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In this talk at the Mathematische Arbeitstagung 2005 I am presenting my joint
results with Klaus Hulek (Hannover) and Gregory Sankaran (Bath) on the
Kodaira dimension of the moduli of K3 surfaces.

A moduli space of polarized K3 surfaces can be identified with the quotient of
a classical hermitian domain of type IV by some arithmetic group. The general
set-up for the problem is the following. Let L be an even integral lattice with a
quadratic form of signature (2, n),

D(L) = {z ∈ P(L ⊗ C) : z · z = 0, z · z̄ > 0}+

be an n-dimensional Hermitian domain (+ denotes one of two connected compo-
nents), O(L)+ be the index 2 subgroup of the integral orthogonal group O(L)
preserving D(L). The arithmetic group in the question is ΓL = {γ ∈ O(L)+ :
γ|L∗/L = id} where L∗ is the dual lattice of L. We are interested in the geometric
properties of the arithmetic quotient ΓL \ D(L).

K3-surfaces. A compact complex surface S is called K3 surface if S is simply
connected and there exists a holomorphic 2-form ωS ∈ H(S, Ω2) without zeros. For
example, a smooth quartic in P3(C) is a K3 surface.

The second cohomology group H2(S, Z) with the intersection pairing is an even
unimodular lattice of signature (3, 19), i.e.,

H2(S, Z) ∼= LK3 = 3U + 2E8(−1), where U =

(

0 1
1 0

)

is a hyperbolic plane. The nowhere zero 2-form CωS considered as a subspace of
LK3 ⊗C is the period of S. The Torelli-type theorem proved by Piatetskii-Shapiro
and Shafarevich in 1971 claims that the isomorphism class of S is uniquely deter-
mined by its period. The moduli of all polarized algebraic K3 surfaces is a union
of 19-dimensional irreducible algebraic varieties and one picks out a component by
fixing the degree.

A polarized K3 surface of degree 2d is a pair (S, H) consisting of a K3
surface S and a primitive pseudo-ample divisor H on S of degree H2 = 2d > 0. If
h is the corresponding vector in the lattice LK3 then its orthogonal complement

(h)⊥LK3

∼= L2d = 2U + 2E8(−1)+ < −2d >

is a lattice of signature (2, 19).

Moduli of polarized K3 surfaces. The 2-form ωS of (S, H) determines a
point of D(L2d) modulo the group Γ2d = Γ(L2d). According to the global Torelli
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theorem of [P-SS71] and the surjectivity of the periodic map F2d = Γ2d \D(L2d) is
the coarse moduli space of polarized K3 surfaces of degree 2d. (For 2d = 4 we get
the moduli space of quartics.)

By the result of Baily and Borel Γ2d \ D(L2d) is a quasi-projective variety. One
of the fundamental problems is to determine its birational type. For very small d
(2d = 4, 6, 8) a K3 surface of degree 2d is a complete intersection in Pd+1 and the
moduli F2d were classically known. Mukai considered some other polarizations and
proved

(Mukai 87, 89, 96) : The moduli spaces F2d are unirational for 1 ≤ d ≤ 11 and
d = 17, 19.

In the other direction Kondo [K93] and Gritsenko [G94] showed

(Kondo 93) : For sufficiently big primes p >> 0 the moduli space F2p2 is of
general type; (No effective bound for primes p is known.)

(Gritsenko 94) : Let Γ2d(q) be the intersection of Γ2d with the principal con-
gruence subgroup of level q. Then Γ2d(q) \ D(L2d) is of general type for any d if
q ≥ 3.

In this talk I would like present the following new result

Main Theorem (Gritsenko, Hulek, Sankaran). Let d ≥ 67 be square-free (d 6=
69, 77). Then the moduli space F2d of polarized K3 surfaces of degree 2d is of
general type.

Branch locus. We shall construct pluricanonical forms by means of modular
forms. There might be three types of possible obstruction to this. They are the
boundary of F2d in its compactification, non-canonical singularities arising from
fixed loci of the group action, and the ramification locus of the projection D(L2d) →
F2d. We show that only the third obstruction is in fact essential.

Theorem 1. 1) The ramification locus of the projection D(L2d) → F2d is defined
by reflections σr such that r2 = −2 or r2 = −2d.

2) For any (−2)-vector r we have r⊥L2d

∼= K2d or ∼= M2d where

K2d = U + 2E8(−1)+ < 2 > + < −2d >, M2d = U + 2E8(−1) +

(

2 1
1 1−d

2

)

if d = 1 mod 4.
3) For any (−2d)-vector r the determinant of r⊥L2d

does not depend on d.

Toroidal compactification. As was proved by Kondo in [K93] the spaces
F2d only have canonical singularities. The toroidal compactification is not unique.
Choosing possible refinements of a suitable fan we can ensure that the toroidal
construction does not contribute to the singularities and that all singularities are
finite quotient singularities. In fact we obtain the following

Theorem 2. Let d be cube-free. There exists a toroidal compactification F tor
2d of

F2d such that holds:
(i) F tor

2d has only canonical singularities;

(ii) For each boundary component B there is no branch divisor of πB contained
in F tor

2d \ F2d.
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To show that F tor
2d is of general type (i.e., that its Kodaira dimension is equal to

19) we have to prove the following asymptotic

dim H0(F tor
2d , Ω⊗k) = O(k19)

for the dimension of the k-fold pluricanonical forms on F tor
2d . Let Fo

2d be the open
part of F2d such that the projection π is unramified over Fo

2d. For any Γ2d-modular
form F of weight 19k we can define F (z)(dz)k ∈ H0(Fo

2d, Ω
⊗k) where dz is the

standard volume element of D(L2d). (One can even consider the last description
as a definition of modular forms.) According to Theorem 2, F (z)(dz)k can be
extended to F tor

2d if
(1) F (z) is zero of order at least k on the boundary (Tai’s criterion);
(2) F (z) is zero of order at least k on the ramification locus.
To estimate the last obstruction we use the Mumford-Hirzebruch proportionality

principle.

The Mumford-Hirzebruch proportionality principle ([H58], [M77]) gives
us a major term of the dimension of the space of cusp forms. Let L be of signature
(2, n) and Γ ⊂ O(L) be an arithmetic group: then

dimSk(Γ) =
2

n!
volMH(Γ)kn + O(kn−1).

The constant volMH(Γ), which we call the Mumford–Hirzebruch volume, is the
ratio of the volume of the fundamental domain by the volume of the compact dual
manifold Dc(L) ∼= SO(n + 2)/SO(2)× SO(n). Both volume forms should coincide
in a common base point defined by a maximal compact subgroup of O(2, n). If Γ
acts freely on D(L) then according to the proportionality principle

volMH(Γ) =
vol(Γ \ D(L))

vol(Dc(L))
=

e(Γ \ D(L))

e(Dc(L))
= χ(Γ \ D(L)).

Therefore the calculation of volMH(Γ) is equivalent to the explicit determination of
the Euler–Poincare measure of the group Γ. We can solve this question using the
Siegel theory of indefinite quadratic forms.

Theorem 3. For any even lattice L of signature (2, n) containing at least one
hyperbolic plane the following formula holds:

volMH(O(L)) = 2 · | det L |(n+3)/2 ·
∏

p

αp(L)−1 ·
n+2
∏

k=1

π−k/2Γ(
k

2
)

where αp(S) are the local densities of the quadratic form L.

Corollary 1. K3-modular forms. According to the above formulae we get
that for d > 1

dim Sk(Γ2d) =
2−9

19!

|B2 · B4 · . . . · B20 |
20!!

· d10
∏

p|d

(1 + p−10) k19 + O(k18).

where B2m is the Bernoulli number.
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Corollary 2. The modular forms on branch divisors. Let us consider the
lattice K2d of signature (2, 18) for Theorem 1. We put d = d0t

2, where d0 is a

positive square-free, D is the discriminant of the real quadratic field Q(
√

d), χD is
the corresponding quadratic character. It follows that

dim Sk(Γ(K2d)) =
F2(d)

18!

B2 · B4 · . . . · B18

18!!
·B10,χD

10
t19

∏

p|2t

(1−χD(p)p−10)k18+O(k17)

where Bk,χD
= −k · L(1 − k, χD) is the Bernoulli number with respect to the

character χD and

F2(d) =

{

210 if d ≡ 1 (mod 4) and d > 1

2−9 if d ≡ 2, 3 (mod 4).

A similar formula is valid for the lattice M2d. The next step is

Theorem 4. The cusp obstruction is not essential.

To proof this theorem we use cusp forms of small (< 19) weights. They do exist
according to [G94]. For d > 36 we have a cusp form F11 of weight 11 with respect
to Γ2d∩SO(L2d). Then for an even k and for any cusp form F ∈ S8k(Γ2d) of weight

8k the modular form G = F k
11F ∈ S

(k+1)
19k (Γ2d) vanishes of order at least k + 1 on

the boundary (compare with [GS96]). Moreover one can show that any form of odd
weight automatically vanishes on the (−2d)-part of the ramification locus. Now let
D be a component of the (−2)-ramification divisor. We need that G vanishes of
order k along D. Restriction to D gives us an exact sequence

0 → Sk(Γ2d)(−nD) → Sk(Γ2d) → Sk+n(ΓM )

where Sk(Γ2d)(−nD) is the space of all forms in Sk(Γ2d) which vanish of order n
and M is one of the lattices of signature (2, 18) of Theorem 1. It follows that the
obstruction to extending forms G(dz)k lies in a space

B =

k−1
⊕

n=0

S8k+n(ΓM ).

It now remains to estimate the dimension of B for each of the (finitely many) compo-
nents of the ramification locus. This obstruction and the dimension of S8k(Γ2d) have
different asymptotic behavior according to the Corollaries to Theorem 3. Therefore
we have got the following

Theorem 5. If d is sufficiently large and cube-free then F2d is of general type.
Moreover our method is effective and it gives an effective bound for d. For instance,
let p, q be primes such that p > 481 and q > 106. Then F2p2 and F2q are of general
type.

This method based on the Mumford-Hirzebruch proportionality principle and on
the existence of cusp forms of small weights is effective and we can apply it to many
quotient spaces of different dimensions. To improve the result about the moduli of
K3 surfaces it would be better to have a cusp form of a small weight vanishing on
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the (−2)-part of the ramification locus. We can in fact construct such a cusp form
using the pull-back of the Borcherds function Φ12.

Pull-back of the Borcherds function Φ12. The Borcherds function Φ12 is
the denominator function of the fake monster Lie algebra. It is a modular form of
(singular) weight 12

Φ12 : D(L2,26) → C, L2,26 = 2U + 3E8(−1)

with respect to the group Γ(L2,26) (see [B95]). Its divisor is the union of all rational
quadratic (Heegner or Humbert) divisors defined by (−2)-vectors in L2,26. The pull-
back of this function gives us very many interesting automorphic forms (see [B95,
pp. 200–201], [GN98, pp. 257–258]). In the context of the moduli of K3-surfaces
this construction was used in [BKPS98] and in [K99]. We summarize their results
in a suitable form.

Let be l ∈ E8(−1) with l2 = −2d. The choice of l determines an embedding of
L2d into L2,26 as well as an embedding of the domain D(L2d) into D(L2,26). We
put Rl = {r ∈ E8(−1) : r2 = −2, r · l = 0}, Nl = |Rl|. Then ([BKPS98]) the
function

Fl =
Φ12(z)

∏

{±r}∈Rl
(z · r)

∣

∣

∣

∣

∣

D(L2d)

∈ M
k+

Nl

2

(Γ2d)

is a non-trivial modular form of weight k + Nl

2 vanishing on all (−2)-divisors of
D(L2d). Moreover ([K99]) this is a cusp form if d is square free and Nl > 0.

Therefore the main point for us is for which 2d > 0 there exists a vector l ∈ E8

such that l2 = 2d and l is orthogonal to at least two and at most 12 roots.

Theorem 6. Such a vector l in E8 does exist if

4NE7
(2d) > 28NE6

(2d) + 63ND6
(2d), (N)

where NL(2d) denotes the number of representations of 2d by a lattice L.

The meaning of the coefficients in (N) is the following. The root system E8

contains a root system of type E7 (with 2 · 63 roots) and a bouquet of 28 root
systems A2 centered in A1 which is orthogonal to E7.

The inequality (N) is not valid only for a finite number of d because its sides have
different asymptotic O(d5/2) and O(d2) respectively. We can get exact formulae for
the theta-series in the right hand side in terms of some Eisenstein series of weight 3.
As for the left hand side, we note that the number NE7

(2d) is the Fourier coefficient
e4,1(d, 0) of the Jacobi-Eisenstein series E4,1(τ, z). According to the result of Eichler
and Zagier (see [EZ85])

e4,1(d, 0) = (Simple const) · (2d)5/2 · L(Z)
4d (3)

where L
(Z)
4d (s) is Zagier’s generalization of the L-function of quadratic field.

The last d for which inequality (N) is not valid is 143. But 143 = 12+52+62+92

and this representation induces a vector in the sublattice 4A1 ⊂ E8 which represents
2 · 143 and is orthogonal exactly to twelve roots in E8. A similar representation
exists for many others d < 143.
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The obstruction coming from the (−2d)-part of the ramification locus (see The-
orem 1) is very small. For example for a prime p it is not essential for p > 11.
Taking this into account we finish the proof of the main theorem.

Conclusions. 1. In this talk we give a preliminary version of the main theorem.
We are going to improve this result in the near future.

2. The condition “to be cube free” in Theorem 2 is rather technical. The same
result might be well true for any d.

3. We hope to prove the cuspidality of the pull-back of the Borcherds form
without restriction “to be square free” on d.

4. We are planning to finish this project with two short lists of polarizations for
which the moduli of polarized K3 surfaces of degree 2d might be of non-general
type or might be unirational (uniruled).
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