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Abstract

In this note we discuss some properties of torsion points on elliptic
curves defined over small extensions of Q. As an application, we give
a new proof of a theorem of Olson.
AMS Mathematics Subject Classification (2000): Primary 11G05, Sec-
ondary 11G07

1. Introduction. Let E be an elliptic curve defined over Q, and let E(Q)tors

be the subgroup of Q-torsion points of E. There are many works devoted
to the study of E(Q)tors. To understand this group, sometimes one needs
to extend the base field, and then study the torsion points defined over field
extensions. For example, there are several works related to the study of tor-
sion points in the quadratic, cubic or quartic extensions of Q. We just refer
the readers to [Fu], [Hu], [JKS], [La], [LL], [P], [ScZ], [Si], [Zi] and reference
there for some more results. In this note we are interested in the following
question : What can we say about the nature of torsion points over small
extensions k of Q ?

2. Preliminaries. Let k be a global field, V the set of all non-equivalent
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nontrivial valuations of k, ∞ the set of all archimedean valuations of k,
(Ov, πv) be the valuation ring in k, corresponding to v ∈ V . We denote

Ok = ∩v 6∈∞Ov

the ring of integers of k. Let E be an elliptic curve defined over k with
defining affine equation

(1) y2 = x3 + Ax + B, A, B ∈ Ok.

We also write the homogeneous equation for E as

y2z = x3 + Axz2 + Bz3.

Denote by 0 = (0 : 1 : 0) the identity element for the group structure on E.
We need the following well-known results (see e.g. [Hu], p. 111), where we
present a short proof in the form convenient for us.

Lemma 1. ([Hu], Chap. 5, Sec. 4) Let (x : 1 : z) ∈ E(k), v a non-
trivial discrete valuation of k. If z 6= 0 and v(z) > 0, then v(x) > 0, and we
have v(z) = 3v(x).

Proof. Assume that v(x) ≤ 0. Since (x : 1 : z) ∈ E(k), we have

z = x3 + Axz2 + Bz3,

and it is clear that v(x3) < v(Axz2), v(x) < v(Bz3). Therefore

v(z) = v(x3 + Axz2 + Bz3)

= v(x3) ≤ 0,

a contradiction. Thus v(x) > 0. We have

v(x3+Axz2+Bz3) ≥ min(v(x3), v(Axz2), v(Bz3)) ≥ min(v(x3), v(xz2), v(z3).

If v(x) ≥ v(z), then the last inequality shows that v(z) ≥ 3v(z), which is
impossible, since v(z) > 0 Hence v(x) < v(z), so v(z) = v(x3) = 3v(x).
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We consider the following well-known filtration on the group of rational points
of E (see, e.g. [Hu]). For r ≥ 1, we set

Er(k) := {X = (x : 1 : z) ∈ E(k)|v(x) ≥ r, v(z) > 0} ∪ {0}.

We have the following

Lemma 2. Let the notation be as in Lemma 1 and let (O, π) be the val-
uation ring in k, corresponding to v. Then
1) ([Hu], Chap. 5, Sec. 4) Er(k) is a subgroup of E(k) for r ≥ 1.
2) The correspondence λr : Er(k) → O/π4rO,

(x : 1 : z) 7→ π−rx (mod.π4r), 0 7→ 0,

is a homomorphism of groups and it defines an exact sequence of commutative
groups

0 → E5r(k) → Er(k) → O/π4rO.

3) If P = (x : 1 : z) ∈ Er(k) \ Er+1(k), then π−rx 6≡ 0 (mod.π).

Proof. 1) First we claim that

if P = (x : 1 : z), P ′ = (x′ : 1 : z′) ∈ Er(k), and if L is the line passing
through P, P ′ and meeting E(k) at P ′′ = (x′′ : 1 : z′′), then v(x+x′+x′′) ≥ 5r,
v(z′′) = 3v(x′′) ≥ 3r.

Indeed, let the equation of L be of the form Z = cX + b. If P 6= P ′,
and if x 6= x′, then we have c = (z − z′)/(x − x′) ∈ k. Hence b ∈ k. Since
P 6= P ′ are points of E(k), we have

c = (z−z′)/(x−x′) = (x2+xx′+x′2+Az2)/(1−Ax′(z+z′)−B(z2+zz′+z2)).

By assumption min(v(x), v(x′)) ≥ r ≥ 1, and v(z) > 0, so by Lemma 1, we
have v(z′) ≥ 3v(x′). Since v(A) ≥ 0, v(B) ≥ 0, so

v(c) = v(x2 + xx′ + x′2 + Az2) ≥ min(v(x), v(x′) ≥ 2r.

If P = P ′, then the line is tangent to the curve

(∗) Z = X3 + AXZ2 + BZ3,
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with the slope c = dZ/dX. From the equation it follows that

c = (3x2 + Az2)/(1 − 2Axz − 3Bz2),

hence in this case we also have

v(c) = v(3x2 + Az2) ≥ 2v(x) ≥ 2r.

Since P ∈ L, so z = cx + b, v(b) = v(z − cx) ≥ min(v(z), v(cx)) ≥ 3r.
Substituting z = cx + b into the equation of the curve (∗), we have

cx + b = x3 + Ax(cx + b)2 + B(cx + b)3.

the latter defines a cubic polynomial in x, which has roots x and x′ in k,
hence it has also another root x′′ ∈ k. Let P ′′ = (x′′ : 1 : z′′) ∈ L ∩ E(k̄).
Then z′′ ∈ k, since c, b ∈ k, and it follows that P ′′ ∈ E(k). Since

x + x′ + x′′ = (−2Abc − 3Bbc2)/(1 + Ac2 + Bc3),

from above it follows that v(x + x′ + x′′) ≥ 5r, and by Lemma 1, we have
v(z′′) ≥ 3v(x′′) ≥ 3r. Since P, P ′, P ′′ are on the same line, P ′′ = −(P + P ′)
(the addition is in E), we see that P ′′ ∈ Er(k). Moreover, if P = (x : 1 :
z) ∈ Er(k), then −P = (−x : 1 : −z) ∈ Er(k). Thus Er(k) is a subgroup of
E(k).

2) Let P = (x : 1 : z), P ′ = (x′ : 1 : z′) ∈ Er(k), P ′′ = −(P + P ′). As
above we have

v(x + x′ + x′′) ≥ 5r,

thus
v(π−rx + π−rx′ + π−rx′′) ≥ 4r,

hence
λr(P ) + λr(P

′) + λr(P
′′) ≡ 0 (mod. π4r),

i.e., λr(P ) + λr(P
′) ≡ −λr(P

′′)(mod. π4r). On the other hand, one checks
that λr(−P ) = π−r(−x) ≡ π−r(x) = λr(P ) (mod. π4r). Therefore λr is a
group homomorphism. It is clear that
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λr(P ) = 0 ⇔ π−r(x) ≡ 0 (mod. π4r)

⇔ x ≡ 0 (mod. π5r)

⇔ P ∈ E5r(k).

From this we derive the exact sequence above.
3) If 0 6= P ∈ Er(k) \ Er+1(k), then v(x) = r, so π−rx 6≡ 0 (mod. π).

We have the following property of torsion points on elliptic curves over cubic
field extension of Q, analogous to Nagell - Lutz Theorem.

Theorem 3. Let k be a number field (resp. global function field) such that
[k : Q] ≤ 3 (resp. characteristic p > 3) with the ring of integers Ok . Let E
be an elliptic curve over k, defined by the equation

(1) y2 = x3 + Ax + B, A, B ∈ Ok.

If P = (x, y) ∈ E(k) is a torsion point, then x, y are belonging to Ok.

Proof. Let n be the order of P .

First we assume that n is odd. Then P is not of order 2, so y 6= 0. We
write y = 1/z, z 6= 0, x = x1/z. Then we have

z = x3

1 + Ax1z
2 + Bz3.

We may then consider P as a point on the curve defined by the last equation,
which is also a torsion point. Let v be any discrete valuation of k, (Ov, π)
the valuation ring in k, corresponding to v. We claim that v(z) ≤ 0. We
consider the following cases.

1) k is a number field. Let p be the prime number corresponding to the
restriction vp = v|Q of v to Q. If (n, p) = 1, then v(n) = 0. If v(z) > 0 then
by Lemma 1, we have v(x1) > 0 and there is a maximal number r > 0 such
that the point (x1 : 1 : z) ∈ Er(k). Then with notation as in Lemma 2 we
have
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0 = λr(0) = λr(n.P )

= nλr(P ),

hence v(nπ−rx1) ≥ 4r, so v(x1) ≥ 5r, thus P ∈ E5r(k), which contradicts
with the maximality of r. Therefore v(z) ≤ 0.

Now we assume p|n, n = pm. Let Q = mP . Then we have pQ = 0 in E.
Assume that v(z) > 0. Then there exists r ≥ 1 such that P = (x1 : 1 : z) ∈
Er(k). Then Q = (xQ : 1 : zQ) ∈ Er(k), too. There exists largest number
s (≥ r ≥ 1) such that Q ∈ Es(k). Then by considering the homomorphism

λs : Es(k) → Ov/π
4sOv,

we have

0 = λs(pQ)

= pλs(Q)

= pπ−sxQ (mod.π4s),

hence v(pπ−sxQ) ≥ 4s, thus v(p) ≥ 4s, since v(xQ) = s. Since v(p) ≤ [k :
Q] ≤ 3, it follows that s < 1, impossible. Therefore we have v(z) ≤ 0 for all
v.
2) k is a global function field. We consider any non-trivial discrete valuation
of k as above, and in this case, the proof is simpler. In fact, we derive imme-
diately as above (without considering other cases, since we have v(n) = 0)
that v(z) ≤ 0, and then we can proceed as above.

Thus in any case v(z) ≤ 0, which means that y ∈ Ok. From the equation
y2 = x3 + Ax + B, it follows readily that x ∈ Ok, too. Thus we have proved
that if P = (x, y) ∈ E(k) is a torsion point of odd order, then its coordinate
are algebraic integers.

Next we assume that P = (xP , yP ) satisfying (1) is a torsion point of
E(k) of order 2n. We proceed by induction on n. If n = 1, then 2P = 0,
thus yP = 0 and x3

P + AxP + B = 0. It follows that xP is also an algebraic
integer. Assuming the assertion for order 2l, with l ≤ n. Assume that P ∈ E
is a torsion point of order 2n+1. Therefore 2nP 6= 0. Set Q = 2P = (x1, y1).
We have (since char.k 6= 2)
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x1 = (x4 − 2Ax2 − 8Bx + A2)/(4y2)

= (x4 − 2Ax2 − 8Bx + A2)/4(x3 + Ax + B)

hence
x4 − 4x1x

3 − 2Ax2 − 4(Ax1 + 2B)x − 4Bx1 + A2 = 0.

Since A, B ∈ Ok, and by inductive hypothesis, 2nQ = 0, so x1, y1 are alge-
braic integers. Thus x, and therefore, also y, are algebraic integers. (This
argument shows us that if 2nP is a point with algebraic integers as coordi-
nates, then the same is true for P .)

Now let P be of order n = 2rm, where m is odd. Setting Q = 2mP , then
Q is a torsion point of order m, hence it has algebraic integers as coordinates.
Above remark finishes the proof.

As a consequence of the proof we have

Corollary 4. Let k be a number field such that [k : Q] ≤ 3, (resp. global
function field of characteristic p > 3) with the ring of integers Ok. Let E be
an elliptic curve over k, defined by the equation (1). If P = (x, y) ∈ E(k) is
a torsion point of E(k) of order ≥ 3, then y2|(4A3 + 27B2) in Ok.

Proof. Since 2P 6= 0, we have y 6= 0. Set Q = 2P = (x1, y1). By Theo-
rem 3, x1, y1 are belong to Ok. On the other hand,

x1 = (x4 − 2Ax2 − 8Bx + A2)/(4y2) ∈ Ok,

so

(2) y2|x4 − 2Ax2 − 8Bx + A2.

Also, we have the following well-known identity for elliptic curves (see e.g.
[Hu])

4A3 + 27B2 = (3x2 + 4A)(x4 − 2Ax2 − 8Bx + A2)

−(3x3 − 5Ax − 27B)(x3 + Ax + B).

From this and (2) the corollary follows.
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3. Application. We apply the results proved above to get a new and
short proof of a theorem of Olson [O], and also an extension to the case of
function field.

Theorem 5. ([O], Theorem 1, k = Q) Let E be an elliptic curve over k = Q

(resp. a global function field k of characteristic p > 3), defined by the equation

(3) y2 = x3 + ADx + BD3, A, B, D ∈ Ok, D square free.

If E(k) has a torsion point of order ≥ 3, then D|(4A3 + 27B2) in Ok.

Proof. Let k′ = k(
√

D). Via the transformation

ϕ : x 7→ x1 = x/D, y 7→ y1 = y/D3/2,

the elliptic curve E defined by (3) is mapped isomorphically over k′ to the
curve

E1 : y2

1 = x3

1 + Ax1 + B.

If P = (x, y) is a torsion point of order m ≥ 3 of E(Q), then P1 = ϕ(P ) =
(x1, y1) is a torsion point of order m of E1(k). We consider two cases.

1) k = Q. By Theorem 3, x, y ∈ Z. Since m ≥ 3, by Theorem 3 and
Corollary 4, x1, y1 ∈ Ok and we have

y2

1|(4A3 + 27B2)

in Ok. In other words, for any discrete valuation v of k′ we have

(4) 2v(y1) ≤ v(4A3 + 27B2).

Since y1 = y/D3/2 ∈ Ok, we have v(y) ≥ (3/2)v(D). We show that

(5) v(y) ≥ 2v(D).

Indeed, it is clear if v(D) = 0 or 1. If v(D) = 2 then from above we have
v(y) ≥ 3. Let vp = v|Q be the p-adic valuation obtained from v by restricting
to Q. Since v(D) = 2, it follows that p|D and p is ramified in k, p = ℘2, where
℘ is a prime in k. Since v(y) ≥ 3, we have p|y, yOk = py′Ok = ℘2.(y′Ok),
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where y′ ∈ Z. Also, from v(y) ≥ 3 it follows that v(y′) > 0, p|y′, hence
v(y) ≥ 4 = 2v(D). Therefore v(y) ≥ 2v(D) if v(D) = 0, 1, 2. On the other
hand, since D is square free, v(D) ≤ 2. Thus in all cases the inequality (5)
holds. From this we derive

v(y1D
3/2) = v(y) ≥ 2v(D),

i.e., for all valuations v of k′ we have

(6) v(D) ≤ 2v(y1) ≤ v(4A3 + 27B2),

which means that D divides (4A3 + 27B2) in Z.

2) char.k = p > 3. Let k′ = k(
√

D). For any non-trivial discrete valua-
tion v on k′, let π ∈ k be a prime corresponding to the restriction vπ := v|k.
As above, by Theorem 3, we have x and y are belonging to Ok, x1 and y1 are
belonging to Ok′, and (4) also holds. In a similar way, where we consider π
instead of p, we arrive at (6), which shows D|(4A3 + 27B2) in Ok.
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