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REAL LINEAR CHARACTERS OF THETA GROUPS

AND MODULAR IMBEDDINGS FOR REAL QUADRATIC FIELDS

By Hidehisa NAGANUMA

1. Introduction
Let n be a positive integer and n 2 2 . In this paper

we consider the. theta subgroup 9n~_of Siegel modular group Pn

of degree n , which acts on the generalized Siegel upper half
-zspace H_ by the usual way. In [ 3jj, Endres investigated the
multiplier systems of On nnd proved that

- 2/42 if n =2
en/en'={ : ’
2/42 x 2/22 if nz2 3

’

where G' means the commutator subgroup of group G . From

this, we see that 02 has three subgroups of index 2 and Gn

has only one subgroup of index 2 if n 2 3 . The main purpose

of this paper is to determine all subgroups of @n of index 2,



which 1s equivalent to describe all linear characters of On

Now we define the standard theta series 6, of degree n by

_ t
en(Z) = Iyegh exp(27i "x2x) (ZGHn)

Then we have the character An of V@n of order 2 given by

op(o(z) *
Ap (o) = e—n(r jl{o,2) ( o € On ),

where j(o,2) is the standard automorphic factor of Fn on Hj
Therefore ker( kn ) is the unique subgroup of 9, of index 2

if n 2 3 . In the case n=2, we remember the fact that I, / To!

s 2/2Z ( see Reine; [ 8] ). Hence there exists uniQuely the
character of Ty of order 2. We denocte it by K . Since 03 ¢ Pz',

the restriction A of A on 9, is different from X, . This

implies that { H | H is a subgroup of 6, and (0,:H) = 2}

{ ker( An ), ker( A ), Kker( AZA ) } . Thus, our problem is stated
as follows. We should give explicit formulas of the values of An ’

A and AzA for each element of Gn , @ priori, which have already

given for each generator of en ( see Endres [ 3 ] and Kirchheimer

[ 5 1. We shall anser this problem in Section 2 for An and in



Section 4 for A2A. As its application, we can see the connection
with modular imbeddings over real quadratic fields, which is
introduced by Hammond [ 4 ]. We shall show in Section 5 that
Hilbert modular groups over certain real gquadratic fields can be
imbeded into ker( AZA ), which is more sharp than the result of

[ 6 1, where we did into a conjugate group of @2 .

Notations. For a commutative ring R with identity element,
we denote by - M(n,R) the ring of all nxn-matrices with entries
in R and by GL(n,R) the group of all invertible elements. The
identity element and the zero element of M(n,R) are denoted by
1 and 0 , respectively. For eéch element ¢ of M(2n,R{ ’

n n

we write ACr

il
hed
Lss]

i
o

C,=C and D =D if o = ( 2 g )

t

and A,B,C,D € M(n,R). We denote by A the transposed matrix

of A for A € M(n,R), and put A = 'A"! for A € GL(n,R). We
(n) % Tn t. _(n) (n)
also put J =( -1 d ;;:;,”Sp12n,R)‘= {aemM(2n,R) | "AJ A=J },
n °n
and SMO(n,R) ={ A€ Mn,R) | A = a and all diagonal elements of
A are even } . diag(a1,a2,---,an) denotes the diagonal matrix

whose (i,i)-component is equal to a; for each i . For a matrix



A , we denote by tr(A) and det(A) the trace and determinant,
respectively, of A . . Finally, we use the notations 2 , Q and
R for the ring of rational integers, the field of rational numbers

and the field of real numbers, respectively.



2. Linear characters given by an

Let n be a positive integer and n 2 2 . As usual, we

define T ] H and 6 by

nl nl n' n
_ t t 0
6, ={oer | AC,» BD, € SM (n,2Z) },
H = { X+iY | X,YeM(n,R) ‘and Y is positive definite },
6 = r__.n exp(2mitx2x) (Z€H_)
n X€2 n' -

We let every element o of Fn , hence en , act on Hn by

1

o(2) = (AZ + B)(C2 + D) (2€H )

Then we have the theta multiplier system Vo of dedree n given
by

8_(a(2))
_ n =
\’n{U) = -W vV dettCGZ + DU) (O‘EGn) .

It is well known that vn(b)8 = 1 for all elements ¢ € Gn .

Thus, we get two characters An and Kn of @n of order 2 and

4 , respectively, if we put for each element ¢ of Gn

- 4 _ 2
An(c) = vn(o) , Kn(O) = vn(o) .



tr(*c B )
Theorem 1 An(c) = (=1) (oo] for all elements oEGn .

Proof. Put

t
x (o) = (_1)tr( CoBg)

for each element o of en . Then we see that ¥ 1is a character

of On . In fact, since for o,1 € ®n

Bor = BgBr*r BoDp | Cop =GBt DyCor
we have
t _ t, t t, t
tr( CUTBGT) = tr( AT COAGBT) + tr( AT COBODT)
t, t t. ©
+ tr{ AT COAGBT) + tr( CT DGBODT)
- tr(B.%a Yca) + tr(p_%a _tc B )
T 71t To'o Tt oo
t. t t. t
+ tr(BTACT DcAc) + tr(DT CT DoBc)
Since B_FA tca p_tc 5 B ¢ suM%(n,z), we see that
T 't , oo , T T, oo reny
t - t, t t. t
tr( COTBGT) = tr(DT AT CUBO) + tr(BT CT DgAO) (mod 2},
because tr(XY) = 0 (mod 2) for X,Y € SMO(n,Z). Thus ,we obtain
t - t t
tr( CUTBGT) z tr{ CUBU) + tr{ CTBT) .

Hence, ¥ is a character of On .



Now we know that @n is generated by the following elements

( see Eichler [ 2 1 )

v oo,
Uy = ( " ( V € GL(n,zZ) ),
0V
n
1_ S
Tg = (on 1 ) (s € SMO(n,z)J,
. n n
(n) _pin)
Jén) = Ex Th-Ex (k=0,1,2,+++,n-1),
(n) _ (n)
P P
where Eén) = diag(1,+++,1,0,+++,0) with k-times 1 . It is

easily shown by the definition of x that

Xx(Uy) = x(Tg) =1 (V€ GLin,z), s-€ su’(n,2) ),

(n)) = (-q)nk

X(Jk (k= 0’1,2,...’-1‘1_1 )-

On the other hand, from Endres [ 3 ]
AU, = A(Tg) =1 (VE€GLM,z), s e su’(n,z ),

A(Jén)) - -k (x =0,1,2,c00,n=1).

1
b

Therefore - ¥

+
We denote by Gn ' @n ~and Fn(2) the kernel of An , the
commutator subgroup cf On and the principal congruence subgroup
of level 2 which is defined by

r,(2) = {oer, | A -1 =B, =C, =D,-1 =0, (mod 2) }.



It is easily seen that these three groups are normal subgroups

of On . We have the following diagram :

+ ’ )
en ? en > Fn(z)en' 3 en !

because @; =) Pn(z) by Theocrem 1 , G; :fen' in general and

On‘ is a congruence subgroup of level 4 ( see Endres [ 3,

Lemma 2.2 ] ).

. . '
Corollary If n2 3, then @n = Tn(2)6n

Proof, - SiﬁEéi;TGé:en”)d= 4 as ‘stated in Section 1 , we

+ +
see.that { @n : @n' } = 2 : Hence ( On : rn(z)en' ) =1 by

the reason why ( Fn(Z)Gn' : 0 ") > 1

Remark. If n = 2 , then we see that ( O; : F2(2)@2' )

.

= 2 ., We shall discuss the character of 95 of order 2 whose

kernel coincides with F2(2)®2' in Section 3.

-8 -



3. Restriction of K on 65

In this section we shall construct a real character of O; ’
which coincides with the restriction of A on e; . For this
purpose, we introduce several definitions and notations as follows.
For each matrix M of M(2,2), we define M and ¢ (M) by

M =Mmod 2 ,

- 1 if M=o,
W (M) —‘{ 0 otherwise.
Put
¥Y(ag} = W(Ac) + ?(BU) + W(CG)*'W(DO)

for o € M(4,2). It is obvious that 0 S ¥Y¥{o) s 2 for o € GL{(4,2).

So,we define ©(f) by

0(2) = { o € 92 | ¥(o) = 2 } (2=0,1,2).
We write

G99 = By, 042 S By, 039 =C; | Ty =D
and put

irj = = =

¢] { o€ o() | Oiy = 0 }.
Then it is clear that

2 w2402 4i
0, = UgZo0t®) e = U2, U C et

and these sums are disjoint. For a subset X of 92 ; put



il
I

We define U by
u=1{U, | v € 6L(2,2) }

and put

- O

Lemma 1 (1) @©(2) = UP2(2) U JUFZ(Z) ,

(2) o(1)

I

Jo(2) U JTW6(2) u TWJ@(Z)'U JTWJO(2) '

©(0) J1O(1) U J1O(23

and these sums are disjoint.

(2) | ®(0V) =36, | OOV | =24, | BET | =12

Proof. (1) If o € 6(2), then it must be that

Hence we have ©0(2) = UF2(2) u JUF2(2) . It is easily seen that

0 = JTwe(Z) , 5] = JTWJ@(Z) ’

= TWG(Z) ’ e TWJO(Z) .

This implies second equality. Since J1 € 0(0) and J0 € 0(0)

for all o€ ©(1) U ©(2) , we get J1®(1) uJ,6(2) « 6(0) . On

-10 =



12 since |U| = 6. Hence

the other hand, we see that |[0(2)|

|8(1)| = 24 and [|J,007) U J,0(2)| = 36 . It is well known that

G

(T = 10 and (T, : Ty(2) ) = 720 . Therefore'[§2| = 72,

2 )

Thus we have |D(0)| = 36 . Hence 0(0) = J,0(1)UJ,8(2). This

implies third equality. (2) We have shown in the proof of (1).

Proposition 1 (1) 62 = 0(1) U &(2)
(2) e; is generated by r,(2)y v {Jg, Ty b vvu

Proof. (1) As stated in the proof of Lemma 1, |8,] = 72 .

N

Hence |O;| = 36 . On the other hand, from Theorem 1, we see
that ©(1) U 0(2) < 9; . Therefore, by Lemma 1-(2), we get our
assertion. (2) It is obtained by the fact that { T sesu® (2,2) )

c {Wl U 1"2(2)

For each matrix M of M(2,2Z), put

AB. + B.C, ¥ C,.D
M™M
M) = (-1) MM MM

*
We note that n gives a character on GL(2,Z) and n(M) = n{M)
for M € GL(2,2). Moreover n gives a homomorphism as monoid of

{0, vul{mMemnm@2,2)| det(M) =1 (mod 2) } to {1,-1}. Now we



define n n and u+ by

17 2
nqlo) = n(AIN(BIn(C In(D,) (o€ 0(1) ),
Ny (o) = n(A )n(B,) (o € 0(2) ),
and put
6%(2) = { o € 0(8) | ny(o) = €1}
for e € {+,-}.
Theorem 2 " is a character of @5 of order 2 and

ker () = 93(1) u.eg(z)

Proof. Let us start to define a subset H of Ot by

I

H={1€ O; | ut (1o) u+(T%u?(cr for all cea™}.
Then H becomes a subgroup of @+ ( see Bass-Milnor-Serre [ 1,

Lemma 9.1 ] . In order to prove H = oF , it is enough to show

that T,(2) U { J, Ty } UUcH from Proposition 1-(2). We note

that

uT (U, = () (V€ GL(2,2))



pt o) =1 - (o €T,(2) ),
n(w) = =1
It is clear that T,(2) <« H . Let o € ©(2). Then Jo , U, € 0(2).

In fact, it is obvious from that

C0 DU VAO VB0
_Ad B0 v Co \Y DU.
At the same time, we have.
W (o) = utio) , u+(UVo) = n(v)u’ (o)
*
by the property n{(v ) = n(V). Since pt(JI) =1 and u+(UV)*= n (V)
mentioned above, we obtain
WIo) = @ (o), wTUye) = u' (o)
for all o € OE . Next we shall show that Tw €EH. If o€ 0(2),

then we see that Tw € 0(1). Therefore there exist V € GL(2,2)

such that
— - — —_— _ — —%
{A, ,B,,C, Dyt ={0,,0,,V,V } ,
— — — — —_ ——
{ B C D Y= {0, V,V ,WV }
ATWO, Two, Two, TWO 2,
Hence u (o) = n(v) and u' (T, ) = n(WV) = n(WIn(V) = =-n(V).

W

This implies that u+(TW0) = u+(TW)u4(c) for all o € ©(2). If

g € (1), then there exists V € GL(2,2) such that

- 13 -



{Xcr.g IE IB}':{O :viv rW}

Hence u+(c) = n{WV) = n(Wn(v) = -n(Vv). Assume that o € ei'j

Then we have

—_— -
B C D = o %
Ao, Prgo, Cryo, Pryo { 0,,7,%V,@ } € 0(1) (1#9)
This implies that u+(TWc) = n{V) . Therefore u+(TW0) = -u+(0)
Thus we obtain that u+(TWG) = u+(TW)u+(o) for all o € 6(1),

. + + ' + +
since u (TW) = =1 , Therefore we can get that 1y (Two) = u (Tw)u (o)
for all o € @; . Hence T, € H . Thus H = @; . It is obvious by

. . N [ + + +
the definition of ©67(L) that ker{p ) =06 (1) U e (2) .
Corollary 1 Let A" be the restriction of A on 07

(3]
.

Then, u+ = A" .

Proof. From Kirchheimer [ 5 , 2.9 ], we know that

AM(CT) =1,
+
Ao TW ) = =1,
(1+A.,+D.,) (1+B,,+C.,) +
MUy ) = (e1) Ay*Dy Vo) APy

Since (1+AV+DV)(1+BV+C§) +-AVDV = AVBV + BVCV + CVDV {mod 2) for

V € GL(2,2Z), we get our assertion by Theorem.

- 14 -



Corollary 2 ker(u¥) = r,(2)e,'

Proof. From Theorem 2, we have that ker(u+) ) F2(2) and
by Corollary 1 we see that ker(u+) > 92' . Hence,

07 3 ker(uw') > T,(2)0,'

On the other hand, from Remark in the end of Section 2, it holds

that ( O

2 F2(2)92' ) = 2 : Therefore we obtain ker(u+) = F2(2)@2'

- 15 -



4, Construction of another character of Oz

In this section we shall construct a character of @2 of
order 2 , by means of ut given as Section 3. For o € 92 and
M e M(4,Z), put

(o) = AG + BU + C0 + D

O. !
¢0(0) = Ac + CU .
' B,, + C,, + B,C

o(M) = (-1) M M MM

¢(¢0(0)) ‘ if $(c) =0 ,
ulo) = {

$(d (o)) otherwise.

Theorem 3 U 1s a character of 0 of order 2 and

Procf. We first note that

u(Jo) = u(oJ) = u(J1c) = u(od,) = u(o)
for all o € 92 . In fact,
Cs Do =By A4
Jg = -A -B oJ = -D C A
g g ’ o "o !
a;qy a2 byq by,
Cyq S dyq dyy
Jqo = e c d.. 4
11 Sq12 997 dyp
431 "85 “byy by,



agq ~byy by ag;
s - 321 "P22 P12 22
1 S1q ~d42 449 S2
- ]
Cq1 "4 d45 €33
where aij , bij” cij ' dij denote (i,j)-component of AG ; B0 ,

C, » Dy » respectively. Hence

®(Jo) = ¢(oJ) = ¢(J1o) = Q(GJ{T = ¢{ag),

¢0(J67 QO(J10) = ¢0(c).

i

Therefore u(Jog) u(J10) = u{og) for all o € 62 and uf(oJ) =

u(cJ1) = p(a) if o € 02 and ¢ (o) # 02 . If 9(o) = 02', then

A0 + CO = B0 + D0 . Hence ¢O(OJ) = ¢O(ET :+ Therefore u{cJ) =

u(o) if 3(0) = O2 , hence for all o € 62 . We also see that

311 ¥ Cqq D1z * dyp )

ayq * Cyq byy + &

and aij + C.

i3 = bij + dij(mod 2).

Therefore .. ¢0(0J1) = ¢0(0) . Thus u(cJT) = u(g) if ¢(o) = 02 '

hence for all o € 92 . Next, we show that both functions cof u

and u+ take the same values on O; . To prove this, it is sufficient

to show for all elements of UF2(2) U 92’1 , because u(Jo) = ul(aJd)

2,1

= u(o) . Let o € &%’ Then $(o) =A&_+ A + WA

g o) g

- 17 -



Therefore

Pl
1]

W if R ,
1, if A, = W,
SR ey if Xc = T .,
e if K= °T
e, if KU = TW ,
ey, if Ko = W ,

where eij denotes the matrix of M(2,F2) whose (i,3j)-component
is egqual to 1 and otherwise 0 , and T = ( 8 1 ) . Thus, we have
1 if B =%, Tor T ,
ulg) =
-1 if Ao = 12, T™W or WT .
On the other hand,
*(0) = n(WA_) = -n{(A_)
H = n s! = n g '
and
) 1 - if -ﬁ = 12' T—W OI.‘ ﬁ I
niM) =
-1 if ‘M=%, T or T
Therefore we cobtain that u(o) = u+(c) for all o € 62’1 . Let

-_— —_
o € UF2(2). Then, ®(og) = A_ + A . We observe that @¢(o) = 0

o] g 2

if and only if A _ = 1, or W . Assume that ¢ (o} # 0

g Then

2



€54 if Ao =T ’
e s if Xg=t"f ,
‘I’in =
e11 if Ac = TW ’
€55 if AO = WT .
Thus, we have
_ 1 if A, =TW or WT,
ulo) =
-1 if R =T or T .
On the other hand,
1 if A = TW or WT ,
+ o
v (o) =
-1 if Xc =T or CF ,
since u (g) = n(AG). Assume ©®(g) = 0, . Then ?,(0) = Ec
Hence
1 if Ao = 12 ’
ul(c) =
-1 if 2 =W .
g
Therefore u(g) = u+(c) since u+(0) = n(Ac). ‘Thus, we can

show that ul(o)

u+(c) for all ¢ € Oz . So, we are going to

prove that u 1is a character of 0, . Let g, T € 0 If

5 -
o, T € O; , then it is clear by the fact just proved above. If

o ¢ @; , T € O; , then there exists an element o of O; such

that ¢ = J,p . Hence ul{ot) = u(J1pT) = u(pt) = p(p)utr) =

- 19 -



p(J1p)u(T) = u(o)u(t). We also see that u(to) = U(TJ1D) =
u(J11J1p) = u(J1TJ1)u(o) = u(t)ulp) = u(r)u(J1p) = u(T)u'(o).

If o, 1 ¢ @5 , then there exist two elements p, 7 of O;

such that ¢ = J1p and T = J1c . Then, wuf{ot) = u(J1pJ1C)
= u(J1pJ1)u(C) = u(J1p)u(J1c) = u(o)u(t). Thus, we verify that
U 1s a character of OE . Finally, we see that u(Uw) = =1,

because ¢iUW5 = 02 and QOZUWS = W . Therefore, the order of

u is equal to 2 . It 1s aiso seen that u(J1) = 1 , since
®{J,) = 0, and 9,(3,] = 1, . This shows that u # X, , At .

- 20 -



5. Application to modﬁlar imbeddings

In this section we investigate the relations between the
characters of thgta group vez and modular imbeddings for certain
real quédratic fields, which Hammond has introduced in [ 4 ]
Let p be a rational prime number and p = 1 (mod 4) . Then,
we can find an odd integer u and an even intéger v such that
u2 + v2 = p . Now, we consider the Hilbert modular group, which
acts on H12 , over the real quadratic field Q(v p ) . Put
F = Q(V'p) and denote by o the ring of integefs of F . We

use the notation SL(2,R) in stead of SP(Z,R) for a ring R .

Put’

For a. € F" and g € SL(Z2,F), put

E(a) = al, + bA (a=a+bvVp ),
E(qg) =(E:29) Ui@’) .
3 g) £ ( g)

Then, from Hammond [ 4 ], there exists a holomorphic imbeddifdg
E of: H12‘ into Hy - such that (Z,E) becomes a modular imbedding

for F , that is, I 1is a homomorphism of SL{2,F} into Sp(d,Q)

satisfyning

- 21 -



£(SL(2,0)) < T

2 r

Z(g) (E(2)) = El(g(z)) ,

J(2(g) ,B(2)) = (Cgz +Dy) (Cy' z5+D ")
2

where g € SL(2,0) , z = (z1,zz) € H1 and a' = a - bV op
for o« =a +.byYp €F.

We consider the case when p = 1 (mod 8). Then, from [ 6 1 ,

1 1
2 2 -
we know that Z(SL(2,0)) < p@zp_1 , where p = ( -1 with
K K

O —
S

Remark. 0929_1 is the subgroup of F2 consisting of all

,%) of theta function

=

elements leaving the characteristic (%,%.

invariant. In general, put

o - (12n 2n
n -1 ’
Kn Kn
my = (0,-++,0) € r4D ,
- 1 ...10 4n
m1 = ('2" II) € R
Then Pn € F2n and P Maps mg to m, , under the transformation

formular among the characteristics of theta functions of degree 2n.

- 22 -~



Theorem 4 Let u be the real characteh of @2 as in
Section 4 . Then S(SL(2,0)) < plker(u))p

Proof. We can easily see the following :

1 1

- g(cg) - E(Dg)K '

CA KE (A ) + KE(BIK

0 1E(g)0
B _ = KE(A_) + KE(B_)K - §(C_) -£(D_)K ,
0 15(9)0 g g g g
(#)
c_, = -k 'gay) - K e )K"+ g(c) + (IR,
o 'Z(g)p _ g g g g
-1 -1
D _ = - K g(A) - K g€(B)K + £(C_) + £(D_)K .
0 15(g}p g g g g
Hence by direct calculation we obtain that ¢(p-15(g)p) = E(Bg)
and ¢O(p-13(g)p) = g(Ag) + g(-Bg)K-1 . Therefore @0(9“1E(gjp)'
= £(a) it o0 '2(g)p) = 0, .. Thus, we have that u(z(g)) =
¢(E(Ag)) or ¢(€(Bg)). On the other hand, we observe that
d{E(a)) = 1 for all o € o, because v = 0 (mod 4) ( see [ 7 ,

Lemma in 52 ]. This shows that up(Z(g)) 1 for all g € SL(2,0).

Then p-1E(SL(2,o))p c ker(u) , hence our assertion is proved.

We can prove naturally the following fact.

- 23



Proposition 2 ( [ 7, Proposition 2 ] ) For all g € SL(2,0)
_ Tr (A B +B _C +C D )
A (97 12(g)p) = (-1) F/RTIT9 g TaTg

where TrF/Q(a) means the trace of an element o of F over Q.

Proof. BY (#) , we see that

tr(tC -1 B _, )
p Z(glp p Elg)e

2

- 2
= tr(E(Ag + Agcg + Cg ))

2 2
t
+ r(F;(Bg + Bgcg + Dg ))

+ tr(E(Ang + chg))

1

+ tr((KTE(BYK | + KE(BYIKIE(C,))

Then, by [ 7 , Lemma 1 ] , this is congruent to tr(£(A B +B C +C D)

g9g 99 g9g

modulo 2

- 24 -
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