REAL LINEAR CHARACTERS OF THETA GROUPS AND MODULAR IMBEDDINGS FOR REAL QUADRATIC FIELDS

by

Hidehisa NAGANUMA

```
Max-Plank-Institut
    and
    Department of Mathematics
    Faculty of Science
    Kochi Universitt
    Kochi }780\mathrm{ Japan
```


REAL LINEAR CHARACTERS OF THETA GROUPS

AND MODULAR IMBEDDINGS FOR REAL QUADRATIC FIELDS

By Hidehisa NAGANUMA

1. Introduction

Let n be a positive integer and $n \geq 2$. In this paper we consider the theta subgroup θ_{n}. of Siegel modular group Γ_{n} of degree n, which acts on the generalized Siegel upper half aspace H_{n} by the usual way. In [3 .j, Endres investigated the multiplier systems of θ_{n} nnd proved that

$$
\theta_{n} / \theta_{n} \prime \cong \begin{cases}z / 4 z & \text { if } n=2, \\ z / 4 z \times z / 2 z & \text { if } n \geq 3,\end{cases}
$$

where G! means the commutator subgroup of group G . From this, we see that θ_{2} has three subgroups of index 2 and θ_{n} has only one subgroup of index 2 if $n \geq 3$. The main purpose of this paper is to determine all subgroups of θ_{n} of index 2 ,
which is equivalent to describe all linear characters of θ_{n}. Now we define the standard theta series θ_{n} of degree n by

$$
\theta_{n}(Z)=\Sigma_{x \in Z^{n}} \exp \left(2 \pi i^{t} x Z x\right) \quad\left(Z \in H_{n}\right) .
$$

Then we have the character λ_{n} of θ_{n} of order 2 given by

$$
\lambda_{n}(\sigma)={\frac{\theta_{n}(\sigma(z))^{4}}{\theta_{n}(z)}}^{4} j(\sigma, z)^{2} \quad\left(\sigma \in \theta_{n}\right)
$$

where $j(\sigma, z)$ is the standard automorphic factor of Γ_{n} on H_{n}. Therefore $\operatorname{ker}\left(\lambda_{n}\right)$ is the unique subgroup of θ_{n} of index 2 if $n \geq 3$. In the case $n=2$, we remember the fact that $\Gamma_{2} / \Gamma_{2}{ }^{\prime}$ ※ Z/2Z (see Reiner [8]). Hence there exists uniquely the character of Γ_{2} of order 2. We denote it by $\tilde{\Lambda}$. Since $\theta_{2} \notin \Gamma_{2}^{\prime}$, the restriction Λ of $\tilde{\Lambda}$ on θ_{2} is different from λ_{2}. This implies that $\left\{\mathrm{H} \mid \mathrm{H}\right.$ is a subgroup of θ_{2} and $\left.\left(\theta_{2}: H\right)=2\right\}=$ $\left\{\operatorname{ker}\left(\lambda_{\mathrm{n}}\right), \operatorname{ker}(\Lambda), \operatorname{ker}\left(\lambda_{2} \Lambda\right)\right\}$. Thus, our problem is stated as follows. We should give explicit formulas of the values of λ_{n}, Λ and $\lambda_{2} \Lambda$ for each element of θ_{n}, a priori, which have already given for each generator of θ_{n} (see Endres [3] and Kirchheimer [5]. We shall anser this problem in Section 2 for λ_{n} and in

Section 4 for $\lambda_{2} \Lambda$. As its application, we can see the connection with modular imbeddings over real quadratic fields, which is introduced by Hammond [4]. We shall show in Section 5 that Hilbert modular groups over certain real quadratic fields can be imbeded into $\operatorname{ker}\left(\lambda_{2} \Lambda\right)$, which is more sharp than the result of [6], where we did into a conjugate group of θ_{2}.

Notations. For a commutative ring R with identity element, we denote by $M(n, R)$ the ring of all $n \times n$-matrices with entries in R and by $G L(n, R)$ the group of all invertible elements. The identity element and the zero element of $M(n, R)$ are denoted by 1_{n} and 0_{n}, respectively. For each element σ of $M(2 n, R)$, we write $A_{\sigma}=A, B_{\sigma}=B, C_{\sigma}=C$ and $D_{\sigma}=D$ if $\sigma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ and $A, B, C, D \in M(n, R)$. We denote by t_{A} the transposed matrix of A for $A \in M(n, R)$, and put $A^{*}={ }^{t_{A}}{ }^{-1}$ for $A \in G L(n, R)$. We
 and $S M^{0}(n, R)=\left\{A \in M(n, R) \mid t_{A}=A\right.$ and all diagonal elements of A are even $\}$. $\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ denotes the diagonal matrix whose (i,i)-component is equal to a_{i} for each i. For a matrix
A, we denote by $\operatorname{tr}(A)$ and $\operatorname{det}(A)$ the trace and determinant, respectively, of A. Finally, we use the notations Z, Q and R for the ring of rational integers, the field of rational numbers and the field of real numbers, respectively.
2. Linear characters given by θ_{n}

Let n be a positive integer and $n \geq 2$. As usual, we define $\Gamma_{n}, \theta_{n}, H_{n}$, and θ_{n} by

$$
\begin{aligned}
& \Gamma_{n}=S_{p}(2 n, z) ; \\
& \theta_{\mathrm{n}}=\left\{\left.\sigma \in \Gamma_{\mathrm{n}}\right|^{t_{A_{\sigma}} C_{\sigma}}{ }^{\prime} \mathrm{t}_{\mathrm{B}_{\sigma} D_{\sigma}} \in \mathrm{SM}^{0}(\mathrm{n}, \mathrm{z})\right\} \text {, } \\
& H_{n}=\{X+i Y \mid X, Y \in M(n, R) \text { and } Y \text { is positive definite }\} \text {, } \\
& \theta_{n}=\Sigma_{x \in Z^{n}} \exp \left(2 \pi i^{t} x Z x\right) \quad\left(Z \in H_{n}\right) .
\end{aligned}
$$

We let every element σ of Γ_{n}, hence θ_{n}, act on H_{n} by

$$
\sigma(Z)=\left(A_{\sigma} Z+B_{\sigma}\right)\left(C_{\sigma} Z+D_{\sigma}\right)^{-1} \quad\left(Z \in H_{n}\right)
$$

Then we have the theta multiplier system v_{n} of degree n given by

$$
\nu_{n}(\sigma)=\frac{\theta_{n}(\sigma(Z))}{\theta_{n}(Z)} \sqrt{\operatorname{det}\left(C_{\sigma} Z+D_{\sigma}\right)} \quad\left(\sigma \in \theta_{n}\right)
$$

It is well known that $\nu_{n}(\dot{\sigma})^{8}=1$ for all elements $\sigma \in \theta_{n}$. Thus, we get two characters λ_{n} and κ_{n} of θ_{n} of order 2 and 4 , respectively, if we put for each element σ of θ_{n}

$$
\lambda_{n}(\sigma)=v_{n}(\sigma)^{4}, \quad \kappa_{n}(\sigma)=v_{n}(\sigma)^{2}
$$

Theorem $1 \quad \lambda_{n}(\sigma)=(-1)^{\operatorname{tr}\left({ }^{t} C_{\sigma} B_{\sigma}\right)}$ for all elements $\sigma \in \theta_{n}$.

Proof. Put

$$
x(\sigma)=(-1)^{\operatorname{tr}\left({ }^{t} C_{\sigma} B_{\sigma}\right)}
$$

for each element σ of θ_{n}. Then we see that X is a character of θ_{n}. In fact, since for $\sigma, \tau \in \theta_{n}$

$$
B_{\sigma \tau}=A_{\sigma} B_{\tau}+B_{\sigma} D_{\tau}, \quad C_{\sigma \tau}=C_{\sigma} A_{\tau}+D_{\sigma} C_{\tau},
$$

we have

$$
\begin{aligned}
\operatorname{tr}\left({ }^{t} C_{\sigma \tau} B_{\sigma \tau}\right)= & \operatorname{tr}\left({ }^{t} A_{\tau}{ }^{t} C_{\sigma} A_{\sigma} B_{\tau}\right)+\operatorname{tr}\left({ }^{t} A_{\tau}{ }^{t} C_{\sigma} B_{\sigma} D_{\tau}\right) \\
& +\operatorname{tr}\left({ }^{t} A_{\tau}{ }^{t} C_{\sigma} A_{\sigma} B_{\tau}\right)+\operatorname{tr}\left({ }^{t} C_{\tau}{ }^{t} D_{\sigma} B_{\sigma} D_{\tau}\right) \\
= & \operatorname{tr}\left(B_{\tau}{ }^{t} A_{\tau}{ }^{t} C_{\sigma} A_{\sigma}\right)+\operatorname{tr}\left(D_{\tau}{ }^{t} A_{\tau}{ }^{t} C_{\sigma}{ }_{B} B_{\sigma}\right) \\
& +\operatorname{tr}\left(B_{\tau}{ }^{t} C_{\tau}{ }^{t} D_{\sigma} A_{\sigma}\right)+\operatorname{tr}\left(D_{\tau}{ }^{t} C_{\tau}{ }^{\left.t_{D} D_{\sigma} B_{\sigma}\right)}\right.
\end{aligned}
$$

Since ${ }^{B}{ }_{\tau}{ }^{t} A_{\tau},{ }^{t} C_{\sigma} A_{\sigma}, D_{\tau}{ }^{t} C_{\tau}, \quad{ }^{t} D_{\sigma} B_{\sigma} \in S M{ }^{0}(n, Z)$, we see that

$$
\operatorname{tr}\left({ }^{t} C_{\sigma \tau} B_{\sigma \tau}\right) \equiv \operatorname{tr}\left(D_{\tau}{ }^{t} A_{\tau}{ }^{t} C_{\sigma} B_{\sigma}\right)+\operatorname{tr}\left(B_{\tau}{ }^{t} C_{\tau}{ }^{t} D_{\sigma} A_{\sigma}\right) \quad(\bmod 2),
$$

because $\operatorname{tr}(X Y) \equiv 0(\bmod 2)$ for $X, Y \in \operatorname{SM}^{0}(n, z)$. Thus, we obtain

$$
\operatorname{tr}\left({ }^{t} C_{\sigma \tau}{ }^{B}{ }_{\sigma \tau}\right) \equiv \operatorname{tr}\left({ }^{t} C_{\sigma} B_{\sigma}\right)+\operatorname{tr}\left({ }^{t} C_{\tau} B_{\tau}\right) .
$$

Hence, x is a character of θ_{n}.

Now we know that θ_{n} is generated by the following elements (see Eichler [2]) :

$$
\begin{aligned}
& U_{V}=\left(\begin{array}{ll}
V & 0_{n} \\
0 & V^{*}
\end{array}\right) \quad(v \in G L(n, z) .), \\
& T_{S}=\left(\begin{array}{ll}
1_{n} & S \\
0_{n} & 1_{n}
\end{array}\right) \quad\left(s \in S^{0}(n, z):\right), \\
& J_{k}^{(n)}=\left(\begin{array}{cc}
E_{k}^{(n)} & 1_{n}-E_{k}^{(n)} \\
E_{k}^{(n)}-1_{n} & E_{k}^{(n)}
\end{array}\right) \quad(k=0,1,2, \ldots, n-1),
\end{aligned}
$$

where $E_{k}^{(n)}=\operatorname{diag}(1, \cdots, 1,0, \cdots, 0)$ with k-times 1 . It is easily shown by the definition of x that

$$
\begin{aligned}
& X\left(U_{V}\right)=X\left(T_{S}\right)=1 \quad\left(V \in G L(n, z), S \cdot \in S^{0}(n, z)\right), \\
& X\left(J_{k}^{(n)}\right)=(-1)^{n-k} \quad(k=0,1,2, \cdots, n-1) .
\end{aligned}
$$

On the other hand, from Endres [3]

$$
\begin{aligned}
& \lambda\left(U_{V}\right)=\lambda\left(T_{S}\right)=1 \quad\left(V \in G L(n, z), S \in S^{0}(n, z)\right), \\
& \lambda\left(U_{k}^{(n)}\right)=(-1)^{n-k} \quad(k=0,1,2, \cdots, n-1) .
\end{aligned}
$$

Therefore $x=\lambda$.

We denote by $\theta_{n}^{+}, \theta_{n}^{\prime}$, and $\Gamma_{n}(2)$ the kernel of λ_{n}, the commutator subgroup of θ_{n} and the principal congruence subgroup of level 2 which is defined by

$$
\begin{aligned}
& \Gamma_{\mathrm{n}}(2)=\left\{\sigma \in \Gamma_{\mathrm{n}} \mid A_{\sigma}-1_{\mathrm{n}} \equiv B_{\sigma} \equiv \mathrm{C}_{\sigma} \equiv D_{\sigma}-1_{\mathrm{n}} \equiv 0_{\mathrm{n}}(\bmod 2)\right\} . \\
&-7-
\end{aligned}
$$

It is easily seen that these three groups are normal subgroups of θ_{n}. We have the following diagram :

$$
\theta_{n} \supsetneqq \theta_{n}^{+} \supset \Gamma_{n}(2) \theta_{n}^{\prime} \nexists \theta_{n}^{\prime},
$$

because $\Theta_{n}^{+} \supset \Gamma_{n}(2)$ by Theorem $1, \theta_{n}^{+} \supset \theta_{n}^{\prime}$ in general and $\theta_{n}{ }^{\prime}$ is a congruence subgroup of level 4 (see Endres [3,

Lemma 2.2]).

Corollary If $n \geq 3$, then $\theta_{n}^{+}=\Gamma_{n}(2) \theta_{n}{ }^{\prime}$.

Proof. Since. $\left(\theta_{\mathrm{n}}: \theta_{\mathrm{n}}{ }^{\prime}\right)=4$ as stated in Section 1 , we see that $\left(\theta_{n}^{+}: \theta_{n}^{\prime}\right)=2$: Hence $\left(\theta_{n}^{+}: \Gamma_{n}(2) \theta_{n}^{\prime}\right)=1$ by the reason why $\left(\Gamma_{n}(2) \theta_{n}{ }^{\prime}: \theta_{n}{ }^{\prime}\right)>1$.

Remark. If $n=2$, then we see that $\left(\Theta_{2}^{+}: \Gamma_{2}(2) \theta_{2}^{\prime}\right)$ $=2$. We shall discuss the character of θ_{2}^{+}of order 2 whose kernel coincides with $\Gamma_{2}(2) \theta_{2}^{\prime}$ in Section 3 .
3. Restriction of $\tilde{\Lambda}$ on θ_{2}^{+}

In this section we shall construct a real character of Θ_{2}^{+}, which coincides with the restriction of $\tilde{\Lambda}$ on θ_{2}^{+}. For this purpose, we introduce several definitions and notations as follows. For each matrix M of $M(2, Z)$, we define \bar{M} and $\psi(M)$ by

$$
\begin{aligned}
& \bar{M}=M \bmod 2, \\
& \psi(\bar{M})= \begin{cases}1 & \text { if } \bar{M}=0, \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Put

$$
\Psi(\sigma)=\Psi\left(A_{\sigma}\right)+\Psi\left(B_{\sigma}\right)+\Psi\left(C_{\sigma}\right)+\Psi\left(D_{\sigma}\right)
$$

for $\sigma \in M(4, Z)$. It is obvious that $0 \leqq \Psi(\sigma) \leq 2$ for $\sigma \in \operatorname{GL}(4, Z)$.

So, we define $\theta(\ell)$ by

$$
\theta(\ell)=\left\{\sigma \in \theta_{2} \mid \Psi(\sigma)=\ell\right\} \quad(\ell=0,1,2) .
$$

We write

$$
\sigma_{11}=A_{\sigma}, \quad \sigma_{12}=B_{\sigma}, \quad \sigma_{21}=C_{\sigma}, \quad \sigma_{22}=D_{\sigma}
$$

and put

$$
\theta^{i, j}=\left\{\sigma \in \theta(1) \mid \bar{\sigma}_{i j}=0\right\} .
$$

Then it is clear that

$$
\theta_{2}=U_{\ell=0}^{2} \theta(\ell), \quad \theta(1)=U_{i=1}^{2} U_{j=1}^{2} \theta^{i, j}
$$

and these sums are disjoint. For a subset X of θ_{2}, put

$$
\overline{\mathrm{x}}=\mathrm{x} \Gamma_{2}(2) / \Gamma_{2}(2)
$$

We define u by

$$
U=\left\{U_{V} \mid V \in G L(2, z)\right\}
$$

and put

$$
J=J^{(2)}, \quad W=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad J_{1}=J_{1}^{(2)} .
$$

Lemma 1 (1) $\theta(2)=U \Gamma_{2}(2) U J U \Gamma_{2}(2)$,
(2) $\theta(1)=J \theta(2) \cup J T_{W} \Theta(2) \cup T_{W} J \theta(2) \cup J T_{W} J \theta(2)$,

$$
\theta(0)=J_{1} \theta(1) \cup J_{1} \theta(2)
$$

and these sums are disjoint.
(2) $|\overline{\theta(0)}|=36,|\overline{\theta(1)}|=24,|\overline{\theta(2)}|=12$.

Proof. (1) If $\sigma \in \Theta(2)$, then it must be that

$$
\bar{B}_{\sigma}=\bar{C}_{\sigma}=0 \quad \text { or } \quad \bar{A}_{\sigma}=\bar{D}_{\sigma}=0 .
$$

Hence we have $\theta(2)=U \Gamma_{2}(2) U J U \Gamma_{2}(2)$. It is easily seen that

$$
\begin{array}{ll}
\theta^{1,1}=J T_{W} \Theta(2), & \theta^{1,2}=J T_{W} J \theta(2), \\
\theta^{2,1}=T_{W} \Theta(2), & \theta^{2,2}=T_{W} J \theta(2) .
\end{array}
$$

This implies second equality. Since $J_{1} \in \theta(0)$ and $J_{1} \sigma \in \theta(0)$ for all $\sigma \in \theta(1) U \theta(2)$, we get $J_{1} \theta(1) U J_{1} \theta(2) \subset \theta(0)$. On
the other hand, we see that $|\overline{\theta(2)}|=12$ since $|\bar{U}|=6$. Hence $|\overline{\theta(1)}|=24$ and $\left|\overline{J_{1} \theta(1) U J_{1} \Theta(2)}\right|=36$. It is well known that $\left(\Gamma_{2}: \theta_{2}\right)=10$ and $\left(\Gamma_{2}: \Gamma_{2}(2)\right)=720$. Therefore $\left|\bar{\theta}_{2}\right|=72$. Thus we have $|\overline{\theta(0)}|=36$. Hence $\overline{\theta(0)}=\overline{J_{1} \theta(1) U J_{1} \theta(2)}$. This implies third equality. (2) We have shown in the proof of (1).

Proposition 1

(1) $\theta_{2}^{+}=\theta(1) \cup \theta(2)$.
(2) Θ_{2}^{+}is generated by $\Gamma_{2}(2) \cup\left\{J, T_{W}\right\} \cup U$.

Proof. (1) As stated in the proof of Lemma 1, $\left|\bar{\theta}_{2}\right|=72$. Hence $\left|\overline{\theta_{2}^{+}}\right|=36$. On the other hand, from Theorem 1, we see that $\theta(1) U \theta(2) \subset \theta_{2}^{+}$. Therefore, by Lemma 1-(2), we get our assertion. (2) It is obtained by the fact that $\left\{T_{S} \mid \operatorname{SGSM}^{0}(2, z)\right\}$ $\subset\{W\} \cup \Gamma_{2}(2)$.

For each matrix M of $M(2,2)$, put

$$
\eta(M)=(-1)^{A_{M} B_{M}+B_{M} C_{M}+C_{M} D_{M}}
$$

We note that η gives a character on $G L(2, Z)$ and $\eta(M)=\eta\left(M^{*}\right)$ for $M \in G L(2, z)$. Moreover η gives a homomorphism as monoid of $\left\{0_{2}\right\} \cup\{M \in M(2, Z) \mid \operatorname{det}(M) \equiv 1(\bmod 2)\}$ to $\{1,-1\}$. Now we
define η_{1}, η_{2} and μ^{+}by

$$
\begin{array}{ll}
\eta_{1}(\sigma)=\eta\left(A_{\sigma}\right) \eta\left(B_{\sigma}\right) \eta\left(C_{\sigma}\right) \eta\left(D_{\sigma}\right) & (\sigma \in \theta(1)), \\
\eta_{2}(\sigma)=\eta\left(A_{\sigma}\right) \eta\left(B_{\sigma}\right) & (\sigma \in \theta(2)),
\end{array}
$$

and put

$$
\theta^{\varepsilon}(\ell)=\left\{\sigma \in \theta(\ell) \mid \eta_{\ell}(\sigma)=\varepsilon 1\right\}
$$

for $E \in\{+,-\}$.

Theorem $2 \mu^{+}$is a character of θ_{2}^{+}of order 2 and $\operatorname{ker}\left(\mu^{+}\right)=\Theta_{2}^{+}(1) \quad \cup \cdot \Theta_{2}^{+}(2)$.

Proof. Let us start to define a subset H of Θ^{+}by

$$
H=\left\{\tau \in \theta_{2}^{+} \mid \mu^{+}(\tau \sigma)=\mu^{+}(\tau): \mu^{+}(\sigma) \text { for all } \sigma \in \theta^{+}\right\} .
$$

Then H becomes a subgroup of θ^{+}(see Bass-Milnor-Serre [1, Lemma 9.1 1. In order to prove $H=\theta^{+}$, it is enough to show that $\Gamma_{2}(2) U\left\{J, T_{W}\right\} U U \subset H$ from Proposition 1-(2). We note that

$$
\begin{aligned}
& \mu^{+}\left(U_{V}\right)=n(V) \quad(V \in G L(2, z)) \\
& \mu^{+}(J)=1, \\
& \mu^{+}\left(T_{W}\right)=-1,
\end{aligned}
$$

$$
\begin{array}{ll}
\mu^{+}(\sigma)=1 & \left(\sigma \in \Gamma_{2}(2)\right), \\
\eta(W)=-1 . &
\end{array}
$$

It is clear that $\Gamma_{2}(2) \subset H$. Let $\sigma \in \theta(\ell)$. Then $J \sigma, U_{V} \in \theta(\ell)$.

In fact, it is obvious from that

$$
J \sigma=\left(\begin{array}{rr}
C_{\sigma} & D_{\sigma} \\
-A_{\sigma} & B_{\sigma}
\end{array}\right) \quad, \quad U_{V}=\left(\begin{array}{cc}
v A_{\sigma} & v B_{\sigma} \\
v^{*} C_{\sigma} & v^{*} D_{\sigma}
\end{array}\right) \quad .
$$

At the same time, we have

$$
\mu^{+}(J \sigma)=\mu^{+}(\sigma), \quad \mu^{+}\left(U_{V} \sigma\right)=\eta(V) \mu^{+}(\sigma)
$$

by the property $\eta\left(V^{*}\right)=\eta(V)$. Since $\mu^{+}(J)=1$ and $\mu^{+}\left(U_{V}\right)=\eta(V)$ mentioned above, we obtain

$$
\mu^{+}(J \sigma)=\mu^{+}(J) \mu(\sigma), \quad \mu^{+}\left(U_{V^{\sigma}}\right)=\mu^{+}(\sigma)
$$

for all $\sigma \in \Theta_{2}^{+}$. Next we shall show that $T_{W} \in H$. If $\sigma \in \Theta(2)$, then we see that $T_{W} \in \theta(1)$. Therefore there exist $V \in G L(2, z)$ such that

$$
\begin{aligned}
& \left\{\bar{A}_{\sigma}, \overline{\mathrm{B}}_{\sigma}, \overline{\mathrm{C}}_{\sigma}, \overline{\mathrm{D}}_{\sigma}\right\}=\left\{0_{2}, 0_{2}, \overline{\mathrm{~V}}, \overline{\mathrm{~V}}^{*}\right\}, \\
& \left\{\overline{\mathrm{A}}_{\mathrm{T}_{\mathrm{W}} \sigma}, \overline{\mathrm{~B}}_{\mathrm{T}_{W} \sigma}, \overline{\mathrm{C}}_{\mathrm{T}_{W} \sigma}, \overline{\mathrm{D}}_{\mathrm{T}_{W} \sigma}\right\}=\left\{0_{2},{\left.\overline{\mathrm{~V}} ; \overline{\mathrm{V}}^{*}, \overline{\mathrm{WV}}\right\}}^{\}}\right.
\end{aligned}
$$

Hence $\mu^{+}(\sigma)=\eta(V)$ and $\mu^{+}\left(T_{W}\right)=\eta(W V)=\eta(W) \eta(V)=-\eta(V)$.
This implies that $\mu^{+}\left(T_{W} \sigma\right)=\mu^{+}\left(T_{W}\right) \mu^{+}(\sigma)$ for all $\sigma \in \theta(2)$. If $\sigma \in \theta(1)$, then there exists $V \in G L(2, Z)$ such that

$$
\left\{\bar{A}_{\sigma}, \bar{B}_{\sigma}, \bar{C}_{\sigma}, \bar{D}_{\sigma}\right\}=\left\{0_{2}, \overline{\mathrm{~V}} ; \overline{\mathrm{V}}^{*}, \overline{\mathrm{WV}}\right\}
$$

Hence $\mu^{+}(\sigma)=\eta(W V)=\eta(W) \eta(V)=-\eta(V)$. Assume that $\sigma \in \theta^{i, j}$. Then we have

$$
\left\{\bar{A}_{T_{W} \sigma}, \bar{B}_{T_{W} \sigma}, \overline{\mathrm{C}}_{T_{W}{ }^{\sigma}}, \overline{\mathrm{D}}_{\mathrm{T}_{W} \sigma}\right\}= \begin{cases}\left\{0_{2}, 0_{2}, \overline{\mathrm{~V}}, \overline{\mathrm{~V}}^{\star}\right\} \in \theta(2) & (i=j) ; \\ \left\{0_{2}, \overline{\mathrm{~V}}, \overline{\mathrm{WV}}, \bar{W}^{*}\right\} \in \theta(1) & (i \neq j)\end{cases}
$$

This implies that $\mu^{+}\left(T_{W} \sigma\right)=\eta(V)$. Therefore $\mu^{+}\left(T_{W} \sigma\right)=-\mu^{+}(\sigma)$. Thus we obtain that $\mu^{+}\left(T_{W} \sigma\right)=\mu^{+}\left(T_{W}\right) \mu^{+}(\sigma)$ for all $\sigma \in \theta(1)$; since $\mu^{+}\left(T_{W}\right)=-1$. Therefore we can get that $\mu^{+}\left(T_{W} \sigma\right)=\mu^{+}\left(T_{W}\right) \mu^{+}(\sigma)$ for all $\sigma \in \Theta_{2}^{+}$. Hence $T_{W} \in H$. Thus $H=\theta_{2}^{+}$. It is obvious by the definition of $\theta^{\varepsilon}(\ell)$ that $\operatorname{ker}\left(\mu^{+}\right)=\theta^{+}(1) \cup \theta^{+}(2)$.

Corollary 1 Let Λ^{+}be the restriction of $\tilde{\Lambda}$ on θ_{2}^{+}. Then, $\mu^{+}=\Lambda^{+}$.

Proof. From Kirchheimer [5 ; 2.9], we know that

$$
\begin{aligned}
& \Lambda^{+}(J)=1, \\
& \Lambda^{+}\left(T_{W}\right)=-1, \\
& \Lambda^{+}\left(U_{V}\right)=(-1)^{\left(1+A_{V}+D_{V}\right)\left(1+B_{V}+C_{V}\right)+A_{V} D_{V}} .
\end{aligned}
$$

Since $\left(1+A_{V}+D_{V}\right)\left(1+B_{V}+C_{V}\right)+A_{V} D_{V} \equiv A_{V} B_{V}+B_{V} C_{V}+C_{V} D_{V}(\bmod 2)$ for $V \in G L(2, Z)$, we get our assertion by Theorem.

Corollary $2 \operatorname{ker}\left(\mu^{+}\right)=\Gamma_{2}(2) \theta_{2}{ }^{\prime}$.

Proof. From Theorem 2, we have that $\operatorname{ker}\left(\mu^{+}\right) \supset \Gamma_{2}(2)$ and by Corollary 1 we see that $\operatorname{ker}\left(\mu^{+}\right) \supset \theta_{2}{ }^{\prime}$. Hence,

$$
\theta_{2}^{+} \geqslant \operatorname{ker}\left(\mu^{+}\right) \supset \Gamma_{2}(2) \theta_{2}^{\prime}
$$

On the other hand, from Remark in the end of Section 2, it holds that $\left(\theta_{2}^{+}: \Gamma_{2}(2) \theta_{2}^{\prime}\right)=2$: Therefore we obtain $\operatorname{ker}\left(\mu^{+}\right)=\Gamma_{2}(2) \theta_{2}^{\prime}$.
4. Construction of another character of θ_{2}

In this section we shall construct a character of θ_{2} of order 2 , by means of μ^{+}given as Section 3. For $\sigma \in \theta_{2}$ and $M \in M(4, z)$, put

$$
\begin{aligned}
& \Phi(\sigma)=A_{\sigma}+B_{\sigma}+C_{\sigma}+D_{\sigma}, \\
& \Phi_{0}(\sigma)=A_{\sigma}+C_{\sigma}, \\
& \phi(M)=(-1){ }^{B_{M}+C_{M}+B_{M} C_{M}} \\
& \mu(\sigma)= \begin{cases}\phi\left(\Phi_{0}(\sigma)\right) & \text { if } \overline{\phi(\sigma)}=0, \\
\phi(\Phi(\sigma)) & \text { otherwise. }\end{cases}
\end{aligned}
$$

Theorem $3 \quad \mu$ is a character of θ of order 2 and $\mu \neq \lambda_{2}, \Lambda$.

Proof. We first note that

$$
\mu(J \sigma)=\mu(\sigma J)=\mu\left(J_{1} \sigma\right)=\mu\left(\sigma J_{1}\right)=\mu(\sigma)
$$

for all $\sigma \in \theta_{2}$. In fact,

$$
\begin{aligned}
& J \sigma=\left(\begin{array}{rr}
C_{\sigma} & D_{\sigma} \\
-A_{\sigma} & -B_{\sigma}
\end{array}\right), \quad \sigma J=\left(\begin{array}{rr}
-B_{\sigma} & A_{\sigma} \\
-D_{\sigma} & C_{\sigma}
\end{array}\right) ; \\
& J_{1} \sigma=\left(\begin{array}{rrrr}
a_{11} & a_{12} & b_{11} & b_{12} \\
c_{21} & c_{22} & d_{21} & d_{22} \\
c_{11} & c_{12} & d_{11} & d_{12} \\
-a_{21} & -a_{22} & -b_{21} & -b_{22}
\end{array}\right),
\end{aligned}
$$

$$
\sigma J_{1}=\left(\begin{array}{llll}
a_{11} & -b_{12} & b_{11} & a_{12} \\
a_{21} & -b_{22} & b_{12} & a_{22} \\
c_{11} & -d_{12} & d_{11} & c_{12} \\
c_{21} & -d_{22} & d_{12} & c_{22}
\end{array}\right)
$$

where $a_{i j}, b_{i j}, c_{i j}, d_{i j}$ denote (i, j)-component of A_{σ}, B_{σ}, C_{σ}, D_{σ}, respectively. Hence

$$
\begin{aligned}
& \overline{\Phi(J \sigma)}=\overline{\Phi(\sigma J)}=\overline{\Phi\left(J_{1} \sigma\right)}=\overline{\Phi\left(\sigma J_{1}\right)}=\overline{\Phi(\sigma)}, \\
& \overline{\Phi_{0}(J \sigma)}=\overline{\Phi_{0}\left(J_{1} \sigma\right)}=\overline{\Phi_{0}(\sigma)} .
\end{aligned}
$$

Therefore $\mu(J \sigma)=\mu\left(J_{1} \sigma\right)=\mu(\sigma)$ for all $\sigma \in \theta_{2}$ and $\mu(\sigma J)=$ $\mu\left(\sigma J_{1}\right)=\mu(\sigma)$ if $\sigma \in \theta_{2}$ and $\overline{\Phi(\sigma)} \neq 0_{2}$. If $\overline{\Phi(\sigma)}=0_{2}$, then $\bar{A}_{\sigma}+\bar{C}_{\sigma}=\bar{B}_{\sigma}+\bar{D}_{\sigma}$. Hence $\overline{\Phi_{0}(\sigma J)}=\overline{\Phi_{0}(\sigma)}$: Therefore $\mu(\sigma J)=$
$\mu(\sigma)$ if $\overline{\Phi(\sigma)}=0_{2}$, hence for all $\sigma \in \theta_{2}$. We also see that $\Phi_{0}\left(J_{1}\right)=\binom{a_{11}+c_{11} b_{12}+d_{12}}{a_{21}+c_{21} \quad b_{22}+d_{22}} \quad$ and $\quad a_{i j}+c_{i j} \equiv b_{i j}+d_{i j}(\bmod 2)$.

Therefore .. $\overline{\Phi_{0}\left(\sigma J_{1}\right)}=\overline{\Phi_{0}(\sigma)}$. Thus $\mu\left(\sigma J_{1}\right)=\mu(\sigma)$ if $\overline{\Phi(\sigma)}=0_{2}$, hence for all $\sigma \in \Theta_{2}$. Next, we show that both functions of μ and μ^{+}take the same values on Θ_{2}^{+}. To prove this, it is sufficient to show for all elements of $U \Gamma_{2}(2) \cup \theta^{2,1}$, because $\mu(J \sigma)=\mu(\sigma J)$ $=\mu(\sigma)$. Let $\sigma \in \theta^{2,1}$. Then $\overline{\Phi(\sigma)}=\overline{\mathrm{A}}_{\sigma}+\overline{\mathrm{A}}_{\sigma}{ }^{*}+\overline{\mathrm{WA}}_{\sigma}$.

Therefore

$$
\bar{\Phi}(\bar{\sigma})= \begin{cases}\bar{W} & \text { if } \bar{A}_{\sigma}=1_{2}, \\ 1_{2} & \text { if } \bar{A}_{\sigma}=\bar{W}, \\ e_{22} & \text { if } \bar{A}_{\sigma}=\bar{T}, \\ e_{11} & \text { if } \bar{A}_{\sigma}=t_{\bar{T}}, \\ e_{21} & \text { if } \bar{A}_{\sigma}=\overline{T W}, \\ e_{12} & \text { if } \bar{A}_{\sigma}=\overline{W T},\end{cases}
$$

where $e_{i j}$ denotes the matrix of $M\left(2, F_{2}\right)$ whose (i,j)-component is equal to 1 and otherwise 0 , and $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Thus, we have

$$
\mu(\sigma)=\left\{\begin{array}{cl}
1 & \text { if } \bar{A}_{\sigma}=\bar{W}, \bar{T} \text { or }{ }^{\mathrm{T}_{\bar{T}}}, \\
-1 & \text { if } \overline{\mathrm{A}}_{\sigma}=1_{2}, \overline{\mathrm{TW}} \text { or } \overline{W T} .
\end{array}\right.
$$

On the other hand,

$$
\mu^{+}(\sigma)=\eta\left(W A_{\sigma}\right)=-\eta\left(A_{\sigma}\right),
$$

and

$$
\eta(M)=\left\{\begin{array}{cl}
1 & \text { if }: \bar{M}=1_{2}, \bar{T} \bar{W} \text { or } \bar{W} \bar{T}, \\
-1 & \text { if }: \bar{M}=\bar{W}, \bar{T} \text { or } t_{\bar{T}} .
\end{array}\right.
$$

Therefore we obtain that $\mu(\sigma)=\mu^{+}(\sigma)$ for all $\sigma \in \theta^{2,1}$. Let $\sigma \in U \Gamma_{2}(2)$. Then, $\overline{\Phi(\sigma)}=\overline{\mathrm{A}}_{\sigma}+\overline{\mathrm{A}}_{\sigma}{ }^{\star}$. We observe that $\overline{\Phi(\sigma)}=0_{2}$ if and only if $\bar{A}_{\sigma}=1_{2}$ or \bar{W}. Assume that $\overline{\Phi(\sigma)} \neq 0_{2}$. Then

$$
\overline{\Phi(\sigma)}= \begin{cases}e_{21} & \text { if } \bar{A}_{\sigma}=\bar{T} \\ e_{12} & \text { if } \bar{A}_{\sigma}=\mathrm{t}_{\overline{\mathrm{T}}} \\ e_{11} & \text { if } \bar{A}_{\sigma}=\overline{\mathrm{TW}}, \\ e_{22} & \text { if } \bar{A}_{\sigma}=\overline{\mathrm{WT}},\end{cases}
$$

Thus, we have

$$
\mu(\sigma)=\left\{\begin{array}{cl}
1 & \text { if } \bar{A}_{\sigma}=\overline{T W} \text { or } \overline{W T}, \\
-1 & \text { if } \bar{A}=\bar{T} \text { or } t_{\bar{T}} .
\end{array}\right.
$$

On the other hand,

$$
\mu^{+}(\sigma)=\left\{\begin{array}{cl}
1 & \text { if } \bar{A}_{\sigma}=\overline{T W} \text { or } \overline{W T}, \\
-1 & \text { if } \bar{A}_{\sigma}=\bar{T} \text { or } t_{\bar{T}},
\end{array}\right.
$$

since $\mu^{+}(\sigma)=\eta\left(A_{\sigma}\right)$. Assume $\overline{\Phi(\sigma)}=0_{2}$. Then $\overline{\Phi_{0}(\sigma)}=\bar{A}_{\sigma}$.

Hence

$$
\mu(\sigma)=\left\{\begin{array}{cl}
1 & \text { if } \bar{A}_{\sigma}=1_{2}, \\
-1 & \text { if } \bar{A}_{\sigma}=\bar{W} .
\end{array}\right.
$$

Therefore $\mu(\sigma)=\mu^{+}(\sigma)$ since $\mu^{+}(\sigma)=\eta\left(A_{\sigma}\right)$. Thus, we can show that $\mu(\sigma)=\mu^{+}(\sigma)$ for all $\sigma \in \Theta_{2}^{+}$. So, we are going to prove that μ is a character of θ_{2}. Let $\sigma, \tau \in \theta_{2}$. If $\sigma, \tau \in \Theta_{2}^{+}$, then it is clear by the fact just proved above. If $\sigma \notin \theta_{2}^{+}, \tau \in \theta_{2}^{+}$, then there exists an element ρ of θ_{2}^{+}such that $\sigma=J_{1} \rho$. Hence $\mu(\sigma \tau)=\mu\left(J_{1} \rho \tau\right)=\mu(\rho \tau)=\mu(\rho) \mu(\tau)=$
$\mu\left(J_{1} \rho\right) \mu(\tau)=\mu(\sigma) \mu(\tau)$. We also see that $\mu(\tau \sigma)=\mu\left(\tau J_{1} \rho\right)=$ $\mu\left(J_{1} \tau J_{1} \rho\right)=\mu\left(J_{1} \tau J_{1}\right) \mu(\rho)=\mu(\tau) \mu(\rho)=\mu(\tau) \mu\left(J_{1} \rho\right)=\mu(\tau) \mu(\sigma)$.

If $\sigma, \tau \notin \Theta_{2}^{+}$, then there exist two elements ρ, ζ of Θ_{2}^{+}
such that $\sigma=J_{1} \rho$ and $\tau=J_{1} \zeta$. Then, $\mu(\sigma \tau)=\mu\left(J_{1} \rho J_{1} \zeta\right)$
$=\mu\left(J_{1} \rho J_{1}\right) \mu(\zeta)=\mu\left(J_{1} \rho\right) \mu\left(J_{1} \zeta\right)=\mu(\sigma) \mu(\tau)$. Thus, we verify that μ is a character of θ_{2}^{+}. Finally, we see that $\mu\left(U_{W}\right)=-1$, because $\overline{\Phi\left(U_{W}\right)}=0_{2}$ and $\overline{\Phi_{0}\left(U_{W}\right)}=\bar{W}$. Therefore, the order of μ is equal to 2 . It is aiso seen that $\mu\left(J_{1}\right)=1$, since $\overline{\Phi\left(J_{1}\right)}=0_{2}$ and $\overline{\Phi_{0}\left(J_{1}\right)}=1_{2}$. This shows that $\mu \neq \lambda_{2}, \Lambda^{+}$.
5. Application to modular imbeddings

In this section we investigate the relations between the characters of theta group Θ_{2} and modular imbeddings for certain real quadratic fields, which Hammond has introduced in [4] . Let p be a rational prime number and $p \equiv 1(\bmod 4)$. Then, we can find an odd integer u and an even integer v such that $u^{2}+v^{2}=p$. Now, we consider the Hilbert modular group, which acts on H_{1}^{2}, over the real quadratic field $Q(\sqrt{p})$. Put $F=Q(\sqrt{P})$ and denote by o the ring of integers of F. We use the notation $S L(2, R)$ in stead of $S_{p}(2, R)$ for a ring R. Put:

$$
\Delta=\left(\begin{array}{rr}
u & v \\
v & -u
\end{array}\right)
$$

For $\alpha, \epsilon^{\prime} F$ and $g \in S L(2, F)$, put

$$
\begin{array}{ll}
\xi(\alpha)=a 1_{2}+b \Delta & (\alpha=a+b \sqrt{p}) \\
\Xi(g)=\left(\begin{array}{ll}
\xi\left(A_{g}\right) & \xi\left(B_{g}\right) \\
\xi\left(C_{g}\right) & \xi\left(D_{g}\right)
\end{array}\right) &
\end{array}
$$

Then, from Hammond [4], there exists a holomorphic imbedding E of: $\mathrm{H}_{1}{ }^{2}$ into H_{2}. such that (Ξ, E) becomes a modular imbedding for F, that is, Ξ is a homomorphism of $S L(2, F)$ into $S_{p}(4, Q)$ satisfyning

$$
\begin{aligned}
& E(S L(2,0)) \subset \Gamma_{2}, \\
& E(g)(E(z))=E(g(z)), \\
& j(E(g), E(z))=\left(C_{g} z_{1}+D_{g}\right)\left(C_{g}^{\prime} z_{2}+D_{g} \prime\right)
\end{aligned}
$$

where $g \in S L(2,0), \quad z=\left(z_{1}, z_{2}\right) \in H_{1}{ }^{2}$ and $\alpha^{\prime}=a-b \sqrt{p}$ for $\alpha=a+b \sqrt{p} \in F$.

We consider the case when $p \equiv 1(\bmod 8)$. Then, from [6], we know that $\Xi(\operatorname{SL}(2,0)) \subset \rho \theta_{2} \rho^{-1}$, where $\rho=\left(\begin{array}{cc}{ }^{1} 2 & { }^{1} 2 \\ K^{-1} & K\end{array}\right)$ with $K=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$.

Remark. $\rho \theta_{2} \rho^{-1}$ is the subgroup of Γ_{2} consisting of all elements leaving the characteristic $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ of theta function invariant. In general, put

$$
\begin{aligned}
& k_{n}=\left(\begin{array}{ll}
1_{n} & 1_{n} \\
1{ }_{n} & 0_{n}
\end{array}\right), \\
& \rho_{n}=\left(\begin{array}{cc}
1_{2 n} & 1_{2 n} \\
k_{n}^{-1} & K_{n}
\end{array}\right), \\
& m_{0}=(0, \cdots, 0) \in R^{4 n}, \\
& m_{1}=\left(\frac{1}{2}, \cdots, \frac{1}{2}\right) \in R^{4 n},
\end{aligned}
$$

Then $\rho_{n} \in \Gamma_{2 n}$ and ρ_{n} maps m_{0} to m_{1}, under the transformation formular among the characteristics of theta functions of degree 2 n .

Theorem 4 Let μ be the real characteh of Θ_{2} as in Section 4 . Then

$$
\Xi(\operatorname{SL}(2,0)) \subset \rho(\operatorname{ker}(\mu)) \rho^{-1}
$$

Proof. We can easily see the following :

$$
\begin{aligned}
& A_{\rho}^{A} \equiv(g) \rho=K \xi\left(A_{g}\right)+K \xi\left(B_{g}\right) K^{-1}-\xi\left(C_{g}\right)-\xi\left(D_{g}\right) K^{-1}, \\
& B_{\rho^{-1} E(g) \rho}=K \xi\left(A_{g}\right)+K \xi\left(B_{g}\right) K-\xi\left(C_{g}\right)-\xi\left(D_{g}\right) K,
\end{aligned}
$$

(\#)

$$
\begin{aligned}
& C_{\rho}^{-1} E(g) \rho=-K^{-1} \xi\left(A_{g}\right)-K^{-1} \xi\left(B_{g}\right) K^{-1}+\xi\left(C_{g}\right)+\xi\left(D_{g}\right) K^{-1}, \\
& D_{\rho}^{-1} \Xi(g) \rho=-K^{-1} \xi\left(A_{g}\right)-K^{-1} \xi\left(B_{g}\right) K+\xi\left(C_{g}\right)+\xi\left(D_{g}\right) K .
\end{aligned}
$$

Hence by direct calculation we obtain that $\overline{\Phi\left(\rho^{-1} \Xi(g) \rho\right)}=\overline{\xi\left(B_{q}\right)}$ and $\overline{\Phi_{0}\left(\rho^{-1} \Xi(g) \rho\right)}=\overline{\xi\left(A_{g}\right)}+\overline{\xi\left(B_{g}\right) K^{-1}}$. Therefore $\overline{\Phi_{0}\left(\rho^{-1} \Xi(g) \rho\right)}$ $=\overline{\xi\left(A_{g}\right)}$ if $\overline{\Phi\left(\rho^{-1} \Xi(g) \rho\right)}=0_{2}$. Thus, we have that $\mu(\equiv(g))=$ $\phi\left(\xi\left(A_{g}\right)\right)$ or $\phi\left(\xi\left(B_{g}\right)\right)$. On the other hand, we observe that $\phi(\xi(\alpha))=1$ for all $\alpha \in \circ$, because $v \equiv 0(\bmod 4)($ see $[7$, Lemma in 52]. This shows that $\mu(\Xi(g))=1$ for all $g \in \operatorname{SL}(2,0)$. Then $\rho^{-1} \Xi(S L(2,0)) \rho \subset \operatorname{ker}(\mu)$, hence our assertion is proved. We can prove naturally the following fact.

Proposition 2 ([7, Proposition 2]) For all $g \in \operatorname{SL}(2,0)$

$$
\lambda_{2}\left(\rho^{-1} \Xi(g) \rho\right)=(-1)^{T r_{F} / Q}\left(A_{g} B_{g}+B_{g} C_{g}+C_{g} D_{g}\right),
$$

where $\operatorname{Tr}_{F / Q}(\alpha)$ means the trace of an element α of F over Q.

Proof. BY (\#), we see that

$$
\begin{aligned}
& \operatorname{tr}\left({ }^{t} C_{\rho} \rho^{-1} E(g) \rho \rho^{B} \rho^{-1} E(g) \rho\right. \\
& \equiv \operatorname{tr}\left(\xi\left(A_{g}{ }^{2}+A_{g} C_{g}+C_{g}{ }^{2}\right)\right) \\
&+\operatorname{tr}\left(\xi\left(B_{g}{ }^{2}+B_{g} C_{g}+D_{g}{ }^{2}\right)\right) \\
&+\operatorname{tr}\left(\xi\left(A_{g} B_{g}+C_{g} D_{g}\right)\right) \\
&+\operatorname{tr}\left(\left(K^{-1} \xi\left(B_{g}\right) K^{-1}+K \xi\left(B_{g}\right) K\right) \xi\left(C_{g}\right)\right) .
\end{aligned}
$$

Then, by $[7$, Lemma 1$]$, this is congruent to $\operatorname{tr}\left(\xi\left(A_{g}{ }_{g}{ }^{+}{ }^{B}{ }_{g} C_{g}+C_{g}{ }_{g}\right)\right.$ modulo 2 .

References

1. Bass,H., Milnor,J., Serre,J.-P. : Solution of the congruence subgroup problem for $S L_{n}(n \geq 3)$ and $S_{p 2 n}(n \geq 2)$. Inst. Etud. sci.,Publ.math. 33, 59-137(1967)
2. Eichler, M. : Einführung in die Theorie der algebraischen Zahlen und Funktionen. Basel-Stuttgart : Birkhäuser Verlag 1963
3. Endres,R. : Multiplikatorsysteme der symplektischen Thetagruppe. Monatsh.Math. 94, 281-297(1982)
4. Hammond,W.F. : The modular groups of Hilbert and Siegel. Amer.J. Math. 88, 497-516(1966)
5. Kirchheimer,F.:Zur Bestimmung der linear Charaktere symplektischer Hauptkongruenzgruppen. Math.z. 150, 135-140(1976)
6. Naganuma, H : Remarks on the modular imbedding of Hammond. Japan. J.Math. 10, 379-387(1984)
7. Naganuma,H.:On the character of order four attached to Hammond's modular imbedding over real quadratic fields. Mem.Fac.Sci.Kochi Univ. (Math.) 9, 65-70(1988)
8. Reiner,I. : Real linear characters of the symplectic modular groups. Proc.Amer.math.Soc. 6, 987-990(1955)

Department of Mathematics
Faculty of Science
Kochi University
Akebono-cho 2-5-1
Kochi 780 Japan
and Max-Plank-Institut
für Mathematik
Gottfried-Claren-Strasse 26
D-5300 Bonn 3
Bundesrepublik Deutschland

