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Abstract. Let X be a smooth algebraic variety over an algebraically closed field k of characteristic

p > 0, and F : X → X the absolute Frobenius morphism. The goal of this paper is to compute the

cohomology groups Hi(End(F∗OX)) for some X. We first prove some facts about the Frobenius

pushforward F∗OX for projective bundles over smooth bases and blowups of surfaces. We then give

several applications of these results and show that for i > 0 the above cohomology groups vanish

on some toric Fano threefolds and on del Pezzo surfaces.

1. Introduction

This paper started as an attempt to describe derived categories of coherent sheaves on some

algebraic varieties. Let X be a smooth proper algebraic variety over an algebraically closed field

k. The description in question can be stated as an equivalence of categories:

(1) Φ: Db(X) ' Db(A − mod),

where Db(X) is the bounded derived category of coherent sheaves on X, and Db(A − mod) is the

bounded derived category of finitely generated left modules over a finite-dimensional associative

algebra A. Equivalences as above are called tilting equivalences and can be obtained by constructing

the so-called tilting bundles on X (see Section 2.4 for definitions). Recent works on the quantization

of algebraic varieties in positive characteristic ([2],[9]) suggest to look at reducing our variety X

modulo a prime number to construct tilting bundles.

We work over an algebraically closed field k of characteristic p > 0. Let X be a smooth

proper variety over k, and F the Frobenius morphism. Our main interest is in computing groups

Exti(F∗OX ,F∗OX) = Hi(End(F∗OX)) (or, more generally, Exti(F∗L,F∗L) for a line bundle L on

X). The main result of the first part of the paper is a short exact sequence for a P
1-bundle over

a smooth base that connects the bundle F∗OX , where X is the total space of P
1-bundle, with

the bundle F∗OS on the base space S. We then give several applications of these sequences: in

particular, we give a different proof of cohomology vanishing of the sheaf of differential operators

on the flag variety SL3/B ([5]) not using representation theory of algebraic groups in positive

characteristic. Further applications to the D-affinity of flag varieties in positive characteristic

will be discussed in a subsequent paper ([17]). We show that the derived Beilinson–Bernstein

equivalence established in ([2]) combined with the above vanishing allows to conclude that the

bundle F∗OX is tilting, where X is the flag variety of a semisimple simply connected algebraic

group in type either A2 or B2, and the prime number p is greater than h, the Coxeter number of

the corresponding group. This was shown recently by different methods in a series of papers ([7],

[10]). We also compute the bundle F∗OX for a number of smooth toric Fano threefolds and prove

that this bundle is tilting in some cases. At the end we consider rational surfaces that are obtained
1
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by blowing up a number of points on P
2 in general position (e.g., del Pezzo surfaces) and prove

that Exti(F∗OX ,F∗OX) = 0 for i > 0.
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2. Preliminaries

2.1. The Frobenius morphism. The material here is taken from ([8]). Let k be an algebraically

closed field of characteristic p > 0, and X a scheme over k. The absolute Frobenius morphism FX

is an endomorphism of X that acts identically on the topological space of X and raises functions

on X to the p-th power:

(2) FX : X → X, f ∈ OX → fp ∈ OX .

Let π : X → S be a morphism of k-schemes. Then there is a commutative square:

X
FX //

π

��

X

π

��
S

FS // S

Denote X ′ the scheme (S,FS)×S X obtained by the base change under FS from X. The morphism

FX defines a unique S-morphism F = FX/S : X → X ′, such that there is a commutative diagram:

X
FX/S //

π

""EE
EE

EE
EE

EE
EE

EE
EE

E X ′
φ //

π′

��

X

π

��
S

FS // S

The composition of upper arrows φ ◦ F is equal to FX , and the square is cartesian. The morphism

F is said to be the relative Frobenius morphism of X over S. The morphism FX is not a morphism

of S-schemes. On the contrary, the morphism FX/S is a morphism of S-schemes.

Proposition 2.1. Let S be a scheme over k, and π : X → S a smooth morphism of relative

dimension n. Then the relative Frobenius morphism F : X → X ′ is a finite flat morphism, and the

O′
X-algebra F∗OX is locally free of rank pn.

Let π : X → S be a smooth morphism as above, and F a coherent sheaf (a complex of coherent

sheaves) on X. Proposition 2.1 implies:

(3) Riπ∗FX∗F = FS∗R
iπ∗F .
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Indeed, it follows from the spectral sequence for the composition of two functors:

(4) Riπ∗FX∗F = Ri(π ◦ FX)∗F = Ri(FS ◦ π)∗F = FS∗R
iπ∗F .

Let S = Spec(k). In this case the schemes X and X ′ are isomorphic as abstract schemes (but not

as k-schemes). By slightly abusing notations, we will skip the subscript at the absolute Frobenius

morphism and denote it simply F, as the relative Frobenius morphism. More generally, for any

m ≥ 1 one defines m-th Frobenius twists X (m) and there is a morphism Fm : X → X(m), where

Fm = F ◦ · · · ◦ F (m times). Let ωX be the canonical invertible sheaf on X. Recall that the duality

theory for finite flat morphisms ([6]) yields that a right adjoint functor F!
m to Fm∗ is isomorphic to

(5) F!
m(?) = F∗

m(?) ⊗ ωX/X(m) = F∗
m(?) ⊗ ω1−pm

X .

2.2. Differential operators. The material here is taken from ([4]) and ([5]). Let X be a smooth

scheme over k. Consider the product X × X and the diagonal ∆ ⊂ X × X. Let J∆ be the sheaf

of ideals of ∆.

Definition 2.1. An element φ ∈ Endk(OX) is called a differential operator if there exists some

integer n ≥ 0 such that

(6) J n
∆ · φ = 0.

One obtains a sheaf DX , the sheaf of differential operators on X. Denote J
(n)
∆ the sheaf of ideals

generated by elements an, where a ∈ J∆. There is a filtration on the sheaf DX given by

(7) D
(n)
X = {φ ∈ Endk(OX) : J

(n)
∆ · φ = 0}.

Since k has characteristic p, one checks:

(8) D
(pn)
X = End

O
pn

X
(OX).

Indeed, the sheaf J∆ is generated by elements a ⊗ 1 − 1 ⊗ a, where a ∈ J∆, hence the sheaf J
(pn)
∆

is generated by elements apn
⊗ 1 − 1 ⊗ apn

. This implies (8). One also checks that this filtration

exhausts the whole DX , so we can write:

(9) DX =
⋃

n≥1

End
O

pn

X
(OX).

One can rewrite the isomorphism (8), using the Frobenius morphism:

(10) D
(pn)
X = EndOX

(Fn∗OX).

Thus,

(11) DX =
⋃

n≥1

EndOX
(Fn∗OX).
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2.3. Derived localization theorem. We need to recall the derived Beilinson–Bernstein localiza-
tion theorem ([2]). To this end, recall the definition of crystalline differential operators:

Definition 2.2. Let TX be the tangent sheaf to X. The sheaf DX of crystalline differential

operators (or PD-differential operators) is defined to be the enveloping algebra of the tangent Lie

algebroid, that is it is generated by functions f ∈ OX and vector fields ∂ ∈ TX with relations

[∂, f ] = ∂(f), ∂1∂2 − ∂2∂1 = [∂1, ∂2].

Let G be a semisimple algebraic group over k, G/B the flag variety, and U(g) the universal

enveloping algebra of the corresponding Lie algebra. Consider the category DG/B-mod of coherent

DG/B-modules and the category U(g)0-mod of finitely generated modules over U(g) with the trivial

action of the Harish–Chandra part of the center of U(g) ([2]). The derived localization theorem

(loc.cit.) states:

Theorem 2.1. Let char k = p > h, where h is the Coxeter number of the group G. Then there is

an equivalence of derived categories:

(12) Db(DG/B − mod) ' Db(U(g)0 − mod),

2.4. Derived categories of coherent sheaves. In this section we recall some facts about

semiorthogonal decompositions in derived categories of coherent sheaves and tilting equivalences.

We refer the reader to [14] for the definition of semiorthogonal decompositions in derived categories.

2.4.1. Semiorthogonal decompositions. The results of this section are taken from [14]. Let S be a

smooth scheme over an algebraically closed field K, and E a vector bundle of rank n over S. Denote

X = PS(E) the projectivization of the bundle E . Let π : X → S be the projection, and Oπ(−1) the

relative invertible sheaf on X. Finally, for a smooth scheme S denote Db(S) the bounded derived

category of coherent sheaves on S.

Theorem 2.2. The category Db(X) admits a semiorthogonal decomposition:

(13) Db(X) = 〈π∗ Db(S) ⊗Oπ(−n + 1), π∗ Db(S) ⊗Oπ(−n + 2), . . . , π∗ Db(S)〉.

Further, we need a particular case of another Orlov’s theorem (loc.cit.) Consider a smooth scheme

X and a closed smooth subscheme i : Y ⊂ X of codimension two. Let X̃ be the blowup of X along

Y . There is a cartesian square:

Ỹ
j //

p

��

X̃

π

��
Y

i // X

Here Ỹ is the exceptional divisor. If NY/X is normal bundle to Y in X then the projection p is the

projectivization of the bundle NY/X . Denote Op(−1) be the relative invertible sheaf with respect

to p.
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Theorem 2.3. The category Db(X̃) admits a semiorthogonal decomposition:

(14) Db(X̃) = 〈j∗(p
∗ Db(X) ⊗Op(−1)), π∗ Db(X)〉.

2.4.2. Tilting equivalences.

Definition 2.3. A coherent sheaf E on X is called a tilting generator of the bounded derived category

Db(X) of coherent sheaves on X if the following holds:

(1) The sheaf E is a tilting object in Db(X) – that is, for any i ≥ 1 we have Exti(E , E) = 0

(2) The sheaf E generates the derived category Db(X) of complexes bounded from above – that

is, if for some object F ∈ Db(X) we have RHom•(F , E) = 0, then F = 0.

Tilting sheaves are a tool to construct derived equivalences. One has:

Lemma 2.1. Let X be a smooth scheme, E a tilting generator of the derived category D b(X),

and denote R = End(E). Then the algebra R is left-Noetherian, and the correspondence F 7→

RHom•(E ,F) extends to an equivalence

(15) Db(X) → Db(R-modfg)

between the bounded derived category Db(X) of coherent sheaves on X and the bounded derived

category Db(R-modfg) of finitely generated left R-modules.

The derived Beilinson–Bernstein equivalence (Theorem 2.1) implies the following:

Lemma 2.2. Let G be a semisimple algebraic group over k, and X = G/B the flag variety. Let

char k = p > h, where h is the Coxeter number of the group G. Then the bundle F∗OX satisfies

the condition (2) of Definition 2.3.

Proof. We need to show that for an object F ∈ Db(X) the equality RHom•(F ,F∗OX) = 0 implies

F = 0. By adjunction we get:

(16) H
•(X,F∗F) = 0.

The object F∗F is an object of the category Db(DX −mod) (in fact, F∗F is an object of the category

Db(End(F∗OX) − mod) – this is the so-called the Cartier descent, [12]). Now F∗F is annihilated

by the functor RΓ. Under the assumption on the prime number p, this functor is an equivalence

of categories by Theorem 2.1. Hence, F∗F = 0, and F = 0 as well, q.e.d. �

3. A few lemmas

3.1. Ext-groups. Recall that for a variety X the m-th Frobenius twist of X is denoted X (m). One

has a morphism of k-schemes Fm : X → X(m).

Let π : Y → X(m) be an arbitrary morphism. Consider the cartesian square:
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Ỹ
p2 //

p1

��

Y

π

��
X

Fm // X(m)

Lemma 3.1. The fibered product Ỹ is isomorphic to the left uppermost corner in the cartesian
square:

Ỹ //

i

��

∆(m)

i
∆(m)

��
X × Y

Fm×π // X(m) × X(m)

where ∆(m) is the diagonal in X (m) × X(m). If π is flat then one has an isomorphism of sheaves

i∗OỸ = (Fm × π)∗(i∆(m)∗O∆(m)).

Proof. The isomorphism of two fibered products follows from the definition of fibered product.

The isomorphism of sheaves follows from flatness of the Frobenius morphism and from flat base

change. �

Definition 3.1. Let Y (m) i
↪→ X(m) be a closed subscheme. The fibered product Y (m) ×X(m) X as

defined in the diagram:

Y ′ ×X(m) X //

��

Y (m)

i

��
X

Fm // X(m)

is called the m-th Frobenius neighbourhood of the subscheme Y (m) in X.

Consider the cartesian square:

X̃
π2 //

π1

��

X

Fm

��
X

Fm // X(m)
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Lemma 3.2. The fibered product X̃ is isomorphic to the m-th Frobenius neighbourhood of the

diagonal ∆′ ⊂ X ′ × X ′.

Proof. Apply Lemma 3.1 to Y = X and π = Fm. �

Recall that a right adjoint functor F!
m(?) to Fm∗(?) is isomorphic to F∗

m(?) ⊗ ω1−pm

X . We get:

ExtkX(Fm∗OX ,Fm∗OX) = Extk(OX ,F!
mFm∗OX) =

= Extk(OX ,F∗
mFm∗OX ⊗ ω1−pm

X ) = Hk(X,F∗
mFm∗OX ⊗ ω1−pm

X ).(17)

Lemma 3.3. There is an isomorphism of cohomology groups:

Hk(X,F∗
mFm∗(OX) ⊗ ω1−pm

X ) =

= Hk(X × X, (Fm × Fm)∗(i∆(m)∗
O∆(m)) ⊗ (ωX

1−pm
� OX)).(18)

Proof. This lemma was proved in [15] (Lemma 2.3) for m = 1. For convenience of the reader, let

us reproduce the proof. Consider the above cartesian square. By flat base change one gets an

isomorphism of functors, the Frobenius morphism Fm being flat:

(19) F∗
mFm∗ = π1∗π2

∗.

Note that all the functors Fm∗,F
∗
m, π1∗, π2

∗ are exact, the Frobenius morphism Fm being affine.

The isomorphism (19) implies an isomorphism of cohomology groups

(20) Hk(X,F∗
mFm∗(OX) ⊗ ω1−pm

X ) = Hk(X,π1∗π2
∗(OX) ⊗ ω1−pm

X ).

By projection formula the right-hand side group in (20) is isomorphic to Hk(X̃, π2
∗OX⊗π1

∗ω1−pm

X ).

Let p1 and p2 be the projections of X × X onto the first and the second component respectively,

and let ĩ be the embedding X̃ ↪→ X × X. One sees that π1 = p1 ◦ ĩ, π2 = p2 ◦ ĩ. Hence an

isomorphism of sheaves

(21) π2
∗OX ⊗ π1

∗ω1−pm

X = ĩ∗(p∗2OX ⊗ p∗1ω
1−pm

X ) = ĩ∗(ω1−pm

X � OX).

From these isomorphisms and from the projection formula one gets

Hk(X̃, π2
∗OX ⊗ π1

∗ω1−pm

X ) = Hk(X̃, ĩ∗(ω1−pm

X � OX)) =

= Hk(X × X, ĩ∗OX̃ ⊗ (ω1−pm

X � OX)).(22)

By Lemma 3.2 the subscheme X̃ is isomorphic to the m-th Frobenius neighbourhood of the diagonal

∆(m) in X × X; thus

(23) ĩ∗OX̃ = (Fm × Fm)∗(i∆(m)∗
O∆(m)).

Applying Lemma 3.1 to π = Fm finishes the proof. �

Corollary 3.1. Let E1 and E2 be two vector bundles on X. There is an isomorphism of cohomology
groups:

Extk(F∗E1,F∗E2) = Hk(X,F!
mFm∗(E2) ⊗ E∗

1 ) =

= Hk(X × X, (Fm × Fm)∗(i∆(m)∗
O∆m) ⊗ ((E∗

1 ⊗ ω1−pm

X ) � E2)) =

= Hk(X × X, (Fm × Fm)∗(i∆(m)∗
O∆m) ⊗ (E2 � (E∗

1 ⊗ ω1−pm

X )).(24)
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In particular,

Hk(X,F∗
mFm∗(OX) ⊗ ω1−pm

X ) =

= Hk(X × X, (Fm × Fm)∗(i∆(m)∗O∆m) ⊗ (OX � ωX
1−pm

)).(25)

Proof. Flat base change implies an isomorphism of functors

(26) F∗
mFm∗ = π2∗π1

∗.

Repeating verbatim the proof of Lemma 3.3 one gets the statement. �

3.2. P
1 - bundles. Assume given a smooth variety S and a locally free sheaf E on S. Let X =

PS(E) be the projectivization of the bundle E and π : X → S the projection. Denote Oπ(−1) the

relative invertible sheaf.

Lemma 3.4. There is a short exact sequence of vector bundles on X:

(27) 0 → π∗F∗OS → F∗OX → π∗(F∗(S
p−2E ⊗ det E)) ⊗ det (E∗)) ⊗Oπ(−1) → 0.

Proof. By Theorem 2.2, the category Db(X) has a semiorthogonal decomposition:

(28) Db(X) = 〈D−1,D0〉,

where Di for i = 0,−1 is a full subcategory of Db(X) that consists of objects π∗(F) ⊗ Oπ(i), for

F ∈ Db(S). Decomposition (28) means that for any object A ∈ Db(X) there is a distinguished

triangle:

(29) · · · → π∗R·π∗A → A → π∗(Ã) ⊗Oπ(−1) → π∗R·π∗A[1] → . . . .

The object Ã can be found by twisting the triangle (29) by Oπ(−1) and applying the direct image

π∗ to the obtained triangle. Given that R·π∗Oπ(−1) = 0, we obtain an isomorphism:

(30) R·π∗(A ⊗Oπ(−1)) ' Ã ⊗ R·π∗Oπ(−2).

Now R·π∗Oπ(−2) = det(E)[−1]. Twisting both sides of the isomorphism (30) by det(E ∗), we get:

(31) Ã = R·π∗(A ⊗Oπ(−1)) ⊗ det E∗[1].

Let now A be the vector bundle F∗OX . The triangle (29) becomes in this case:

(32) · · · → π∗R·π∗F∗OX → F∗OX → π∗(Ã) ⊗Oπ(−1) → π∗R·π∗F∗OX [1] → . . . .

where Ã = R·π∗(F∗OX ⊗Oπ(−1))⊗det E∗[1]. Recall ((3), Subsection 2.1) that for a coherent sheaf

F on X one has an isomorphism Riπ∗F∗F = F∗R
iπ∗F . Therefore,

(33) R·π∗F∗OX = F∗R
·π∗OX = F∗OS .

On the other hand, R·π∗(F∗OX ⊗Oπ(−1)) = R·π∗(F∗Oπ(−p)) = F∗R
·π∗Oπ(−p). The relative Serre

duality for π gives an isomorphism:

(34) R·π∗Oπ(−p) = Sp−2(E) ⊗ det (E)[−1].

Let Ẽ be the vector bundle Sp−2(E) ⊗ det (E). Putting these isomorphisms together we see that

the triangle (32) can be rewritten as follows:

(35) · · · → π∗F∗OS → F∗OX → π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1)
[1]
→ . . . ,



TILTING BUNDLES ON SOME FANO VARIETIES VIA THE FROBENIUS MORPHISM 9

and we see that the above distinguished triangle is in fact a short exact sequence of vector bundles

on X:

(36) 0 → π∗F∗OS → F∗OX → π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1) → 0.

�

Remark 3.1. Note that the sequence (36) could be obtained without resorting to the semiorthog-

onal decomposition (28). Indeed, as we have seen, one has a canonical morphism of locally free

sheaves:

(37) π∗π∗F∗OX = π∗F∗OS → F∗OX .

This morphism is an embedding of vector bundles (this can be established easily by a computation

in local coordinates; it follows, in fact, that for any smooth morphism with connected rational

fibers such a morphism is always an embedding of vector bundles). The cokernel of the canonical

morphism is a locally free sheaf F such that R·π∗F = 0. Hence, F = π∗(F̃) ⊗ Oπ(−1) for some

sheaf F̃ on X. Indeed, using flat base change and the condition R·π∗F = 0 we see that the sheaf

F , up to the tensor product by pullback under π of a sheaf F̃ on X, is isomorphic to Oπ(−1). The

explicit form of the sheaf F̃ can be obtained by the same arguments as above.

Assume now that the vector bundle F∗OS is almost exceptional on S, that is

(38) Exti(F∗OS ,F∗OS) = 0

for i > 0. Applying the functor Hom(?,F∗OX) to the sequence (36), we get a long exact cohomology
sequence:

0 → Hom(π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1),F∗OX) → Hom(F∗OX ,F∗OX) →

→ Hom(π∗F∗OS ,F∗OX) → Ext1(π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1),F∗OX) →

→ Ext1(F∗OX ,F∗OX) → Ext1(π∗F∗OS ,F∗OX) → . . .(39)

From adjunction one has

(40) Exti(π∗F∗OS ,F∗OX) = Exti(F∗OS ,F∗OS) = 0

for i > 0 by our assumption. It follows from (39) that if the groups

(41) Exti(π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1),F∗OX),

are zero for i > 0 then

(42) Exti(F∗OX ,F∗OX) = 0

for i > 0. Using adjunction of functors once again, we obtain an isomorphism:

(43) Exti(π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1),F∗OX) = Exti(F∗(Ẽ) ⊗ det(E∗),F∗S
pE∗).

This group can be computed using Corollary 3.1.

Remark 3.2. Twisting the short exact sequence (36) by Oπ(1) and applying the direct image

R·π∗ to this sequence, we obtain:

(44) 0 → F∗OS ⊗ R·π∗Oπ(1) → R·π∗(F∗OX ⊗Oπ(1)) → F∗(Ẽ) ⊗ det (E∗) → 0
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or, rather

(45) 0 → F∗OS ⊗ E∗ → F∗S
pE∗ → F∗(Ẽ) ⊗ det (E∗) → 0.

Twisting the above sequence by det (E), we obtain:

(46) 0 → F∗OS ⊗ E → F∗S
pE → F∗Ẽ → 0.

For a rank two vector bundle there is a well-known short exact sequence (cf. [15]):

(47) 0 → F∗E → SpE → Ẽ → 0,

and we see that the sequence (46) is obtained by applying the functor F∗ to the sequence (47).

Remark 3.3. Lemma 3.4 can be generalized for projective bundles of arbitrary rank. If E is a

vector bundle of rank n over a scheme S and X : = P(E) is the projective bundle then there is

a filtration on the bundle F∗OX with associated graded factors being of the form π∗Fi ⊗Oπ(−i),

where Fi are some vector bundles over S, and 0 ≤ i ≤ n − 1. Let us work out an example of a

vector bundle of rank 3.

Lemma 3.5. Let E be a rank 3 vector bundle over a scheme S, and X : = P(E) the projective

bundle. Then the bundle F∗OX has a three-step filtration with associated graded factors being:

(48) π∗F∗OS , π∗G ⊗Oπ(−1), π∗(F∗(S
p−2E ⊗ det E) ⊗ det E∗) ⊗Oπ(−2),

where G is a vector bundle on S fitting in a short exact sequence:

(49) 0 → F∗F
∗E∗ → F∗S

pE∗ → G → 0.

Proof. Theorem 2.2 states that the category Db(X) has a semiorthogonal decomposition of three

pieces:

(50) Db(X) = 〈π∗ Db(S) ⊗Oπ(−2), π∗ Db(S) ⊗Oπ(−1), π∗ Db(S)〉.

This decomposition produces a distinguished triangle:

(51) · · · → π∗F∗OS → F∗OX → A
[1]
→ . . . ,

where A is an object of Db(X) that, in turn, fits into a distinguished triangle:

(52) . . . π∗G ⊗Oπ(−1) → A → π∗F ⊗Oπ(−2)
[1]
→ . . . .

Here G and F are objects of Db(X). We can find these objects using the same arguments as

above. Indeed, tensor the triangle (52) with Oπ(−1) and apply the functor R·π∗. We obtain an

isomorphism:

(53) R·π∗(A⊗Oπ(−1)) = F ⊗ R·π∗Oπ(−3).

Now R·π∗Oπ(−3) = det E [−2]. Tensoring the triangle (51) with Oπ(−1) and applying R·π∗, we

obtain an isomorphism:

(54) R·π∗(A⊗Oπ(−1)) = R·π∗(F∗OX ⊗Oπ(−1)) = R·π∗(F∗Oπ(−p)) = F∗R
·π∗Oπ(−p),

and R·π∗Oπ(−p) = Sp−2E ⊗ detE [−2] by the Serre duality. Hence,

(55) F = F∗(S
p−2E ⊗ detE) ⊗ detE∗.
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Similarly, twisting the triangle 52 with Oπ(1) and applying R·π∗ we obtain that the object G is in

fact a vector bundle fitting in a short exact sequence:

(56) 0 → F∗OS ⊗ E∗ → F∗S
pE∗ → G → 0.

This proves the statement. �

3.3. Blowups of surfaces. Let X be a smooth variety and Y its smooth subvariety of codimension

two. Consider the blow-up of Y in X. Recall notations from Subsection 2.4.1: there is a cartesian

diagram

Ỹ
j //

p

��

X̃

π

��
Y

i // X

Here Ỹ is the exceptional divisor. If NY/X is normal bundle to Y in X then the projection p is the

projectivization of the bundle NY/X . Let Op(−1) be the relative invertible sheaf.

Lemma 3.6. There is a short exact sequence:

(57) 0 → π∗F∗OX → F∗OX̃ → j∗(Op(−1) ⊗ p∗E) → 0.

Here E is a coherent sheaf on Y which fits into a short exact sequence:

(58) 0 → E → i∗π∗F∗OX̃ → R0p∗j
∗F∗OX̃ → 0.

Proof. By Theorem 2.3, the category Db(X̃) admits a semiorthogonal decomposition:

(59) Db(X̃) = 〈j∗(p
∗ Db(X) ⊗Op(−1)), π∗ Db(X)〉.

This means that there is a distinguished triangle:

(60) · · · → π∗R·π∗F∗OX → F∗OX̃ → j∗(Op(−1) ⊗ p∗E)
[1]
→ . . . .

Consider the canonical morphism π∗R·π∗F∗OX̃ → F∗OX̃ . One has:

(61) R·π∗F∗OX̃ = F∗R
·π∗OX̃ = F∗π∗OX̃ = F∗OX .

Indeed, R·π∗OX̃ = OX . The morphism π∗F∗OX → F∗OX̃ is an injective map of coherent sheaves

at the generic point of X̃. Therefore it is an embedding of coherent sheaves, the sheaves π∗F∗OX

and F∗OX̃ being locally free.

Taking sheaf cohomology H· of the sequence (60) we see that the object p∗E has cohomology

only in degree zero, hence E is a coherent sheaf and the sequence (60) in fact becomes a short

exact sequence (57). To determine the sheaf E apply the functor j∗ to the sequence (57):

(62) 0 → L1j∗j∗(Op(−1) ⊗ p∗E) → j∗π∗F∗OX → j∗F∗OX̃ → Op(−1) ⊗ p∗E → 0.
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Recall that the normal bundle NỸ /X̃ to Ỹ in X̃ is isomorphic to OỸ (Ỹ ) = Op(−1). Hence, the

sheaf L1j∗j∗(Op(−1) ⊗ p∗E) is isomorphic to Op(−1) ⊗ p∗E ⊗OỸ (−Ỹ ) = p∗E, and the sequence

(62) becomes

(63) 0 → p∗E → j∗π∗F∗OX → j∗F∗OX̃ → Op(−1) ⊗ p∗E → 0.

Applying now to the sequence (63) the functor R·p∗ and taking into account that R·p∗Op(−1) = 0

we get a short exact sequence

(64) 0 → E → R0p∗j
∗π∗F∗OX → R0p∗j

∗F∗OX̃ → 0.

Now R0p∗j
∗π∗F∗OX = R0p∗p

∗i∗F∗OX = i∗F∗OX = i∗π∗F∗OX̃ , and the sequence (58) follows. �

Consider a particular case when X is a smooth surface and Y is a point y ∈ X. Let X̃ be the

blown-up surface and l be the exceptional divisor, l = P
1.

Corollary 3.2. There is a short exact sequence:

(65) 0 → π∗F∗OX → F∗OX̃ → j∗Ol(−1)⊕
p(p−1)

2 → 0.

Proof. The category Db(y) is equivalent to Db(Vect− k), since y is a point. Hence, we just need to

compute the multiplicity of the sheaf j∗Ol(−1) in the sequence (65) or the rank of vector space E.

This multiplicity is equal to the corank of the morphism of sheaves π∗F∗OX → F∗OX̃ at the point
y.

Proposition 3.1. The corank is equal to p(p−1)
2 .

Proof. Choose the local coordinates x, y on X̃. Then x, xy are the local coordinates on X. The

stalk of the sheaf π∗F∗OX at y is then k[x, y]/(xp, (xy)p) whereas the stalk of the sheaf F∗OX̃ at

y is k[x, y]/(xp, yp). We see now that the cokernel of the map k[x, y]/(xp, (xy)p) → k[x, y]/(xp, yp)

consists of monomials xayb such that 0 ≤ a < b < p, hence the statement. �

Corollary 3.2 is proven. �

Remark 3.4. Note that the sequence (65) could be obtained without resorting to Theorem 2.3.

Indeed, there is an embedding of locally free sheaves i : π∗F∗OX ↪→ F∗OX̃ ; the cokernel of the

map i is a coherent sheaf F on X̃ supported on the exceptional divisor l. Clearly, R·π∗F = 0.

The sheaf F is the direct sum of its locally free part F lf and its torsion part F tors. The sheaf F lf

is the direct sum of line bundles Ol(m),m ∈ Z by a Grothendieck theorem. From the condition

R·π∗F = 0 we conclude that the only possibility for the sheaf F is that it has no torsion and the

only line bundles that can occur in the decomposition of F are those of the form Ol(−1), q.e.d.

The sequences arising in Lemma 3.6 could obtained as well by using similar arguments.

4. A few examples

In this section we show some applications of the above results.
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4.1. Flag variety in type A2. Consider the group SL3 over k and the flag variety SL3/B. In

[5] it was proved (Theorem 4.5.4 in loc.cit.) that the sheaf of differential operators on SL3/B has

vanishing higher cohomology (recall that for flag varieties this implies the D-affinity, see ([5])).

Below we give a different proof of this vanishing theorem.

Theorem 4.1. Let X be the flag variety SL3/B. Then Exti(Fm∗OX ,Fm∗OX) = 0 for i > 0 and

m ≥ 1.

Corollary 4.1. Hi(X,DX) = 0 for i > 0.

Proof. Recall (see Subsection 2.2) that the sheaf DX is the direct limit of sheaves of matrix algebras:

(66) DX =
⋃

n≥1

EndOX
(Fn∗OX).

Clearly, for some i and n ≥ 1 the vanishing Exti(Fn∗OX ,Fn∗OX) = Hi(X, End(Fn∗OX)) = 0

implies Hi(X,DX) = 0. �

Proof. The flag variety SL3/B is isomorphic to an incidence variety. For convenience of the reader,

recall some facts about incidence varieties. Let V be a vector space of dimension n. The incidence

variety Xn is the set of pairs Xn : = (l ⊂ H ⊂ V ), where l and H are a line and a hyperplane in

V , respectively. The variety Xn is fibered over P(V ) and P(V ∗):

Xn

p

{{wwwwwwwwwwwwwwww

π

##HHHHHHHHHHHHHHHHH

P(V ) P(V ∗)

Let 0 ⊂ U1 ⊂ Un−1 ⊂ V ⊗OX be the tautological flag on Xn. The projection π is projectivization of

the bundle Ω1(1) on P(V ∗). Let Op(−1) and Oπ(−1) be the relative tautological line bundles with

respect to projections p and π, respectively. Note that U1 = p∗O(−1) = Oπ(−1),Un−1 = π∗Ω1(1).

Let π/l be the quotient bundle:

(67) 0 → p∗O(−1) → π∗Ω1(1) → π/l → 0.

Denote O(i, j) the line bundle p∗O(i) ⊗ π∗O(j). The canonical line bundle ωX is isomorphic to

O(−n,−n). To compute the Ext-groups, let us apply Lemma 3.1. Recall that this lemma states

an isomorphism of the following groups:

(68) ExtiX(Fm∗OX ,Fm∗OX) = Hk(X × X, (Fm × Fm)∗(i∆(m)∗
O∆m) ⊗ (OX � ωX

1−pm
)).

For incidence varieties, however, there is a nice resolution of the sheaf i∗O∆, the Koszul resolution

([11], Proposition 4.17). Recall briefly its construction. Consider the following double complex of

sheaves C•,• on Xn × Xn:
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. . . // Ψ1,0 � O(−1, 0) // OXn×Xn

. . . // Ψ1,1 � O(−1,−1) //

OO

Ψ0,1 � O(0,−1)

OO

...

OO

...

OO

The total complex of C•,• is a left resolution of the structure sheaf of the diagonal ∆ ⊂ Xn × Xn.

Truncate C•,•, deleting all terms except those belonging to the intersection of the first n rows

(from 0-th up to (n − 1)-th) and the first n − 1 columns, and consider the convolution of the

remaining double complex. Denote C̃• the convolution. The truncated complex has only two non-

zero cohomology: H0 = O∆, and H−2(n−1). The latter cohomology can be explicitly described:

(69) H−2(n−1) =
n−1
⊕

i=0

∧i(π/l)(−1, 0) � ∧i(π/l)∗(−n + 1,−n).

It follows that there is the following distinguished triangle (σ≥ stands for the stupid truncation):

(70) · · · → H−2n+2[2n − 2] → σ≥−2n+2(C̃
•) → i∗O∆ → H−2n+2[2n − 1] → . . . .

Let us come back to the case of SL3/B = X4 = X. Using the above triangle and Lemma 3.1, we

can prove Theorem 4.1 almost immediately. In this case, the above triangle looks as follows:

(71) · · · → H−2[2] → σ≥−2(C̃
•) → i∗O∆ → H−2[3] → . . . ,

where the truncated complex σ≥−2(C̃
•) is quasiisomorphic to:

(72) 0 → Ψ1,1 � O(−1,−1) → Ψ1,0 � O(−1, 0) ⊕ Ψ0,1 � O(0,−1) → OX×X → 0,

and there is an isomorphism

(73) H−2 = O(−1, 0) � O(−1,−2) ⊕ π/l ⊗O(−1, 0) � (π/l)∗ ⊗O(−1,−2).

We need to compute the groups Hk(X ×X, (Fm ×Fm)∗(i∆(m)∗
O∆m)⊗ (OX �ωX

1−pm
)). Apply the

functor (Fm × Fm)∗ to the triangle (71) and tensor it then with the sheaf (OX � ωX
1−pm

)). Let us

first prove that H
i(X × X, (Fm × Fm)∗(σ≥−2(C̃

•)) � (OX � ωX
1−pm

)) = 0 for i > 0. Recall that

ωX = O(−2,−2). The sheaves Ψi,j have right resolutions consisting of direct sums of ample line

bundles and the sheaf OX ([11]). This implies that Hi(X,F∗
m(Ψ1,0)) = Hi(X,F∗

m(Ψ0,1)) = 0 for

i > 1 and Hi(X,F∗
m(Ψ1,1)) = 0 for i > 2. Along the second argument in (72) we get, after tensoring

it with ω1−pm

X , ample line bundles. Ample line bundles have no higher cohomology by the Kempf
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theorem ([13]). The spectral sequence then gives H
i(X×X, (Fm×Fm)∗(σ≥−2(C̃

•))�(OX�ωX
1−pm

))

= 0 for i > 0.

Note that π/l is a line bundle. One sees that π/l = O(1,−1), hence the sheaf H−2 is isomorphic

to O(−1, 0) � O(−1,−2) ⊕O(0,−1) � O(−2,−1). Thus

(Fm × Fm)∗H−2 ⊗ (OX � ωX
1−pm

) =(74)

= O(−pm, 0) � O(−pm,−2pm) ⊗ ω1−pm

X ⊕O(0,−pm) � O(−2pm,−pm) ⊗ ω1−pm

X .

Let us prove that the latter bundle has only one non-vanishing cohomology, namely H3. The Serre

duality gives:

(75) Hi(X,F∗
mO(−1, 0)) = H3−i(X,F∗

mO(−1,−2) ⊗ ω1−pm

X ),

and

(76) Hi(X,F∗
mO(0,−1)) = H3−i(X,F∗

mO(−2,−1) ⊗ ω1−pm

X ).

It is therefore sufficient to show that the left-hand sides in both (75) and (76) are non-zero

only for one value of i. Consider for example the cohomology group Hi(X,F∗
mO(−1, 0)). The

line bundle O(−1, 0) is isomorphic to p∗O(−1), hence Hi(X,F∗
mO(−1, 0)) = Hi(P2,F∗

mO(−1)) =

Hi(P2,O(−pm)). The line bundle O(−pm) on P
2 is either acyclic (for p = 2 and m = 1) or

has only one non-zero cohomology group in top degree. The Künneth formula now gives that

Hi(X × X, (Fm × Fm)∗H−2 ⊗ (OX � ωX
1−pm

)) = 0 for i 6= 3. Remembering the distinguished

triangle (71), we get the proof. �

Remark 4.1. A very similar argument was used in ([15]) where the case of 3-dimensional quadrics

was studied. The vanishing of higher cohomology of the sheaf DXn on incidence varieties Xn for

arbitrary n was proved in ([16]).

Corollary 4.2. Assume p > 3. Then F∗OX is a tilting bundle.

Proof. The first condition of Definition 2.3 is satisfied by Theorem 4.1. The second one is satisfied

by Lemma 2.2. Hence, there is an equivalence of categories:

(77) Db(X) ' Db(End(F∗OX) − mod)),

and X being smooth, the algebra End(F∗OX) has finite homological dimension (cf. [7]). �

4.2. Toric Fano varieties. Here we work out several examples of Fano toric varieties.

Lemma 4.1. Let X be the projective bundle P(O ⊕O(1)) over P
n. Then Exti(F∗OX ,F∗OX) = 0

for i > 0.

Proof. We first consider the case n > 1. Denote E = O ⊕O(1), and let π : X → P
n be projection.

Recall the short sequence (see Subsection 3.2):

(78) 0 → π∗F∗OPn → F∗OX → π∗(F∗(Ẽ) ⊗ det (E∗)) ⊗Oπ(−1) → 0.

Here Ẽ = Sp−2E ⊗ detE . We first observe that the sequence (78) splits, that is

(79) F∗OX = π∗F∗OPn ⊕ π∗(F∗Ẽ ⊗ detE∗) ⊗Oπ(−1).
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Indeed, by adjunction one obtains an isomorphism

(80) Ext1(π∗(F∗Ẽ ⊗ detE∗) ⊗Oπ(−1), π∗F∗OPn) = Ext1(F∗Ẽ ⊗ detE∗,F∗OPn ⊗ π∗Oπ(1)),

the group in the right hand side being isomorphic to

(81) Ext1(F∗Ẽ ,F∗OPn ⊗ E).

Recall that Ẽ = Sp−2E ⊗detE =
⊕k=p−1

k=1 O(k). It is well known that the Frobenius push-forward of

any line bundle on P
n splits into direct sum of line bundles (e.g.,[7]). More generally, the Frobenius

push-forward of a line bundle on a smooth toric variety has the same property ([3]). Hence, both

terms in the group (81) are direct sums of line bundles. However, a line bundle on P
n can have

non-zero cohomology either in zero or in top degree. Thus, the group (81) is zero and the bundle

F∗OX splits.

We need to prove that Exti(π∗(F∗Ẽ ⊗ detE∗) ⊗ Oπ(−1),F∗OX) = 0 for i > 0. This reduces to

showing that

(82) Exti(F∗Ẽ ,F∗Ẽ) = 0, and Exti(F∗Ẽ ,F∗OPn ⊗ E) = 0

for i > 0.

Proposition 4.1. Let 1 ≤ k ≤ p−1. Then line bundles that occur in the decomposition of F∗O(k)

are isomorphic to O(l) for −n ≤ l ≤ 0.

Proof. Let F∗O(k) = ⊕ O(ai). Tensoring F∗O(k) with O(−1), we obtain the bundle F∗O(k) ⊗

O(−1) = F∗O(k − p), and the latter bundle has no global sections by the assumption. Hence, all

ai ≤ 0. On the other hand, F∗O(k) for such k has no higher cohomology. This gives ai ≥ −n. �

Lemma 4.1 implies that the groups in (82) are zero for i > 0, hence the statement.

Now look at the case n = 1. The toric variety – the projective bundle P(O ⊕O(1)) over P
1 – is

a ruled surface F1 and is isomorphic to the blowup of a point on P
2. Blowups of P

2 are treated in

the next section. A straightforward check using Lemma 3.1, however, gives that the sequence (78)

splits for n = 1 as well, and the rest of the proof is the same as above.

In fact, the decomposition of the bundle F∗OX into a direct sum of line bundles allows to

check when F∗OX generates the category Db(X). Let us treat the simplest case of P
1. Recall the

decomposition:

(83) F∗OF1 = π∗F∗OP1 ⊕ π∗(F∗Ẽ ⊗ detE∗) ⊗Oπ(−1).

One has F∗OP1 = OP1 ⊕ OP1(−1)⊕p−1, and it can be easily verified (at least for p > 2) that a

similar decomposition holds for F∗Ẽ ⊗ detE∗:

(84) F∗Ẽ ⊗ detE∗ = O⊕a
P1 ⊕OP1(−1)⊕b,

where a and b are non-zero multiplicities. It follows from Theorem 2.2 that the set of line bundles

OF1 , π
∗OP1(−1),Oπ(−1), π∗OP1(−1)⊗Oπ(−1) generates the category Db(F1), hence for p > 2 the

bundle F∗OF1 generates Db(F1), that is F∗OF1 is a tilting bundle. �

Similarly, one checks the following:
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Lemma 4.2. Let X be the projective bundle P(O ⊕ O(2)) over P
n, and n > 2. Then the bundle

F∗OX is almost exceptional (i.e. Exti(F∗OX ,F∗OX) = 0 for i > 0).

Proof. The proof is completely analogous to that of the previous lemma. It turns out, however,

that for n = 2 there are non-vanishing Ext-groups in top degree. A direct sum decomposition for

F∗OX as in the previous lemma holds anyway. �

Recall that according to the classification of smooth toric Fano threefolds ([1]), there are 18

isomorphism classes of smooth Fano toric threefolds. Among these are the following projective

bundles:

P
3, P(OP2 ⊕OP2(2)), P(OP2 ⊕OP2(1)), P(OP1 ⊕OP1 ⊕OP1(1)),(85)

P(OP1×P1 ⊕OP1×P1(1, 1)), P(OP1×P1 ⊕OP1×P1(1,−1)), P(OX1 ⊕OX1(l)),

The other varieties in the list are products of del Pezzo surfaces Xk (the blowups of P
2 at k points)

and P
1:

(86) P
2 × P

1, P1 × P
1 × P

1, X1 × P
1, X2 × P

1, X3 × P
1,

and there are yet six varieties, of which four are isomorphic to del Pezzo fibrations over P
1. The

similar calculations as above give:

(i) Let X be the projective bundle P(O ⊕O(1, 1)) over P
1 × P

1. Then Exti(F∗OX ,F∗OX) = 0 for

i > 0.

(ii) Let X be the projective bundle P(O ⊕O(1,−1)) over P
1 × P

1. Then Ext1(F∗OX ,F∗OX) 6= 0.

In the next section we will see that Exti(F∗OXk
,F∗OXk

) = 0 for a del Pezzo surface Xk. Thus,

the Ext-groups vanish for all varieties in (86). It should be possible to compute the bundle F∗OX

for P(OP1 ⊕ OP1 ⊕ OP1(1)) and P(OX1 ⊕ OX1(l)) using the above methods though we did not

attempt to do this.

5. Some rational surfaces

Theorem 5.1. Let Xk be a smooth surface that is obtained by blowing up of a set of k points on

P
2 in general position, k ≥ 1. Then

(87) Exti(F∗OXk
,F∗OXk

) = 0

for i > 0.

Proof. We prove the theorem by induction. The case of P
2 =: X0 is well known (e.g., [7]). Assume

that

(88) Exti(F∗OXk
,F∗OXk

) = 0

for i > 0 and Xk = P̃
2
x0,...,xk−1

, k > 1. Take a point xk in general position with respect to the points

x0, . . . , xk−1 and consider the blow-up of Xk at xk:
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lk
i //

p

��

Xk+1

πk

��
xk // Xk

By Corollary 3.2 there is a short exact sequence:

(89) 0 → π∗
kF∗OXk

→ F∗OXk+1
→ i∗Olk(−1)⊕

p(p−1)
2 → 0.

Applying the functor Hom(F∗OXk+1
, ?) to the sequence (89), we get a long exact sequence:

0 → Hom(F∗OXk+1
, π∗

kF∗OXk
) → Hom(F∗OXk+1

,F∗OXk+1
) →(90)

→ Hom(F∗OXk+1
, i∗Ol(−1)⊕

p(p−1)
2 ) → Ext1(F∗OXk+1

, π∗
kF∗OXk

) → . . . .

Let us first consider the groups Extm(F∗OXk+1
, π∗

kF∗OXk
). By adjunction we have:

Extm(F∗OXk+1
, π∗

kF∗OXk
) = Extm(OXk+1

,F∗π∗
kF∗OXk

⊗ ω1−p
Xk+1

) =(91)

= Hm(Xk+1, π
∗
kF

∗F∗OXk
⊗ ω1−p

Xk+1
).

Recall that the canonical sheaves are related by the formula:

(92) ωXk+1
= π∗

kωXk
⊗OXk+1

(lk).

For any n > 0 there is the short exact sequence:

(93) 0 → OXk+1
(−nlk) → OXk+1

→ Onlk → 0.

The sheaf Onlk has a filtration with associated graded factors being J m
lk

/J m+1
lk

= Olk(m), 0 < m <

n. Hence, R·πk∗Onlk = Onxk
. Applying the direct image functor πk∗ to the sequence (93), we get:

(94) 0 → πk∗OXk+1
(−nlk) → OXk

→ Onxk
→ 0.

Thus, R·πk∗OXk+1
(−nlk) = J n

xk
. Finally:

(95) R·πk∗(ω
1−p
Xk+1

) = ω1−p
Xk

⊗ J p−1
xk

We obtain an isomorphism:

(96) Hm(Xk+1, π
∗
kF

∗F∗OXk
⊗ ω1−p

Xk+1
) = Hm(Xk,F

∗F∗OXk
⊗ ω1−p

Xk
⊗ J p−1

xk
).

Consider a short exact sequence

(97) 0 → J p−1
xk

→ OXk
→ O(p−1)xk

→ 0,

and its tensor product with the vector bundle F∗F∗OXk
⊗ ω1−p

Xk
= F!F∗OXk

: = Ek

(98) 0 → J p−1
xk

⊗ Ek → Ek → Ek ⊗O(p−1)xk
→ 0.

By the induction assumption we have

(99) Hi(Xk, Ek) = Exti(F∗OXk
,F∗OXk

) = 0
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for i > 0.

Proposition 5.1. The map H0(Xk, Ek) → H0(Xk, Ek ⊗O(p−1)xk
) is surjective.

Proof. We again proceed by induction. For k = 1 we have X1 = P
2 and E0 = F∗F∗OP2 ⊗ ω1−p

P2 =

OP2(3p − 3) ⊕ OP2(2p − 3)p1 ⊕ OP2(p − 3)p2 , where p1 and p2 are the multplicities. In fact, these

multplicities are equal to

(100) p1 =
(p − 1)(p + 4)

2
, p2 =

(p − 1)(p − 2)

2
.

A dimension count gives in this case that there is a surjection H0(P2, E0) � H0(P2, E0 ⊗O(p−1)x1
).

Indeed, the dimension of the group H0(P2, E0) is given by

(101) dim H0(P2, E0) =

(

3p − 1

2

)

+

(

2p − 1

2

)

· p1 +

(

p − 1

2

)

· p2.

On the other hand, the space H0(P2, E0 ⊗O(p−1)x1
) imposes (p−1)(p−2)

2 (1 + p1 + p2) conditions and

one sees that the dimension of this space is less than the right-hand side in (101). Moreover,

the dimension count shows that there is even a surjection H0(P2, E0) � H0(P2, E0 ⊗ OZ), where

Z is an artinian subscheme of P
2 of the length ≤ 2p. Assume that for some l ≤ k we have a

surjection H0(Xl, El) → H0(Xl, El ⊗OZ), where Z is an artinian subscheme of Xl of length ≤ 2p; in

particular, this inductive assumption implies a surjection H0(Xk, Ek) → H0(Xk, Ek ⊗O(p−1)xk
), or,

equivalently, H1(Xk,J p−1
xk ⊗ Ek) = 0. Consider the sequence (89). This is a sequence of coherent

sheaves on Xk+1. Applying to it the functor F! on Xk+1, we obtain:

(102) 0 → F!(π∗
kF∗OXk

) → Ek+1 → F!(i∗Olk(−1)⊕
p(p−1)

2 ) → 0.

One has

F!(π∗
kF∗OXk

) = F∗(π∗
kF∗OXk

) ⊗ ω1−p
Xk+1

=(103)

= π∗
k(F

∗F∗OXk
⊗ ω1−p

Xk
) ⊗OXk+1

(−(p − 1)lk) = π∗
kEk ⊗OXk+1

(−(p − 1)lk).

Denote the line bundle OXk+1
(−(p−1)lk) by Lk and the sheaf F!(i∗Olk(−1)⊕

p(p−1)
2 ) by Mk. Tensor

the sequence (102) with the sheaf J p−1
xk+1 :

(104) 0 → T or1(Mk,J p−1
xk+1

) → π∗
kEk ⊗Lk ⊗ J p−1

xk+1
→ Ek+1 ⊗ J p−1

xk+1
→ Mk ⊗ J p−1

xk+1
→ 0.

We need to prove that H1(Xk+1, Ek+1⊗J p−1
xk+1) = 0. First observe that Mk⊗J p−1

xk+1 = Mk since the

sheaf Jxk+1
is isomorphic to OXk+1

in the neighbourhood of the support of the sheaf Mk. Further,

for any coherent sheaf F on Xk+1 one has an exact sequence:

(105) 0 → H1(Xk,R0πk∗F) → H1(Xk+1,F) → H0(Xk,R
1πk∗F) → . . .

Applying to the short exact sequence

(106) 0 → OXk+1
→ OXk+1

(lk) → i∗Olk(−1) → 0

the functor F!, we get:

(107) 0 → ω1−p
Xk+1

→ ω1−p
Xk+1

⊗OXk+1
(plk) → F!(i∗Olk(−1)) → 0.
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Taking the direct image πk∗ gives:

(108) 0 → ω1−p
Xk

⊗ J p−1
xk

→ ω1−p
Xk

→ πk∗(F
!(i∗Olk(−1)) → 0.

Therefore

(109) R0πk∗(F
!(i∗Olk(−1)) = ω1−p

Xk
⊗O(p−1)xk

,

and

(110) R1πk∗(F
!(i∗Olk(−1)) = 0.

We see that R1πk∗(Mk ⊗ J p−1
xk+1) = 0 and R0πk∗(Mk ⊗ J p−1

xk+1) is a skyscraper sheaf. By (105) we

get:

(111) H1(Xk+1,Mk) = H1(Xk+1,Mk ⊗ J p−1
xk+1

) = 0.

The following two observations finish the proof: first, by the induction assumption, one has:

(112) H1(Xk+1, π
∗
kEk ⊗Lk ⊗ J p−1

xk+1
) = H1(Xk, Ek ⊗J p−1

xk∪πk(xk+1)
) = 0.

Secondly, the sheaf T or1(Mk,J
p−1
xk+1) is a torsion sheaf supported on the exceptional divisor lk;

hence, H2(Xk+1, T or1(Mk,J
p−1
xk+1)) = 0. Considering the spectral sequence associated to the se-

quence (104) we get H1(Xk+1, Ek+1 ⊗ J p−1
xk+1) = 0, q.e.d. �

Taking into account (99) and Proposition 5.1, from the long exact cohomology sequence associ-

ated to (98) we get:

(113) Hi(Xk, Ek ⊗ J p−1
x ) = 0

for i > 0. Hence, the left-hand side group in (91) is zero for m > 0. Now consider the groups

Extm(F∗OXk+1
, i∗Olk(−1)⊕

p(p−1)
2 ) = Hm(Xk+1,F

!(i∗Olk(−1)⊕
p(p−1)

2 )). From (109) and (110) one

sees immediately that Hm(Xk+1,F
!(i∗Olk(−1)⊕

p(p−1)
2 )) = 0 for m > 0.

Finally, from (91) we get Extm(F∗OXk+1
,F∗OXk+1

) = 0 for m > 0, and the theorem follows.

�

Another proof uses the Cartier isomorphism ([8]).

Under a bound on the prime number p, for del Pezzo surfaces (that is for surfaces Xk for k ≤ 9)

the bundle F∗OXk
should generate the whole category Db(Xk) (see, e.g., an example of the ruled

surface F1 = X2 in the previous section). The proof will be given elsewhere.
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[3] R. Bögvad, “Splitting of the direct image of sheaves under the Frobenius”, Proc. Amer. Math. Soc. 126 (1998),

no. 12, pp. 3447–3454
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