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REAL LINEAR CHARACTERS OF THETA GROUPS

AND MODULAR IMBEDDINGS FOR REAL QUADRATIC FIELDS

By Hidehisa NAGANUMA

1. Introduction

Let n be a positive integer and n ~ 2 . In this paper

we consider the· theta subgroup 8n ,.of Siegel modular group f n

of degree n, which acts on the generalized Siegel upper half

.~space Hn by the usual way. In [ 3:J, Endres investigated the

multiplier systems of o nnd proved that
n

e /8 1

n n
Si { Z/4Z

Z/4Z x Z/2Z
if n = 2
if n;;;: 3

where G~ rneans the comrnutator subgroup of group G. From

this, we see that e2 has three subgroups of index 2 and on

has only one subgroup of index 2 if n ~ 3 . The rnain purpose

of this paper is to determine all subgroups of
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which is equivalent to describe all linear characters of on

Now we define the standard theta series Sn of degree n by

Then we have the character An of e of order 2 given byn

( a € 0 ),
n

where j(a,Z) is the standard automorphic factor of r n on Hn .

Therefore ker( An is the unique subgroup of on of index 2

if n ~ 3 . In the case n=2, we remerober the fact that r 2 / r2 1

; Z/2Z (see Reiner [ 8 ] ). Hence there exists uniquely the

character of r 2 of order 2. We denote it by A. Since 02 ~ r 2 ',

-the restrietion A of A on 82 is different from A2 • This

implies that {H H is a subgroup of 02 and (0 2 :H) = 2 } =

{ ker( An ), ker( A ), ker( A2A ) } . Thus, our problem is stated

as follows. We should give explicit formulas of the values of An

A and A2A for each element of o , apriori, which have alreadyn

given for each generator of 8n see Endres [ 3 ] and Kirchheimer

[ 5 ]. We shall anser this problem in Section 2 for

- 2 -

A and inn



Section 4 for A
2

A. As its application, we can see the connection

with modular imbeddings over real quadratic fields, which 1s

introduced by Hammond [ 4 ]. We shall show in Section 5 that

Hilbert modular groups over certain real quadratic fields can be

imbeded into ker( A2A ), which is more sharp than the result of

[ 6 l, where we did into a conjugate group 9 f 82 .

Notations. For a commutative ring R with identity element,

we denote by ,M(n,R) the ring of all nxn-matrices with entries

in Rand by GL(n,R) the group of all invertible elements. The

identity element and the zero element of M(n,R) are denoted by

1 and On , respectively. For each element 0' of M(2n,R)
n

we write Aa = A , Ba = B , Ca = C and Da = D if 0' = ( ~ ~ )

and A,B,C,D E: M(n,R). We denote by t A the transposed matrix

of A for A E: M(n,R), and put A* = t A-1 for A E GL(n,R). We

also put J(n) =( _~n 6n ")~= ;...Sp.( 2n, R) . = {AEM (2n, R) ItAJ (n) A = J (n) } ,
n n

and SMO(n,R) = { A E M(n,R) I t A = A and all diagonal elements of

Aare even }. diag(a
1
,a2 ,---,an , denotes the diagonal matrix

whose (i,i)-component is equal to a.
~

for each i . For a matrix
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A, we denote by tr(A) and det(A) the trace and determinant,

respectively, of A.· Finally, we use the notations Z , Q and

R for the ring of rational integers, the field of rational nurnbers

and the field of real nurnbers, respectively.
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2. Linear characters given by e
n

Let n be a positive integer and n ~ 2. As usual, we

f n = Sp (2n, Z) .,

S { f
n I t A C t B D 0 }= 0 E E SM (n, Z) ,

n o 0' o 0

Hn = { X+iY X, Y€M (n ,.R) and Y 1s positive definite } ,

We let every element 0 of f n , hence Sn' act on Hn by

Then we have the theta multiplier system vn of degree n given

by

It is weIl known that
. 8

v (0) = 1
n for all elements

Thus, we get two characters An and o of ordern 2 and

4 , respectively, if we put for each element 0 of en

4= \) (0)
n
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Theorem 1

Proof. Put

for all elements aE0n

for each element a of Gn
Then we see that X is a character

of Gn
In fact, since for a,T € Gn

we have

c = C A + D C
OT 0 TOT ,

= tr(B t A t c A ) + tr(D t A t c B )
T T 0 0 T T 0 0

+ tr(B t c t D A ) + tr(D t c t D B )
T- T cr 0 T T 0 0

Since t D B O(E SM n,Z), we see thato 0

tr(tc B ) _ tr(D t A t c B ) + tr(B t c t D A )
OT OT _ T T 0 0 T T 0 0

(mod 2),

because tr(XY) = 0 (mod 2) for oX,Y E SM (n,Z). Thus,we obtain

Hence, X is a character of Gn .
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Now we know that on is generated by the following elements

( see Eichler' [ 2 ] )

Uv = (:n :~)
TS = (~: ~J

( V E GL{n,Z) .),

°{ S E SM (n, Z) : ) ,

1 _E{n) )
n k

E{n)
k

(k=O,1,2,···,n-1) ,

where E~n) = diag(1,···,1,O,···,O) with k-times 1 . It is

easily shown by the definition of X that

X{UV) = X(TS) = 1

X(J~n)) = (_1)n-k

V E GL (n , Z), S' E SMO (n, Z ) ),

k = O,1,2,···,n-1 ).

On the other hand, from Endres [ 3 ]

V E GL(n,Z), S E SMO(n,Z) ),

A(J(n)) = (_1)n-k (k = O,1,2, ••• ,n-1 ).
k

Therefore . X = A •

We denote by e+ 0
n' n and r (2)

n
the kernel of

cornmutator subgroup of 0n and the principal congruence subgroup

of level 2 which is defined by

r (2) = { a E r I A -1 - Ba :: Ca - D -1 - On (mod 2) }.n non cr n
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It 1s easily seen that these three groups are normal subgroups

of en
We have the following diagram

e
n

r (2) e I
n n

e I

n

by Theorem 1 , in general and

e' is a congruence subgroup of level 4 ( see Endres [ 3,n

Lemma 2.2 ] ).

Corollary If n ~ 3, then e+ = r (2) e 'n n n.

see that e I

n = 2 Hence ( e+
n

the reason why r (2)0 I
n n o 'n

> 1

= 2 •

Remark .. If n = 2 , then we see that

We shall diseuss the character of of order 2 whose

kernel coincides with r (2)0· I
2' 2 in Section 3.
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3. Restrietion of -A on

+In this section we shall construct areal character of" 8 2 '

whicp coincides with the restrietion of Ä on 8; . For this

purpose, we introduce several definitions and notations as foliows.

For each matrix M of M(2,Z), we define M' and W(M) by

M= M mod 2

if M= 0,
otherwise.

Put

for a E M(4,Z). It is obvious that 0 ~ ~(a) ~ 2 for a E GL(4,Z).

So,we define 8(2) by

We write

8(9..) = { (J € 8
2

I ~(a) = 2 } (2=0,1,2) .

and put

= Ca ,

Then it 1s clear that

8i ,j = { (J € 8(1) I (Jij = 0 }.

o(1 ) = U 2 U 2 8 i ,j
1=1 j=1

and these sums are disjoint. For a- subset X of 82 ' put
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x = Xr 2 (2)/r 2 (2) .

We define U by

U = { Uv I v E: GL(2,Z) }

and put

J J (2) , W
0 1 ) J 1

J(2)= = 1 0
, = 1

Lemma 1 ( 1 ) 8(2) = Urz (2) U JUr 2 (2) ,

(2 ) 8 ( 1 ) = J8(2) U JTw8(2) U T~8(2) 'u JT
W

J8(2)

8(0) = J 18(1) u J 18(Z,

and these sums are disjoint.

(2) I GlOTI = 36 , I enT 1 = 24 , 8T2T = 12 .

Proof. (1) If a E 8(2), then it roust be that

Hence we have 8(2) = Ur 2 (2) U JUr 2 (2) . It is easily seen that

0 1 ,1 = JT
W

0(Z)

8 2 ,1 = T 0(2)
W

This implies second equality. Since J 1 E: 8(0) and J 10 E 0(0)

for all a -E e (1) U e (2) , we get J 18 ( 1) U J 1e (2) c:: e (0) . On
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the other hand, we see that [812T1 = 12 since lul = 6. Hence

161TT1 = 24 and IJ18(1) U J 18(2) I = 36 • It i5 weIl known that

Thus we have 181OT1 = 36 • Hence 8TOf = J 18(1)UJ18(2). This

implies third equality. (2) We have shown in the proof of (1).

Proposition 1 (1) 8; = 8(1) U 8(2) .

+
(2) 82 is generated by

Proof. (1 ) As stated in the proof of Lemma 1 , 18~1 = 72 .
"-

Hence 18;1 = 36 . On the other hand, from Theorem 1 , we see

that e (1 ) U 8(2) c e+ . Therefore, by Lemma 1-. (2) , we get our2

assertion. (2) It is obtained by the fact that

c {w} U r 2 (2) •

For each matrix M of M(2,Z), put

AMBM + BMCM + CMDMn(M) = (-1)

*We note that n gives a character on GL(2,Z) and n(M) = n(M )

for M E GL(2,Z). Moreover n gives a homornorphisrn as rnonoid of

{ 02 } U { M E M (2, Z) I det (M) == 1 (mod 2) } to {1, -1 }. Now we
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define n
2 and + byn 1 ' lJ

n1 (a) = n(Aa)n(Ba)n(Ca)n(Da ) a E 8 ( 1) ) ,

n2 (a) = n (Aa ) n (Ba) ( a € 8(2) ) ,

and put

eE
(~) = { a E 8(R.) 1 nR.,(a) = E1 }

for E E {+,-}.

Theorem 2 +
1.I is a character of e+ of order 2

2
and

Proof. Let us start to define a subset H of 0~ by

H = { T E 0; I lJ+ (Ta) =
+for all a€8 }.

Then H becomes a subgroup of e+ (.see Bass~Milnor-Setre [ 1,

Lemma 9.1 ] • In order to prove +H = e , it 1s enough to show

that r 2 (2) U { J, TW } U U c H from Proposition 1-(2). We note

that

( V E GL (2 I Z) )

+
1.I (J) = 1 I
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+lJ (0) = 1

n (W) = -1 .

It is clear that r 2 (2) eH. Let 0 E e(~). Then Ja , Uv E e(~).

In fact, it is obvious frorn that

= (V~a ~a)
V C V D 'a a

At the same time, we have.

+ +l.l (Ja) = l.l (a)

~entioned above, we obtain

+ + + +
l.l ( J °) = l.l ( J) l.l ( 0 ) , l.l (Uvo ) = l.l ( 0 )

for all ° E e+ • Next we shall show that2 If a E 8(2),

then we see that TW E 8(1). Therefore there exist V E GL(2,Zr

such that

v* }

and +
l.l (TW ) = n(WV) = n(W)n(V) = -n(V);

This irnplies that

a E 8(1), then there exists V E GL(2,Z) such that
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{ Aa '. Ba ' Ca ' Da } = { 02 ' V ; v* , WV J ·

Hence +
~ (a) = n(WV) = n(W)n(V) = -n(V). Assurne that a E ei,j

Then we have

(i=j)

(i*j) .

This implies that +
~ (Twa) = n(V) . Therefore

Thus we obtain that for all a E 8(1)~

since +
~ (Tw) = -1 . Therefore we can get that

for all cr E e+ • Hence
2 TW EH. Thus It is obvious by

Corollary 1

h 11 + -- A+T en, I-'

Let be the restrietion of A on

Proof. From Kirchheimer 5 , 2.9 J, we know that

/\+( J ) = 1 ,

= -1 ,

V E GL(2,Z), we get our assertion by Theorem.
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Corollary 2 +ker(lJ ) = r (2)8 I
2 2

Proof. From Theorem 2, we have that +ker(lJ ) ::> r 2 (2) and

by Corollary 1 we see that

On the other hand, from Remark in the end of Section 2, it helds

that Therefere we ebtain
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4. Construction of another character of e2

In this sectien we shall construct a character of e2 of

order 2 , by means of +
lJ given as Section 3. Per a E 8 2 and

M E M(4,Z), put

<P (a) = A a + B + C + D
a a a

~ 0 (a) = A a + Ca

B + CM + BMCM
cf> (M) = (_,) M

__ {cf> (<PO (a»)
lJ(a)

cf>(<P(a»

i f <ii'l"'OT = 0 ,

otherwise.

Theorem 3 lJ is a character of e of order 2 and

lJ * .A 2 ' A •

Proof. We first note that

lJ(Ja) = lJ(aJ) = lJ(J,a) = lJ(aJ,) = lJ(a)

for all a E 8 2 . In fact,

( Co Da ) (-B A)Ja = oJ = -D: C:-Aa -B
a

a 11 a'2 b" b 12

J 1a
c Z1 c 22 d Z1 d 22

= .d
11 d 12c 11 c 12

-a21 -a22 -bZ1 -b22
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a11 -b 12 b 11 a 12

aJ 1

a 21 -b22 b 12 a 22
= -d12 d 11c 11 C 12

c 21 -d22 d 12 c 22

Ca ' Da ' respectively. Hence

denote (i,j}-component of Ac ' Ba ,

Therefore ~(Jc) = ~(J1a) = ~(a) for all a € 0 2 and ~(cJ) =

if (J € 0
2

Hence Therefore" ~(aJ) =

~(a) if i10T = O2 ' hence for all a € 8 2 . We also see that

(
a 11 + c.11 _.b 12 + d 12 )

~O( J 1 ) = b da 21 + c 21 22 + 22

hence for all a E °2 • Next, we show that both functions of ~

and +
~ take the same values on 8; . To prove this, it is sufficient

to show for all elements of Uf
2

(2) U 0 2 ,1 , because ~(Ja) = ~(aJ)

= ~ (a) • Let (J € 0 2 , 1 . Then
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Therefore

W if A_ = '2c;

'2 if Ac; = W

e 22 if AC; = T
~ =

if AC;
t-e 11 = T

e 21 if A = TWc;

e 12 if AC; = WT

where e ij denotes the matrix of M(2,F2 ) whose (i,j)-component

is equal to 1 and otherwise 0 and T (
, 1 ) Thus, have= 0 1 we

{ 1 if Aa W T
t-

= or T
lJ (a) =

-1 if A = 12 , TW er WT
a

On the other hand,

+ n (WA ) -n (A )lJ ( a) = = ,
a a

and

{ 1 if ;-M = , 2 ' TW or WT
n (M) =

-1 if ::M W T t-
= or -T

Therefere we obtain that lJ (a) + for all 8 2 ,1= lJ (0) a E . Let

~ Aa
- * ~=a E ur 2 (2) · Then, = + Aa . We ebserve that O2

if and only if A = 1 2 or W . Assume that ~* O2 . Thena
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e 21 if Ao = T

if A
O

t-e 12 = T
ilaT =

e 11 if Ao = TW

e 22 if A = WT
0

A
O

= TW er WT

Ao T t-
= or T

Thus, we have

{ 1
~ (0) =

-1

On the ether hand,

{ 1
+

~ (0) =
-1

if

if

if

if

Ao = TW or

= T or
t­

T

Hence

~(o) =
if

if

A cr = 12
,

A = W
(J

~(o)
+ since + n (Ao ) • ·tnus,Therefere = ~ (0) ~ (a) = we can

show that lJ (0) + for all e+ going= lJ (a) 0 E . So, we are ·to
2

prove that ~ is a character of e . Let a, T E e . If2 2

e+
0, T E 2 then it is clear by the fact just proved above. If

o ~ e; , TEe; , then there exists an element p of such

that o = J 1P. Hence

- 19 -



If a , T ~ e; I then there exist two elements P I l; of

~ is a character of e;. Finally, we see that ~(UW) = -1 ,

Therefore, the order of

~ is equal to 2 It is aiso seen that ~(J1) = 1 , since

- 20- .



5. Application to modular imbeddings

In this section we investigate the relations between the

characters of theta group e
2

and modular imbeddings for certain

real quadratic fields, which Hammond has introduced in [4]

Let p be a rational prime number and p = 1 (mod 4) • Then,

we can find an odd integer u and an even integer v such that

u 2
+ v 2 = p. Now, we consider the Hilbert modular group, which

acts on H 2
1 over the real quadratic field Put

F = Q(V~) and denote'by 0 the ring of integers of F. We

use the notation SL(2,R) in stead of Sp(2,R) for a ring R.

Put ..

= ( ~
v

-u )

For Q. E·: :F' and. g E SL (2 ,F), put

~(Ct) = a1 2 + b6 ( Ct = a + bV-P- ),

Then, from Harnmond [ 4 ], there exists a holomorphic iIitbeddirl,g

E of.· H1
2... into . H2 ,' such that (::,E) becomes a modular imbedding

for F, that i5,

!:la:ti.sfyning

is a homomorphism of SL(2,F)

- 2·.1 -



~ (SL (2 , 0) ) c f 2

~(g)(E(z)) = E(g(z))

for a = a +.bY-P- E F .

We consider the case when p - 1 (mod 8). Then, from [ 6 ]

we know that ~(SL(2,o)) c P0 2P-1 , where P

K= (~6).

= ('~ '2\
K 1 K )

with

Remark. -1
pe p

2
is the subgroup of f 2 consisting of all

elements leaving the characteristic

invariant. In general, put

111 1(2'2'2'2) of theta function

K (~n 'n )=n On. ,n

Pn = ('2~ '2n)
K 1 K

n n

=

=

(0, ••• ,0) E R4n

Then Pn E f 2n and Pn maps roo to m1 ' under the transformation

formular among the characteristics of theta functions of degree 2n.
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Theorem 4 Let ~ be the real characteh of e2 as in

Section 4. Then =: (SL (2 ,0) } c p (ker (~) ) p-1

Proof. We can easily see the following :

(# )

D -1
p =:(g}p

=

Thus, we have that ~(::(g}) =

Hence by direct calculation we obtain that

and Therefore

-1
~(p =(g)p) = ~(Bg)

-1 .
epO(p =(g)p)epO(p-1:::(g)p) = E;(A

g
} + E;fB

g
)K- 1

= E;(Ag ) if 4>(p-1::(g)p) = O
2

~(~(Ag» or ~(~(Bg». On the other hand, we observe that

q,(E;(a» = 1 for all a E 0, because v - 0 (mod 4) (see 7,

Lemma in §2 ]. This shows that ~(~(g» = for all g E SL(2,0).

Then P-'::(SL(2,o»p c ker(~) , hence our assertion 1s proved.

We can prove' naturally the following fact.
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Proposition 2 ( [ 7, Proposition 2 ] ) For all g € SL(2,o)

where TrF/Q(a) means the trace of an· element a of F over Q-.

Proof. BY (#) , we see that

t
tr( C -1 B -1 )

p 3(g)p p ~(g)p

_ tr(~(Ag2 + A C + C 2))
g g g

+ tr(~(B 2 + B C + D 2))
g g g g

+ tr(~(A B + CD))g g g g

+ tr ( (K-1 ~ (B ) K-1 + K ~ (B ) K) ~ (C )) •. g g g

Then, by [ 7 , Lemma 1 ] , this i8 congruent to

module 2 .

- 24 -
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