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CARLESON CONDITIONS FOR ASYMPTOTIC WEIGHTS

MICHAEL BRIAN KOREY

ABSTRACT. The doubling and A co conditions are characterized in terms of
convolution with rapidly decreasing kerneis. Fefferman, Kenig, aod Pipher [6]
d~cribed the appropriate (Carleson-measure) version of this for A oo , and we
extend their result to the case when aH bounds become optimally small in the
aBymptotic limit.
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The doubling and Aoo conditions that arise in many areas of mathematical anal­
ysis are usually defined in terms of mean values over regular, compact sets, such
as balls or cubes. The present paper formlIiates these conditions rather in terms of
weighted averages over aB of Euclidean space.

The source of our interest in such formulatiolls is briefl.y as foBows. In their
famous paper on Hardy spaces in Rn l Fefferman and Stein [5] gave a square-function
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characterization of the space of functions of bounded mean oscillation: A function
J = logw is in BMO(Rn

) if and onIy if

(1) dji(x,t) = IV':c(logw* <pd(x)1 2tdxdt

is a Carleson measure on R~+l. (See §2 below for the necessary definitions; here cp
is a Schwartz function, such aB the Gaussian, and 'Pt (x) =t-n<p(x/t) gives its mass­
preserving dilation.) In studying perturbation theory for divergence-form elliptic
partial differential equations (and, in particular, in seeking perturbation conditions
that preserve the solvability of the Dirichlet problem with LP boundary data),
Fefferman , I(enig, and Pipher (6) obtained a related square-function criterion: A
doubling weight w is in Aoo on Rn if and only if

(2) dJ-l( x, t) = jV':c log(w *<Pt)(x) 12t dxdt

is a Carleson measure. Note that the quantities (1) and (2) differ only in so far aB

that the logarithm and convolution have been switched. While commuting these
two processes is generally not permissible, the result of (6) shows that , for ACQ
weights, it iso This is in aceord with one of the standard formulations of Aoo : A
weight is in this dass exactly when the difference between the logarithm of its mean
value and the mean value of its logarithm is uniformly bounded over all balls.

Unlike the earlier resul t in (5], 1 the proof of the latter theorem in [6] does not
immediately yield an estimate for the Carleson norm of dJ-l in terms of the EMO
norm of log w (or the Ace bound of w). That the characterization of Ace in [6]
nevertheless carries over to the so-ealled "asymptotic case," in whieh all bounds
approach their optimal values over small scales, ia the main reault here. While
the statement of this reault is but a modest refinement of the theorem in [6], its
proof turns out to be surprisingly subtle; the challenge we repeatedly encounter is
keeping the various eonstants of inequal ity that arise elose to their smallest posaible
values. As a by-product of these efforts to obtain a quantitative Carleson-measure
characterization of Ace, we shall also make several new observations about the
doubling condition.

For an exeellent aeeount of the links between such square functions aa appear
in (2), regularity theory for elliptic PDEs, quasieonformal mappings, and the das­
sical theory of the a.e. differentiability of real functions in several variables, see the
introduction of [6]. Without further ado, we DOW present the definitions that will
allow us to make precise the results sketehed above.

2. PRELIMINARIES

For reference, we record here the notation that is used throughout this work. The
symbol lEI denotes the Lebesgue measure ofthe set E in Rn. The Lebesgue integral
of the function J over E is written JE J or JE J dx; if the region of integration is
not ShOWll, it is understood to be all of R.n . When 0 < lEI< 00, the symbol JE
represents the mean value of J over E; that is, JE =(JE f)/IEI.

A weight is any non-negative, locally integrable function on Rn. The sym­
bol w(E) denotes the mass of E under the weight w, i.e., w(E) = JE w dx. The

lThe argument in [5] shows that the Carleson norm of dji in (1) is equivalent to Illogwll:, the
square of the BMO nOnTI of log w. The loeal form of this says that log w E VMO if and only if
dji is a Carle80n measure, with vanishing traee. Onee again, !lee the next section rar the relevant
defi ni tions.
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r-rold concentric dilate of a ball B is wri t ten rB; the double of B is 2B. The mea­
sure of the unit ball Bt{O) in Rn is W n . The letter X is reserved for the normalized
characteristic function of the unit ball, i.e., X(x) is l/w n when x E BI (0) and is 0
otherwise. The (mass-preserving) dilation of an integrable function I{J to scale t is
defined by the rule I{Jt (x) = t-nl{J(x). To simplify notation, we sh aU consistently
suppress the spatial variable x in estimates that hold uniformly over aH of Rn.

Let us now recall the definitions of four key concepts: doubling, the Ace con­
dition, the space BMO, and Carleson measures. We shall first consider the basic
form of each of these and then the respective asymptotically optimal variant.

A weight w is doubling if its average over each ball is (uniformly) comparable to
its average over the concentric double of that ball; that is, there is same constant C
such that

(3)

uniformly over all balls B. The smallest C for which (3) is valid is termed the
doubling constant of wand is denoted Db(w). Note that if Db(w) = 1, then w is
a.e. constant. The collection of aH doubling weights is written Db.

We call a weight asymptotically doubling (see [11] and the references cited there)
if its doubling behavior becomes optimalover small scales. More predsely, we
write w E Dba~ if both w E Db and the ratio of its averages of over every pair
of sufficiently smaU balls, each of which is contained in the double of the other, is
arbitrarily elose to 1.

There is a simple continuity criterion for doubling which will prove very useful
in the sequel. \Vhile w(rB) -+ w(B) as r -+ 1 for every weight w, this convergence
of differences ean be converted to a convergence of ratios precisely when w E Db.

Lemma 1. A weight w is doubling if and only if w(rB)/w(B) -+ I, as r -+ 1,
uniformly over all balls B. When this holds, the convergence occurs at a rote that
depends only on the doubling constant Db(w).

See [2] cr [11] for a proof; a related result in [3] applies to in the general setting
of doubling measures on homogeneous spaces.

Next, a weight satisfies thc Ace condition (see [4] and [12]) if its mass is "fairly"
distributed not just over a ball and its eentral half (as in the case of doublingL
but over all subsets of the ball of half its measure; more precisely, we write that
w E Ace if there are constants Q' and ß, both less than 1, such that

w(E)/w(B) < ß whenever IEI/IBI < Q'.

(Here E is an arbitrary Borel sn bset of the ball B.) This scale-invariant form of
absolute continuity has many equivalent formulations; the one of chief interest to us
is the following: A weight is in Ace just in case its arithmetie and geometrie means
are uniformly comparable over aH balls. 2 In other words, there is a eonstant C for
which

(4) 1~ll w ~ CexpC~lllogw)

2The laUer formulation is due to [7]' [8], and [14]; see [4] or [7] for still other definitions of Aoo .
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(6)

1
\
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over alt balls B. [fl in addition I the constant C can be taken arbi trarily elose
to 1 for all sufficiently small balls, then we say that w is asymptotically absolutely
continuous3 and we write w E A oo ,a6'

Third, a loeally integrable function f has bounded mean oscillation ifthe quantity

(5) 11/11. = s~p I~I in 1I - IBI

is finite 1 and the set of all such funetions is written BMO. The eorresponding
asymptotic variant of BMO is termed VMO, for the space of functions of vanishing
mean oscillation. This requires that 11/11. is not only bounded, but can be taken
arbitrarily elose to 0 when the supremum is measured only over balls of small size.
BMO functions as a repIaeement for Loo in many eontexts of harmonie analysis,
and VMO plays within BMO a role analogous to that of the bounded, uniformly
eontinuous functions in L CO (see [15]).

What relations exist among these conditions? It is well-known (see [7]), for
example, that every Aoo weight is doubling and that its logarithm ia in BMO.
Sharp asymptotic versions ofthese statements appear in [11] and can be summarized
qualitatively in the following form:

Lemma 2. Every weight in A co ,a6 is also in Dba6 and its logurithm is in VMO.

Combined with the fundamental inequality of John and Nirenberg [10], this result
shows that the logarithm 0/ a weight is in VMO i/ and only il some positive power
01 it is in Aoo,a,. Our aim here is to give another eharacterization of A co ,a6' Before
doing so we fillSt give one final definition.

A non-negative Borel measure I.l. on R~+l = Rn X (0,00) is a Carleson measure
if the ratio

1 i- djj
lEI T(B)

is bounded over all balls E, where T(B) denotes the cylinder B x (0, radius(B))
in R~+l; the smallest bound is likewise termed the Carleson norm of jj. [f this
bound can be taken arbitrarily small for all small balls BI then we say that j.j has
vanishing troce (see [13]).

3. THE MAIN RESULT

Our point of departure is a theorem of Fefferman, Kenig, and Pipher.

Basic Theorem ([6]). Suppose that rp E S, rp 2: 0, und f rp > O. Let ~ = "VI{). A
weight w is in Aoo i/ and only il il is doubling and

-+ 2

(7) djj(x,t) = lw *1/Jt(x)1 dx dt

Iw * I{)t(x)1 2 t

is u Curleson measure on R~+ I .

That this Carleson-measure characterization of Aco in the presence of doubling
carries over to the asymptotie setting ia our main result.

3 All of the c1assical fonnulations of A oo in [4] remain equivalent when optimal bounds are
required in the asymptotic limit (see [11]).
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h(s)

Theorem 1. Under the same assumptions as in the prior theorem} a weight w

-is in Aoo,a. if and only if it is doubling and the measure dJl of (7) is a Carleson
measure on R~+I, with vanishing trace.

4. OUTLINE OF THE PROOF

Following the argument in [6], we shaH focus on t,he special case when <p is the

Gaussian, i.e.} <p(x) :;;:; cne-lrIJ, normalized so that f cp :;;:; 1. In this setting, the heat
extension U of a funetion w on Rn is the latter's convolution with this Gaussian <p,
namely

u(x, t) :;;:; W *CPvr(x), for (x, t) E R+.+ 1
.

The theorem then takes the following special form:

TheoreJn 2 (Gaussian special case). Let u be the heat extension oJ a doubling
weight W I as above. Set

(8) h(s):;;:; sup _1_1.IJ
J1 j'Vu(x, tl

l2
dxdt.

yERn wnsn
t=O Ir-yl<$ u(x, t)

Then w E A oo Ja$ if and only if

(9) h is bounded and lim h(s) :;;:; O.
.IJ-tO

By the translation invariance of the definitions of Aoo,a$' Db, and h, it suffices
to consider only balls centered at the origin. Let h(s) henceforth be the integral
in (8) evaluated at y :;;:; 0, i.e.,

h(s) :;;:;~ l$J 1 l\7t, ;~12 dxdt.
wns t=O Irl<' u x, t

We can use the heat operator H :;;:; D t - 6. and the divergence theorem to split
the integral defining h into two parts. As u(x, t) :;;:; w *<Pvr(x), then Hu :;;:; 0, so

that H(logu) :;;:; u- 1Deu - L~=l Di(U- 1DiU):;;:; l'VuI 2/u 2
. Hence

J

-1-1$ 1 H(log u)(x, t) dxdt
wns

n
t=O Irl<'

.~ $~:;;:; ~1 l Dt (IOgu)(x,t)dtdx-~1 I div ('Vlog u)(x,t)dxdt
wns Irl<' t=O wns t=O Ixl<$

1 1 I u(x, S2) d 1 1$~1 'Vu(x, t) . iix d d-- og x--- xt
wnsn Irl<' w(x) wnsn

t=O Ixl=.IJ u(x, t)
:;;:; hI(s) - h2 (s).

Here iir :;;:; x/lxI, the outer unit normal to the boundary at the point x.
Let us pause for a moment to compare the two terms, h1 and h2 • The integrand

of the first of these features the ratio of w to its Gaussian average at scale s; the
integral h1(s) is then the mean value of the logarithm of this ratio over a ball of
radius s. Modulo the reversal of averaging and taking the logarithm, the integral
h 1(s) is thus a comparison of the averages of w over two different positive kerneis,
the Gaussian and the characteristic function of the unit ball. By contrast, tbe
integrand of h 2 (s) is thc ratio of the average of w with respect to a kernel of
integral zero (the normal derivative of the Gaussian) to its average with respect to
a positive kernel (the Gaussian itself).
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This difference will be crucial in the proof. Indeed, in the following pages, we
shall show that the boundary integral h2 {s) vanishes with s when w is merely
asymptotically doubling; on the other hand, for the dominant term h1(s) to vanish,
we shaH need the much stronger condition that w is in the elass Aoo,a".

The argument breaks down into three steps.

• STEP I: w E Aoo,a" ==> lim,,-+o hI(8) = O.
• STEP 11: w E Dba" ==> lim,-+o h2{s) = O.
• STEP III: (w E Db, lim,,-+o h(s) = 0] ==> w E DbM •

The first two of these combine to give the necessity of the condition (9) in the
theorem, while the last will be used to show its sufficiency. We now address each
of these elaims in turn.

5. NECESSITY

As noted above, the integrand of the leading term h1 of the Carleson norm is, in
principle, the logarithm of the ratio of the Gaussian and standard averages of w.
Ta show that the integral h 1 is small, we aim to show that this ratio is near 1.
Colloquially, we must first "cut off the tails" of the Gaussian and then "Hatten out
the bumps." That is, we must first pass from the full heat kernel to a truncated
version and theu, in turn, to the characteristic function of a ball. The challenge is to
accomplish both tasks while insuring that the ratios of the interchanged quantitiea
remain elose to 1. Each task will be addressed in a separate lemma.

For later purposes (STEPS II AND III), we choase to state the results for kerneis
somewhat more general than the Gaussian. The convolution kerneis cp we shall
consider will always be non-negative, non-trivial (i.e., J rp > 0), continuous, and
rapidly decreasing functions on Rn; the last eondition means that for each non­
negative integer N ihere is a constant AN such that

(10) < AN
Icp(x)1 - (1 + Ixl)N' for all x in Rn.

For brevity, we denote by I(, the set of such kerneIs.

5.1. Tnmcation of convolution kernels. Our first lemma shows that "cutting
off the tails" of non-compactly-supported kerneis has a negligible effect on the
averages of a doubling weight. To state it, let rp(T) denote the truncation of a
kernel 'P at radius T, i.e.,

(T)( )_{rp(X) iflxl:5T'P x - ,o otherwise

and let 'P~T) denote the usual, mass-preserving dilate of rpt T ) at scale t (note that
truncation oeeurs before dilation).

Lemma 3. Suppose that 'P E 1(,. If w E Db] then

w * 'P~T)
----'--''-- -+ 1, as T -+ 00,

w * 'Pt

umjormly over all positive t.
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Proof. The ratio (w * ip~T))/(w * ipt) is no larger than 1, since tu ~ 0 and ip(T) $ ip.
The assertion here is rather that this ratio is not much smaBer than 1 for large T.
Ir we only use the doubling constant Db(w) and the decay properties of ip, then it
suffices to show this solely for convolutions formed about the origin at scale t = 1.

Divide Rn into dyadic rings: For T larger than 1 and k = 0, 1, 2, ... , let
TRk = B2"T(Ü) \ B2"-IT(Ü), Since ip decreases rapidly and w doubles over con­
secutive rings-that is, there is a constant C depend ing ouly on Db (w) such t.hat
w(TRk+d $ Cw(TRk ), independently of T and k-then

w * ip(O) = r w(x)ip(-x) dx + f r w(x)ip( -x) dx
JBT(O) k=l J TR"

$ w * ip(T)(ü) + f ( AN N r w(x) dX)
k=l (2k - 1T) JTR Il .

(

00 A Ck ) 1:s; w * ip(T) (0) + 2::= N N w(x) dx.
k=l (2k - 1T) TRo

The last series ia 8ummable for large N, hence

(11) w * ip(ü) - w * ip(T) (0) $ CwT- N r w(x) dx,
. JBT(O)

for some constant Cw = Cw (Db (w), ip, N) .
To complete the prooe insert the kernel ip back into the integral on the right-hand

side of (11); this is possible with a further application of doubling. Indeed, suppose
ip(-xo) > Ü at some point -XQ. Continuity implies that ip is strictly positive in
same neighbarhood of this point: say I ip(- x) > a > 0 whell Ix - XQ I< b < 1. Then,
by repeated doubling,

(12) r w(x) dx $ C~(T) [ w(x) dx $ a-lC~(T) [ w(x)r,o(-~) dx ,
JBT(O) JB~(xo} JBT(ü)

with C~ (T) = (2" Db(w) ) log(2T/ b)+ 1, Now choose N so large that T- N C~ (T) --+ 0
as T --+ 00. Then (11) and (12) combine to yield

tu * ip(O) = (1 + o(I))w * rp(T)(O), as T --+ 00,

which is the desired estimate. o
5.2. Doubling in ternlS of general kerneIs. Let us now define the classes Dblp
and Dblp,al on the model of the doubling and asymptotically doubling conditions.
As before, TA denotes the operator of translation by A.

If lfJ E K, then Dblp is the set of aB weights tu for which there is some constant C
such that4

C-1w*r,ot $ W*r,02t:::; CW*CPt
uniformly over aB positive t; denote the smaBest bound C by Dblp (w). If, in addi­
tion, both

tu *CPpt w * (TAcp)tsup ancl sup -----'----'--
1/2~p~2 tu * 'Pt IAI~l W * ipt

approach 1 as t --+ 0, then we write w E Dblp,aJ'

-4 A functional inequality in which the llpatial variable is not llhown is always to be understood
to hold uniformly over aB of the underlying domain R Tl. '
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Note that these are exactly the defining conditions for Db and Dba8 when the 'P
is replaced by X, the normalized characteristic function of the unit ball. Since the
truncation of a kernel in K looks much like X, we might expect from the previous
lemma that the classes Db and Dblfl coincide, and perhaps even that their asymp­
totic versions, Dba8 and Dblfl ,a8' agree. For kerneis that resemble the Gaussian, we
shall ultimately see that this iB thc ease. The prior lemma provides the first step
toward the proof of this result.

Corollary 4. If'P E K, then Db ~ Dbip. In fact, foT' each doubling weight w, there
is a constant C = C(Db(w),'P) such that C-I .s (w * 'Pd/(w * xd .s C uniformly
over oll positive t.

Proof. Use the lemma to pick T such that (w * 'Pd/(w * 'P~T)) .s 2. Since 'P(T) is
both strictly positive on some ball aod bounded over t,he ball BT (0) containing its

support, then the doubling property of w insures that c- l .s (w *'P~T)) / (w *Xt) .s c,
for some eonstant c = c(Db(wL )0). Take C = 2c. 0

Under a mild additional assumption, thc eonverse is also true.

Leluma 5. If'P E K, and 'P(O) > 0, then Dbip ~ Db.

Prao/. Note first that, when w E Dbrp, its mean values grow at most polynomially:
There is a large number M = M (Db!fJ (tu)) aod a cOllstaut C such that

(13) W * Xrt ::; CrM
w * 'Pt, for r > 1.

Indeed, suppose that X ::; 'P; this represents no lass of generality, as 'P ean otherwise
be replaeed by a sealar multiple of a suitable dilate. Iterating the Db!fJ eondition
shows timt

w *X2"t ~ w * 'P21c, ::; Db!fJ(w)h w * 'Pt,

which is (13L with M =log2 Db!fJ(w).
Now break up the region of integration for w * 'Pt iuto large rings of size 2; rand

use the rapid deeay of'P and the bound (13). With A = A 2M+n from (10), then
00

w * 'Pt < AWn1,n W *Xrt + AWn L(2 j
-

1r)-2M-n(2 j r)"w *X2irt
j=I

< Aw"r"w *Xrt+ [CAwn f(2i-lrj-2M-n(2irjn+M] w * 'Pt.
J :;::1

Chaose r = R to be apower of 2 so large that the bracketed term is less than 1/2.
Then

w * 'Pt ~ ClW * XRt,

for CI =2AR". Thus,

W *X2t ~ w *<Pu ::; C/lw *<Pt/R ~ CIC"w * Xt,

for C" = Dbtp (w) !OK2
R +1. This means that (w *Xu) / (W *Xt) is uniformly bounded,

i.e., w E Db. D

The last results guarantee the equivalence of the mean values and Gaussian
averages of every doubling weight. We next wish to establish that this equivalenee
earries over ta the asymptotie setting. To do so, we shaH first prove a teehnieal
result that shows how modest dilations and translations of a positive kernel have
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(16)

onIy a negiigible effeet on the averages of a doubling weight (eompare Lemma 1).
This result will also prove essential in the final step of the main theorem.

Lemma 6. Suppose that <P E K. and that <p > O. If w E Db, then

(14) W * <Ppt ~ 1 as p~ I,
w *<Pt

1

and

(15)
w * (TA<p)t

as lAI ~ 0,--+ 1,
W * <Pt

uniformly for all positive t.

Proof. By Lemma 3, it suffiees to show (14) for the truneated kernel <p(T) in plaee
of <po Sy translation and dilation invarianee 1 it furt her suffiees to work at seale
t = 1 and position x = O. That iS 1 we wish to show, for fixed. T, that the ratio

w * <p~T) (0)
W * <p(T) (0)

approaches 1 at a rate that depends only on cp and the doubling eonstant of w.
Sinee cp(T) has eompact support I we ean hope to relate this to the eorresponding

unweighted result, the "fiaf' ease of averages over balls. In particular, as w is
doubling, its mass over a ball differs negligibly from its mass over small dilates of
the ball I by Lemma 1; that is,

w(Bpr(O)}

( )
--+ 1, as p--+ 1.

w BT(O)

To exploit this , suppose p is larger than 11 expand w * Ip~T)(O) as an integral,
and split up the region cf integration:

w * cp~T)(O) = f w(x)cp~T)( -x) dx + r w(x)cp~T)( -x) dx = 1 + 11,
JBT(O) JRpT(O)

[or RpT(O) = BpT (0) \ BT (0). The first integral approaehes w * cp(T) (0) as p ~ 1+.
Indeed,

1= p-n r w(x)<p(T)(-x/p) dx::; p-na(T)(p) r w(x)cp(T)(-x) dx,
JBT(O) JBT(O)

with

(17) (T) {cp(T)(x/p) }
a (p) = sup <p(T)(x) : lxi< T .

Sinee the kernel <p(T) is uniformly eontinuous and strictly positive on its support
(by the assumed positivity of If'), then a(T)(p) --+ 1 as p --+ 1+. Henee 1

J = (1 + 0(1)) w *<p(T)(O), as p~ 1+.

The seeond integral I I is 8mall. In fact I as aH the values of If' are eomparable
on BT(O) (again, by the assumptions on <p), the ratio

(18) ß(T) = sup{<p(x) : lxi< T}
inf{<p(x) : lxi< T}
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is finite for each T. Pull the largest value of If'(T) out of the integral 11, use (16),
and re-insert If'(T) back iuto the integral by dividing by its smallest value. Then

11 :5 ß(T) W(RpT(O)) [ w(x)If'(T)( -x) dx
w (BT (0)) JBdO)

= o(l)w*<p(T)(O), asp-+l+.

Combining the estimates for 1 and I I yields

. w *<pV)(O)
hmsup (T)( ) = 1.
p-I-l + w * <p 0

The corresponding bound from below and the translation result (15) follow simi­
lady. D

5.3. Leveling of convolution kerneis. The next result gives the lCflattening out
the bumps" procedure alluded to earlier; it allows us to swap X for the convolution
kernel 'P in the asymptotic setting.

Lemma 7. Suppose that <p E Je I <p > 01 and J If' = 1. /1 w E Dba8 I then

(1g) w * <pt -+ 1 as t -7 O.
w* Xt '

The same conclusion holds when w E Dbtp,a•.

Proof We shall often have occasion to state that the ratio between two quantitiea
is dose to 1. For notational convenience, let !JS write

X~y

for the assertion that

(1 + e)-ly < X < (1 + c)Y.

Quantities X and Y that satisfy this will be said to be e-comparab/e.
Suppose that If' is given and that w E Dba8 • Fix a smaH, positive e. Use Lemma 3

to find a truncation radius T such that

(20) W * <pt (x) ,!.., W * If'~T)(x)

uniformly over all (x, t) in R~+l. Next, use Lemma 6 to choose a number p just
smaller than 1 so that

(21) w * If'~T) (x) ;... W >I< If'~;) (x).

Furthermore, suppose p is so elose to 1 that there is a small, positive r such that

(22)

for all x in Rn; this is possible because <p(T) is strietly positive and uniformly
continuous over its support BT (0). Convert (22) to scale t and combine it with the
previous estimates (20) and (21). Then

W* <Pt (x) < (1 + e)2 w * 'P~~) (x) < (1 + c)3w * (If'(T) *Xr)t (x)

for aB (x, t) in R~+l. This last term may be written

(1 + e)3w * <p~T) *Xrt(x) = (1 + e)3 [ (w *Xrt(y))cp}T)(x - y) dy,
JBTt(X)
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whieh has the form of an average of an average.5

To this point, the argument has been seale-invariant. At small seales t, however,
the first factor in the last integrand is nearly eonstant over the (bounded) region
of integration. Indeed, sinee w E Dba~, then

(23) W '" Xrt(Y) :..., W '" xdx)

uniformly for aU y in BTdx), when t is suffieiently smalI. Sinee J'P~T) =1, insert­
ing (23) into the integrand leads to the eonclusion that

w * 'Pt (x) < (1 + c)4 f W * Xt (x)'P~T)(x - y) dy = (1 + c)4 w * Xr(x),
} BTI(X)

when t is smalI. This is one half of (19).
For the opposite inequality find a p just Iarger than 1 and a smalI, positive r

such that

(24) rp~T)(x) > (1 +c)-lcp(T) *Xr(x).

Use this in piace of (22) and invoke (20) and (21) onee more. Then

w * rpr(x) > (1 + c)-3w * 'P~T) *Xrt(x),

and a similar analysis finishes the proof.
To obtain (19) when w E Dblp,a~, simply reverse tbe roles of <p(T) and X in the

above argument from (21) onward and use Lemma 1 in pIace of Lemma 6. 0

\Ve now summarize the results in this section.

Theorem 3. 1/ 'P is positive, continuous, and mpidly decreasing, then

Db = Dblp and Dba~ = Dblp,a~.

5.4. Control of the leading term (STEP I). Let us now return to considering
the main term in the estimate of the Carleson norm, namely

1 1 u(x, S2)
hl (5) =- log () dx.

W n 5
n lxi<' w x

Recall that u(x, 52) = W * 'P~ (xl, with cp the normalized Gaussian. Suppose that
w E Dba~. Tbe Gaussian satisfies aU the conditions of the Lemma 7, so that

IIOg U(X,8

2
) 1= Ilog w * 'P~(x) I=0(1), as s ----t 0,

w*X~(x) w*X~(x)

uniformly over aH x in Rn. Moreover, as a eonsequence of asymptotic doubling,

supllogw*X~~~~I=O(IL ass----tO.
lxi<' w * x~

So

In sum,

(25) w E Dba, ===} lim hds) = lim (log(w *x~ )(0) - (log w) *x, (0)) .
~-+O ~-+O

Therefore, if w E Aoo ,a~, then Iim~-+0 h1 (B) = 0, eompleting tbe proof of STEP I. 0

!iThe idea for this method stems from [9]. There, truncations of the Poisson kernel (and other
kerneis with polynomial decay) are compared to their averages formed over small scales.
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5.5. Control of the secondary term (STEP [I). The lateral boundary term in
the estimate of the Carleson norm is givcn, after a change of variables, by

(26) h2(s) = _2_1 6 r t \7u(x, t
2
] . nr dxdt.

wnsn t::::;O}lrl::::;6 u(x,t)

As noted, the kernel implici t in the TI II merator of the integrand, namely (\7<p) t . nr 1

has integral zero over Rn for each fixed x. The normal vector n;r fixes a hyperplane
through the origin that divides this kernel into its regions of positive and negative
values. In order to obtain results analogous to those for the positive kernels dis­
cussed in the previous section, we shall treat each of these half-spaces separately.
On account of the rotational invariance of the doubling condition, we may restrict
our attention, without loss of generality, to the case when n;r is el l the unit vector
in the positive xl-direction. Accordingly, let us set

(27) -() -( ) {cnXle-lrl::l if Xl > 0,
<p x =<p XI, ... ,xn = 0 otherwise,

with the conatant Cn chosen so that J(j; = 1.
We wish to compare the averages of an asymptotic doubling weight w formed

with tP to those formed with x, that is, to the standard mean values of W over balls.
How much of the analysis of the previous section applies to (j;? Well, since tj:> is
continuous and rapidly decreasing, thc truncation result (Lemma 3) holds directly
as stated for ij:;. But since ij:; is not positive, Lemmas 6 and 7 do not on the SUfface
seem to apply. [f we examine the proofs of these latter two lemmas, however 1 we
find that positivity enters only at three points: the specified convergence of the
quanti ty a(T) (p) defined in (17); the fini teness of the quanti ty ß(T) defined in (18);
and the possibility to find a p elose to 1 and a small r > 0 such that (22) and (24)
hold. The first two of these conditions are fulfilled by the function I(; when the
references to "lxi< T" in the previous section are replaced by "lxi< T, Xl > 0."
For example, the convergence required is assured when a(T)(p) is now taken to be

(T) {1j;(T) (xl p) }
0' (p) = Slip tj:>(T) (x) : lxi< T,Xl > 0 .

This equals SUp{p-1 exp((l - p-2)lxI2) : lxi< T}, which converges to 1 when
p --+ 1. The third point, the validity of (22) and (24) for Ij;, follows from a direct
calculation. As a result) the conelusions of alt the lemmas6 in question hold for tj:>.
In particular, we can re-state Lemma 7 in this context as folIows:

Lemma 8. Let ij:; be as in (27). /f w E Dba~ I then

w * (j;t(28) -- --+ 1 as t --+ O.
w*Xt )

We now apply this to the analysis of h2(s). In terms of 1(;, the numerator in the
integrand of h2 can be written as a difference,

(29) jt \7u(x, t 2
) . nrl = Glw * (r(;r)~)t(x) - w * (r(-r)(j;)t(x)1,

for r(r) the rotation that maps el into nr. Since the class Dbal is rotation­
invariant, then the preceding lemma implies that the two terms in the difference

6More precisely, not quite all: The proof given above only 8howL'l t.hat the dilation result (14)
in Lemma 6 continues 1.0 be valid for $, not the the tran81ation ~ult (15); only the fonner ia
used, however, in the argument for the first part of Lemma 7.
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l

are e-comparable at all sufficiently small scales, when W E Dba~. That is, given any
small e, we can find J such that if 0 < t < s < J, then

W * (T(x)cp)t(x) :.... w *xdx) ;.... tu * (T(-x)cp)dx).

Hence the numerator in (26) is smalI:

Jt V'u(x, t2
) . nxl :$ C'ew *Xt(x)

whenever lxi =sand 0 < t < s < J. As for the denominator in (26), Lemma 7
shows that

u(x, t2 )

( )
--+ I, as t --+ 0,

W *Xt x
uniformly over all x in Rn. Thus, the integrand of h2 (s) is dominated by eie
pointwise, so that h2 (s) :$ e"e, provided only that s is sufficiently small. Therefore,

(30) w E Dba~ ==> lim h2 (s) = 0,
J~O

which completes the praof of STEP 11 and of the necessity of condition (9) 1I1

Theorem 2. D

6. SUFFICIENCY

Our aim is now to prove the implication

[w E Db, lim h(s) = 0) ==> W E Dba~.
~-+O

This gives the sufficiency of (9) in the theorem. For when W E Dba~, then (25) and
(30) combine to give the conclusion that

lim h(s) = lim (log(W *Xs )(0) - (log w) *Xs(O)) = 0,
J-+O s-+O

i.e. (using translation invarianee), that tu E Aoo,aJ'

Proving this implication is rather complex, however; we begin with a few prelim­
inary observations. The Carleson-measure condition that we here assurne, namely
lims-+o h(s) = 0, is an averaged form of the statement that

(31) tu * ('VIf')t --+ 0, aB t --+ O.
. tu * If'r

Obscrve that the key to our analysis so rar has beeil a careful study of terms
of precisely this sort: the ratio of the average of a weight w with respect to a
kernel of integral zero to its average with respect to a non-negative kernel. Under
the assumption that w is a doubling weight and that the Carleson measure based
on (31) has vanishing trace, our goal is now ta show that w has asymptotic doubling.
Fortunately, this goal ean also be formulated by means of a similar ratio of averages.
Indeed, since Dbas = Dbip,aJ' the statement w E DbaJ means exactly timt

w * (T>'If')pt_--:"-'---'-'- --+ 1, as t --+ 0,
w * If't

uniformly for all dilation factors p in [1/2,2) and all translations by a vector A
within the unit ball. Set 1j;(>"p) = CI' - (T>'If')p. Then J1j;(>"p) = 0, and the last
condition becomes the requirement that

w * 1j;{>"p)
(32) t --+ 0 as t --+ 0,

tu * If't '
uniformly over the indicated range of ,\ and p.
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The crux ofthe remainder of this section is the passage from (31) to (32), that is,
from 'V'{J to t/J()..,p). As in much of Littlewood-Paley theory, the underlying principle
we shall invoke is that one sufficiently smooth kernel with integral zero ia as good
as any other.

6.1. A decomposition lemma. The first lemma begins this "change-of-kerneF'
procedure. It decomposes the Fourier transform of a Schwartz function into its
smooth components of various dyadic frequencies. 7 1'0 shorten the statement of
our results, we introduce same notation for eertain special classes of Schwartz func­
tions. Let 80 = {tP E 8 : f 1jJ =0, 1/J ~ O} and 8+ ={'{J E 8 : '{J ~ 0, J'{J > O}. For
any finite collection :F = {li . 11 Q ,ß} of seminorms on S 1 let

1I/11:,r = sup{ll/lla,ß : 11 ·llo,ß E:F} and 8:,r = {I ES: 11/11.1' :5 I}.

Leuuna 9. Fix a Junetion '{J in S+ and a finite Jamily :F 01 seminoNns on S. Then
ihere exists 0 [arger (finite) lamily :Fa so that Jor each M > °there is a constant
c = c('(J,:F, M) with the lollowing property: For each ~ in S.1'o I there are Junetions
{T](k)}r=o in :F such that

00

4> = L:: T](k) * '{J2- Jt and 11T](k)II:,r:5 C2- Mk
.

k=O

For the proof, see Stein [16, pp. 93-94].

6.2. Primitives ofSchwartz functions. 1'0 be ahle to apply thia result fruitfully,
we shall need to deeompose not the zero-integral kerneIs themselves (say, 'V'{J or
'{Jl - '«2) in terms of '(J, hut rather their "primitives." The next lemma shows how
this is possible; it states that the divergence operator has a fight inverse on So I the
set of all Schwartz functions with integral zero.

Leluma 10. There exists a continuous map I : So -+ 8 x ... x 8 such that

(33) 'l1 = div .1(wL for all 'l1 E So.

Proof. The one-variable case is easy. Given Win So, let ~(x) = f~oo '11(s) ds. Then
<})' = '11 and ~ E Coo. Since <I>(x) -+ 0 as lxi -+ 00, it remains only to show that ~
satisfies the decay estimates

(34)

for constants {CN} that depends only on the Sehwartz-seminorms of qr. But, by
assumption, there are constants {AN} such that Iw(x)!:::;AN+l(1+I;vI)-(N+l);
when x :::; 1, the estimate (34) follows immediately from thia hy integration. We
can obtain the same estimate when x > 1 by integrating from the right, noting that
f W = 0; for then <I>(x) = - f;r;oo w(s) ds.

The constrllction is slightly trickier in higher dimensions, sinee the analogues
of the one-variable, "antiderivatives l

' of a funetion in 8 0 need not lie in 8. 1'0

COli nteraet this, we introduee a Coo cut-off fllnctioll ( on R; we require that ((x) = °
when x :5 -1 and that ((x) =1 when x ~ 1.

7This is essentially the technique used by Fefferman and Stein [5] to characterize Hardy spaces
via non-tangential maximal functions fonne<! with respect to variouB averaging kernelll.
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The construction in R 2 is al ready typical.8 Suppose that W is in S(R2 ) and that
JR~ '1i = O. Set

Then

(w - D, <t>(1))(x, y) =(' (x)1: w(s, y) ds,

so that (\11 - D1 «1>(1)) is a C oo function supported in the strip (-1,1) x Re R 2 .

In fact, ('l1 - D 1«1>(1)) ES, whence D1«I> (1) ES. A further calculation (as in the
one-variable case, separately for x ~ -00 and x ~ 00) shows that «I>(1) itself is a
Schwartz function.

Now apply this construetion to the remainder ('l1 - D 1<1>(1)) in the y-direetion:
Set

<t>(2)(x, y) = 1"00 (w - D, <t>(1))(x, t) dt - «(y)1:(w - D, <t>(1))(x, t) dt.

Then q.(2) E S(R2) and

(w - D, <t>(1) - D2<t>(2))(x, y) = ('(y)(' (x) 1:1: w(s, t) ds dt = O.

Define I (q,) = (<1>(1) 1 eil (2)); continuity follows as in the Olle-variable case. 0

Consequently, the primitives of the kernels {rp - (TArp)p} that enter into (32)
are uniformly rapidly decreasing.

Corollary 11. Fix a function rp in S. For each positive p and each A in Rn, set
W(A,p) = cp - (T"rp)p. Let <j;(A,p) = I('l1(A,p)), for I as in the previous lemma, so

that \I1(A,p) =div ~(",p). Then

{~(A,P) : 1/2 ::; p ::; 2,1'\1 ::; I}

is a bounded family in S x ... X S.

Proof. Sy the continuity of the divergence operator on S x ... x S ~ S, it suffices
ta know that

{q,(A,P) : 1/2 ::; p ::; 2,1'\1 ::; I}
is a bounded set in S. This, in turn, follows from Minkowski's inequality. D

6.3. Change-of-kerllel estiJllates. \Ve can use the last results to change from
one kernel with integral zero to another in the numerator of (31). We show this
first in the uniform setting, then for Carleson measures.

Leulma 12. Fix a doubling weight wand a funetion rp in S+. There is a family
:F1 of seminorms on Sand a constant C =C(Db(w), cp) such that if \11 E SFt and
J'Ir = 0, then

(35)

8This conl5truction is used by Bott and Tu [1, pp. 37-40] to prove the Poincare lemma for
compactly·supported cohomology.
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Proof Sy translation and dilation invariancc, it suffices to cansider only averages
centered at the origin and at seale t = 1. For brevity, let us abbreviate the supre­
mum on the right-hand side of (35) by v(t). Let F be the family of seminorms
{llxCt f(x)lICQ : lai :5 N}, far same N = N(w, <p) to be specified below. Let Fo be
the (arger family of seminorms whose existenee is guaranteed by Lemma 9, Finally,
let F 1 be a stil11arger family with the following property: There is a constant K
such that if W E S:Ft and f'li' = 0, then W is the divergence of an n-tuple ~, each
of the eomponents of whieh ia K times an element in S:Fo. (The exiatence of such
a family F 1 follows from Lemma 10 and Corollary 11.)

It thus suffices to show (35) in the special case when \11 = Dj~, where ~ is a
function in S:Ft and j is a fixed index between 1 and n. By Lemma 9, each such ~

ean be decomposed as as a surn <j) =L:r=o TJ{k) * <P2-1< , wiih IITJ{k)ll:F ::; cM2- Mk .

Then

Iw * W(O)I = Iw * Dj<l>(O) 1

I~ 2
k

'l(k) " W " (Djl"h-· (0)1

< f 2k J1'I(kl (-x)llw" (Djl"h-· (xli dx
k=O

< t 2k v(2-k
) J1'I(k) (-x)llw "1"2-' (xli dx.

k=O

As the last integrand features the convolution of w with a non-negative kernel,
it is now passible ta exploit the doubling behaviar of w. To da so, we can anee
again split up the region of integration dyadically: Let R1 = B2, (0) \ B2'-1 (0) and
Ro = B 1 (0) . Sinee w E Db and <p E K" then w E Dblp' So there ia a constant
C =C(Db(w), <p) such that

w * <P2-1< (x) :::; Ck+21+1w *<p(0), when xE RI.

(In rad, w * 'P2-1< (x) :::; Ck+lw * <P2' (x) :::; Ck+I+1w * <P2' (0) :5 C k+21+1w *<p(0).)
Inserting this into the integral gives

Iw " \11(0) 1 ::; t 2k
[ f 11'1(k)(-x1I Iw " 1"2-' (x) 1dX] v(1J

k=O 1=0 R,

< ~C(2C)"+I [~C21 in, 1'I(k)(xJI dX] v(IJw "1"(0)

00 00

< L C(2C)k+l CM 2-kM L C21 2(1-I)Nwn2In v(1)w *<p(0);
k=O 1=0

the last line follows from the bound !xINIT](Jc~x)j:5cM 2- JcM . Now, choose M
and N so large thai both (2C)2- M and C22n- are less than 1. Then the double
series is convergent , aod Iw * \11(0)1 :5 C'v(1)w *<p(0). D

We also need a variant of this result in an averaged form.

Corollary 13. Fix a doubling weight wand a funetion r.p in S+, If

d ( ) _ Iw * (V'<p}t(x)l2 d dt
jj x l t - 1w * <Pt ( x )12 X t
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(36)

is a Carleson measure, with vanishing trace, then the same is true of tlle measure

d lJr ( ) _ Iw * 'It t ( X ) 12 d dt
{t X, t - Iw * I,Ot (X) 12 X t '

for every \11 in SO. A quantitative statement on the model 0/ that in the previ­
aus lemma also holds: There is a Jamily:F1 of seminorms on 8 and a constant
C =C( Db( w), 1,0) such that if W E 8:Ft and f'lt =0I then

{tW(T(B)) ( {t(T(B)) -N {t(T(B)))
sup < C sup + 2 sup 1

B:IBI~6 IBI - B:IBI~2N, [BI BIBI

Jor all sufficiently large numbers N.

ProoJ. The proof is in many respects similar to timt just given; we thus only sketch
the argument. Let :F, :F01 and :F1 be as above. Once again, for (36) it suffiees to
consider \11 = Dj~ for some function ~ in S:F1 and some fixed j, to take s = 1, and
to set B = BI, the unit ball. Let 1/J = Dj<p. Then, via the decomposition lemma,

00 1 I (k ) ~I, () 12 d
{tlJ (T(Bt}) < 2:: 22k 'It >I< W * 'f'3-

k
t x dx~

k=O T(Bt} Iw *<pt{x)j2 t

< cf22k r (17J~k)I*lw*1/J2-ktI2)(X)dxdt
k=O lT(Bd lw *<pdx)1

2
t

< cf22k r r !7J}k){x-z)llw*1/J2-kt(z)1
2

dzdx dt

k=O lT(B,YRn Iw *<pt{x) 12 t

< cf 22k r f r 11]~k)(x _ z)llw >I< tP2- k dz)l:
k=O JT(Bd 1=0 JRI(x) Iw *CP2- lI t(Z) I

Iw *<P2- k t(z)1
2

d d dtx z x-
Iw * I,Ot(x)1 2 t

Here Rl(X) =B 21 (x)\B2,-, (x) when I 2:: 1 and Ro(x) =BI (x). The second estimate
holds by an applieation of the Cauehy-Sehwarz inequality, since 1](k) E 8:F implies
that 117/k )IIL' is bounded independently of k. Doubling comes into play onee again:
There is a constant C so that Iw *CP2-kdz)1 :5 Ck +21+1 Iw * 'Pt(x)1 when x E BI and
z E ~(x). The estimate (36) follows from inserting this, enlarging the region of
integration, and applying Fubini's theorem. 0

6.4. Completion of the proof (STEP III). Let u(x , t) = W >I< <Py7{x) be the heat

extension of a doubling weight w. Suppose that

Iw* (\7<p)t(x)1 2 dx dt

Iw * <pdx ) j2 t

is a Carleson measure, with vanishing trace. Then we claim that w E Dba " and
thus by STEP S land 11 J that w E A 00 ,a, .

\Vere it the case that instead of the averaged (i.e., Carleson measure) conditioll ,
we knew the uniform pointwise condition

[w * (V'P)t 1 0
~---.;.~....;......;. ~, as t ~ 0,

w * 'Pt
then the matter would be settled. For since the Gaussian <p is in S+, we could use
Lemma 12 to replace Vip in the mimerator by other smooth kerneIs of integral zero,
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(37)

and the result would be

IW * (TA<p)Pt - W* <Pt I 0"---'-----:....:.....-_--'-....;. -+ ,
W*<pt

as t -+ 0,

(38)

(39)

~,

uniformly over all ,.\ in the unit ball and all p in [1/2,2].9 This would mean that
W E Dblf),aJ = Dba8 , exactly as elaimed.

But instead of the estimate (37), Corollary 13 allows us only to conelude apriori
that the measures

dp(A,P)(X,t) = Iw*(T
A
lp)pt(x)-w*<pt(x)1

2
dx dt

lw * <pt{ x ) j2 t

are Carleson measures, with uniformly vanishing trace over the same range of ...\
and p. How can we elose the gap?10 The answer lies in the doubling behavior of w.

For suppose tImt w E Db, that the measures in (38) have uniformly vanishing
trace, but that , arbitrarily elose to the boundary, the density of (at least) one of
these is somewhere "Iarge" ; specifically, suppose that

Jw * (T'\°<p)poto(xo) - W* ipto(xo)1 2

IW*ipto(xo)1 2 >c,

for some C less than 1, same particular point (xo, t o) in the upper half-space, and
some Po and "\0 in the indicated range. Since w E Db, then a similar inequality holds
for all (x, t) in an appropriately-scaled neighborhood of (xo, to). Indeed, our prior
result on the negligible effect of modest dilations and translations of the averaging
kernel <p (Lemma 6) insures that there is a P elose to 1 and a ,.\ elose to 0, both
depending only on Db(w), ip, and c (not on Po, "\0, Xo, or t 0), such that

Iw * (TA°ip)pot(x) - W* ipt(x)1 2
..:....-~-----=-~----=-....:-__...:..........:....-:....:....->c

Iw * <Pt (x) 1
2

for all (x, t) in the neighborhood

Ezo,to = {(x, t) : p- 1to < t < pto, Ix - xol < ,.\ to}

of the point (xo, to). Thus, if w E Db and (39) holds! then

Jj(AO,PO) (T(Bto (x o))) > c J1 dx ~t .
E"'O.IO

Since Ezo,to fills a substantial share of the Carleson eylinder, then the right-hand
side exceeds c (...\n logp)jBto(xo)l; this means that the Carleson norm of p(AO,PO) is

,large (Le., it exceeds a fixed share of e) at scale t o. Hence, if thc Carleson measures
in (38) have uniformly vanishing trace, then their dcnsities must vanish uniformly,
as weil. This proves the desired estimate (37), and thus w E Dba8 •

STEP II I is therefore eorn plete and with it the proof of Theorem 2, the Gaussian
special case of the main result. The general case (Theorem 1) follows [rom this by
Corollary 13. 0

9The uniformity follows from Corollary 11.
IONote that F(x, t) dxdt/t being a Carleson measure with vanishing trace does not imply that

F(x, t) -+ 0 uniformly in x as t -+ 0; take F, for example, to be the characteristic function of the
cuspidal set {(x, t) : lxI< t2 • t < I}.
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