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Abstract

We present an algorithm for the ( black boz) interpolation of t-sparse rational functions
without knowing bounds on exponents of their sparse representations.
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Introduction.

A t-sparse rational function is a function that ean be written aB a quotient of two poly­

nomials, eaeh containing at most t terms. We show in this paper that, if we are given a

blaek box to evaluate a t-sparse rational funetion j with integer coefficients, then one eau

bound the exponents appearing in a t-sparse representation of f by making 2{t + l)t - 1

black box evaluations in the univariate case and O(nt t ) black box evaluations in the

n-variable case. Using this, we also give the first algorithm for interpolation of t-sparse

rational funetions without knowing bounds on expon~nts and show that for fixed t this

problem is in polynomial parallel time (sequential storage). For the corresponding ver­

sions of bounded degree rational interpolation (where the bouud on the degree is part

of the input) see [8 73], [K 86], [KT 88]. Approximative unbounded degree interpola­

tion arises also naturally in the issues of computational learnability of 8parse rational

functions (cf. [KW 89]). Another version of unbounded degree univanate polynomial

interpolation was studied in [BT 89].

To bouud the exponents appearing in some t-sparse representation of a t-sparse ratio­

nal function j(X) of one variable, we will proceed as follows. We consider representations

of j{X) of the form (E:;llLiXQi)/(E:=l biXßi), where the lLi and bi are real numbers and

the Q:i and ßi are non-negative real numbers. Such a function is eal1ed a quaßirational

function. We show that for t-sparse j(X) the 0i and ßi must satisfy a system S of

polynomial equalities and inequalities whose coefficients depend on the value of j(X)

at 2{t + l)t - 1 points. By evaluating the black box for j(X) at these points, we eau

determine trus system. Using the results of [GV 88], we eau bound a real solution of this

system. Using the fact that j{X) is a t-sparse rational funetion, we are then able to

bound an integer solution of Sand this gives our desired bound.

The rest of this paper is organized as follows.

In Section 1 we give a formal definition of quasirational functions and prove some basic

facts about these functions. In Section 2, we describe some elementary properties of left

euelidean rings. An example of such a ring is F[V], where F is the field of quasirational

functions of one variable and V is the operator defined by V(f(X)) = j(pX) for some
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fixed prime p. For this ring, we are able to derive an analogue of the Sylvester matrix

and the resultant. In Section 3 we use this to obtain the system Sand the bound for

the exponents appearing in a t-sparse representation of a t-sparse rational function. In

Section 4 we show how the results of section 3 can be used to obtain abound on the

exponents of a t-sparse rational function of several variables. In Section 5 we describe

an algorithm to interpolate t-sparse rational functions and give complexity bounds.

1. Quasirational Functions.

A fini te SUffi of the form

LCIXI

I

where I = (al, ... ,an), 0 ~ ai E m, Xl = Xfl .... ·X~A, CI E m ia called a qua"ipoly-

nomialof n variables. Denote by m< Xl, ... X n > the ring of quasipolynomials of n

variables.

A ratio of two quasipolynomials is called a quaJirational function. If the number

of terms in the sum ia at most t, we say that the quasipolynomial is t-sparse. If a

quasirational function can be represented as a ratio of two t-sparse quasipolynomials, we

say that it is also t-sparse. We use the expressions "polynomial" or "rational function" in

this usual sense, that is for quasipolynomials or quasirationaJ functions with non-negative

integer exponents in their terms.

We assurne that we are given an n-vanable rational function f with integer coeflicienta

into which we can put points with rational coeflicients. The output of the black box is

either the value of the function at this point or some special sign, e.g. "00", if the

denominator of the irreducible representation of the function vamshes at this point (a

representation f = ulh , U, h E m[X1, ••• , X n ], ia irreducible if 9 and h are relatively

prime). In what follows, we will sometimes obtain in intermediate steps a representation

of a rational function in the form of aquasirational function. Nevertheless, our aim ia

to obtain a representation of a rational function in the usual form, provided that it is

t-sparse.

We will need a zero test for t-sparse rational functions. This is similar to weIl known
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zero tests for t-sparse polynomials (cf. [GK 87], [GKS 88], [BT 88]). Recall that if

M 1 , ••.• , Mt are distinct positive numbers, then any t x t subdeterminant of the (2t -1) x t

matrix (M1h~.~t11~i~2t-1 is non-singular (c.f. [EI 76]).

To test if a t-sparse rational function / is identically zero, use its black box to evaluate

/ at the 2t - 1 points pi = (14, ... ,vin), 1 ~ j ~ 2t - 1, where the Pt, ... ,Pn are distinet

primes. Sinee the black box gives output based on an irreducible representation oI f, we

see that any zero of the denominator oI such a representation is a zero of the denominator

of a t-sparse representation of f. Using the remark about the matrix (Mt) above we see

that the denominator ean vamsh at, at most, t - 1 oI these points. The same eoneerns

the numerator. Therefore, the t-sparse funetion / is not identieally zero if and ooly if

the black box outputs a number different from 0 aod 00 at one oI the points pi.

The next result eoncerns different t-sparse representations of aquasirational funetion

f. This result ean be thought oI as saying that, under suitable hypotheses, two such

representations ean only differ in certain redundant terms that ean be eliminated. If 9

is a quasipolynomial, we denote by ordxi(g) the least power of Xi oeeurring in g. We

eall a representation gl/h1 = / normalized if for each i, 1 ~ i ~ n, min (ordxi (91),

ordxi (h1)) = O. For an arbitrary 91/ h1 , there is a unique monomial M such that

(91/M) / (h1/ M) is normalized. We call the laUer represeotation the normalization oI

91/ h1.

Lemma 1. Assume that 91 / h1 is a t-sparse representation of aquasirational

function and 92/ h2 = 91/ h1 is another t-sparse normalized representation. Let d =

m~ {degxi(9d,degxi (h1)}. We can delete some terms from 92 and h2 obtaining 92,h2,
so that

aod

where 92/ h2 ia the normalization oI 92/ h2 •

PROOF.
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Write

h2 = E h~i)xii
i

(1 (1where ß1 < ß2 < ···,;1< 12 < ... and 0 =j:. 92' E m < X 2, ... ,Xn >,0 =j:. h2
3 E m <

x 2 , •• • , X n >. We can assurne that ß1 = 0 (the argument is similar if f = 0). In this case

we see from 92h1 = h1.91, that f1 ::; d. If ßi+1 - ßi ::; d for eaeh i, then degx
1

92 ::; (t -l)d.

This would imply degx
1

h 2 ::; degx
1

92h1 ::; td and we would be done.

If li+1 - li ::; d for eaeh i, then degx
1

h2 ::; td. This would imply that degx
1

92 ::;

degx1 h291 ::; td + d ::; 2td and we would be done. Therefore we ean aBsume that there is

a minimal number s such that ßio ::; 8 - d < 8 < ßio+1 and lio ::; s - d < s < """io+1 for

suit able io, jo. Since ß = 0 and 11 ::; d, we ha.ve that s ::; (t + l)d ::; 2td.

Let

92 = E g~i)Xfi ,
i5i o

h.. - '"" h(i)X'Yi2-L..t 2 l'
'< '3_30

If one eompares the eoeffieients of Xi, p ::; s, in 92h1 = h 291, oue ean see that 92 h1 = h291

so 92/h2 = 91/h1 •

We now take the normalization 512/h2 of 92/h2 and apply eonsiderations similar to

those above to [12/ h2 with X2 playing the role of Xl' At the end of this proeeS8 we

obtain the normalized representation 92/1,,2' It eorresponds to a pre-normalized 92/h2

that satisfies the eonclusion of the lemma.. 0

Corollary. If, in the above Lemma, we assume 92,h2 E 1R[X1 , ••. ,Xn ] are poly­

nomial, then we ean eonclude that 92, h2 E 1R[X1 , ••• , X n ] as weIl.

We note that in Lemma 1 and its corollary, 92 a.od h,2 are obtained by eliminating

terms of suffieiently high degree and keeping lower order terms in 92 and h2 •

2. Right Euclidean Rings (a digest).

Let F be a field and let V : F+ ----+ P+ be a homomorphism with respeet to the additive

strueture of F. Let F[V] be the aubring of ROM (F+, F+) geoerated by F (aeting on

F+ by multiplieation) and V. We assume that ea.ch element a =j:. 0 from F[V] ean be
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uniquely represented in the form a = EO.:Si.:Sm CtiV where 0i E F and 0m =f=. O. We denote

the integer m by deg(a) and adopt the convention that deg(O) = -00.

We furthermore assurne that for a, b E F[V], deg(ab) = deg(a) + deg(b). This aB­

sumption is equivalent to the statement that for each ° in F there are unique Ob 02 in

F, with 01 i 0, such that V . Ct = 01 V + 02. We can conclude that there exists right

Euclidean division in F[V], that is, for auy a, b E F[V] biO, there enst unique b1 , b2

with deg(b2 ) < deg(b) such that a = b1b+ b2• This leads to a right Euclidean algorithm

and a notion of greatest common right divisor ( gcrd(a, b) ) of two elements a and b, which

can be represented in the fonn gcrd(a, b) = a1 a +b1b for some al, b1 E F[V]. Furthermore

a = aogerd(a, b) and b = bogerd(a, b) for some CLo, bo E F[V].

Let deg(a) = m and deg(b) = k and consider

V(a) = E a~i)vi,
O':sj~m+i

for 0 ::; i ::; k - 1, 0 ::; 1 ::; m - 1.

rY(b) = E b3')vi
O~j.:Sk+'

Let S be the (m +k) X (m + k) matrix whose eolumns eorrespond to the operators

Vl:+m-t, ••• , V 2 , V,1 and whose rows eontain the eoefficients of the operators in P(a),

o::; i ::; k -1 and V'(b), 0 ::; 1 ::; m -1 (8 resembles the Sylvester matrix [VDW 66]; for

differential operators a similar objeet is deseribed in [G 88]). As in [G 88], one ean show:

Lemma 2. deg(gdre(a, b)) = n - rank(S).

In what follows we restriet ourselves to the ease where F is the field of quasirational

funetions in one variable and V is the operator defined by V(XO) = (pX)O, where p is

some fixed prime number. Note that V· f = V(f) .V.

Lemma 3. If f E F and V(f) = f, then f E m.

PROOF. If V(f) = /, then f(X) = f(pX) = f(p2 X) = .... The zero test of section

1 implies that /(X) = f(YX) for a new variable Y. If / = glh let

o::; Ct1 < 02 < . .. 0::; ß1 < ß2 < ... , and a;, bi E m. Since

g(YX)h(X) = g(X)h(YX),
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we ean eonclude, by eomparing eoefficients of the eorresponmng monomials in X and Y,

that (}1 = ß1, (}2 = ß2, ... and CLibj = ajbi for all i,j. Therefore 1 E m. o

Lenuna 4. If Y1, ... ,Yn E F, then Yl, ... ,Yn are linearly dependent over m if and

only if
Yl(Z)
Yl(PZ)

PROOF. If Y1, . .. ,Yn are linearly dependent over m then, clearly, W(Y1"'" Yn) = O.

Now assume that W(Y1"" ,Yn") = O. In this ease there exist 11, . .. ,/n E F, not all zero,

such that

We may assume 11 = 1. Applying V to eaeh of these equations, we have

for i = 1, ... ,n. This implies that

for i = 1, ... ,n -1. Either li - V/i = 0 for i = 2, ... ,n, in which case we are done by

Lemma. 3, or by induetion these exist (}2, ••. , an E m., not all zero, such that a2Vy2 +
... + anVyn = O. Therefore V(a2Y2 + ... + (}Yn) = 0 so a2Y2 + ... + (}nYn = O. 0

Corollary. Let L = L:~=o CLiV with a; E F, not all zero. The dimension of the

Hl-veetorspace of solutions in F of Ly = 0 is at most t.

PROOF. Let Y1, ... , Yt+l be solutions of Ly = O. We then have

i;;~+1 1=0

VtYt+1

Lemma 4 implies that Yl, ... ,Yt+1 are linearly dependent.

7

o



Lemma 5. Let L = L:j=o a/Di with tl.i E m and assume that PL(z) == G.tzt +... +
ao E m(z] has t distinct roots 2:: 1, say pClI, ... ,pClt. Then {XCII, ... ,XCI~} is a base for

the space of solutions of Ly == O. 0

PROOF. One easily sees that L(XCI,) == 0 for i = 1, ... ,t. The functions XCII, ... ,XOt

are linearly independent over m, so by the corollary to Lemma 4 they must be a basis

of the space of solutions. 0

Lenuna 6. Let L be as above and assume that L = L 1· L 2 where L 1 = E;:~ b}1)Vi

and L 2 == Ej=o b~2)Vi with b~i) E F. Then the space of solutions in F of L2(y) == 0 has

dimension s.

PROOF. Let V be the solution space of Ly == O. Hy Lemma 5, this has dit;nension t.

L 2 maps V into the solution space of L 1 , which has dimension at most t - s by Lemma 4.

Therefore the dimension of the solution space of L2y == 0 is at least s and so by Lemma

4, it must equal s. 0

3. Bounding the Exponents of a Sparse Univariate Rational
Function

Lemma 5 in the previous section alIows us to characterize t·sparse quasipolynomials 9

as those quasipolynomials for which there exits an operator of degree t, L == L:j=o aiVi ,

with PL(Z) == ~zt + ... + ao E m[z] having distinct real roots ~ 1, such that Lg == O.

Therefore a t.sparse quasirational function f is a quasirational function for which there

exists a quasipolynomial h and operators of degree t, L1 and L2 as above such that

L 1(h) == 0 and L 2(hf) == O. L 1 (y) and L 2(yf) will therefore have a common solution.

The results of section 2 allow us to eliminate y using the determinant of the Sylvester

matrix. This determinant is a quasirational function and, by evaluating at sufficiently

many points, we obtain (together with the conditions that the Qi,ßi are distinct and 2: 1)

a system of polynomial inequalities that must be satisfied by the exponents appearing in

f. We will then bound a real solution of this system using [GV 88] and, assuming that

f is a umvariate rational function, we ean use Lemma 1 to bound the exponents of f.

We now proceed more formally. Let f == *be a t-sparse quasirational function of one
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variable where 9 = L:~;;;;l ltiXai and h = L:~;;;;l biXßi are t-sparse quasipolynomials. Let

G(z) = Co + Cl Z + ... + zt he the unique monie polynomial whose roots are pa 1 , ••• ,pat

and let H(z) = da + dlz + ... + zt he the unique monie polynomial whose roots are

-J3 -J3 • h t· t· (p 1, ••• ,1' ' ..Conslder t e operators LG = L:i;;;;O c/l)'t and Ln = L:i;;;;o~V where dt =

Ct = 1). We then have LH(h) = 0 and Lc(fh) = O. Therefore Ln(y) = 0 and LG(fy) ­

LG(y) = 0 have a non-zero eommon solution y = h in F (note that the eoefficients of

LG are m-linear eombinations of /, Vf, ... ,1Jl f). Consider the Sylvester matrix S =

S(co, CI,'" ,Ct-I, da, ... ,dt-l' f) of Ln and LG • Hy Lemma 2, det (S) = 0 (note that det

S is a quasirational funetion).

Conversely if det (S) = 0, then Lemma 2 implies that deg(gerd(LH, LG» 2: 1. Since

the coefficients of L H satisfy the hypotheses of Lemma 5 and gcrd(LH , LG ) divides Ln,

L H and LG will have a common non-zero solution ho in F (by Lemma 6.). Lemma 5 then

implies that f is a t-sparse quasirational function because ho and hof are both t-sparse

quasipolynomials, again by Lemma 5. We have therefore proved the following lemma-.

Lenuna 7. Aquasirational function / is t-sparse if and only if there enst real

numbers Co, ... , Ct-l, da, ... ,dt-l such that

(ii) there exist t distinct real numbers ~ 1 that are roots of

G(z) = Co +... + Ct_IZt-1 + zt = 0

and there exist t distinct real numbers ~ 1 that are roots of

H(z) = do + ... + dt_IZ
t
-

t + zt = O.

Now assume that f is a t-sparse rational function whose coefficients are integers. We

see that eaeh entry of S is a t-sparse rational funetion. From the form of the matrix, we

see that det(S) is a (t +l)t sparse rational funetion. Therefore eondition (i) is equivalent

(hy the zero test) to the fact that det(S)x ;;;;p1 is either 00 of 0 for i = 1, ... , 2(t +
l)t - 1 (Pt is any prime). For at least (t + l)t of these points det(S)x;;;;p1 will be zero.

Using the black box, we eRD determine a system of (t + l)t equations in the unknowns
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Co, •.. , Ct-1, da 1 ••• ,dt-1 of degree at most 2t, that is equivalent to the vanishing of det (s)

at these points. Assume the bitsize ofthe values (yielded by the black box) ofVi!(pi), i =

1, ... ,2(t +1Y -1, j = 0, ... ,t is at most M (that is, those that are not 00 and therefore

rational numbers). We then see that the bitsize of each coefficient in this system is at

most O(tln t) + tM.

Furthermore, condition (ii) is equivalent to

(ii ') On 1 ::; z ::; 1 - Ct-1 +Ct-2 - ••• ± Co, the polynomial G( z) = 0 has precisely t roots

and a similar statement holds for H. In addition, the discriminants of G and H

are not zero.

The first sentence of (ii') can be expressed in terms of Sturm sequences. This yields

a system of 2t polynomial inequalities and (by the Habicht subresultant theorem) each

inequality has degree at most 2t and the bitsize of the coefficients is at most O(t In t).

Similar bounds hold for the discriminants.

Therefore, under the assumption that f is a t-sparse rational function with integer

coefficients, we are able to construct a system of polynomial inequalities equivalent to (i)

and (ii) and bound the bitsize of the coefficients of this system. The results of (GV 88]

imply that this system has a solution in a ball of radius exp((M tt~ )0(1) ).

This gives abound on some solution co, ... ,Ct-1, ilo, ... ,dt-1 which gives a t-sparse

quasirational representation of f. The exponents in this representation can be bounded

- - (( t~ )0(1)from these co, ... ,Ct-1, da, ... ,clt-1 also by exp Mt ) since they are raots of the

polynomials G(z) and H(z). By Lemma 2, the exponenta in a t-sparse rational function

representation of f are bounded by a similar number. This bound therefore cau be

explicitly calculated by making 2{t +.1)t - 1 black box evaluations.

4. Bounding the Exponents of a Sparse Multivariate Rational
Function.

Let
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be a normalized representation of the t-sparse rational function j.

Consider the 2t4 + 2t2 + 1 points pi = (~, ... ,~) for 1 ::; j ::; 2t4 + 2t2 + 1. Let

j i(X ) = f(X..J ..J) = L~:;:1 gi(~, ... ,~)Xfi
1 1 , f'2' •.• ,t'n t . . ßi

Li:;:1 hi(~, ... ,~)Xl

Note that there are at most 2t2 points pi for which some gi or hi vaniahes at Pi. We

call these points bad points. For a point Pi that ia not bad, let Di be the bound on the

degree of some normalized t-sparse representation of ji(X1 ). For these points, Lemma 2

allows ia to conclude that there exist t l , t 2 (not necessarily unique) such that

j i(X ) _ L~;I gi(~' ... ,p1JXfi _ gi
I - t2 . . ß· - Jij

Li:;:1 hi(~, .. .,~)XI'
and

To eaeh j eorresponds same pair t}, t 2 • Therefore, at least 2t2 + 1 non-bad points pi

correspond to some pair (lI, [2)' For trus pair (lI, [2) we have that

t t

g(X2 , ••• ,Xn)I: hi (X2 , ••• ,Xn)Xfi - h(XI , ••• ,Xn) I:gi(X2 , ••• ,Xn)Xfi (1)
i:;:l i=l

is zero at these 2t2 +1 points. If we consider (1) as a polynomial in Xl whose eoefficients

are 2t2 sparse polynomials in Xl,'" ,Xn , we see that (1) is identieally zero. This impli~s

that j has a t-sparse representation with degx1 / ~ BI = m~ {2tDi }. We consider
J

this representation and let X 2 play the role of the principal variable. We apply the

same eonstruetion to prove the existenee of a representation with degx1f ::; BI and

degX2/ ::; B 2 • In this way we are ahle to determine B for which these exists a t-sparse

representation of j with degx 1 f ~ B for i ::; i :::; n.

Note that as in the univanate ease, B ::; exp«Mtt2
)0(1)) where M is a hound on the

bitsize of /(14., ... ,p!J for 1 :::; j ::; 2(t + l)t - 1.

5. Interpolation of Sparse Multivariate Rational Functions.

Let j be a t-sparse multivariate rational funetion and let B ::; exp«Mtt2
)0(1)) be the

bound obtained in the previous seetion.. Let
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and

Seleet, in parallel, 2 t-tuples I = {A I, ••• , At}, J = {Bt, ... , Bt} with Ai E A and

Bi E B. We ealeulate j(X) at (pi, ... ,p~) for i = 1, ... , 4t2• For eaeh seleetion of I and

J we obtain the following linear system

f( i i )(b (...ßll -ßlrl)i +b (...ßu -ßtrl)i) _ (all Ctln)i + + (Ctn atR)iPI' ... , Pn 1 PI ... I'n 1 PI ... I'n - a1 PI ... Pn . . . Ure PI ... Pn

(2)

where 1 ~ i ~ 4t2
, in the unknowns b1 , • •• ,bt , at, . .. ,Ure.

If such a system has a solution ~, ... , bt , ä1 , '••• ,Öt, then the zero test implies that

a- xall X CtIR + +- XCtu XOtn
j( X X ) - 1 1 • • • n • . • Urt 1 •• • n

1,·'" n - J..xßll X Oln b XOu XOln
V1 1 ••• n + ... + t 1 ••• n

For some land J we will be able to solve (2) so the algorithm terminates with a

eorreet answer. We now give an analysis of the eomplexity. Each oi A and B contain

Bn terms. We seleet telements from eaeh, so there are O(Bnt) systems oi type (2), each

of size at most 4t2 • This implies that the sequential time complexity is BO(nt) and the

parallel complexity is (nt log B)O(l) (cf. [BGH 82], [M 86], [KR 88]). We ca,n further

bound B in terms oi the size of the output. Let 0 = m~ {degxi j} and let J.L be abound
1

on the bitsize of the coeffieients of f. Let Jl-j be the bitsize of any coeffieient of fj(X1 ) (as

in section 4). We then have that the bitsize of any output is not greater than J.Lj + t + o.
Furthermore, each Jl-j can be bounded by J.L + O(t48nlog n) by looking at each term of

the representation of fand noting that pn = 0 (n log n). Therefore

BI < exp«Mtt:;))O(l))

< exp«(J.L +r46nlogn + o)tt:;))O(I))

- exp(«J.L + Sn log n )tt:;)) )0(1»)

Therefore the sequential complexity of the algorithm is exp( (J,L + Sn log n )tt:;) )0(1) and

the parallel complexity is {(JI- + Sn log n )tt:;))O(I). Therefore, for fixed t, interpolation

of t-sparse rational functions ean be done in polynomial parallel time (and sequential

storage).
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