Interpolation of
Sparse Rational Functions
Without Knowing Bounds on Exponents

by
Dima Y. Grigoriev;
Marek Karpinskifand
Michael F. Singer?

MPI/90-10

*Steklov Institute of Mathematics, Sov. Acad. of Sciences, Fontanka 27, Leningrad 191011. Visiting the
Max Planck Institute of Mathematics in Bonn. Support of MPI during the preparation of the paper is
gratefully acknowledged.

tDept. of Computer Science, University of Bonn, 5300 Bonn 1. Supported in part by Leibnis Center for
Research in Computer Science, by the DFG Grant KA 673/2-1, and by the SERC Grant GR-E 68297.

{Dept. of Mathematics, N. C. State University, Raleigh, NC 27695. Supported in part by NSF Grant
DMS - 8803109. Support of the Dept. of Computer Science of the University of Bonn during the preparation
of the paper is gratefully acknowledged.






Abstract

We present an algorithm for the ( dlack boz ) interpolation of t-sparse rational functions
without knowing bounds on exponents of their sparse representations.






Introduction.

A t-sparse rational function is a function that can be written as a quotient of two poly-
nomials, each containing at most ¢ terms. We show in this paper that, if we are given a
black box to evaluate a t-sparse rational function f with integer coefficients, then one can
bound the exponents appearing in a ¢-sparse representation of f by making 2(¢ + 1) —1
black box evaluations in the univariate case and O(nt!) black box evaluations in the
n-variable case. Using this, we also give the first algorithm for interpolation of t-sparse
rational functions without knowing bounds on exponents and show that for fixed ¢ this
problem is in polynomial parallel time (sequential storage). For the corresponding ver-
sions of bounded degree rational interpolation (where the bound on the degree is part
of the input) see [S 73], [K 86], (KT 88]. Approximative unbounded degree interpola-
tion arises also naturally in the issues of computational learnability of sparse rational
functions (cf. [KW 89]). Another version of unbounded degree univariate polynomial

interpolation was studied in [BT 89].

To bound the exponents appearing in some t-sparse representation of a ¢-sparse ratio-
nal function f(X) of one variable, we will proceed as follows. We consider representations
of f(X) of the form (T¢_, a; X*)/(T%., b: X?), where the a; and b; are real numbers and
the a; and f; are non-negative real numbers. Such a function is called a quasirational
function. We show that for t-sparse f(X) the a; and §; must satisfy a system S of
polynomial equalities and inequalities whose coefficients depend on the value of f(X)
at 2(¢ + 1)t — 1 points. By evaluating the black box for f(X) at these points, we can
determine this system. Using the results of [GV 88], we can bound a real solution of this
system. Using the fact that f(X) is a t-sparse rational function, we are then able to

bound an integer solution of S and this gives our desired bound.
The rest of this paper is organized as follows.

In Section 1 we give a formal definition of quasirational functions and prove some basic
facts about these functions. In Section 2, we describe some elementary properties of left
euclidean rings. An example of such a ring is F[D], where F is the field of quasirational

functions of one variable and D is the operator defined by D(f(X)) = f(pX) for some



fixed prime p. For this ring, we are able to derive an analogue of the Sylvester matrix
and the resultant. In Section 3 we use this to obtain the system S and the bound for
the exponents appearing in a t-sparse representation of a t-sparse rational function. In
Section 4 we show how the results of section 3 can be used to obtain a bound on the
exponents of a t-sparse rational function of several variables. In Section 5 we describe

an algorithm to interpolate ¢-sparse rational functions and give complexity bounds.

1. Quasirational Functions.

A finite sum of the form

Z C[XI

I
where I = (@1,...,0,),0< o € IR, X' =X{..... X2, ¢; € IR is called a quasipoly-
nomial of n variables. Denote by IR< X,,... X, > the ring of quasipolynomials of n

variables.

A ratio of two quasipolynomials is called a quasirational function. If the number
of terms in the sum is at most ¢, we say that the quasipolynomial is t{-sparse. If a
quasirational function can be represented as a ratio of two ¢{-sparse quasipolynomials, we
say that it is also ¢-sparse. We use the expressions “polynomial” or “rational function” in
this usual sense, that is for quasipolynomials or quasirational functions with non-negative

integer exponents in their terms.

We assume that we are given an n-variable rational function f with integer coefficients
into which we can put points with rational coefficients. The output of the black box is
either the value of the function at this point or some special sign, e.g. “co”, if the
denominator of the irreducible representation of the function vanishes at this point (a
representation f = g/h, g,h € IR[X},...,X,], is irreducible if g and h are relatively
prime). In what follows, we will sometimes obtain in intermediate steps a representation
of a rational function in the form of a quasirational function. Nevertheless, our aim is
to obtain a representation of a rational function in the usual form, provided that it is

t-sparse.
We will need a zero test for t-sparse rational functions. This is similar to well known
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zero tests for t-sparse polynomials (cf. [GK 87], [GKS 88], [BT 88]). Recall that if
M, ..., M, are distinct positive numbers, then any ¢ x ¢ subdeterminant of the (2¢ —1) x ¢
matrix (M} )i<.<e,1<j<2e-1 is non-singular (c.f. [EI 76]).

To test if a t-sparse rational function f is identically zero, use its black box to evaluate
f at the 2t — 1 points P = (pi,...,p3), 1 < j < 2t — 1, where the pi,...,p, are distinct
primes. Since the black box gives output based on an irreducible representation of f, we
see that any zero of the denominator of such a representation is a zero of the denominator
of a t-sparse representation of f. Using the remark about the matrix (M7) above we see
that the denominator can vanish at, at most, ¢ — 1 of these points. The same concerns
the numerator. Therefore, the {-sparse function f is not identically zero if and only if

the black box outputs a number different from 0 and oo at one of the points P7.

The next result concerns different ¢-sparse representations of a quasirational function
f. This result can be thought of as saying that, under suitable hypotheses, two such
representations can only differ in certain redundant terms that can be eliminated. If g
is a quasipolynomial, we denote by ordx,(g) the least power of X; occurring in g. We
call a representation g;/h; = f normalized if for each 7, 1 < i < n, min (ordx,(g1),
ordx;(hi1)) = 0. For an arbitrary g, /hi, there is a unique monomial M such that
(g1/M) / (h1/M) is normalized. We call the latter representation the normalization of

91/h1.

Lemma 1. Assume that g; /h, is a t-sparse representation of a quasirational
function and g; / hs = g1/ h; is another t-sparse normalized representation. Let d =
max {degy,(91),degx.(h1)}. We can delete some terms from g, and h, obtaining g, k.
so that

g2/ b2 = g1/ s
and

mox {degy, (7,), deg, (h2)} < 2t4,

where §, / ks is the normalization of g, / hs.

PROOF.



Write
— Dxb  p =S p Dy
g2 ZQ: 1 2 = Z 2

where S; < fa < ...,m1 <72 < ...and 0 # gg'.) eR< X;...,.X, >,0# hgj) € IR <
X3,..., X, >. We can assume that 8, = 0 (the argument is similar if ¥ = 0). In this case
we see from g2hy = hag, that v < d. If Biy1 — B < d for each 7, then degy, g2 < (t—-1)d.
This would imply degy, hs < degy, g:h1 < td and we would be done.

If 4i41 — ¥ < d for each 7, then degy, ha < td. This would imply that degy g, <
degy, hag: < td+ d < 2td and we would be done. Therefore we can assume that there is
a minimal number s such that 8;) < s —-d < s < ;41 and 745, < s —d < 8 < 74,41 for
suitable g, jo. Since 8 = 0 and y; < d, we have that s < (¢ +1)d < 2td.

Let
Ga=Y gx5, Ry= 3 RYIXY.

i<tp igsh
If one compares the coefficients of X{, p < s, in g;h; = hygi, one can see that gohy = hagy

BO 52/53 = gl/hl-

We now take the normalization §,/h; of §»/h; and apply considerations similar to
those above to §,/hs with X; playing the role of X;. At the end of this process we
obtain the normalized representation g,/ ha. It corresponds to a pre-normalized g, /hs

that satisfies the conclusion of the lemma. ' o

Corollary. If, in the above Lemma, we assume g,,h; € IR[Xq,...,X,] are poly-
nomial, then we can conclude that §,, ks € IR[X;,...,X,] as well.

We note that in Lemma 1 and its corollary, §; and %, are obtained by eliminating

terms of sufficiently high degree and keeping lower order terms in g, and h;.

2. Right Euclidean Rings (a digest).

Let F be a field and let D : Ft — F'* be a homomorphism with respect to the additive
structure of F. Let F[D] be the subring of HOM (F't, F'*) generated by F' (acting on
F* by multiplication) and D. We assume that each element a # 0 from F[D] can be



uniquely represented in the form ¢ = Fo¢;cm @D where a; € F and a,,, # 0. We denote

the integer m by deg(a) and adopt the convention that deg(0) = —oo.

We furthermore assume that for a,b € F[D],deg(ab) = deg(a) + deg(d). This as-
sumption is equivalent to the statement that for each a in F there are unique al,dg in
F, with a; # 0, such that D - a = a; D + az. We can conclude that there exists right
Euclidean division in F[D], that is, for any a,b € F[D] b # 0, there exist unique b,,b;
with deg(b;) < deg(b) such that a = b;b + b;. This leads to a right Euclidean algorithm
and a notion of greatest common right divisor ( gcrd(a,b) ) of two elements a and b, which
can be represented in the form gerd(e,b) = a;a+ b, b for some a,, 4, € F[D]. Furthermore
a = apgerd(a, b) and b = bogerd(a, b) for some ag, by € F[D].

Let deg(a) = m and deg(b) = k and consider

Die) = ¥ o', D)= 3 D

0<j<m+i 0<j<k+l
for0<i<k-1,0<I<m-—1.

Let S be the (m + k) x (m + k) matrix whose columns correspond to the operators
De+m-1 .., D?, D,1 and whose rows contain the coefficients of the operators in 7(a),
0<i<k-—1and D), 0<!<m~—1 (S resembles the Sylvester matrix [VDW 66]; for

differential operators a similar object is described in [G 88]). As in [G 88, one can show:
Lemma 2. deg(gdrc(a,d)) = n — rank(S).

In what follows we restrict ourselves to the case where F' is the field of quasirational
functions in one variable and D is the operator defined by D(X*) = (pX)*, where p is
some fixed prime number. Note that D - f = D(f) - D.

Lemma 3. If f € F and D(f) = f, then f € IR.

Proor. If D(f) = f, then f(X) = f(pX) = f(p?X) =.... The zero test of section
1 implies that f(X) = f(YX) for a new variable Y. If f = g/h let

g=) a:X% h+) bXF
0<y<a<...0<B <P <...,and a;,b; € IR. Since

g(Y X)h(X) = g(X)h(Y X),
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we can conclude, by comparing coefficients of the corresponding monomials in X and Y,

that ay = 1,2 = fB,... and a;b; = a;b; for all i,j. Therefore f € IR. o

Lemma 4. I y,...,y, € F, then y,...,y, are linearly dependent over IR if and
only if

y1(z) oo ynlz)
Wion,... u) = det wn(pz) ... ya(pe) —o
wE"z) .. ya(s™a)

ProoF. Ify,...,y, are linearly dependent over IR then, clearly, W(y1,...,yn) = 0.
Now assume that W(y,,...,y.) = 0. In this case there exist fi,..., fn € F, not all zero,
such that

Ay 44 faya = ADh + oo+ foDyn = AD '+ .o+ f D Ny
We may assume f; = 1. Applying D to each of these equations, we have
D'y + DaDiys + ... + Dfu Dy, = 0
for i =1,...,n. This implies that
(fi = Dfa)Dya+ ...+ (fa - Dfn)piyn =0

fori=1,...,n— 1. Either f; — Df; =0 {for: = 2,...,n, in which case we are done by
Lemma 3, or by induction these exist as,...,a, € IR, not all zero, such that a;Dy; +

...+ a,Dy, = 0. Therefore D{azy. + ...+ ay,) =050 azyz + ... + any, = 0. a

Corollary. Let L = ¥!_,a;7* with a; € F, not all zero. The dimension of the

IR-vectorspace of solutions in F of Ly = 0 is at most ¢.

ProOOF. Let y1,...,y:41 be solutions of Ly = 0. We then have

0 ves Y1
(a0, .-, a2) ;Dyl ;Dyt+1 —0o
Dy ... Dy
Lemma 4 implies that y,,...,y:+1 are linearly dependent. 0



Lemma 5. Let L =Y }_ga;D7 with a; € IR and assume that Pr(z) = az' +... +
ao € IR[z] has t distinct roots > 1, say p™,...,p™. Then {X®,..., X} is a base for
the space of solutions of Ly = 0. O

PROOF. One easily sees that L(X*) = 0fori =1,...,t. The functions X*1,..., X
are linearly independent over IR, so by the corollary to Lemma 4 they must be a basis

of the space of solutions. O

Lemma 6. Let L be as above and assume that L = L, - L, where L, = E;;{, bgl)Dj
and L, = i, b_?)Dj with bgi) € F. Then the space of solutions in F' of L3(y) = 0 has

dimension s.

PROOF. Let V be the solution space of Ly = 0. By Lemma 5, this has dimension t.
L, maps V into the solution space of L;, which has dimension at most ¢ — s by Lemma 4.
Therefore the dimension of the solution space of L,y = 0 is at least s and so by Lemma

4, it must equal s. a

3. Bounding the Exponents of a Sparse Univariate Rational
Function

Lemma 5 in the previous section allows us to characterize ¢-sparse quasipolynomials g
as those quasipolynomials for which there exits an operator of degree ¢, L = E;zn a; T,
with Pr(z) = ax2* + ... 4+ ao € IR[z] having distinct real roots > 1, such that Lg = 0.
Therefore a t-sparse quasirational function f is a quasirational function for which there
exists a quasipolynomial h and operators of degree ¢,L; and L, as above such that
Li(h) = 0 and Lao(hf) = 0. Li(y) and Ly(yf) will therefore have a common solution.
The results of section 2 allow us to eliminate y using the determinant of the Sylvester
matrix. This determinant is a quasirational function and, by evaluating at sufficiently
many points, we obtain (together with the conditions that the «;, 3; are distinct and > 1)
a system of polynomial inequalities that must be satisfied by the exponents appearing in
f. We will then bound a real solution of this system using [GV 88] and, assuming that

f is a univariate rational function, we can use Lemma 1 to bound the exponents of f.

We now proceed more formally. Let f = £ be a ¢-sparse quasirational function of one



t
1=1

variable where ¢ = ¢, ;X% and h = b; X% are i-sparse quasipolynomials. Let
G(z) = ¢co+ c1z2 + ... + z* be the unique monic polynomial whose roots are p*,...,p*
and let H(z) = do 4+ d1z + ... + z* be the unique monic polynomial whose roots are
P?',...,p”. Consider the operators Lg = Ti_oc;D' and Ly = T} ;D' (where d; =
¢t = 1). We then have Ly(h) = 0 and Lg(fh) = 0. Therefore Ly(y) = 0 and Lg(fy) =
Lc(y) = 0 have a non-zero common solution y = k in F (note that the coefficients of
L¢ are IR-linear combinations of f,Df,...,D'f). Consider the Sylvester matrix § =
S(coy€1y+++y€t-1,day. .. ,dics, f) of Ly and Lg. By Lemma 2, det (S) = 0 (note that det

S is a quasirational function).

Conversely if det (5) = 0, then Lemma 2 implies that deg(gcrd(LH,ig)) > 1. Since
the coefficients of Ly satisfy the hypotheses of Lemma 5 and gcrd(LH,EG) divides Ly,
Ly and Lg will have a common non-zero solution kg in F (by Lemma 6.). Lemma 5 then
implies that f is a t-sparse quasirational function because ho and hof are both t-sparse

quasipolynomials, again by Lemma 5. We have therefore proved the following lemma.

Lemma 7. A quasirational function f is t-sparse if and only if there exist real

numbers &,...,%-1,dp,...,d;—; such that

(i) det(S(Coy.-.,&-1,doy---,ds-1,f)) =0
(i1) there exist ¢ distinct real numbers > 1 that are roots of
Gz)=C+...+ 612" +20=0
and there exist ¢ distinct real numbers > 1 that are roots of

Hz)=do+ ... +d_12" + 24 = 0.

Now assume that f is a t-sparse rational function whose coeflicients are integers. We
see that each entry of S is a ¢-sparse rational function. From the form of the matrix, we
see that det(S) is a (£4 1)* sparse rational function. Therefore condition (i) is equivalent
(by the zero test) to the fact that det(S)x—, is either co of 0 for 7 = 1,...,2(t +
1)* — 1 (p: is any prime). For at least (¢ + 1) of these points det(S5)x~,; Wwill be zero.

Using the black box, we can determine a system of (¢ + 1) equations in the unknowns



€0y..+3Ct—1,do,...,di_1 of degree at most 2¢, that is equivalent to the vanishing of det(S)
at these points. Assume the bitsize of the values (yielded by the black box) of D4 f(p}), 1 =
1,...,2(t+1)}* -1, =0,...,tis at most M (that is, those that are not co and therefore
rational numbers). We then see that the bitsize of each coeflicient in this system is at

most O(tlnt) 4-tM.

Furthermore, condition (ii) is equivalent to

(i) On1 <2< 1—¢q1 4¢3 —...%co, the polynomial G(z) = 0 has precisely ¢ roots
and a similar statement holds for H. In addition, the discriminants of G and H

are not zero.

The first sentence of (ii’) can be expressed in terms of Sturm sequences. This yields
a system of 2¢ polynomial inequalities and (by the Habicht subresultant theorem) each
inequality has degree at most 2¢ and the bitsize of the coefficients is at most O(¢lnt).

Similar bounds hold for the discriminants.

Therefore, under the assumption that f is a ¢{-sparse rational function with integer
coefficients, we are able to construct a system of polynomial inequalities equivalent to (i)
and (ii) and bound the bitsize of the coefficients of this system. The results of [GV 88]
imply that this system has a solution in a ball of radius exp((Mt*)°),

This gives a bound on some solution &,...,&-1,do,...,d;—; which gives a t-sparse
quasirational representation of f. The exponents in this representation can be bounded
from these &o,...,&-1,do,...,ds_1 also by exp((Mt*)°() since they are roots of the
polynomials G(z) and H(z). By Lemma 2, the exponents in a t-sparse rational function
representation of f are bounded by a similar number. This bound therefore can be

explicitly calculated by making 2(¢ +1)* — 1 black box evaluations.

4. Bounding the Exponents of a Sparse Multivariate Rational
Function.

Let )
_ g(Xl,...,.Xn) — EE=1 gi(-X%""Xﬂ)X{J.
h(X1yoo 0, Xn) 4, hi(Xa, ..., Xo) XEY
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be a normalized representation of the t-sparse rational function f.

Consider the 2t* 4 2¢* + 1 points P9 = (p},...,pl) for 1 < 7 < 2t* + 212 + 1. Let

i=1 Ul Pay- -y 1

Note that there are at most 2¢2 points P? for which some g; or h; vanishes at P/. We

call these points bad points. For a point P; that is not bad, let D; be the bound on the
degree of some normalized t-sparse representation of f/(X;). For these points, Lemma 2
allows is to conclude that there exist t;,%; (not necessarily unique) such that

Ly g7y, PI)XT

j.X] = g g
d ( ) :—2:1 h"(PJh T 1p€‘)X1ﬂ‘

g.i
T hi

and
max{degy, §’,degx R} < 2tD;.

To each j corresponds some pair ¢;,%;. Therefore, at least 2¢? 4+ 1 non-bad points P?
correspond to some pair ({,%,;). For this pair ({,,%,) we have that

g(Xz,...,Xn)i;h;(xz,...,Xﬂ)Xf“ — h(xl,...,xﬂ)i;g,-(x,,...,xn)xf‘ (1)

i= i=

is zero at these 2t + 1 points. If we consider (1) as a polynomial in X; whose coefficients
are 2t? sparse polynomials in X3,..., X, we see that (1) is identically zero. This imp]iés
that f has a t-sparse representation with degy f < B, = max {2tD;}. We consider
this representation and let X, play the role of the principal variable. We apply the
same construction to prove the existence of a representation with degy f < B; and
degy, f < B,. In this way we are able to determine B for which these exists a t-sparse
representation of f with degy f < Bfori: <i <n.

Note that as in the univariate case, B < exp((Mt* )°(1)) where M is a bound on the

bitsize of f(p],...,pi) for 1 <j < 2(t+1)t —1.

5. Interpolation of Sparse Multivariate Rational Functions.

Let f be a t-sparse multivariate rational function and let B < exp((Mt")°(1)) be the

bound obtained in the previous section. Let

AZ {A,‘ = (a;l,...,a.-u)lo S (2 55] S B}
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and

B ={Bi=(#,,...,B:.)|0 < B;; < B}.

Select, in parallel, 2 t-tuples I = {A,,..., 4}, J = {By,...,B,} with A; € A and
B; € B. We calculate f(X) at (pi,...,p!) for i = 1,...,4¢%. For each selection of I and

J we obtain the following linear system

F(@h o P (P Y (P PR )) = (B P (PP PR
(2)
where 1 < i < 4#%, in the unknowns b,,...,b,a4,...,a,.

If such a system has a solution by,...,b,a,...,8, then the zero test implies that

G X7 X 4 XY XS
f(Xlr"'an)m—l .1311 = ,1
i X .. Xoe 45X X un

For some I and J we will be able to solve (2) so the algorithm terminates with a
correct answer. We now give an analysis of the complexity. Each of A and B contain
B" terms. We select ¢ elements from each, so there are O(B™) systems of type (2), each
of size at most 442, This implies that the sequential time complexity is B°(™) and the
parallel complexity is (ntlog B)°() (cf. [BGH 82], [M 86], [KR 88]). We can further
bound B in terms of the size of the output. Let § = max {degy, f} and let u be a bound
on the bitsize of the coefficients of f. Let p; be the bitsize of any coefficient of f7(X;) (as
in section 4). We then have that the bitsize of any output is not greater than p; +¢ + 6.
Furthermore, each u; can be bounded by x + O(t*énlogn) by looking at each term of
the representation of f and noting that p, = O(nlogn). Therefore

By < exp((Mt*)°M)
< exp(((p + t'6nlogn + 6)1t")°1)

= exp(((¢ + énlog n)ttz))o(l))

Therefore the sequential complexity of the algorithm is exp((g + 6nlogn)t**)°() and

O(1), Therefore, for fixed f, interpolation

the parallel complexity is ((u + énlogn)tt’)
of t-sparse rational functions can be done in polynomial parallel time (and sequential

storage).
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