z)(zk) of the rank 2 has the matrix

/ 2k+l 2k \

<\ LK 2k+1/) .
The discriminant quadratic forms of the p-adic lattices Kép)(pk),
U(z)(zk) and V(z)(zk), k>1l, are denoted as qép)(pk), uiz)(zk),
viz)(zk) respectively. Their bilinear forms are denoted as

bép)(Pk): U(E)(Zk), V(E)(2k) respectively.



In this article we consider only even lattices and even 2-adic
lattices. Thus, here, the term "discriminant form" denotes every
time discriminant quadratic form.

For an finite abelian group # the symbol ¢(8) denotes the
minimal number of generators of #. For a form q on a finite abelian
group # we denote ﬂq=ﬂ and L(gq)=L(4).

The discriminant discr(S) of a lattice § is the determinant of

the matrix of S in some basis. A lattice S is called unimodular

iff discr S8 is invertible. The lattice U is an even unimodular
lattice of the signature (1, 1). It is unique up to isomorphism.
The lattice E8 is an even unimodular lattice of the signature (0,
8). It is unique up to isomorphisms too. The signature (t(+), t(_),
t(O)) of a quadratic form over R is the number of its positive,

negative and zero squares. We don’t show the number t if the

(0)

form is non-degenerate.

The invariants of a lattice § is a triplet (t(+), t(;), q).,
where the (t(+), t(_)) is a signature of the S and q=qg, where dg
is the discriminant form of the S. These invariants are equivalent
to the genus of the 8.

An embedding NcM of lattices is called primitive iff the

quotient-module M/N is a free module.

§ 2. Compositions of degree 2 rational maps between K3 surfaces.

Following to [N2] (see [Mo] also), we will give here basic
constructions connected with symplectic involutions of K3 surfaces.
2.1. Let X be a K3 surface and let ¢ be a symplectic involution

of X. The following results are contained in [N2].

Let



SL={ xeH L(x)==-x },

X I
and

Tl={ xeHy | t(x)=x }.
The lattice S, is a negative-definite lattice of the rk S, =8, the
discriminant group EIS 5(2/22)8, and S, has not elements & with

L

square 5%=-2. By the classification of the definite unimodular
lattices of rank < 8 (see [Se], for example), SL=E8(2)' The lattice

S, is the primitive sublattice of the lattice Sx The lattice Sy is

a primitive sublattice of the lattice H =H2(X, Z) also. Thus, we

X
have a sequence of primitive embeddings of lattices:
S, CSycHy . (2.1)
The lattice Hx is an even unimodular lattice of the signature (3,
3

19). It follows (see [Se], for example) that HXEU eESZ The lattice

S, has the unique (up to isomorphism) primitive embedding into the
X

lattice H,. It follows that T‘=(s ); = U3®E8(2). By (2.1), then
- X

Tx=(Sx)§ is a primitive sublattice of T, and we have a sequence of
X
primitive embeddings of lattices:
L
TXCT cHx . (2.2)
Vice versa, suppose we have a primitive embedding ScSy of lattices,
where SEEB(Z). Then there exists wew(z)(sx), such that w(S)=SL for

some symplectic involution ¢ of the X. Here W(z)(s is the group

%)
generated by all reflections with respect to elements BESx with the
square 62=—2.

The symplectic involution ¢ has precisely 8 fixed points, and
the local action of v in these points is the multiplication on -1.
It follows, that X/{id, () has precisely 8 singular points of the

type Rys which are the images under the quotient morphism

m:X —X/{id, L} of the fixed points. Let o:Y——X/{id, L} be the



1

minimal resolution. The pre-images ¢ -~ of the singular points of

X/{id, t} are non-singular rational curves 1"1,..., I"8 of Y with
divisor classes €1r---1 €g, which generate the primitive negative-
definite sublattice
Q, = [e),..sg, (eg+...+eg)/2] (2.3)
with the form e;" j=-26ij , of the lattice Sy- So, we have the
sequence of primitive embeddings of lattices:
Q, cSycH, . (2.4)

It follows that the discriminant group «(z/22)%, and the
L

discriminant form g Euiz)(2)3. Let RL=(QL)§ . By (2.4), we have
L Y
the sequence

L
T, R cHy (2.5)

of the primitive embeddings of the lattices. The lattices Q, and R"
are the orthogonal complements one to another in the even
unimodular lattice Hy. It follows [N3] that

q LE—qQ z-uiz)(2)3euiz)(2)3, the lattice QL has the unique up to
R L

isomorphism primitive embedding in H,, and RLEU3®QL.
Let t=o-1nzx--->Y be the corresponding rational map of the

degree 2. This map gives the embedding of the lattices
L L
T*:R (2) —T ", (2.6)
which has the obvious property:
wx % % v)y=n2'%(x).

A lattice (or an 2-adic lattice) F is called 2-elementary iff the
discriminant group ﬂFa(Z/zz)a. For 2-elementary lattices the
following duality takes place: To a 2-elementary lattice F, the

. 2-elementary lattice FX=F*(2) is corresponding, and the canonical

10



embedding FcF* gives the canonical embedding

F(2)cF*(2)=F" , (2.7)
and we have the following duality property:
(F¥)=(F*(2))*(2)=F. (2.8)

The fundamental fact is that the embedding (2.6) is extended to the
isomorphism (this extension is obviously unique) of the lattices:

t*:RL(Z)c(RL)szL, (2.9)

where the embedding RL(2)c(RL)>< is the canonical embedding (2.7).
Thus, by (2.7) and (2.9) we have the following canonical

isomorphisms of the lattices:
T*:RY(2) =(T") " (2)=(T") * (4) =2 (T") *<T". (2.10)

By (2.2), (2.5), (2.6), and (2.10), we have the following
isomorphism, which describes the modification corresponding to the

rational map T:X--->Y :
t*:TY(Z)E(szﬂ)n(TL)x(2)=2((Txeﬂ)n(TL)*)cTL. (2.11)

2.2, Here, we want to deduce from the properties 2.1 some
general statements connected with K3 surfaces with symplectic
involutions. It will be useful in what follows.

2,2,1, Let us consider the following general situation,
connected with lattices. Suppose we have an even unimodular lattice
L and two primitive sublattices TEL, QcL which are orthogonal one
to another: TiQ. Let [TeQ] be the primitive sublattice in L

generated by TeQ. Then the subgroup
F[TQQ]=[T®Q]/(T®Q)cﬂT®ﬂQ

is an isotropic subgroup with respect to quadratic form qTqu, and

11



n(ﬁTQO)=F n(ogﬂQ)=Oeo. Let @, and n, be the projections

7o) T 0

in HT and &

[(TeQ]
0 respectively. Let

5=T0 (T L peq1 ) SHy

be the subgroup of ﬁT. Then we have the inclusion
: 4
£:5—8,

of the groups, where E=HQ("T)-1' and £ gives the inclusion of the

gquadratic forms:
E:qT|5-———+ -qQ.
We would like to express the overlattice Tc((Q)i)*ﬂ(Ta@) of a
finite index of the T using the subgroup 5.
Lemma 2.2.1. (((Q)[)*N(Te@))/T = 5 c #,.
Proof. Let P=(T@Q)£. Then TePeQcL is a sublattice of a finite
index. For a sublattice FcL, we denote by [F] a primitive

sublattice [F]=LN(FeQ) of L generated by F. We have the subgroups

FL=L/(TeP®Q)cﬂT®ﬂ od

P Q’

F[TQP]=[T9P]/(TeP)cHT@ﬂPcﬁTQHPeHQ '

F[T@Q]=[T9Q]/(TeQ)cHTmﬂocﬂTeSP@ﬂQ .
Here we identify ST=3T90®0, HP=O@ﬂPe0, HQ=0®0®ﬂQ. Let Moy Moy HQ be
the corresponding projections in HT' HP, HQ respectively. The
subgroups FL’ r[TeP]’ and r[TeQ] are obviously isotropic with
respect to the form qTequqQ.

It follows, that we have to prove that
([TeP]*/(TeP))nHT = "T(F{TGQ])'

The lattice L is unimodular. It follows that

([TeP]*/ (TeP))=(ngemy) (T Thus, we have to prove that

L)'

12



(nTenP)(FL)nﬂT=nT(F[TeQ]).

This is equivalent to FLn(ST®0®Hg)=F This evidently follows

[TeQ] "
from the fact that the [TeQ] is a primitive sublattice of the L. >

2.2.2. Now, let us consider the case of the section 2.1 above
when K3 surface X has a symplectic involution ¢, and specify the

situation of the section 2.2.1 to the case L=Hx, T=Ty, o=s".

The primitive sublattice M=[Tx®SL] in H which is generated

x’

by the sublattice T osL of the lattice H is defined by the

X

inclusion of the forms

X'

E:qTX|5 E— _qs =u+(2)4r (2'12)
L

where % is a subgroup of the discriminant group ET . It is defined
X

by the graphic F£=[TXeSL]/(TX$SL)CHTXQHSL of the £, which is an

isotropic subgroup of the form qTxquL in ﬂTxeﬂSL

. The discriminant

form

qM=qTxeqSL|((rE);T - /Te) - (2.13)
X S

By (2.12), the % S(Z/2Z)a is a 2-elementary group, o<8, and also

FEQ(Z/zz)“. Let Xqreoer X, be a basis of FE' By the inclusion

(2.12), there exist a basis Xpreesr X of the isotropic group T

£

and elements YyreearY, of the form dg such that we have with
L

respect to the form qTXeqS : [xi,yi]L[xj,yj] if i=j, and
L

[xi,yi]euiz)(z). It follows that
qMaqwauiz)(2)4-a if asd; (2.14)

and

’

qTquT euiz)(z)a-4 and ququ if a > 4. (2.15)
X X

13



We used here the fact that the orthogonal term uiz)(z) is splitting
off uniquely up to isomorphism from a finite quadratic form. It

follows that

£(q,, )=L(g }, if p#2; (2.16)
M T
p  (Txlp
and
t(q., )=t(q )+8-2a, if p=2. (2.17)
M, (Ty) 5 '
Obviously,
rk M = rk Tx + 8. (2.18)

The following conditions are sufficient and necessary for the
existence of a primitive embedding of an even lattice with

invariants (t t(_),q) into an indefinite even unimodular lattice

(+)’

with signature (1

(+) 1=yt

t(+)sl(+), t(_)sl(_); (2.19)
Een T THD Ly Ty (2.20)
(-1)1‘*’*t(+’|a | = diser K(q.) mod(Z#)?2 (2.21)
q - qp p .

for all odd prime p for which t(+)+t(_)+£(qp)=1(+)+1(_);

8] = discr K(g,) mod(Z;)z (2.22)

. 2 ' :
if 't(+)+t(_)+£(q2)=1(+)+l(_) and qzzqé )(z)eq2 . Here K(qp) is a

p-adic lattice with the discriminant form qp and rk K(qp)=£(aq )
P
(the form K(qp) is unique up to isomorphism). See [N3, theorem

1.12.2].
By (2.14) - (2.22), the following conditions are sufficient and
necessary for the existence of a primitive embedding of the lattice

M corresponding to the isomorphism £ into the lattice Hy:

14



rk TX + l(q(Tx)p) < 14 (2.23)

for all odd prime p, and

. 2
|8, | = -discr K(gq ) mod(Z*) (2.24)

Ty (Ty) P

for all odd prime p for which rk T, + &(g )y = 14;
X (Tx)p

a 2 (rk Ty + £(q(TX)2))/2 - 3, (2.25)

and
. 2
|aTx| 2 tdiscr K(q(Tx)z) mod(Zi) (2.26)

: = - (2) ,
if « (rk Tx + C(q(T ) Y)/2 3 and q(T ) zqo (2)eq’.
X2 X2
The conditions (2.25), (2.26) and the strong inequalities

rk T, + e(q(Tx)p) < 14 (2.27)

for all odd prime p are sufficient for the existence of a primitive
embedding of the lattice M into the lattice Hy.

By the Lemma 2.2.1,
((Ty®@)N(T") %) /Ty=h, (2.28)

that defines the lattice (szﬂ)n(TL)*. By (2.28) and (2.11) we
get
Lemma 2.2.2. The t*(TY(2))ch is defined by the following:

t*(TY(Z))=2((Txem)n(TL)*)chc(Txeo)n(TL)*,

and

((T,8Q)N(T")*) /T, =5 c BTX.

2.2.3. We can repeat results of 2,2.2 to obtain similar results
for the K3 surface Y which has a rational map of the degree two

T:X- - ->Y of a K3 surface X, defined by a symplectic involution

15



of the X. Here we apply results of the 2.2.1 to L=H T=T and

Y’ Y’
Q=Q, -

The primitive sublattice M=[TY®QL] in H

v’ which 1is generated

by the sublattice T,eQ of the lattice H is defined by the

YI
inclusion of the forms

3
£: 5 — -g. =u,(2)7, (2.29)
qTYl Q T+

where % is a subgroup of the discriminant group 4 It is defined

Ty

by the graphic FE=[TY9QL]/(TYeQL)cﬁT ® of the £, which is an

aq
Y QL

Q

isotropic subgroup of the form dp_°dg in ﬂT o . . The discriminant
Y L Y L

form
a,=(dy g, )| ((T.) " JT.). (2.30)
M- 9 9 | (g ar g " &

By (2.29), 5 E(Z/ZZ)B is a 2-elementary group, £<6, and also
FEE(Z/ZZ)B. Similarly to the case 2.2.2, we get:

ququeuiz)(z)3'B, if B < 3; (2.31)

and .

: (2) ., B8-3 r
qTquTY ou "’ (2) and quq,rY if g > 3. (2.32)

It follows that

tay )=tagp ) ), if p2; (2.33)
P Y'p
and
£(q,, )=t(g y+6-28, if p=2. (2.34)

M, (Ty)y
Obviously,

rk M = rk T, + 8. (2.35)

By (2.19) - (2.22) and (2.31) - (2.35), the following

conditions are sufficient are necessary for the existence of a

primitive embedding of the lattice M corresponding to the inclusion

16



£ into the lattice HY:

rk T, + z(q(Ty)p) < 14 (2.36)

for all odd prime p , and

|8y |

; 2
= -discr K(g ) mod(Z*) (2.37)
v (Ty)y, P

for all odd prime p for which rk T, + &(g ) = 14;
Y (Ty)

B 2 (xrk TY + l(q(TY)z))/z - 4, (2.38)

and

|8y |

, 2
= *discr K(g ) mod(Zx)", (2.39)
Y (Ty) 5 2

i = -— (2) ’
if B (rk TY + z(q(Ty)z))/z 4 and q(Ty)zzq19 (2)eq .

The conditions (2.38), (2.39) and the strong inequalities

rk T, + z(q(Ty)p) < 14 (2.40)

for all odd prime p are sufficient for the existence of a primitive
embedding of the lattice M into the lattice Hy.

2.2.4. Let X be a K3 surface. The pair (T, H2'°(X)ch@c) is
called the transcendental periods of the X. For two K3 surfaces X a

Y, an isomorphism of their transcendental periods is an isomorphism

p:T,=T, of the lattices such that (pec) (H°’°(x))=s?'"

(Y. We say
that a K3 surface X is defined by its transcendental periods iff
every K3 surface X' with the transcendental periods isomorphic to
that of X is isomorphic to X.

Lemma 2,2,3, Let Z be an algebraic K3 surface (over C) which

either has a symplectic involution or has a rational map of the

degree 2 T:X- - ->Z of a K3 surfaces X.

17



Then Z is defined by its transcendental periods, and for any K3
surface 2’ and an isomorphism ¢:T,.&T, of the transcendental
periods, ¢=f* for some isomorphism f:Z2=2’ of the surfaces.

Proof. Suppose that K3 surface X has a symplectic involution ¢
and let @:Tx-——aTx, be an isomorphism of the periods for K3 surface
X’.

From the analog of Witt’s theorem [N2], [N3], it follows that a
primitive embedding of an even lattice K into an even unimodular
lattice L is unique up to isomorphisms (for every two embeddings
i:KcL, i’:KcL we have i‘=gi for an automorphism g of L) if the
conditions a), b), c¢) below take place:

a) the lattice (K)i is indefinite;

b) rk K + Z(HK ) <rk L - 2 for all prime p=2;
p

. _ s (2)
¢c) either rk K + t(ﬂKz) < rk L 2 or qngqK2 ou, (2).

By (2.15), (2.23), and (2.25), the conditions a), b) and c)
above hold for the primitive embedding TycHy. It follows that the

primitive embedding TycHy is unique up to isomorphism. Thus, the

isomorphism @:TX-——aTx, of the 1lattices has an extension

¢:HX-——+HXH

Let for a K3 surface 2

V(Z)=( x€SyeR | x° > 0 )

and let V+(Z) be a half cone of the V(Z) which contains a

polarization of the 2.

Suppose that Q(V+(X))=V+(x'). Then, there exists an element

wew(z)(x) such that @w(hx)=h for polarizations hx and hx, of X

xl
and X'. The w is trivial in TX' From the global Torelli theorem

[PSh-Sh], it follows that an isomorphism f:X'——X exists such that

18



f*=¢w. It follows that f*|Tx=w.

Suppose that & (V' (X)) = -v'(X’). In this case, let us find an

automorphism ¥ of the 1lattice Hy such that \IJ|TX=idT and
X

W(V+(X))=—v+(X). Then we can replace ¢ by ¥ to reduce the case to

the previews one.

. N Cm 2L .
The discriminant form qus-qTxbecause sx—(Tx)HX and the SX is
primitive in Hy. From this fact and (2.15), (2.23), (2.25), it
follows that
rk S, 2 £(4 ) + 8 (2.41)
X (Sx)p

for all odd p=2, and

rk Sx 2 £(ﬂ(s ) )y + 16 - 2a, (2.42)
X2
where a<8. By (2.15),
q(s ) =ui2)(2)®q', if a25. (2.43)
X'2

It follows (see [Kn] and [N3, theorem 1.13.2]) that a lattice with

the same invariants (t q) as the lattice S, is unique up

t '
(+)" (=) X
to isomorphisms. From this fact and the criterion of the existence

of an even lattice with given invariants (t t(_), q) (see [N3,

(+)'
theorem 1.10.1)), it follows that

SX=81®SZ, where SlEU or Sle(Z).

For the lattice S1 the discriminant group HS 3(1/22)3, a=0 or 2, is
1
a 2-elementary group. It follows that there exists the automorphism
¥ of the Hy which is the (-id) in S, and which is identical in
(Sl); . The ¥ gives an automorphism which we look for.
X

In the case when Z=Y has a rational map of the degree two
X= = =>Y

of the K3 surface X, the proof is the same if one uses 2.2.3, >
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The (2.11) and the Lemma 2.2.2 show that the modification
defined by a rational map of the degree two T:X- - ->Y of K3

surfaces is defined by a primitive embedding T cT" of the lattices

X
where TLEU39E8(2). The Lemma below shows that every such embedding

is possible and reduces the problem of the description of

modifications to a purely arithmetic one.

3

Let us denote T=T'ay oEq (2) -

Lemma 2.2.4., Let X be a K3 surface and TXcTEUaeEB(z) a

primitive émbedding of lattices.
Then there exists a symplectic involution ¢ of X such that for
the corresponding rational map of the degree two T:X- - ->Y of K3

surfaces

THT, (2) =2 (T*N (T,e0) ) cTy.

Proof. In fact, in the proof of the Lemma 2.2.3, we have shown

that a primitive embedding T, —H of the lattices is unique up to

X
isomorphisms, if a primitive embedding Tch exists. It follows that

an extension TcHx of the natural primitive embedding Ty cHy

where an embedding TcHy is also primitive. The 1lattice T is 2-

exists,

elementary. It follows that the involution ¢ of the 1lattice HX
exists, which 1is identical in the 1lattice T and 1is the
multiplication by (-1) in the lattice S=(T)}. The gge-gqeul?)(2)%,
rk S = 8. Then the lattice SHSl(z) where the lattice S1 is an even
lattice. Particularly, the 1lattice S§ has not elements with the
square (-2). It follows [N2], that there exists wew(z)(sx) such
that wow '=t* for a symplectic involution ¢ of the X. The
automorphism w gives the isomorphism w:T——T" of the lattices
which is identical in the lattice Ty - It follows that for the
rational map corresponding to ¢ of the degree two T:X- - ->Y of K3
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surfaces we have (see (2.11)) that
r*TY(2)=2((T‘)*n(TXeo))=2(T*n(TX@o)). N

By the results above, we get

Theorem 2.2.5. Let X be an algebraic K3 surface.

If X has a rational map of the degree two T:X- - ~>Y in a K3
surface Y then the following condition (i) holds:

(i) rk T, + &(g ) € 14 for all odd prime p, and
X (Ty)p

|HT | =-discr K(q(T ) ) mod(l*)2 for all odd prime p for which
X x'p p

rk Tx + 8(q(T = 14;

)
X)p
If the condition (i) holds, then there is the bijection between

modifications r*:TY(z)-——meT corresponding to rational maps of

X
degree two T:X- - ->Y between K3 surfaces X and Y, and pairs‘(b, 9)

defined below.

Here 55(1/21)“ is 2-elementary subgroup $HcH such that the

(TX)Z
condition (ii) below holds.

(ii) There exists. an embedding £:dp Ib———euiz)(2)4 of the
X

finite quadratic forms, and

@ 2 (rk Tx + t!(q(T y)/2 - 3,

X)2
and

. 2
|g,., | = tdiscr K(q ) mod(Z*)
Ty (Ty) 5 2

if a = (rk Ty + t(q(T ))/2 - 3 and q(T aqéz)(Z)eqﬂ

X)Z X)Z
For the lattice Txcgch* defined by the equality S/Tx=5, the ¢
is an isomorphism of the lattices

ﬁ:TY(Z)-——+25ch,
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such that ﬂ(Hz'O(Y))=H2’O(X). For the % satisfying the condition
(ii) there exists a K3 surface Y and an isomorphism 9 with
these properties.
The ¢ = t* for a rational map T:X- - -> Y of the degree two.
Proof. We leave the reader to deduce it from the Lemmas above.>
2.2.5. Let us define the composition of modifications which
will correspond to the composition of rational maps.
Let T

T T be lattices and wl:Tl(dl)am-——eT

1’ 27 3 2
Tz(dz)au-——+T3@® be isomorphisms of symmetric bilinear forms over

o0,

@, where dl, d, are square-free positive integers. In other words,

2

we have two abstract modifications of the lattices Tl’ Tz, T3. Let
—— 2 ’ ! L] 7 ]

dldz—m (d1d2) where m and (dldz) are the integers and (dldz) is

square free. Then the sequence of inclusions of lattices
T, ((d,d,)")=(1/m)T, (d,d,)>T, (d,d,)
is defined. It gives the identification of the forms over Q@
T, ((d;d,)")e0=(1/m)T, (d,d,)eQ=T, (d,d,)eq,
and the isomorphism 6;@1 of the forms

2 2
i ’ _ _ 1 2
w2¢1.T1((d1d2) )@Q—(l/m)Tl(dld2)®®—T1(d1d2)@D-———eTz(dz)sm-———AT3s®

which is called the composition of the modifications Prr Pop-

Suppose that flle- - =>X f.:X. - - ->X3 are two raticnal maps

27 T2°72

between algebraic surfaces. Then the modification f2f1*

corresponding to the composition flf2 of the rational maps is

obviously the composition of the modifications’f&*, £.*.

2
2.2.6. Using the results above, we want to describe
modifications corresponding to rational maps f:X- - ->Y between K3
surfaces X and Y which are compositions f=fn-...-f1 of rational

maps fl’ fz' ooy fn of the degree two. A composition of any two
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rational maps of this type is a rational map of this type also.
Thus, these rational maps define the category X of the rational
maps.

Lemma 2.2.6. Let f:X--->Y be a rational map between K3 surfaces
X and Y, which is a composition f=fn-...-f1 of the rational maps of

the degree two flzx =X--->X2, s ey fnzxn-~~>xn+1=Y between the non-

1

singular algebraic surfaces X X feK).

170 Xpeq (i.e.

Then the minimal models of the surfaces X X are K3

l'ooo, n+1

surfaces. So, we can choose birationally the surfaces X X

1o Xo4q
being K3 surfaces.

Proof. Rational maps fl""’ fn give the isomorphisms
2,0,,_u2,0 20 2,0 a2, 0
HE P (X)=H"" " (X ) =H"" " (X, )&. .. =H (X ) =H"" " (Y),
because HZ'O(X)Ez’O(Y)EC. It follows that Galoils involutions

Logreser L of the maps fl""' fn are trivial in the spaces

n

2,0 2,0 2,0

1% % (x)=n (xl)suz'o(xz)s.:.zn Ox = 0y,

Then the involution Ly is a symplectic involution of the K3 surface
X1=X. Iet Y be the minimal resolution of the singularities of
X/{id, t}. We know (see [N2] and also 2.1) that the surface Y is a
K3 surface. The surface X, is birationally isomorphic to the
surface Y, and its minimal model is a K3 surface. Thus, we can
suppose that X2=Y is a K3 surface. In such a way, we obtain the
proof using the induction. »

Using the Theorem 2.2.5 and the Lemma 2.2.6, we obtain the
following description of the modifications corresponding to
ratioﬁal maps from the category XK between K3 surfaces.

Theorem 2.2,7, Let X be an algebraic K3 surface.

If X has a rational map f:X- - ->Y in a K3 surface Y which is a
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composition of rational maps of the degree two, and deg f > 1, then
the condition (i) of the theorem 2.2.5 holds for Ty -

Let for Ty the condition (i) of the theorem 2.2.5 holds, a

positive integer d|2, and Y is a K3 surface.
Then modifications £* :TY(d)eﬂ-—:eTxau corresponding to

rational maps f:X- - ->Y which are compositions f=fn---fl of

rational maps f fn of the degree two (d=1 if n is even, and

qreees
d=2 if n is odd) are defined by sequences (Tl,ﬁl), (T2,52),...,

(Tn,sn) of pairs and by the isomorphisms ¢ defined below. An every
such sequence and an every ¥ are possible.
Here, Ti' i=1l,..., n, are sublattices of the maximal rank in the

form T eQ for 1 odd, and in the form Ty(1/2)eQ for i even. Here
o,

5ia(l/21) 1 is a 2-elementary subgroup 5icﬂT . The lattices Ti are

1

defined by the induction. The sublattice T1=Tchx®®. For 1lg<isn the

sublattice Ti+1(2)=25icTi, where 5i/Ti=5i. It gives the inclusion
Ti+1cTX(1/2)®0 if i is odd, and the inclusion
Ti+lch(1/4)e®=(1/2)Tx®ﬂJ=TX00, if 1 1s even., For the every pair
(Ti,ﬁi), 1<ign, the condition (ii) of the Theorem 2.2.5 should be
true (one should replace in the condition the T
%) -

The G:TY———eTn+l is an isomorphism of the lattices which

induces the isomorphism of the periods, i.e.

X by Ti' and % by

(1'% (v))=0?" % (X)cT,eC. For the sequence (T, %,), (T, 5))0eee,
(Tn, Sn) satisfying the condition above there exists such K3
surface Y and an isomorphism ¥.

The modification f* defining by the sequence and the ¥ is the
composition of the ¥ and of the inclusion of the sublattice

Tn+lcTX®® for n even and Tn+lcTX(1/2)®® for n odd under
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multiplication of the forms by d=2 for n odd.

Préof. The Theorem follows from the Theorem 2.2.5 using
compositions of rational maps and modifications above (it is more
difficult to formulate this theorem then to deduce it from the
Thecrem 2.2.5). »

Remark 2.2.8. From the theorem 2.2.7, we obtain the following
sequence of sublattices of the form TyeQ:

T13T2(2)CT33T4(2)C... in the T o0,
where (1/2)Ti+1(2)/'1‘i=§i for all odd i, and Ti+1(1/2)/'1‘i=5i for i
even.

The theorem 2.2.7 reduces the description of modifications
corresponding to rational maps between K3 surfaces from the
category K to the purely algebraic problem. We will use the Theorem

2.2.7 for the proof of the basic Theorem 3.1 of the paper (Theorem

1.3. of the Introduction) in the following paragraph.

§ 3. Rational maps between K3 surfaces

with the transcendental lattice of the rank < 5.

Here we prove the basic theorems (the Theorems 1.3 and 1.4 of

the Introduction) of the paper.

Theorem 3.1. Let X and Y be algebraic K3 surfaces with rk Tx=rk
Ty < 5, and w:TY(d)@@-——eszo be an isomorphism of quadratic forms

over @ (i.e., ¢ is an abstract modification of the lattices Ty and

TY) for which w(Hz’o(Y))=H2'O(X), d|2, and ¢ induces an isomorphism

wp:TY(d)mlp-———eTxezp of p-adic lattices for any prime p=2.

Then there exists a sequence X=X1, Xz""'xn+1=Y of K3 surfaces

and rational maps fi:Xi— - =>X,

i+1 of degree 2 such that the
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rational map f=fn-...-f2-fl induces the modification ¢, i.e., @=f*.
Proof. We divide it on.several steps.
3.1. We denote T=T, and §=¢(TY)cT@m(l/d). Using the Theorem
2.2.7 and the Remark 2.2.8, one should find a sequence of the

Z-sublattices of the form TeQ:
T=T 5T, (2)cT,>. .. T, (d)=T(q), (3.1)

where n is odd if d=2, and n is even 1if d=1, such that the
conditions of the Theorem 2.2.7 hold. A sequence which satisfy the
conditions of the Theorem 2.2.7 is called further an acceptable.

By the condition of the Theorem 3.1, T@Zp=T®Zp for any odd
prime p. According to the Theorem 2.2.7, quotient modules of the
modules of the sequence (3.1) should be 2-groups. Thus, one should

find the sequence (3.1) over ring Z. only. One has the obvious

2

inequality &¢(& <5 for every p. Then {(4

X

)sxk T
(Tx)p

)+rk T _<14.
(Ty)
X'p

X
Thus, the condition (i) of the Theorem 2.2.7 is true, and for a
construction of the sequence (3.1) we should satisfy to the
condition (ii) of the Theorem 2.2.7 only.

3.2. At first, for rk T < 5, we will construct an acceptable
T of lattices such that m is odd and

sequence T=T v, T

1’ m+1"
T'=2T(1/2)cTe@(1/2). Thus, the lattice, T'=T(2). We consider the
most difficult cases rk T =4 and 5.

Let rk T = 4,

1 82 are lattices of the

rank 1, and R is an even lattice of the rank 2. Let {Cl} be a bases

Let (over 22) T=Sl@SZ®R(2) where S

of the S {Cz} a basis of the S and {§3, C4} a basis of the

1’ 2!
lattice R(2). Let us prove that the following sequence of lattices

is acceptable:
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T1=[C1: CZ' C3: C4]: T2=[2C1: 2C2, C3; C4](1/2)a
In this case the subgroup 51=[Q1, Cz, C3/2, (4/2]/[C1, Cz. C3, C4]:

and, evidently, there exists an embedding of the forms

A |5l-——+u£2)(2)4. We have: «
1

=2>1>(rk T.+l(q, ))/2-3 since 4=rk
1 1 Tl

T1 2 £(qT ). It proves the condition (ii) of the Theorem 2.2.7 for
1

the pair (Tl,ﬁl). The lattice T =Sl(2)952(2)®R, and a.=1. In this

2 2
case 5,= [&y, 20y, Cys C,1/028y, 28,, €y, C,1, and evidently an

embedding dp |52———aui2)(2)4 of the forms exists. Since the lattice
2

T2 is even then either R is unimodular or E(ﬂR)=2. If the lattice R

is unimodular, then a,=1 > (rk T2+£(qT ))/2-3. If R 1is not
2

unimodular, then we have the equality a2=1=(rk T2+£(qT Y)/2-3. And
2

we should prove the congruence (where we consider the lattice T, as

a lattice over Z):

s 2
|HT |=tdiscr K(q(T ) ) mod(zz*) .
2 272
In this case, K(q(Tz)Z)E(T2)2=T2®ZZ, and this congruence holds

because

discr T2=i|aT2|.

for the lattice T, over Z. The a,=1, and the proof of the condition
(ii) for (T3, 53) is the same.

The same proof of the condition (ii) should be produced in all
cases which we consider below. We will leave this procedures to the
reader.

Now, suppose that the lattice T has not a representation of the

type above. From the decomposition of 2-adic 1lattices in an
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orthogonal sum of lattices of the rank 1 and 2, one obtains that it
is possible only in the following two cases which we consider at
once. ,

1 R2 are an even unimodular
lattices of the rank two, ma20, n20. Let {Cl, C2} be a basis of the

The case T=R1(2m)eR2(2n), where R

lattice Rl(zm) and {cl, Cz} a basis of the R2(2m). If m=n=0 then
the sequence of lattices
Ty=[8ys Cpr Cgr C4)s  To=0285, 285, 285, 28,1(1/2)
is acceptable. Suppose that nzl. Then the following sequence of the
lattices is acceptable:
Ti=08ys Cyr &g G4l T,=[28,, 285, Cgy 28,1(1/2),
T,=(28,, 28y, &y, C41,  T,=(28, 28,, 285, 2C,1(1/2).

The case T=Sl$82@R, where S 5., are even lattices of the rank

17 "2
one, and R is an unimodular lattice of the rank two. If one of the
lattices Sl(1/2), 52(1/2) is not even, then the following sequence
of the lattices is acceptable:

T,=T, T,=2T(1/2).
Now suppose that the lattice 52(1/2) is even. Let {cl} be a basis
of the Sl' jqz} be a basis of the Sz, and {C3:C4} be a basis of the

lattice R. Then the following sequence is acceptable:
T3=[C1; sz ZC31 2(4]: T4=[2Clr 2C2; 2C3r 2(4](1/2)-
Let rk T = 5.
Suppose that T=81382683®S4$SS, where rk Si=1, and the lattices

84(1/2) and 55(1/2) are even. Let {Ci} be a basis of the Si' Then

the following sequence of lattices is acceptable:

T1=[C11 Czr C3r C4r CS]I T2=[2C1, 2C2, 2(3: C41 Cs](l/z)r
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T3=[2Cll Czl C3l C4l CS]l T4=[2C10 2C2l 2C3l 2C4l c5](1/2)l
T5=[cll Czl 2(3' 2(4! CS]I T6=[2cll 2(2' 2(3' 2C4I 2(5](1/2)'
Let S=Slmszes3eR, where Sl’ 52' S3 are lattices of the rank 1,
rk R = 2, and the lattices S3(1/2) and R(1/2) are even. Let {Cl} be

a basis of the S {(2} be a basis of the Sz' {C4} be a basis of

1'

the S and {C4, CS} be a basis of the R. In this case the

3]‘
following sequence of lattices is acceptable:

T,=[&y, &5 &30 &yr &5 Ty=(28,, 2Q,, 28,4, C,, &51(1/2),
T3=[2C1r CZ' C3l C4I CS]I T4=[2C11 2CZI C3I 2(4! 2(5](1/2)l
T5={2C11 2C2f C3f C4r Cs]l T6=[2C1; 2C2I ZC3I 2(4' 2C5](l/2)'

Now suppose that the lattice T has not representations of the
types above. Then, only, the following cases are possible. We
consider them at once.

The case T=S®R1(2m)eR2(2n), m>0, n20, where rk S=1 and Rl' R2
are even unimodular lattices of the rank 2. Let {cl} be a basis of
the S, ({,, {,} of the Rl(zm), {C,, Cg) of the R2(2n). Suppose that
m>1. Then we obtain the following acceptable sequence:

T1=[Cll Czl C3l C4r Cs]l T2=[2Cll C2I C3I 2(4! 2C5](1/2)f

T3=[2C11 Czl C3r C4l c5]l T4=[2Cl: Czr 2(3' 2C4I 2C5](1/2)r

T5=[2C11 Czl C3l C4l 2(5]! T6=[2C11 2(2’ 2C3I 2C4l 2(5](1/2)'

Suppose that m=n=0. If the lattice S(1/2) is not even, then we
obtain the following acceptable sequence:

T,=T, T,=2T(1/2).

2
If the 1lattice S(1/2) 1is even, then the following sequence is

acceptable:

Ti=(Cy0 Cor Cyr 8yv Cslv To=[8y, 285, 284, 28,, 2851(1/2),
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To=[C,, Cpr Qg0 28,0 285, T,=[28y, 28, 285, 28,, 2851(1/2).

The case T=Resleszes3, where R is an even unimodular lattice of

the rank 2, and Sl' Sz, S3 are lattices of the rank one. The case,
when all lattices Sl(l/Z), 82(1/2), 83(1/2) are not even is reduced
to the previous case, because then 81082®S3=R%2)es', where R’ is
an even unimodular lattice of the rank 2 and S8’ is a lattice of the
rank 1. Thus, we can suppose that the lattice S3(1/2) is even. Let
{(1, cz} be a basis of the R, {c3} of the Sl’ {C4} of the 52, and
{CS} of the Sg. Suppose that one of the lattices 81(1/2) or

82(1/2) is not even. In this case, we have the following acceptable
sequence:
T,=[81: Cyr G5/ §4r Cgl, T,=02€,, 26,/ 2G5, 2C,, Cg1(1/2),
T,=[8,, &5, 285, 28,, Csls T, =028y, 285, 285, 2¢,, 2(51(1/2).

Suppose now that the 1lattice 82(1/2) is even (together with the

lattice $,(1/2)). Then the following sequence is acceptable:

Ty=[Cys Cyr 28450 §uy G5, T,u=[28,, 2C,, 284, 2Q,, C51(1/2),
Te={8ys Cyr 2850 28, G5, Tg=[28,, 28,, 285, 28,, 2¢5](1/2).

It finishes the proof of the statement.

3.3. Here, for a lattice T of rk T ¢ 5 and with an even lattice
T(1/2), we will construct an acceptable sedquence T=T /.-, Tm=T" of
lattices such that m is odd and T"=T(1/2)cTeD(1/2).

Suppose that rk T < 4. Then the following sequence is

acceptable:

T,=T, T,=T(1/2).

Suppose that rk T = 5.
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Let T=R1(2)9R2(2)eS(4), where the lattices R R S are even

ll 2'

and rk R1=rk R,=2, rk S=1. Let {cl, (2} be a basis of the Rl(2),

2
{c3, (4} be a basis of the R2(2), and {Cs) of the S(4). Then the
following sequence is acceptable:
T1=[Cll Czl C3l C4' C5]I T2=[2C11 2(2! C3l C4l Cs](l/z)r
T3=[Cll Czl C3l C4I CS/Z]J T4=[cll Czl C3l C4I Cs](l/z)'

Let T=R1(2)eR2(4)eS(2) where the lattices Rl' R S are even.

2!‘
Let {Cl, Cz} be a basis of the Rl(z), {C3, C4} be a basis of the
R2(4), and {Cs} be a basis of the S(2). Then the following sequence

is acceptable:

Tl=[Cl: C2I C3l C4I CS]J T2=[2C1f ZCZI C3I C4f Cs](l/z)l

T3=[Cll Czl C3/2I C4/2' Cs]l T4=[cll C2I C3' C4I Csl(l/z)‘

Now suppose that the lattice T has not representations of the
type above. Then T=Rl(2)®R2(2)eS(4), where Rl’ R2 are even
unimodular lattices and rk R1 = rk R2 = 2, § is an odd unimodular
lattice and rk S = 1. Then the following sequence is acceptable:

T1=T, T2=T(1/2).

It finishes the proof of the statement.

3.4. Here we will finish the proof of the Theorem. We consider
the most difficult case rk Ty = rk T = 5.

Let us reduce the case d=2 to the case d=1. Using 3.2, we can

find an acceptable sequence T=T Tm' such that Tm=2T(1/2). In

17
the case d=2 both lattices T _ and T are contained in the one form
TeQ(1/2). It is sufficient to find an acceptable sequence for T=T
and T where both lattices are contained in the one form Te®(1/2).
Thus, we have deal with the case d=1 now.

Now suppose that d=1. Then both lattices T and T are lattices
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of the one quadratic form TeD@. Let S=TNT. Thus, we have the

following sequence of inclusions of the lattices of the form Te0:
T>8 c T.

Using results 3.2, we can find an acceptable sequence

T=T,,..., T, =2TcTe0.

2
Using results 3.3, we can find an acceptable sequence

2T=S,,..., S, =TcTe0.
Thus, it is sufficient to find an acceptable sequence with the
first term 2T and with the final term 2T. The lattices 2T and 2T
are more convenient because the lattice 2T=T(4) and the lattice
2555(4) where T and T are even lattices.

Thus, it is sufficient to find an acceptable sequence for the
lattices TeT’'(4) and T=T'(4) where T and T’ are even lattices.
Further, we suppose that it is true.

The quotient group T/S is a finite abelian 2-group. It follows
that there exists a sequence of sublattices of the form TeQ:

T=813823...33a=s,

for which §;/8 «Z/2Z, i=1,...a-1. Let Si' be a sublattice of TeN

i+1
which satisfies the condition:
' ’ o 2
Then, evidently
. 2
S;41/5; % (2/22)".
Let us show that the sequence of the lattices
Sir 8; (1/2), 834
is acceptable.

The lattice Si=M(4) where M 1is an even lattice (since it is

true for the lattice T and SicT). Then, the sublattice Si' is
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constructed from the subgroup 5=(1/2)Sif/sicﬁs ’ 52(2/21)2 and
i

dg |5=0. It follows that there exists an embedding of the forms:
i
4
ag |5 —>u, (2)".
i

We have: {(& )=5 because Si=M(4) where M is a lattice. So, we

(54),

have the equality: 2=(rk Si+£(ﬁ(s ) )/2-3. Thus, we should prove
i’2

the congruence for the lattice Si over Z:

|8, |=xdiscr K(q
Si (S),

Since Si=si (4), in this case K(q(si)z)asiel

) mod(z,*)2.
5* It follows that

discr Si=t|ﬂ and the condition (ii) of the Theorem 2.2.8 is

|,
Si
true.
The lattice Si%1/2)csi(1/2)cT(1/2)=T%2), where T’ is an even
lattice. Using this fact, in the same way as above, one proves that

the sequence of the lattices Si’(1/2), S is acceptable. The

i+l
corresponding to this sequence subgroup % of the discriminant group
of the lattice Si’(1/2) is 5=Si+1(1/2)/si'(1/2)s(1/21)2.

In such a way, we obtain an acceptable sequence of sublattices

of Tel:

T=8S DSl (2)c82:...c8a

1 DSa_l (2)cSa=S

-1
The quotient group T/S is a finite abelian 2-group also. Then
we can find a sequence of sublattices of the form Te@Q:

S=P1cP2c...cP =T

b-1Fb
with Pi+1/Pisl/2Z, l<igb=-1. Let Pi' be a sublattice of the form TeD
which satisfy the condition:

1+1
Let us show that the sequence of lattices

, . 2
2P, . © P, ¢ P, and P,/P  =(2/22)°.

Pir Py (1/2), Pyy
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is acceptable.
The lattice P.=M(4) where M is an even lattice, since it holds
for T, and Py is a sublattice of the T. Then the lattice Piﬁl/z)

is constructed from the subgroup 5=(1/2)Pi7Picﬂ 55(2/21)3 and

!
Pj
dp |9=0. It follows that there exists an embedding of the forms:

i

2 4
qP_]ﬁ———aui )(2) .
i

Since rk Pi=5' then we have the strong inequality:

3 > (rk Pi+8(ﬂ(P_)2)/2 -3 =2,
1

It proves the condition (ii) of the Theorem 2.2.7, and the segquence
of lattices P., Pi’(l/Z) is acceptable.

The lattice Pi%l/Z) c Pi(l/z)EM(Z), where the lattice M is
even, Using this fact, in the same way as above, one proves that

the sequence of the lattices Pi’(1/2), P is acceptable. The

i+l
corresponding to this sequence subgroup % of the discriminant group
of the lattice P,’(1/2) is 5=Pi+l(l/2)/Pi'(l/2)3(2/2)3.
In such a way, we obtain an acceptable sequence of the
lattices of the form TeQ:
s=P13pl’(2)cP2:...cpb_lspb_l'(z)cpb=i.

This finishes the proof of the Theorem. >

From the theorem 3.1 and the theory of Kummer surfaces, we
obtain the following theorem (Theorem 1.3 of the Introduction).
This theorem was proved by I.R.Shafarevich and the author
together.

Theorem 3.2. (V.V.Nikulin and I.R.Shafarevich). Let X and Y be

algebraic K3 surfaces. Suppose that for all odd prime p there are

primitive embeddings of p-adic lattices:

34



3 3
T, eZ U~ eZ and T,eZ_ c U eZ_:
x%p© p ¥*%p p

and for p=2 there are embeddings of the quadratic forms over the
field Q,:

3 3
TXQDZ cU ®®2 and TY@®2 c U @@2

Let for the positive square-free integer d we have an isomorphism
¢:TY(d)®0——+Tx®Q of gquadratic forms over @ ({an abstract
modification) and ¢(H2’%(y))=H%'%(x).
Then there exists a rational map f:X ——Y such that ¢ = f*.
Proof. One can see very easy that for any odd prime p we have
an isomorphism: U@ZPEU(Z)@ZP, and that U@DZEU(Z)sﬂz. It follows,
that for any odd prime p there are primitive embeddings

3 3
Txezp c U(2) ®Zp and TY@Zp c U(2) @Zp

and

T,e0Q_c U(2)3e® and T, ,eQ, c U(2)3®®

X 2 2 Y 2 2°

The lattice U(2)3 is unique in its genus (it follows from the
classification of the unimodular lattices). Then, .there exist

embeddings of the lattices T, < U(2)3 and T, < U(2)3 such that

X Y

these embeddings are primitive over all odd prime p. Let T, be the

X’ and T2 be the

We have the natural

primitive sublattice of U(2)3, generated by T

primitive sublattice of U(2)3 generated by Ty-

identifications T ©0=T, @0 and T,®0=T,20 of the quadratic forms over

X 2

@ such that for all odd prime p we have TX®ZP=T1®ZP and TY®ZP=T2®ZP

under the identifications. Surfaces X and Y are algebraic. It

follows that rk T,=rk T, < 5 since there are embeddings T,cU(2)’

and TYcU(2)3. From the prove of the theorem 3.1, it follows that

there are K3 surfaces X1 and Y and rational maps gl:X-——>X and

1’ 1
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gZ:Yl-u->Y, which are compositions of the rational maps of the

degree two, and isomorphisms of the lattices ¢¥,:T, =T and

1 Xl 1
s x q. *= q.* =
ﬁz.Tz_'I‘Yl such that 9, ﬁlaﬂ and gz* ﬁzem under the
identifications above of the quadratic forms over Q: TX®®=T190 and

T, e0=T,e0. Under the identifications, the preserving periods

modification ¢=TY(dl)®QET e defines the ©preserving periods

X
modification
= -1..,. -1, o
wl—(ﬂle@) P (ﬂzeﬂ) 'TYl(dl)®® = Txlem.
The lattices Ty =T, and T, =T, have primitive embeddings into the
1 1

lattice U(2)3. It follows from the criterion of [N1] for K3 surface
to be Kummer surface and [N3] (see [Mo]) that both K3 surfaces X,

and Yl are Kummer surfaces. We recall that if A is an Abelian
surface and ¢ is a multiplication by -1 on the A, then the minimal
resolution Z of singularities of the surface A/(1l, -1} is called
Kummer surface. This surface 1is an algebraic K3 surface. It is
not difficult to prove that the statement of the theorem is true
for the Abelian surfaces and homomorphisms of Abelian surfaces. The
transcendental 1lattices of 2 and A are naturally identified:

T,=T,(2), and under this identification g0 2,0

(2)=H (A). It follows
that the theorem is true for Kummer surfaces (an every homomorphism
between Abelian surfaces gives the rational map of the
corresponding Kummer surfaces and the corresponding modification of
their transcendental periods). Thus, there exists a rational map
h:Xl--->Y1, and_ﬁi=¢1. Then the rational map gz-h-gl:x——->Y gives
the modification ¢. »

Remark 3.3. It is very easy to reformulate the conditions of

the theorem 3.2 using discriminant forms:
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rk T, + &(q ) £ 6
X (Tx)p

for all odd prime p, and

EE

= ~discr K(q(T ) ) mod(z*)2
X X'p P

for-all odd prime p for which rk T = 6;

x ¥ t(q(TX)p)

rk T, + £(g ) < 6,
X (TX)2
and
|8, | = £ discr K(q )

Tx (Ty) 5
. ~ - (2) , - .
if rk T, + (g ) = 6 and g # (2)eq . (Here g is

X (TX)Z (TX)Z qﬂ (TX)Z

the discriminant form of a maximal even overlattice of the lattice
Txozz).
Remark 3.4, The condition ¢of the Theorem 3.2 holds if rk TX =

rk TY < 3. Thus, in this case the theorem 3.2 is true.

§ 4, Several remarks.

We want to give here several remarks about results above.

4.1. fhe Theorem 3.1 (or the Theorem 1.3 of the Introduction)
is not true for rk T, = 6. If (Tx)2=Tx@zzzv(2)(1)3, then the
condition (ii) of the Theorem 2.2.5 does not hold. Thus, the
sﬁrface X has not rational maps of the degree two into other K3
surfaces, and the Theorem 3.1 is not true for the surface X and any
other K3 surface Y (for example for ¥Y=X).

4.2, Let us remark that an every abstract modification
@:Tl(d)eu-——+T2@D of the lattices defines the inverse modification

-1

P :Tz(d)@n-————eTleu. Their composition (in the sense of 2.2.5)

p—l°w :Tlen-———eTleo should be the identical map. Thus, a rational

map fiX===>Y of surfaces gives also an inverse
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modification F* 1:T,(d,) 8@ —T 0.

For the rk Ty = rk Ty_= 6 we obtain the following variant of
the Theorem 3.1: An every abstract modification w:TX(d)oﬂ-——eTY@Q
satisfying to the conditions of the theorem 3.1 is a composition of
the modifications corresponding to rational maps of the degree two
between K3 surfaces and of their inverse. The proof of the
statement is similar to the proof of the theorem 3.1.

4.3. For the rk TX=7 the statement above is not true. There are
K3 surfaces with rk T,=7 such that for the lattice T, the condition

X X
(i) of the theorem 2.2.5 does not hold. This K3 surface has not
symplectic involutions and has not rational maps of the degree two
2--->X of a K3 surface Z.

4.4. Results of the paper show that it is very important in the
questions 1.1 and 1.2 constructing some examples of rational maps
between K3 surfaces. Here we used rational maps of the degree two
between K3 surfaces and rational maps between Kummer surfaces which
are induced by the homomorphisms between Abelian surfaces. All
ofher rational maps between K3 surfaces in this paper were
compositions of these rational maps.

It would be very interesting to describe rational maps f:X--->Y°
of the degree 3 between K3 surfaces. If f is Galois map then f is
defined by the action of the abelian symplectic group of the order
3 on the surface X, and all these actions and the corresponding

quotient maps f are described in [N2]. In this case, rk T, =rk Ty <

X
< 10, and these maps are very rare. But a description of the non-
normal rational maps f of the degree 3 is unknown now.

We don’t know examples of rational maps f:X--->Y of degree > 1

between general (with rk Sx = rk SY = 1) K3 surfaces X and Y.
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