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Abstract. We develop integral geometry for non-compactly causal symmetric spaces. We
define a complex horospherical transform and, for some cases, identify it with a Cauchy
type integral.

Introduction

Within the class of pseudo Riemannian symmetric spaces there are causal symmetric spaces
Y = G/H with an invariant generalized conformal structure defined by a field of (linear
equivalent ) convex cones [14]. There are 2 types of causal structures which correspond to 2
types of such spaces: compactly causal (CC) and noncompactly causal spaces (NCC) [14].
In both cases there exists G-invariant Stein tubes D = D(Y ) in the Stein symmetric space
YC = GC/HC which have Y as Shilov boundary. There are some similarities but also some
substantial differences with regard to analysis on these tubes. The most important fact is that
one can realize different series of representations in Hilbert spaces of holomorphic functions
on D: holomorphic discrete series on Y for the CC-case in contrast to a multiplicity one
subspace of the most continuous spectrum in the NCC-case.

In [9] we developed integral geometry for D in the CC-case. If to consider the usual
(real) horospherical transform on Y , then holomorphic discrete series lie in its kernel. So
we considered a complex version of such a transform - horospherical Cauchy transform -
using a kernel of Cauchy type with singularities on complex horospheres (on YC) which
do not intersect Y . As a result we constructed a dual domain Ξ+ in the manifold Ξ of
complex horospheres on YC and our horospherical transform is an intertwining operator
from holomorphic functions on D to holomorphic functions on Ξ+ which admits an explicit
inversion.

In this paper we try to realize a similar program for NCC-spaces. The situation here is
different. The real horospherical transform on Y is injective on the most continuous spectrum
but it does not make a difference between different multiplicities of this spectrum. Thus
we want find such a modification of this transform which separates one multiplicity of most
continuous spectrum. It turns out that such a construction exists and again it has a complex
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nature. An essential difference of the NCC-case compared to the CC-case is that there are
fewer complex horospheres for YC which do not intersect Y : they are parameterized by some
CR-manifold of complex dimension equal to the real rank of Y . Anyway it is sufficient to
have an appropriate construction.

Our basic construction differs from the one in the CC-case. We use the fact that D in
the NCC-case contains the Riemannian symmetric space X for the group G. We remark
that the the (real) horospherical transform on holomorphic functions on D, restricted on
X, admit holomorphic extension as CR-function on the CR manifold Ξ+, parameterizing
complex horospheres which do not intersect Y . Let us point out that integrals on all real
horospheres in the intersection of such a complex horosphere with D coincide. We call
such a transform holomorphic horospherical transform. Of course we can invert it using the
inversion of horospherical transform on X. In some cases (the most interesting case of spaces
of Caley type) we can rewrite this transform as some Cauchy type integral on Y . We call
such form of the horospherical transform the horospherical Cauchy transform similarly to
the CC-case.

The paper is concluded with a geometric definition of the most continuous Hardy space
introduced in [9].

1. Horospheres on NCC symmetric spaces

In [9] we associated to every NCC symmetric space Y = G/H a G-Stein manifold D with
the following properties:

(1) The complex manifold D has a natural G-realization in the complexification YC of
Y ;

(2) The symmetric space Y = G/H is G-isomorphic to the distinguished (Shilov) bound-
ary of D.

The objective of this section is to study the space Ξ = GC/MCNC of horospheres in YC in
relation to D. In particular we will introduce a natural G-invariant CR-manifold Ξ+ ⊂ Ξ
whose elements have the properties that they do non intersect the real space Y , i.e. have no
real points.

1.1. Notation. We informally recall the notion of an NCC space. For that let G/H be a
semisimple symmetric space. We assume that the group G is connected, simple and that H
is the full fixed point group of the underlying involution τ : G → G, i.e., H = Gτ . We write
yo = H for the base point of Y and identify the tangent space Tyo

Y with the −1-eigenspace q

of dτ(1). Then Y is called non-compactly causal (NCC) if there exists an hyperbolic element
0 6= ZH ∈ q = Tyo

Y such that ZH generates a proper Ad(H)-invariant open convex cone (cf.
[14]). We can assume that ZH is H ∩ K-invariant, where K is a τ -stable maximal compact
subgroup of G. Let us also mention that there there are the compactly causal spaces (CC)
which are dual to the NCC-spaces [14].

Let us fix a maximal abelian subspace a ⊂ q which contains ZH . We recall that a is
hyperbolic and that we can choose ZH in such a way that ad(ZH) defines a 3-grading with
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π/2 the maximal eigenvalue. Define ΩH ⊆ a by

(1.1) ΩH = int{convex hull of W(ZH)} .

Here W, as usually, denotes the Weyl group of the restricted root system Σ = Σ(g, a)
with g the Lie algebra of G. Observe that ΩH is a compact convex subset of a with extreme
points W(ZH).

Attached to Y and ΩH comes a Stein manifold D which we will now describe. Denote
by GC the universal complexification of G. It is convenient and no big loss of generality to
require that GC is simply connected with G ⊂ GC. Under these assumptions τ extends to a
holomorphic involution of GC and with the corresponding fixed point group HC we obtain a
totally real embedding

Y ↪→ YC = GC/HC

of Y in the Stein symmetric space YC.
According to Berger there exists a Cartan involution θ : G → G which commutes with

τ . In addition we may and will assume that a is included in the −1-eigenspace p of dθ(1).
Write K for the compact group of θ-fixed elements and X = G/K for the corresponding
Riemann symmetric space. As before we obtain a totally real embedding

X ↪→ XC = GC/KC .

Recall that HC and KC are conjugate, i.e. with zH = exp(iZH) we have cf. [9, 20]:

(1.2) eiad(ZH)kC = hC and Ad(zH)KC = HC .

Hence XC and YC are canonically GC-isomorphic via the map

XC 3 gKC 7→ gz−1
H HC ∈ YC .

In the sequel we identify XC with YC.
We write xo = KC ∈ XC for the base point in XC and set

D = G exp(iΩH) · xo .

Note that D was denoted by ΞH in our previous article [9]. According to [9] it is known
that D is an open G-invariant Stein neighborhood of X in XC = YC. Moreover, the map
Y = G/H 3 gH 7→ gzH · xo ∈ XC identifies Y with the distinguished boundary ∂dD of D
(see [9], Section 1, for more details).

In summary, the symmetric Stein manifold XC = YC admits 2 real forms X and Y and a
Stein neighborhood D of X with Y as its Shilov boundary.

1.2. Complex horospheres. In this section we introduce the G-space of horospheres in
the complex manifold XC. This was done for CC-spaces in [10].

We begin with some general remarks on convexity which we will use frequently. Let
G = NAK be an Iwasawa decomposition of G and NCACKC ( GC its Zariski-open com-
plexification. In particular, NCAC ·xo is a Zariski-open subset in the affine variety XC. Define
the finite 2-group F = AC ∩ KC and note that there are well defined holomorphic maps
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n : NCAC · xo → NC, a : NCAC · xo → AC/F

such that z = n(z)a(z) · xo for all z ∈ NCAC · xo. Now, the fact that D is contractible and
D ⊂ NCAC · xo, implies that a|D admits a well defined holomorphic logarithm

log a : D → aC .

For Z ∈ ΩH , the complex convexity theorem (cf. [8, 16]) then implies that

(1.3) Im log a(G exp(iZ) · xo) = conv(W · Z)

where conv(·) denotes the convex hull of (·).
Submanifolds of XC of the type

gNC · x0 (g ∈ GC)

will be refered as horospheres. We denote by Hor(XC) the set of all horospheres on XC and
note that Hor(XC) has a natural G-structure (g, hNC · xo) 7→ ghNC · xo.

To understand the space horospheres and the related harmonic analysis it is useful to
bring them in the context of a double fibration. Set M = ZK(A) ⊂ MC = ZKC

(A), define

Ξ = GC/MCNC

and consider:

(1.4) GC/MC

π1

{{xxxx
xxx

xx π2

$$IIIIII
III

Ξ XC .

Then horospheres in XC are exactly the subsets of XC of the form

(1.5) E(ξ) = π2(π
−1
1 (ξ)) (ξ ∈ Ξ) .

If ξo = MCNC ∈ Ξ denotes the base point and ξ = g · ξo ∈ Ξ then, using that MC ⊂ HC, we
have:

E(ξ) = gMCNC · xo = gNC · xo ⊂ XC .

Similarly, for z ∈ XC we set

(1.6) S(z) = π1(π
−1
2 (z)) .

If z = g · xo for g ∈ GC, then S(z) = gKC · ξo. Moreover, for z ∈ XC and ξ ∈ Ξ one has the
incidence relations

(1.7) z ∈ E(ξ) ⇐⇒ π−1
1 (ξ) ∩ π−1

2 (z) 6= ∅ ⇐⇒ ξ ∈ S(z) .

Proposition 1.1. The map

Ξ → Hor(XC), ξ 7→ E(ξ)

is a GC-equivariant bijection.
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Proof. GC-equivariance and surjectivity are clear. The injectivity follows the same way as
in the proof of Proposition 2.1 in [10] by replacing HC by KC. �

One of the important features of Ξ is, that there exists a right AC-action on Ξ that
commutes with the left GC-action. For ξ = g · ξ0 and a ∈ AC we set

(1.8) ξ · a = ga · ξ0 .

Since AC normalizes MCNC it is clear that (1.8) is well defined. From the definition it is also
clear that the left GC-action and the right AC-action commutes. In this way we obtain an
action of GC × AC on Ξ by

(GC × AC) × Ξ → Ξ, ((g, a), ξ) 7→ g · ξ · a .

We conclude this subsection with an alternative characterization of horospheres as level
sets of holomorphic functions. For that let {ω1, . . . , ωn} ⊂ a∗ be the set of fundamental
K-spherical lowest weights. For each 1 ≤ j ≤ n we write (πj, Vj) for the corresponding finite
dimensional representation of G with lowest weight ωj. We extend this representation to a
holomorphic representation of GC which we denote by the same symbol. Endow Vj with a
complex bilinear pairing 〈 , 〉 such that 〈πj(g)v, w〉 = 〈v, πj(θ(g)−1)w〉 for all v, w ∈ Vj and
g ∈ GC. Such a form 〈 , 〉 exists as π ◦ θ is isomorphic to the representation contragradient
to πj. We write vj ∈ Vj for a lowest weight vector and ηj ∈ Vj for a KC-fixed vector subject
to the normalization 〈ηj, vj〉 = 1. Finally, define holomorphic functions on fj : GC → C by

(1.9) fj(g) = 〈πj(g)ηj, vj〉 (g ∈ GC) .

Note, that we have

(1.10) fj(nak) = aωj

for all n ∈ NC, k ∈ KC and a ∈ AC. Here, as elsewhere in this article, we use the notation
aµ = eµ(X) if a = exp X ∈ AC. We recall that

(1.11) GC \ NCACKC = {g ∈ GC |
n∏

j=1

fj(g) = 0} .

(see [18], Th. 2.5 for a proof in a more general context).

Lemma 1.2. NCKC = {g ∈ GC | fj(g) = 1 for all 1 ≤ j ≤ n}.
Proof. This follows from (1.10) and (1.11). �

We will often view fj, or more generally it left translates, as a function on XC. We will
also, without further comments, view the function g 7→ fj(g

−1z), z ∈ XC as a function on
Ξ. With that in mind we have:
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Lemma 1.3. Let ξ ∈ Ξ and x ∈ XC. Then

E(ξ) = {z ∈ XC | fj(ξ
−1z) = 1 for all 1 ≤ j ≤ n}

and

S(x) = {% ∈ Ξ | fj(%
−1x) = 1 for all 1 ≤ j ≤ n}

Proof. Notice that E(g · ξo) = gE(ξo) and S(g · xo) = gS(xo). We can therefore assume that
ξ = ξo and x = x0. Now, the claim is a reformulation of Lemma 1.2. �

1.3. Some G-submanifolds of Ξ. We define the G-space of real horospheres in X as

ΞR = G/MN .

Then ΞR ⊂ Ξ = GC/MCNC is obviously a totally real G-submanifold of Ξ and the right
A-action leaves ΞR invariant.

Let T = exp(ia) ⊂ GC and note that AC = A× T ; note that F = K ∩ T . We contrast ΞR

with the G × AC-invariant subset of Ξ

(1.12) Ξ0 = G · ξ0 · AC = GAC · ξ0 .

Proposition 1.4. The following assertion hold:

(1) The map

(1.13) K/M ×F AC → Ξ0, [kM, a] 7→ ka · ξo

is a real analytic isomorphism.
(2) The map

ΞR ×F T → Ξ0, [gMN, t] 7→ gt · ξo

is a G-equivariant real analytic diffeomorphism.

Proof. (i) follows from the fact that G = KAN and NAC ⊂ ACNC. Finally (ii), is a
consequence of (i). �

Note that (1.13) describes a natural CR-structure on Ξ0 of CR-dimension dim A and
CR-codimension dim K/M .

Define a tube domain in AC by

T (ΩH) = exp(a + iΩH) = A exp(iΩH) ' a + iΩH

and set

(1.14) Ξ+ = G exp(iΩH) · ξo = KT (ΩH) · ξo .

Then Ξ+ is a real-analytic, G-invariant open submanifold of Ξ0. In particular Ξ+ is a CR-
manifold. The coordinate decomposition of Ξ0 slightly simplifies for Ξ+.

Proposition 1.5. For Ξ+ the following assertions hold:
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(1) The map

K/M × T (ΩH) → Ξ+, (kM, a) 7→ ka · ξo

is a real analytic isomorphism.
(2) The map

ΞR × ΩH → Ξ+, (gMN, Z) 7→ g exp(iZ) · ξo

is a G-equivariant real analytic diffeomorphism.

We conclude this section with a remark on the structure of Ξ+.

Remark 1.6. It is immediate from the complex convexity theorem (1.3) that

Ξ+ = {ξ ∈ Ξ0 | E(ξ) ∩ D 6= ∅}0

with {·}0 the connected component of Ξ0 containing ΞR. In other words, Ξ+ is the connected
component of Ξ0 which contains ΞR and has the property that the corresponding horospheres
do intersect D.

Remark 1.7. (Shilov boundary of Ξ+) The map

ΞR → ∂Ξ+, gMN 7→ gzH · ξo

identifies ΞR as the Shilov boundary ∂SΞ+ of Ξ+. In this sense ΞR parametrizes the real
horospheres on Y (see also Lemma 1.8 below).

1.4. Horospheres without real points. The aim of this subsection is to show that horo-
spheres corresponding to Ξ+ do not contain real points, i.e., are disjoint form Y .

Recall from Subsection 1.1 that we identify Y = G/H with the (Shilov) boundary orbit
G · yo ⊂ XC of yo = zH · xo in GC/KC. Define the parameter set of horospheres without real
points by

(1.15) Ξnr = {ξ ∈ Ξ | E(ξ) ∩ Y = ∅} .

The following statement should be comparedto the complex convexity Theorem (1.3);it
means that convexity breaks down at the extreme points of ΩH .

Lemma 1.8. Let U =
⋃

w∈W NAwH. Then U · yo is open and dense in G · yo and

G · yo ∩ NCAC · xo = U · yo = NAWzH · xo .

Proof. It is a special case of a Theorem by Rossmann-Matsuki (cf. [17]) that U is dense
in G. Hence U · yo is dense in G · yo. As z−1

H HCzH = KC (cf. (1.2), it follows that
U · yo = NAWzH · xo. It remains to show the inclusion ”⊇” for the first asserted equality.
But this follows from (1.11). �

We can now prove the main result of this subsection.

Theorem 1.9. Ξ+ ⊆ Ξnr.
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Proof. We argue by contradiction. Note that E(ξ) ∩ Y 6= ∅ for some ξ ∈ Ξ+ means that
there exist Z ∈ ΩH such that

GzH · xo ∩ exp(iY )NC · xo 6= ∅ .

Now exp(iY )NC · xo = NC exp(iY ) · xo ⊂ NC exp(iΩH) · xo and the assertion follows from
Lemma 1.8. �

1.5. Real forms of E(ξ) and S(z). In this last part of this section we introduce certain
G-invariant real forms of the complex manifolds E(ξ) and S(z).

We begin with the horospheres. For ξ = ga · ξo ∈ Ξ+, with g ∈ G and a ∈ exp(iΩH),
define

(1.16) ER(ξ) = gNa · xo ⊂ E(ξ) .

Then ER(ξ) is well defined, G-invariant and a totally real submanifold of E(ξ). Further, the
assignment Ξ+ 3 ξ 7→ ER(ξ) is G-equivariant.

Next we consider S(z) ' KC/MC. Because of the relation KC = z−1
H HCzH there are two

natural real forms. Accordingly we define for z = ga · xo ∈ D:

(1.17) SK
R

(z) = gaK · ξo and SH
R

(z) = gaz−1
H HzH · ξo .

Obviously SK
R

(z) and SH
R

(z) are G-invariant totally real submanifold of S(z) = gaKC ·xo and
the maps D 3 z 7→ SK

R
(z) and D 3 z 7→ SH

R
(z) are G-equivariant. Note that SH

R
(z) ' H/M

as manifolds.

1.6. Invariant measure on Y . Lemma 1.8 allows for a natural normalization of the in-
variant measure on Y . Assume that invariant measures on G, A and N have been fixed and
let WH = NK∩H(a)/ZH∩K(a) be the small Weyl group. By Lemma 1.8 the union

U =
⋃

w∈W/WH

ANw · yo

is disjoint open and dense in Y . As the complement is an analytic set, it follows that Y \U has
measure zero. According to [18], Lemma 7.3, we now can normalize the invariant measure
on Y such that for all f ∈ L1(Y ):

∫

Y

f(y) dy =
∑

w∈W/WH

∫

A

∫

N

f(anw · yo) da dn .

2. The Frechét module CR∞(Ξ+)

In this section we use the right A-action on ΞR and Ξ+ to define G-submodules of the
smooth A-covariant functions on ΞR respectively CR-functions on Ξ+. Those modules are
the standard realization respectively a CR-realization of the space of smooth vectors in the
principal series representations given by induction from the right. Note that later we will
use the induction from the left.
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Recall, that A acts on the space of horospheres from the right. This action induces a right
regular representation of A on any function space on ΞR, Ξ+ or any other right invariant set
of horospheres given by

(R(a)f)(ξ) = f(ξ · a) .

Let ρ = 1/2
∑

α∈Σ+(dim gα) · α. The index λ will denote the subspace of (λ − ρ)-covariant
functions. In particular

C∞(ΞR)λ = {f ∈ C∞(ΞR) | R(a)f = aλ−ρf} .

We recall that G acts C∞(ΞR) by left translations in the argument

(L(g)f)(ξ) = f(g−1 · ξ)
for g ∈ G, f ∈ C∞(ΞR) and ξ ∈ ΞR. The so obtained representation (L, C∞(ΞR)λ) is the
smooth model of the spherical principal series with parameter λ. Similarly

CR∞(Ξ+)λ = {f ∈ C∞(Ξ+) | R(a)f = aλ−ρf} .

As characters on A extend to holomorphic functions on T (ΩH), it follows that the restriction
map

(2.1) Resλ : CR∞(Ξ+)λ → C∞(ΞR)λ, f 7→ f |ΞR

is a G-equivariant topological isomorphism of G-modules.

2.1. CR-realization of the H-spherical holomorphic vector. For each λ ∈ a∗
C

we
define a certain H-invariant element fλ ∈ CR−∞(Ξ+)λ which was called the H-spherical
holomorphic distribution vector in [9]. The generalized function fλ is defined by

fλ(ξ) = a(ξ−1z−1
H )ρ−λ (ξ ∈ Ξ+) .

We notice that on the dense subset

Ξ′
+ =

⋃

w∈W

HwT (ΩH) · ξo

of Ξ+, the function belongs to CR∞(Ξ′
+)λ and is given by

fλ(hwa · ξ0) = (w−1zHw)λ−ρaλ−ρ .

For <λ � 0, this function is actually continuous on Ξ+ and the meromorphic continuation
in λ as a distribution is achieved with Bernstein’s theorem [3]. There are no singularities on
the imaginary axis ia∗ and we arrive at a well defined analytic assignment

λ 7→ CR−∞(Ξ+)H
λ , λ 7→ fλ

(cf. [9], Th. 2.4.1).
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3. The holomorphic horospherical Radon transform

The real Radon transform on X is a G-equivariant injective map

RR : S(X) → C∞(ΞR) .

The purpose of this section is to show that RR has a natural extension to a G-equivariant
map

R : H2(D)0 → CR∞(Ξ+)

which we call the holomorphic horospherical Radon transform. Here H2(D)0 ↪→ L2(X) is a
dense a subspace of the most-continuous Hardy space H2(D) ⊂ O(D) of L2(Y ) (cf. [9]). On
the infinnitesimal level this extension is related to the previously established fact (2.1), i.e.
C∞(ΞR)λ is canonically G-isomorphic to CR∞(Ξ+)λ via restriction.

This section is organized as follows: First we have to recall some facts about the Fourier
analysis on X, in particular Arthur’s spectral characterization of the Schwartz space C(X).
Subsequently we give a brief summary on the most-continuous Hardy space H2(D) of [9].
Finally we define the holomorphic horospherical Radon transform R and discuss some of its
properties.

3.1. Fourier analysis on X. We recall the compact realization of the principal series
representations. Let B = M\K. For λ ∈ a∗

C
define a representation πλ of G on L2(B)

by

(3.1) πλ(g)f(Mk) = a(kg)ρ−λf(Mk(kg)) .

Then (πλ, L
2(B)) is unitary if λ ∈ ia∗. We write Hλ = L2(B) to indicate the dependence of

the G-action on λ. Let a+ = {H ∈ a | (∀α ∈ ∆+) α(H) > 0} and

a∗
+ = {λ ∈ a | (∀H ∈ a+) λ(H) > 0} .

Denote by Ĝr the reduced dual of G and by Ĝrsp the spherical reduced dual. Then ia∗
+ 3

λ 7→ [πλ] ∈ Ĝrsp is an isomorphism of measure spaces. Here [πλ] denotes the equivalence
class of πλ. We have

(3.2) L2(X) '
∫ ⊕

ia∗+

Hλ
dλ

|c(λ)|2

where c(λ) is the Harish-Chandra c-function. To explain the above isomorphism, we need
some basic fact on the Fourier transform on X. For that, recall that a : X → A denotes
the A-projection with regard to the Iwasawa isomorphism X = NA · xo ' N × A. Set
X = B × ia∗

+ and define a Radon measure dµX on X by

dµX (b, λ) := db
dλ

|c(λ)|2 .
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For f ∈ L1(X) ∩ L2(X) define its spherical Fourier transform f̂ : X → C by

f̂(b, λ) =

∫

X

f(x)a(bx)ρ−λ dx .

We will also write FX(f) for f̂ . We can normalize the left-Haar measure dx on G such that
the Fourier transform extends to an unitary isomorphism ˆ : L2(G) → L2(X , dµX ). If f
is rapidly decreasing (see exact definition in a moment), then the Fourier inversion formula
holds pointwise:

f(x) =

∫

X

f̂(b, λ)a(bx)ρ+λ dµX (b, λ) (x ∈ X) .

For λ ∈ ia∗ define f̂λ ∈ L2(B) by b 7→ f̂λ(b) = f̂(b, λ). Then the isomorphism in (3.2) is
given by

L2(X) 3 f 7→ (f̂λ)λ ∈
∫ ⊕

ia∗+

Hλ
dλ

|c(λ)|2 .

In the following we will also need the operator valued Fourier transform. If H is a Hilbert
space, then B2(H) ' H⊗̂H∗ denotes the Hilbert space of Hilbert-Schmidt operators on H.
Write

L2(G)sph =

∫ ⊕

ia∗+

B2(Hλ)
dλ

|c(λ)|2

for the K-spherical spectrum in L2(G). Recall that the isomorphism is given by the operator
valued Fourier transform F(f)(λ) =

∫
G

f(x)πλ(x) dx, f ∈ L1(G) ∩ L2(G). The inverse map
is

f(g) =

∫

ia∗+

Tr(πλ(g
−1)F(f)(λ))

dλ

|c(λ)|2 .

The constant function vK,λ = 1B defines a normalized K-fixed vector in Hλ. Assume that
f ∈ L1(G) ∩ L2(G)sph. Then, because F(f)(λ) = F(Rkf)(λ) = F(f)(λ)πλ(k), it follows,
that

(3.3) F(f)(λ)v = 〈v, vK,λ〉F(f)(λ)vK,λ = 〈v, vK,λ〉f̂λ .

For x = k1 exp(Z)k2 ∈ G, with Z ∈ a and k1, k2 ∈ K, let σ(x) = −B(Z, dθ(1)(Z)), where
B is the Killing form on g. Denote by U(g) the Universal enveloping algebra of g and by ϕ0

the basic spherical function. For D, E ∈ U(g), s ∈ R and f ∈ C∞(G), let

pD,E,s(f) := sup
x∈G

|LDREf(x)|ϕ0(x)−1(1 + σ(x))s .

Then C(G) is the space of smooth functions on G such that pD,E,s(f) < ∞ for all such E, D
and s, cf. [12].

We set

C(G)sph = C(G) ∩ L2(G)sph .

Let S(ia∗
+) = {f |ia∗+ | f ∈ S(ia∗)}. We recall a theorem of Arthur [1], p. 4719:
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Theorem 3.1. The operator valued Fourier transfrom F maps C(G)sph isomorphically onto

{A( · ) ∈
∫ ⊕

ia∗+

B2(Hλ)
dλ

|c(λ)|2 | (∀v, w ∈ L2(B)K−fin) 〈A(·)v, w〉 ∈ S(ia∗
+)} .

3.2. The most-continuous Hardy space. We recall now the spectral definition of the
Hardy space H2(D) from [9]. For v ∈ Hλ define an analytic function fv,λ on X by

fv,λ(x) = 〈πλ(x
−1)v, vK,λ〉 = 〈v, πλ(x)vK,λ〉

and recall that fv,λ extends to a holomorphic function f̃v,λ on D via

f̃v,λ(x) = 〈v, πλ(x̄)vK,λ〉
for x ∈ D, cf. [9], Proposition 2.2.3. In particular

fv,λ(ga · xo) = 〈πλ(g
−1)v, πλ(a

−1)vK,λ〉
for g ∈ G and a ∈ exp(iΩH)

Define a generalized hyperbolic cosine function on ia∗ by

(3.4) cosh(λ) =
∑

w∈W/WH

z2w−1λ
H

for λ ∈ ia∗. Define a measure µ on ia∗
+ by

(3.5) dµ(λ) =
dλ

cosh(λ) · |c(λ)|2 .

With this preparation we can define the unitary representation (L,H2(D)) of G by

(L,H2(D)) =

∫ ⊕

ia∗+

(πλ,Hλ) dµ(λ) .

Thus H2(D) is the Hilbert space of all measurable functions s : ia∗
+ → L2(M\K) such that

‖s‖2 =
∫

ia∗+
‖s(λ)‖2 dµ(λ) < ∞. In the sequel we write often write sλ for s(λ). We will also

write ‖ · ‖H for the norm on H2(D). Recall from [9] that the map

Φ : H2(D) ↪→ O(D), s = (sλ) 7→
(

x 7→
∫

ia∗+

f̃sλ,λ(x) dµ(λ)

)

is a G-equivariant continuous injection. In the sequel we view H2(D) as a subspace of O(D)
and call H2(D) the most-continuous Hardy space of Y . This notion is motivated by the
main result of [9] which states that there exists an isometric G-equivariant boundary value
mapping

b : H2(D) → L2
mc(Y ), f 7→ b(f) .
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3.3. The Fourier Transform on X and the Hardy space. The definition of H2(D) in
the previous subsection does not use the Fourier transform on X. But the following Lemma
shows that the space H2(D) has a natural description in terms of the Fourier transform.

Lemma 3.2. Let f ∈ H2(D). Then the following hold:

(1) f |X ∈ L2(X) and

f(x) =

∫

ia∗+

f̂(b, λ)cosh(λ) a(bx)λ+ρ dµ(b, λ)

‖f‖2
H =

∫

X

|f̂(b, λ)|2 · cosh(λ) dµX (b, λ) ≥ ‖f‖2
L2(X) .

(2) Let f = Φ−1(sλ) ∈ H2(D). Then

f̂λ =
sλ

cosh(λ)
.

(3) For a = exp(iY ) ∈ exp(iΩH) let fa : G → C by fa(g) = f̃(ga ·xo). Let Q ⊂ exp(iΩH)
be compact and such that a ∈ Q. Then there exists a constant CQ > 0 such that

‖fa‖L2(G) ≤ CQ‖f‖H

Proof. (1) and (2) Let f ∈ H2(D) and f =
∫

ia∗+
sλ dµ(λ). Then obviously we have (2), i.e.,

(3.6) f =

∫

ia∗+

sλ

cosh(λ)

dλ

|c(λ)|2

and

‖f‖2
H =

∫

ia∗+

‖sλ‖2
L2(B) dµ(λ)

=

∫

ia∗+

∥∥∥∥
sλ

cosh(λ)

∥∥∥∥
2

L2(B)

cosh(λ)
dλ

|c(λ)|2

≥
∫

ia∗+

∥∥∥∥
sλ

cosh(λ)

∥∥∥∥
2

L2(B)

dλ

|c(λ)|2

= ‖f‖2
L2(X) .

Thus f ∈ L2(X) and we can write f =
∫
X

f̂(b, λ)a(b · )ρ+λdb dλ
|c(λ)|2

. Equation (3.6) implies

that f̂(b, λ) = sλ(b)/cosh(λ) or sλ(b) = f̂(b, λ)cosh(λ) for almost all λ. This finish the
proof of (1).

(2) We recall Faraut’s version of the Gutzmer identity [5]

(3.7)

∫

G

|f(ga · xo)|2 dg =

∫

X

|f̂(b, λ)|2ϕλ(a
2) db

dλ

|c(λ)|2
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where ϕλ(a
2) is the analytically continued spherical function given by

ϕλ(a
2) =

∫

K

∣∣a(ka)ρ+λ
∣∣2 dk

Now for a compact subset Q ⊂ exp(iΩH) there exists a constant CQ > 0 such that

(3.8) ϕλ(a
2) ≤ CQcosh(λ)

for all λ (cf. [15], Lemma 2.1) and the assertion of the lemma follows. �

In order to define the Radon transform for functions in the Hardy space we first need a
technical fact, interesting on its own.

Let
(∫ ⊕

ia∗+
Hλ dµ(λ)

)
0

denote the space of all sections such that for all v ∈ L2(B)

ia∗
+ 3 λ 7→ 〈sλ, v〉 ∈ S(ia∗

+) .

Then we set

(3.9) H2(D)0 = Φ−1

((∫ ⊕

ia∗+

Hλ dµ(λ)

)

0

)
.

Theorem 3.3. Let f ∈ H2(D)0. Fix z ∈ T (ΩH). Then the function

G 3 g 7→ f(gz · xo) ∈ C

belongs to C(G). Moreover, the following functions are locally bounded on T (ΩH):

(1) z →
∫

G
|f(gz · xo)|2 dg

(2) z →
∫

N
|f(nz · xo)| dn

Proof. Without loss of generality we may assume that z = a ∈ exp(iΩH). We identify f
with a right K-invariant function on G. Let v, w ∈ Hλ, then we have by (3.3) and Lemma
3.2:

〈F(Raf)(λ)v, w〉 = 〈F(f)(λ)πλ(a)v, w〉
= 〈πλ(a)v, vK,λ〉〈f̂λ, v〉

=
〈πλ(a)v, vK,λ〉

cosh(λ)
〈sλ, v〉 .

Let Q be a compact subset of exp(iΩH), a ∈ Q. Let D be a constant coefficient differential
operator on ia∗. Then there exists a polynomial p such that

D〈πλ(a)v, vK,λ〉 =

∫

K

p(< ρ + λ, log(ka−1) >) v(k)vK,−λ(ka−1) dk .

Hence, for all such D we get:

sup
a∈Q

∣∣∣∣D
〈πλ(a)v, vK,λ〉

cosh(λ)

∣∣∣∣ ≤ CQ
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for some constant CQ > 0. As λ 7→ 〈sλ, v〉 is rapidly decreasing it follows that λ 7→
〈F(Raf)(λ)v, w〉 is rapidly decreasing and hence Raf ∈ C(G) by Theorem 3.1.

Statement (1) is Lemma 3.2, part 3 and part (2) follows from Lemma 22 in [12] �

3.4. The definition of the Radon Transform. Denote by CR(Ξ+) the vector space of
continuous CR-functions on Ξ+, i.e. the space of continuous functions on Ξ+ ' K/M ×
T (ΩH) (cf. (1.13)) which are holomorphic in the second variable.

Lemma 3.4. Let f ∈ H2(D)0. Then the assignment

Ξ+ 3 ξ = ga · ξo 7→ a−2ρ

∫

N

f(gna · xo) dn ∈ C

defines a CR-function on Ξ+.

Proof. It follows from Theorem 3.3 that the right hand side is a continuous function. It
remains to show that is a CR-function. For that let g = kb for k ∈ K and b ∈ A. The right
hand side becomes

a−2ρ

∫

N

f(kbna · xo) dn = (ab)−2ρ

∫

N

f(knba · xo) dn

and the holomorphicity in ab follows with Theorem 3.3. �

In view of this lemma, the prescription

R : H2(D)0 → CR(Ξ+), f 7→
(

ξ = ga · ξo 7→ a−2ρ

∫

N

f(gna · xo) dn

)

is a well defined and continuous G-equivariant map. We call R the holomorphic horospherical
Radon transform.

Remark 3.5. (a) Notice that E(ξ)∩D for ξ ∈ Ξ+ contains the real horosphere ER(ξ). The
holomorphic Radon transform R then writes as

R(f)(ξ) =

∫

ER(ξ)

f(ξ′) dνξ(ξ
′)

with dνξ the a−2ρ-times the measure on ER(ξ) obtained by the natural identification of the
real horosphere ER(ξ) with N . It is clear that any other N -orbit in E(ξ) ∩ D would yield
the same result.

(b) If a ∈ A, then

a−2ρ

∫

N

f(gna · xo) dn =

∫

N

f(gan · xo) dn

and hence the holomorphic Radon transform agrees with the usual Radon transform on X.

If the function f ∈ H2(D)0 is left K-invariant, then we can define the holomorphic Abel-
transform by:
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A(f)(z) = z−ρ

∫

N

f(nz · xo) dn (z ∈ T (ΩH)) .

Note that A is just the restriction of the holomorphic Radon transform to K-invariant
function (modulo the z−ρ-factor). Further let us remark that A gives a continuous mapping

A : H2(D)K
0 → O(T (ΩH))W , A(f)(z) = z−ρ

∫

N

f(nz · xo) dn .

4. The holomorphic Radon transform as Cauchy integral I: The

hyperboloid

In this and the next section we will show (for an appropriate class of Y ’s) that the holo-
morphic Radon transform on the NCC space Y can be expressed as a Cauchy type integral.
For that purpose it is instructive to explaining the example of the hyperboloid first. For
earlier treatments of the hyperboloid with alternative methods we refer to [6], [7]. We start
by recalling some standard function spaces on Y .

4.1. Function spaces. Let Y be a NCC space. For g ∈ G let Θ(g) = ϕ0(gτ(g)−1)1/2.
Then Θ is left K-invariant and right H-invariant. For g = k exp(Z)h with Z ∈ a define

‖g · y0‖ := ‖Z‖, where ‖Z‖ =
√

Tr ad(Z)2. Let D ∈ U(g), were U(g) is the enveloping
algebra of gC, and view LD as a differential operator on Y . For n ∈ N and f ∈ C∞(Y ) define

pn,D(f) = sup
y∈Y

ΘG(y)−1(1 + ‖y‖)n|LDf(y)| .

Then the Schwartz space C(Y ) is defined as the space of smooth function on Y such that
pn,D(f) < ∞ for all n and D. It is well known, that C(Y ) ⊂ L2(Y ), but C(Y ) is not
contained in L1(Y ). We will therefore need a smaller space to make sure that the Cauchy
integral exists. For that, define for r > 0 the space

Sr(Y ) := {f ∈ C∞(Y ) | (∀D ∈ U(g)) sup
y∈Y

er‖y‖|LDf(y)| < ∞}

and

S(Y ) :=
⋂

r>0

Sr(Y ) .

Then S(Y ) ⊂ L1(Y ) ∩ L2(Y ) and C∞
c (Y ) ⊂ S(Y ) ⊂ C(Y ). The space S(Y ) is called the

(zero) Schwartz space, cf. [4]. It follows from Theorem 3 in [4] and our spectral definition
of the space H2(D) that H2(D)00 := H2(D)K−finite ∩ S(Y ) 6= {0} and is dense in H2(D).
Here we have used that the elements in H2(D)K−finite have boundary values on Y (cf. [9],
Sect. 3). In particular we have that every element f ∈ H2(D)00 is integrable on Y , has a
holomorphic extension to D, and that the integral

∫
N

f(anw · y0) dn is well defined for all
a ∈ A and w ∈ W. We will use this without comments in the following.
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4.2. The Radon transform and Cauchy integral on the hyperboloid. Assume that
n ≥ 2 and let G = SOe(1, n) be the Lorentz group. Let us fix our choices for the groups A,
N and K. For the maximal compact subgroup we take

K =

{
kR =

(
1 0
0 R

)
| R ∈ SO(n)

}
' SO(n) .

Next, for z ∈ C we set

az =




cosh z 0 sinh z
0 1n−1 0

sinh z 0 cosh z




and

A = {at | t ∈ R} and AC = {az | z ∈ C} .

Note that a = RZ and az = exp(zZ) with Z = E1 n+1 + En+1 1. The only positive root is α,
determined by α(Z) = 1 and hence ZH = π

2
Z. We also have, that ρ = n−1

2
α.

Further, for v ∈ Cn−1 and (v, v) =
∑

j=1 vjvj we define an unipotent matrix

nv =




1 + 1
2
(v, v) vT −1

2
(v, v)

v 1n−1 −v
1
2
(v, v) vT 1 − 1

2
(v, v)


 .

Then N and NC are given by

N = {nv | v ∈ Rn−1} and NC = {nv | v ∈ Cn−1} .

Define a quadratic form

z, w 7→ z · w = z0w0 −
n∑

j=1

zjwj

on Cn+1 and let

�(z) = z2
0 − z2

1 − . . . − z2
n (z = (z0, . . . , zn)T ∈ Cn+1)

be the corresponding quadratic form. We define the real and complex hyperboloids by

X = {x ∈ Rn+1 | �(x) = 1, x0 > 0}
and

XC = {z ∈ Cn+1 | �(z) = 1} .

As a common base point for X and XC we take xo = (1, 0, . . . , 0)T and note that the map

GC/KC → XC, gKC 7→ g(xo)

is a GC-isomorphism which identifies G/K with X.
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We have that az ·xo = (cosh(z), 0, . . . , 0, sinh(z))T and hence y0 = zH · xo = (0, . . . , 0, i)T .
It is clear that the stabilizer of yo is

H =

{(
h 0
0 1

)
| h ∈ SOe(1, n − 1)

}
' SOe(1, n − 1) .

We have therefore with this identification:

D = {z = x + iy ∈ XC | �(x) > 0, x0 > 0}
and

Y = G(y0) = {iy ∈ iRn+1 | �(y) = −1} .

Set
Ξ = {ζ ∈ Cn+1 | ζ 6= 0, �(ζ) = 0} .

If ξo = (1, 0, . . . , 0, 1)T ∈ Ξ, then the stabilizer of ξo is MCNC and the map

GC/MCNC → Ξ, gMCNC 7→ g · ξo

is a GC-isomorphism. Now the CR-submanifold Ξ+ ⊂ Ξ is described as

Ξ+ = G
{

(eit, 0, . . . , 0, eit)T | |t| <
π

2
, t ∈ R

}

= {ζ = ξ + iη ∈ Ξ : �(ξ) = �(η) = 0; ξ 6= 0}0 .

We will also use certain G-subdomains of Ξ+: for 0 < c ≤ π
2

set

Ξc = G
{
(eit, 0, . . . , 0, eit)T | |t| < c, t ∈ R

}
.

In order to define the Cauchy-transform we need to establish a simple, but important,
technical fact.

Lemma 4.1. For all ξ ∈ Ξ+ and y ∈ Y one has

ξ · y 6∈ R× .

More precisely, for all 0 < c < π
2

there exists a C > 0 such that

(∀y ∈ Y )(∀ξ ∈ Ξc) |1 − ξ · y| > C .

Proof. By G-equivariance of the form we may assume that ξ = eitξo. Let y = iy for y ∈ Rn+1.
Thus ξ · y = ieitξo · y with ξo · y ∈ R. As |t| < π

2
, the assertions follow. �

We now define the Cauchy-kernel function

K : Ξ+ × Y → C, (ξ, y) 7→ 1

1 − ξ · y .

In view of the previous lemma, this function is defined, continuous and bounded on all
subsets Ξc×Y for c < π

2
. Moreover, K is a CR-function in the first variable and G-invariant,

i.e., K(g · ξ, g · y) = K(ξ, y). In particular, the function

G 3 g 7→ K(g) = K(ξo, g · y0) ∈ C
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is left N -invariant and right H-invariant, a fact that we will use in a moment. We will
therefore identify K with a function on Y without further comments. A simple calculation
shows that

(4.1) K(g) =
1

1 − i(g0 n − gn n)
.

We have WH = {1}, and W = {1, ε} where ε = −1 on a. As ε corresponds to the matrix

w =

(
In−1 0

0 −I2

)
it follows that

(4.2) K(az) =
1

1 − ie−z
and K(azw) =

1

1 + ie−z
.

Write S(Y ) for the Schwartz-space on Y . Henceforth we will make the assumption that
n is even and define the Cauchy - transform by

C : S(Y ) → CR(Ξ+), C(f)(ξ) =

∫

Y

f(y)

1 − ξ · y dy =

∫

Y

f(y)K(ξ, y) dy

where dy denotes a (suitably normalized) G-invariant measure on Y .

Theorem 4.2. Let G = SO(n, 1) with n = 2k even. Let f ∈ H2(D)00. Then, up to
normalization of measures, the Cauchy and the Radon transform coincide, i.e.

C(f)(ξ) = (−1)k−12π · R(f)(ξ) (ξ ∈ Ξ+) .

Proof. Since both C(f) and R(f) are CR-functions, it is sufficient to show that both coincide
on G/MN ⊂ Ξ. Moreover, by G-equivariance of both maps, it is in fact sufficient to show
that

(4.3) C(f)(ξo) = 2π · R(f)(ξo) .

Using (4.2) and that z2ρ
H = (−1)k−1i and z−2ρ

H = z2ρ
H = (−1)ki we get:
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C(f)(ξo) =

∫

Y

f(y) · K(y) dy

=
∑

w∈W

∫

A

∫

N

f(anw · yo) · K(anw) dn da

=
∑

w∈W

∫

A

∫

N

f(anw · yo) · K(aw) dn da

=
∑

w∈W

∫

A

∫

N

f(anwzH · xo) · K(aw) dn da

=
∑

w∈W

∫

A

∫

N

f(anzw
H · xo) · K(aw) dn da

=
∑

w∈W

∫

A

∫

N

f(anzw
H · xo) · (zw

H)−2ρ · (zw
H)2ρ · K(aw) dn da

=
∑

w∈W

∫

A

R(f)(azw
H · ξo) · (zw

H)2ρ · K(aw) da

= (−1)k−1i

(∫

R

R(f)(at+i π
2
· ξo)

1 − e−(t+i π
2
)

dt −
∫

R

R(f)(at−i π
2
· ξo)

1 − e−(t−i π
2
)

dt

)
.

Consider the strip domain S = {z ∈ C | | Im z| ≤ π
2
}. By our assumption on f , the

function

S 3 z 7→ F (z) =
iR(f)(az · ξo)

1 − e−z
∈ C

defines a meromorphic function F on S with a simple pole at z = 0. Thus the Residue
theorem yields that

C(f)(ξo) = (−1)k2πi · Res(F, 0) = (−1)k−12π · R(f)(ξo)

and this concludes the proof of our theorem. �

Remark 4.3. (a) We mention that the geometric pairing ξ · y can be expressed using the
previously defined power functions fj (cf. 1.9):

ξ · y = f1(ξ
−1y) .

(b) The assumption that n is even is not a real restriction as one can slightly modify C so
that it works for all parities (see our discussion in the next section).

5. The holomorphic Radon transform as Cauchy integral II: Cayley type

spaces

The example of the hyperboloid discussed in the previous section admits a generalization
to NCC spaces of Cayley type. Let us recall that Cayley type spaces are those which are
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associated to Euclidean Jordan algebras V : i.e. X is a tube domain associated to V and H
is the structure group of the cone of squares in V . In terms of the set of restricted roots Σ,
this means that Σ is of type Cn, say

Σ =

{
1

2
(±γi ± γj) | 1 ≤ i, j ≤ n

}
\{0} .

We assume now that Y = G/H is of Cayley type. Define Tj ∈ a by γi(Tj) = δij, then

(5.1) ΩH =

n⊕

j=1

]
−π

2
,
π

2

[
Tj .

As a basis of Σ we shall choose

Π =

{
1

2
(γ1 − γ2), . . . ,

1

2
(γn−1 − γn), γn

}
.

Obviously ω1 = −γ1 is a fundamental spherical lowest weight and accordingly f1(g) =
〈π1(g)ηj, v1〉 defines a holomorphic function on GC with f1(g) = a(g)−γ1 for g ∈ NCACKC.
The analogue of Lemma 4.1 now reads as follows.

Lemma 5.1. Let the natation be as above. Then the following holds:

(1) f1(exp(iΩH)GzH) ⊆ C\R×.
(2) For all 0 ≤ c < 1 there exists C > 0 such that

(∀g ∈ G)(∀Z ∈ ΩH) |1 − f1(exp(icZ)gzH)| > C .

Proof. First it is clear from (5.1) that

(5.2) exp(iΩH)ω1 = {z ∈ C | Rez > 0} .

Next recall that
⋃

w∈W NAwH is dense in G and that

(5.3) f1(nawh) = aω1zwω1
H ∈ R+{−i, i} .

Combine (5.2) and (5.3) and the assertions follow. �

For 0 < c < 1 define a G-subdomains of Ξ+ by

(5.4) Ξc = G exp(icΩH) · ξo .

Note that −γj, j 6= 1 is not a fundamental spherical lowest weight. Therefore, for 1 ≤ j ≤ n
we define a meromorphic function on GC directly by

hj(g) = a(g)−γj for g ∈ NCACKC .

Note that h1 = f1 and, in the same manner as in Lemma 5.1, one establishes that

(5.5) hj(exp(iΩH)GzH) ⊆ C\R× ∪ {∞}
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In particular we see that the prescription

K : Ξ+ × Y → C, (ξ, y) 7→
n∏

j=1

1

1 − hj(ξ−1y)

defines an analytic function, CR in the first variable and bounded on all subsets Ξc × Y .

Remark 5.2. Alternatively, the kernel K can be expressed in Jordan algebra terms. Let V
be the Euclidean Jordan algebra associated to X and W ⊂ V its cone of squares. Form the
tube domains T ± = V ± iW ⊂ VC. Then X = T + and D ' T + × T − with X realized in D
via the map x 7→ (x, x). Write ∆j for the power functions on VC (i.e. generalized principal
minors). Then, on D, one has

hj(z, w) =
∆j(z − w)

∆j−1(z − w)
for (z, w) ∈ D

with the understanding that ∆0 ≡ 1 Thus K, when considered as a function on D, is given
by

K(z, w) =
∆1(z − w) · . . . · ∆n−1(z − w)∏n
j=1(∆j−1(z − w) − ∆j(z − w))

.

However, K is not our Cauchy-kernel yet and some small modification is needed. For

that recall the decomposition Ξ+ ' G/MN × exp(iΩH). For a unitary character χ ∈ T̂/F ,
where F = K ∩ T is the canonical finite 2-group as usually, define the space of χ-twisted
CR-functions by

(5.6) CRχ(Ξ+) = {f(ga · ξo) = h(ga · ξo)χ
−1(a) | h ∈ CR(Ξ+)} .

Let γ0 = γ1 + . . . + γn. In the sequel we will fix χ to be

χ = −2ρ + γ0

and notice that χ = 1 for G = Sl(2, R). For g ∈ NCATKC write t(g) ∈ T/F for the compact
middle part of g and define the Cauchy-kernel K by

(5.7) Kχ(ξ, y) = K(ξ, y)χ(t(ξ−1y)) .

and notice that Kχ is defined whenever ξ−1y ∈ NCACKC and, when defined, is in CRχ as a
function of the first variable. We note that Hχ is G-invariant and hence corresponds to a
function of one variable Kχ(g) = Kχ(ξ0, g · y0). As before, Kχ is N × H-invariant, and will
be identified with left N -invariant function on Y .

Whenever defined, we define the twisted Cauchy transform by

Cχ : S(Y ) → CRχ(Ξ+), Cχ(f)(ξ) =

∫

Y

f(y)Kχ(ξ, y) dy

and the twisted holomorphic Radon transform by

Rχ : H2(D)00 → CRχ(Ξ+), f 7→
(

ξ = ga · ξo 7→ a−γ0

∫

N

f(gna · xo) dn

)
.
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We come to the main result of this section.

Theorem 5.3. Suppose that Y = G/H is of Cayley type. Let f ∈ H2(D)00. Then, up to
normalization of measures, the twisted Cauchy and the twisted Radon transform coincide,
i.e.

Cχ(f)(ξ) = (2π)n · Rχ(f)(ξ) (ξ ∈ Ξ+) .

Proof. Both Cχ(f) and Rχ(f) are CR-functions, and so it is sufficient to show that both
coincide on G/MN ⊂ Ξ. Next, by G-equivariance of both maps, it is enough to show that

(5.8) Cχ(f)(ξo) = (2π)n · Rχ(f)(ξo) .

We now get for the left hand side:

Cχ(f)(ξo) =

∫

Y

f(y) · Kχ(y) dy

=
∑

w∈W/WH

∫

A

∫

N

f(anw · yo) · Kχ(anw) dn da

=
∑

w∈W/WH

∫

A

∫

N

f(anw · yo) · Kχ(aw) dn da

=
∑

w∈W/WH

∫

A

∫

N

f(anwzH · xo) · Kχ(aw) dn da

=
∑

w∈W/WH

∫

A

∫

N

f(anzw
H · xo) · Kχ(aw) dn da

=
∑

w∈W/WH

∫

A

∫

N

f(anzw
H · xo) · (zw

H)−γ0 · (zw
H)γ0 · Kχ(aw) dn da

=
∑

w∈W/WH

∫

A

Rχ(f)(azw
H · ξo) · (zw

H)γ0 · Kχ(azw
H · xo) da

=
∑

w∈W/WH

∫

A

R(azw
H · ξo) · (zw

H)γ0 · K(azw
H · xo) da .

Specifically we have W/WH ' (Z2)
n and zwγ0

H = insgn(w)

Cχ(f)(ξo) = in
∑

ε∈(Z2)n

sgn(ε)

∫

Rn

R(f)(exp

(
n∑

j=1

(tj + iεj
π

2
)Tj

)
· ξo) ·

·K(exp

(
n∑

j=1

(tj + iεj
π

2
)Tj

)
· xo) dt
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Next observe that

K(exp

(
n∑

j=1

(tj + iεj
π

2
)Tj

)
· xo) =

n∏

j=1

1

1 − e−(tj+iεj
π
2
)
.

Let us consider the multi strip domain S = {z ∈ Cn | | Im zj| ≤ π
2
}. By our assumption

on f , the prescription

S 3 z 7→ R(f)(exp

(
n∑

j=1

zjTj

)
· ξo) ·

n∏

j=1

1

1 − e−zj
∈ C

defines a meromorphic function F on S with simple multi-pole at zj = 0. Thus iteratively
applying the the Residue theorem yields that

Cχ(f)(ξo) = (−2πi)n · Res(F, 0) = (2π)n · R(f)(ξo) = (2π)nRχ(f)(ξo)

and it concludes the proof of our theorem. �

6. Some remarks on the inversion of the holomorphic Radon transform

The inversion of the real horospherical transform on X can be analytically continued to give
the inversion of the holomorphic horospherical transform. The dual transform is given by
integration over the real form SK

R
of S(z). However, there is a second non-compact real form

SH
R

(z) of S(z) which gives rise to a different dual transform and inversion. This is the topic
of this section. Mainly we will focus on G = Sl(2, R).

We begin with the definition of an appropriate function space. Let us denote by F(Ξ+)
denote the space of CR-functions on Ξ+ which extend continuously to G exp(iΩH) · ξo such
that H 3 h 7→ f(ghzH · ξo) ∈ C is integrable for all g ∈ G. For those functions we define the
dual Radon transform by

F(Ξ+) → C(Y ), φ 7→ φ∨

with

φ∨(y) =

∫

H

f(ghzH · ξo) dh =

∫

SR(y)

f (y = g · yo ∈ Y ) .

Clearly, this is a G-equivariant mapping.
We would like to understand the relation between R and φ 7→ φ∨. In this context we

would like to mention the result in [10] for the holomorphic discrete series: there exists a
differential operator L such that (LR(f))∨ = f . Hence it is natural to ask whether a similar
statement would hold true for the most continuous spectrum considered in this paper. It
will turn out that the situation different for the most continuous series in the sense that the
inverting operator L is not a differential operator. We give a detailed discussion for the the
basic example.
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6.1. The example of G = Sl(2, R). For this paragraph we let G = Sl(2, R) with the usual
choices

A =

{(
t 0
0 1

t

)
| t > 0

}
, N =

{(
1 x
0 1

)
| x ∈ R

}
,

and K = SO(2, R). Let f ∈ H2(D)00 be a K-invariant function. In the sequel we will
identify a∗

C
with C via the assignment

C 3 λ 7→ λ · ρ ∈ a∗
C

.

In this coordinates one has

c(λ) = π−1/2 Γ(λ/2)

Γ((λ + 1)/2)
and |c(λ)|−2 =

iπλ

2
tanh

(
iπλ

2

)

We know that f |X ∈ L2(X) and, as f is K-invariant, we can write

f(x) =
1

2

∫

R

f̂(iλ)φiλ(x)
dλ

|c(iλ)|2 (x ∈ X) .

Applying R yields that

R(f)(ξ) =
1

2

∫

R

f̂(iλ)a(ξ−1)ρ(1+iλ) dλ ,

and thus

R(f)∨(yo) =
1

2

∫

H

∫

R

f̂(iλ)a(z−1
H h)ρ(1+iλ) dλ dh .

Now, for h =

(
cosh t sinh t
sinh t cosh t

)
∈ H = SOe(1, 1) one has z−1

H h =

(
e−i π

4 cosh t e−i π
4 sinh t

ei π
4 sinh t ei π

4 cosh t

)

and so

a(z−1
H h)ρ =

(
1

i(sinh2 t + cosh2 t)

) 1
2

= e−i π
4 · 1

(cosh 2t)
1
2

Therefore we obtain that

(6.1) R(f)∨(yo) =
1

2

∫

R

∫

R

f̂(iλ) · e
π
4
(λ−i)

(cosh 2t)
1
2
(1+iλ)

dλ dt .

Lemma 6.1.
∫

R

1

(cosh 2t)
1
2
(1+iλ)

dt =
1

2
B(1/2, (1 + iλ)/4) =

1

2

Γ((1 + iλ)/4)Γ(1/2)

Γ((3 + iλ)/4)
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Proof. Let us denote the integral on the left hand side by I(λ). With the substitution
u = cosh 2t we obtain

I(λ) =

∫ ∞

1

1

u
1
2
(1+iλ)

1

(u2 − 1)1/2
du

=
1

2

∫ ∞

1

v− 1+iλ
4 (v − 1)−1/2v−1/2 dv (v = u2)

=
1

2
B(1/2, (1 + iλ)/4)

as B(p, q) =
∫∞

1
u−(p+q)(u − 1)p−1 du. �

Using this, we get:

(6.2) R(f)∨(yo) =
1

4

∫

R

f̂(iλ) · eπ
4
(λ−i)B(1/2, (1 + iλ)/4) dλ .

Define

C1(λ) = e
π
4
(λ−i)B(1/2, (1 + iλ)/4) + e−

π
4
(λ+i)B(1/2, (1 + iλ)/4)

and note that λ 7→ f̂(iλ) is an even function. Thus (6.2) yields that

(6.3) R(f)∨(yo) =
1

2

∫

R

f̂(iλ) · C1(λ) dλ .

By the Fourier inversion formula, we have

(6.4) f(yo) =
1

2

∫

R

f̂(iλ)φiλ(yo)
dλ

|c(λ)|2 .

Now, from the special values of the Gauß hypergeometric function we get

φiλ(yo) = F (1/4 + iλ/4, 1/4 − iλ/4, 1; 1) =
1

2B((3 − iλ)/4, (3 + iλ)/4)
.

We therefore define

C2(λ) =
1/2

B((3 − iλ)/4, (3 + iλ)/4) |c(iλ)|2
and note that (6.4) transforms into

(6.5) f(yo) =
1

2

∫

R

f̂(iλ) · C2(λ) dλ

In the next step we want to compare the expressions C1(λ) and C2(λ). If there would exist
a differential operator L, then there should be a polynomial relation between C1 and C2.

We first consider

c1(λ) := C1(λ) ·
(

Γ(1/2)

Γ(3/4 − iλ/4)Γ(3/4 + iλ/4)

)−1

= C+
1 (λ) + C−

1 (λ)
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with

C±
1 (λ) = e±

πλ
4
−i π

4 · Γ((1 ± iλ)/4)Γ(1/2)

Γ(3/4 ± iλ/4)
·
(

Γ(1/2)

Γ(3/4 − iλ/4)Γ(3/4 + iλ/4)

)−1

.

We focus on C+
1 and obtain

C+
1 (λ) = e

π
4
(λ−i) · Γ((1 + iλ)/4)Γ(1/2)

Γ(3/4 + iλ/4)
·
(

Γ(1/2)

Γ(3/4 − iλ/4)Γ(3/4 + iλ/4)

)−1

= e
π
4
(λ−i) · Γ((1 + iλ)/4)Γ(3/4 − iλ/4)

= e
π
4
(λ−i) · Γ((1 + iλ)/4)Γ(1 + (−1/4 − iλ/4))

= e
π
4
(λ−i) · (−1/4 − iλ/4)Γ((1 + iλ)/4)Γ(−(1 + iλ)/4)

=
e

π
4
(λ−i)π

sin π(1/4 + iλ/4)

Likewise we obtain

C−
1 (λ) = C+

1 (−λ) =
e−

π
4
(λ+i)π

sin π(1/4 − iλ/4)

and so

c1(λ) =
e

π
4
(λ−i)π

sin π(1/4 + iλ/4)
+

e−
π
4
(λ+i)π

sin π(1/4 − iλ/4)

=
π

i

e
π
4
(λ−i)

sinh π(λ/4 − i/4)
+

π

i

e−
π
4
(λ+i)

sinh π(−λ/4 − i/4)

=
π

i

cosh(πλ4 − iπ
4
) + sinh(πλ

4
− iπ

4
)

sinh π(λ/4 − i/4)
+

π

i

cosh(−πλ
4
− iπ

4
) + sinh(−πλ

4
− iπ

4
)

sinh π(−λ/4 − i/4)

=
π

i
·
(
2 + coth(

π

4
(λ − i)) + coth(−π

4
(λ + i))

)

Now define g(λ) by the requirement

g(λ)c1(λ) =
1

|c(iλ)|2 =
πλ

2
tanh

(
πλ

2

)

Now note that
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c1(λ + i) =
π

i
·
(

2 + coth(
πλ

4
) + coth(−πλ

4
− i

π

2
)

)

=
π

i
·
(

2 + coth(
πλ

4
) − tanh(

πλ

4
)

)

=
π

i
·
(

2 +
2

sinh(πλ
2

)

)

and thus we get

g(λ + i)
π

i
·
(

2 +
2

sinh(πλ
2

)

)
=

π(λ + i)

2
coth

(
πλ

2

)
.

Further manipulation then yields that

g(λ) =
iλ

4
· sinh(πλ

2
)

1 − cosh(πλ
2

)

and it is obvious that g is not a polynomial function. Since

g(λ)C1(λ) = C2(λ)

it is now clear that there exists no differential operator L which inverts the holomorphic
Radon transform. However the function g(λ) defines us a spectral multiplier which is a
pseudo-differential operator which we now call L. We summarize our discussion.

Theorem 6.2. Let G = Sl(2, R) and L the spectral multiplier defined by the function g(λ) =
iλ
4
· sinh( πλ

2
)

1−cosh( πλ
2

)
. Then for sufficiently decaying functions f on Y we have

f = (LR(f))∨ .

7. Geometric definition of the Hardy space

This final section deals with the structure of the Hardy space H2(D). It allows independent
reading and is of independent interest.

Initially, the Hardy space was defined spectrally (see [9]). Below we will show how to
define the Hardy space geometrically, i.e. we give geometric definition of the norm on ‖ · ‖H

on H2(D) through G-orbit integrals on D. For that we start by recalling the orbital integral
Oh and the pseudo-differential operator D introduced also used in [15].

7.1. G-orbit integrals on the domain D. For a sufficiently decaying functions h on D
we define its G-orbit integral on D as the following function on i2ΩH

Oh(iX) =

∫

G

h(g exp(i
1

2
X) · xo) dg (X ∈ 2ΩH) .
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For f ∈ H2(D) we notice that |f |2 is a sufficiently decaying function on D, i.e. O|f |2(iX) is
finite for all X ∈ 2ΩH . Moreover, in view of (3.7) we see that O|f |2 has a natural holomorphic
extension to a holomorphic function on the abelian tube domain T (2ΩH) = a+i2ΩH , namely

(7.1) O|f |2(Z) =

∫

X

|f̂(b, λ)|2ϕλ(exp(Z)) dµX (b, λ) (Z ∈ T (2ΩH))

7.2. A certain pseudo-differential shift operator. Define a space F(T (2ΩH)) of W-
invariant holomorphic functions on the tube domain T (2ΩH) by the following property:
f ∈ F(T (2ΩH)) if f can be written as

f(Z) =

∫

ia∗+

h(λ)ϕλ(exp(Z))
dλ

|c(λ)|2 (Z ∈ T (2ΩH))

where h ∈ L1(ia∗
+, cosh(λ)

|c(λ)|2
dλ). If Q ⊂ T (2ΩH) is compact, then there exists a constant

CQ > 0 such that

(∀λ ∈ ia∗) sup
X∈Q

|ϕλ(exp(i2X))| ≤ CQcosh(λ) .

As 1
|c(λ)|2

is at most of polynomial growth, it follows that f is indeed holomorphic and W-

invariant. Moreover, f is uniquely determined by h. It follows from our discussion that the
prescription

D : F(T (2ΩH)) → O(T (2ΩH))W ; (DF )(Z) =

∫

ia∗+

h(λ)
∑

w∈W

eλ(wZ) dλ

|c(λ)|2

is a well defined linear mapping.

Remark 7.1. The operator D is a pseudo-differential shift operator and a differential op-
erator if all multiplicities are even. The operator D is related to the Abel transform as
explained in [15], Remark 3.2.

Example 7.2. In this example we discuss the operator D when the underlying group G is
complex. Then D is a differential operator of a particularly nice form.

If G is complex, then there is an explicit formula for spherical functions, due to Harish-
Chandra:

ϕλ(exp(Z)) = c(λ)

∑
w∈W ε(w)eλ(wZ)

∏
α∈Σ+ 2 sinh α(Z)

for all Z ∈ T (2ΩH). The c-function has the familiar form

c(λ) =

∏
α∈Σ+〈ρ, α〉∏
α∈Σ+〈λ, α〉 .

For each α ∈ Σ let Aα ∈ a be such that α = 〈·, Aα〉. Furthermore let ∂α be the partial
derivative on T (2ΩH) in direction Aα. Define a partial differential operator on T (2ΩH) by
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∂Σ+ =
∏

α∈Σ+ ∂α. Finally with J(Z) =
∏

α∈Σ+ 2 sinh α(Z) we declare a differential operator
on T (2ΩH) by

D = const · ∂Σ+ ◦ J .

with const =
∏

α∈Σ+〈ρ, α〉. The relation

D(ϕλ ◦ exp)(Z) =
∑

w∈W

eλ(wZ)

is now obvious.

7.3. The geometric norm. For a function f ∈ H2(D) let us write ‖f‖H for its norm as
before. By Lemma 3.2 this norm is given by

(7.2) ‖f‖H =

∫

X

|f̂(b, λ)|2cosh(λ) dµX (b, λ)

The objective of this section is to express ‖f‖H in terms of the much more geometric orbital
integrals O|f |2 . Our result is as follows.

Theorem 7.3. Let f ∈ H2(D). Then O|f |2 ∈ F(T (2ΩH)) and the Hardy space norm ‖f‖H

of f is given by

(7.3) ‖f‖H = sup
X∈2ΩH

DO|f |2(iX)

|WH |
.

In particular, the Hardy space H2(D) can be defined as

(7.4) H2(D) = {f ∈ O(D) | O|f |2 ∈ F(T (2ΩH)) sup
X∈2ΩH

DO|f |2(iX)

|WH |
< ∞} .

Proof. Fix f ∈ H2(D). By equation (7.1) we have

O|f |2(Z) =

∫

X

|f̂(b, λ)|2ϕλ(exp(Z)) dµX (b, λ)

for all Z ∈ T (2ΩH). By the spectral definition of H2(D) it follows that

h(λ) :=

∫

B

|f̂(b, λ)|2 db

defines a function h ∈ L1(ia∗
+, cosh(λ)

|c(λ)|2
dλ). Thus O|f |2 ∈ F(T (2ΩH)) and the application of

D to O|f |2 yields

(DO|f |2)(Z) =

∫

X

|f̂(b, λ)|2
∑

w∈W

eλ(Z) dµX (b, λ) .

Now notice that
1

|WH |
∑

w∈W

eλ(iwX) ≤ cosh(λ) (X ∈ 2ΩH)
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and
sup

X∈2ΩH

∑

w∈W

eλ(iwX) = lim
X→ZH

∑

w∈W

eλ(i2wX) = |WH | · cosh(λ) .

The claim follows now from the spectral definition of the norm in H2(D). Finally, back-
tracking the steps of the proof readily yields (7.4). �

Remark 7.4. Some comments on the geometric Hardy norm

‖f‖H = sup
Z∈ΩH

1

|WH |
· (DO|f |2)(Z)

seem to be appropriate. Usually, in the theory of Hardy spaces (e.g. Hardy space on the
upper half plane) one takes the supremum over a family of L2-integrals over totally real
submanifolds. In our case one takes a supremum over G-orbits, which for the exception of
the orbit through the origin, are never totally real. Secondly, we find the appearance of the
pseudo differential operator D interesting. In the context of Hardy spaces it might be novel.

7.4. The K-invariant case. In this subsection we give another description of the subspace
H2(D)K using the Abel transform and the results in Appendix A. We start by noting the
following simple connection between the Abel transform and the Fourier transform of a
K-invariant function. For that we note first, that f̂(b, λ) is independent of b ∈ B if f is

K-invariant. We write then simply f̂(λ) and note that f̂ is W-invariant. Furthermore

f̂(λ) =

∫

X

f(x)a(x)ρ−λ dx

=

∫

A

∫

N

f(na · xo)a
−ρ−λ dnda

= FA(A(f))(λ)

where FA stands for the Fourier transform on the abelian group A. Recall, that F : L2(A) →
L2(ia∗, |W|−1dλ) is a unitary isomorphism. Define a multiplication operator Da on ia∗ by
Da(F ) = c(−λ)−1F and denote the corresponding multiplier operator on A by DA. Let
Λ := DA ◦ A. Finally, we define a multiplier m on W × ia∗ by m(s, λ) = c(−sλ)/c(−λ).
We denote by τ the corresponding representation τ(s)f(λ) = m(s−1, λ)f(s−1λ). Then, cf.
[19], Section 1, in particular Lemma 1.4, we have a commutative diagram, where each of the
maps is an unitary isomorphism:

(7.5) L2(A, |W|−1da)W
Λ

//

FX

��

L2(A, |W|−1da)τ(W)

FA

��

L2(ia∗, dλ
|W||c(λ)|2

)
Da

// L2(ia∗, |W|−1dλ)τ(W) .

Recall the Hardy space H2(T (ΩH)) from Appendix A and its spectral description in The-
orem 7.9. It follows then from Theorem 3.2, and the obvious renormalization of measures, as
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we have not included the 2π in the exponential function, that Λ(H2(D)K) ⊆ H2(T (ΩH))τ(W).
As Λ : L2(A, |W|−1da)W → L2(A, |W|−1da)τ(W) is a unitary isomorphism, we get:

Theorem 7.5. The map Λ : H2(D)K → H2(T (ΩH))τ(W) is a unitary isomorphism.

Example 7.6. If G has complex structure, then according to [19], Example 1.12, the map
Λ is a multiplication operator given by

Λ(f)(a) =

( ∏

α∈Σ+

sinh〈α, log(a)〉
)

f(a) .

We now determine the reproducing kernel for H2(D)K. One could easily deduct that from
Theorem 7.10 but we will give another proof, that follows similar arguments.

Theorem 7.7. The reproducing kernel K(z, w) for H2(D)K is given by

K(z, w) =

∫

ia∗+

ϕλ(z)ϕ−λ(w) dµ(λ) .

Proof. Let f ∈ H2(D)K and w ∈ D. Recall, that by Lemma 3.2 we have Φ(g)(λ) =
ĝ(λ)cosh(λ) for all g ∈ H2(D)K. Therefore

f(w) = 〈f, Kw〉

=

∫

ia+

f̂(λ)cosh(λ)K̂w(λ)cosh(λ) dµ(λ)

=

∫

ia∗+

f̂(λ)K̂w(λ)cosh(λ)
dλ

|c(λ)|2

=

∫

ia∗+

f̂(λ)ϕλ(w)
dλ

|c(λ)|2 .

Thus

K̂w(λ) =
ϕ−λ(w)

cosh(λ)
.

From this we now get:

K(z, w) = 〈Kw, Kz〉

=

∫

ia∗+

K̂w(λ)cosh(λ)K̂z(λ)cosh(λ) dµ(λ)

=

∫

ia∗+

ϕ−λ(w)ϕλ(z) dµ(λ)

and the claim follows. �
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Appendix: Hardy spaces on strip domain

We let V be an Euclidean vector space, e.g. V = Rn endowed with the standard inner
product. Denote by O(V ) the orthogonal group of V and let W ⊂ O(V ) be a finite subgroup
which acts irreducibly on V . We fix yo ∈ V , yo 6= 0 and set

Ω = int ({convex hull of W(yo)}) .

Notice that Ω is the interior of a compact polyhedron and that 0 ∈ Ω. Write VC := V ⊗R C '
V + iV for the complexification of V and define a tube domain in VC by

T (Ω) = V + iΩ .

Let us denote by dx the measure (2π)−dim V/2 times the normalized Lebesgue measure on V .
Then the Fourier transform

f 7→ Ff(λ) =

∫

V

f(x)e−〈λ,x〉 dx

is a unitary L2-isomorphism. V ∗ is the dual of V , and 〈λ · x〉 = λ(x) denotes the standard
duality between V and V ∗. Denote by O(T (Ω)) the space of holomorphic functions on T (Ω).
The Hardy space H2(T (Ω) is defined by:

H2(T (Ω)) := {f ∈ O(T (Ω)) | ‖f‖2
H = sup

y∈Ω

∫

V

|f(x + iy)|2 dx < ∞} .

As the Hardy-norm locally dominates the Bergman-norm on T (Ω), it follows hence H2(T (Ω))
is complete, i.e. a Banach space. In fact, H2(T (Ω)) is a Hilbert space as we will show in a
moment. Then for f ∈ H2(T (Ω)) and y ∈ Ω one has

∫

V

|f(x + iy)|2 dx =

∫

V ∗

|F(f |V )(ξ)|2e−2〈y,ξ〉 dξ

which is immediate from [21] Ch. III, §2. It follows that

(7.6) ‖f‖2
H = sup

y∈Ω

∫

V ∗

|F(f |V )(ξ)|2e−2〈y,ξ〉 dξ .

For y ∈ V define cosh, coshy : V ∗ → C by

coshy(λ) =
1

|W |
∑

s∈W

e−2〈y,sλ〉 =
1

|W |
∑

s∈W

e−2〈sy,λ〉

and
cosh(λ) = coshyo

(λ) .

As with ‖ · ‖L2(V ) is W-invariant and F is W-equivariant, it follows from (7.6) that

(7.7) ‖f‖2 = sup
y∈Ω

∫

V ∗

|F(f |V )(ξ)|2cosh(y, ξ) dξ .
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Now, for every λ ∈ V , the function y 7→ coshy(λ) is strictly convex on Ω; hence we have
the inequality

(∀y ∈ Ω)(∀λ ∈ V ∗) coshy(λ) ≤ cosh(λ) .

and so it follows that

(7.8) ‖f‖2
H =

∫

V ∗

|F(f |V )(λ)|2cosh(λ) dλ .

Define a W-invariant measure µ0 on V ∗ by

dµ0(λ) = cosh(λ)dλ .

Theorem 7.8. The mapping

H2(T (Ω)) → L2(V ∗, dµ0), f 7→ F(f |V )

is an isometric isomorphism. In particular, H2(T (Ω)) is a Hilbert space.

A (continuous) multiplier on V ∗ is a continuous map m : W × V ∗ → C such that for all
s, w ∈ W and λ ∈ V ∗ we have

m(sw, λ) = m(s, wλ)m(w, λ) .

Assume from now on that |m(s, λ)| = 1 for all s ∈ W and λ ∈ V ∗. Then, because of the
W-invariance of dµ0, we can define a unitary representation of W on L2(V ∗, dµ0) by

(7.9) τ(s)f(λ) = m(s−1, λ)f(s−1λ) .

As the Fourier transform is a unitary isomorphism, we have a unitary representation, also
denoted by τ , of W on H2(T (Ω)) such that the Fourier transform is an intertwining operator.
Denote the space of τ(W)-invariant elements by the superscript τ(W). Then

Corollary 7.9. The Fourier transform is a unitary isomorphism

F : H2(T (Ω))τ(W) → L2(V ∗, dµ0)
τ(W) .

The Hardy space H2(T (Ω))τ(W) being a Hilbert space of holomorphic functions admits
as such a reproducing kernel function K(z, w) often called the Cauchy-Szegö-kernel. Notice
that for fixed w ∈ T (Ω), the function Kw(z) belongs to H2(T (Ω))τ(W) and that

〈f, Kw〉 = f(w) for all f ∈ H2(T (Ω))τ(W) .

Here of course 〈 · , · 〉 denotes the inner product on H2(T (Ω))τ(W).
We now determine K(z, w) explicitly. For that define for w ∈ V , cosm

w : V ∗ → C by

cosm
w (λ) :=

1

|W|
∑

s∈W

m(s, λ)−1ei〈w,sλ〉

and note that
cosm

w

cosh
∈ H2(T (Ω))τ(W)

Write (·|·) for the inner product on L2(V ∗, dµ0)
τ(W). For f ∈ H2(T (Ω))τ(W) let F = F(f |V ).
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It follows from Corollary 7.9 that 〈f, Kw〉 = (F |F(Kw|V )). On the other hand we have

f(w) =

∫

V ∗

F (λ)e−i〈w,λ〉 dλ

=

∫

V ∗

F (λ)
e−i〈w,λ〉

cosh(λ)
dµ0(λ)

=

∫

V ∗

m(s−1, λ)F (s−1λ)
e−i〈w,λ〉

cosh(λ)
dµ0(λ)

=

∫

V ∗

F (λ)m(s−1, sλ)
e−i〈w,sλ〉

cosh(λ)
dµ0(λ)

=

∫

V ∗

F (λ)
cosm

w (λ)

cosh(λ)
dµ0(λ)

and thus

F(Kw|V )(λ) =
cosm

w (λ)

cosh(λ)
.

Theorem 7.10. The reproducing kernel for the Hardy space H2(T (Ω))τ(W) is given by

K(z, w) =

∫

V ∗

(
1

|W|

∑
s∈W

ei〈s(z),λ〉

m(s,λ)

)
·
(

1
|W|

∑
s∈W

ei〈s(w),λ〉

m(s,λ)

)

cosh(λ)
dξ(7.10)

=

∫

V ∗

cosm
z (λ)

cosh(λ)
cosm

−w(λ) dλ .

Example 7.11. The equation (7.10) can be evaluated in the relevant special cases. Let us
for example consider the case of V = R, Ω =]−1, 1[, W = O(R) ' {1,−1} and m(s, λ) = 1.
Using the standard measure on R we get the following from (7.10) and [2], Sect. 1.9, formula
(12):

K(z, w) =
1√
2π

∫

R

cos(zξ) cos(wξ)

cosh(2ξ)
dξ

=

√
π

2

cosh(π
4
z) · cosh(π

4
w)

cosh(π
2
z) · cosh(π

2
w)

.
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[5] J. Faraut, Formule de Gutzmer pour la complexification d’un espace Riemannien suymétrique, Rend.
Mat. Acc. Lincei s. 9 , v. 13:233-241 (2002).

[6] Gindikin, S., SO(1; n)-twistors, J. Geom. Phys. 26 (1998), no. 1-2, 26–36.
[7] Gindikin, S., Integral geometry on SL(2; R), Math. Res. Lett. 7 (2000), no. 4, 417–432.
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