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CARLESON CONDITIONS FOR ASYMPTOTIC WEIGHTS

MICHAEL BRIAN KOREY

ABSTRACT. The doubling and A conditions are characterized in terms of
convolution with rapidly decreasing kernels. Fefferman, Kenig, and Pipher [6]
described the appropriate (Carleson-measure} version of this for Ae, and we
extend their result to the case when all bounds become optimally small in the
asymptotic limit.
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1. INTRODUCTION

The doubling and A conditions that arise in many areas of mathematical anal-
ysis are usually defined in terms of mean values over regular, compact sets, such
as balls or cubes. The present paper formulates these conditions rather in terms of
weighted averages over all of Euclidean space.

The source of our interest in such formulations is briefly as follows. In their
famous paper on Hardy spaces in R", Feflerman and Stein [5] gave a square-function
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characterization of the space of functions of bounded mean oscillation: A function
f =logw is in BMO(R") if and only if

(1) dii(z,t) = |Vz(log w * ¢;)(z)|*t dzdt

is a Carleson measure on R’_"_'H. (See §2 below for the necessary definitions; here ¢
is a Schwartz function, such as the Gaussian, and ¢ (z) = t~"p(z/t) gives its mass-
preserving dilation.) In studying perturbation theory for divergence-form elliptic
partial differential equations (and, in particular, in seeking perturbation conditions
that preserve the solvability of the Dirichlet problem with L? boundary data),
Fefferman, Kenig, and Pipher {6] obtained a related square-function criterion: A
doubling weight w is in Ay, on R™ if and only if

(2) dp(z,t) = |V, log(w * @) (2)|*t dzdt

is a Carleson measure. Note that the quantities (1) and (2) differ only in so far as
that the logarithm and convolution have been switched. While commuting these
two processes is generally not permissible, the result of [6] shows that, for A
weights, it is. This is in accord with one of the standard formulations of A,: A
weight is in this class exactly when the difference between the logarithm of its mean
value and the mean value of its logarithm is uniformly bounded over all balls.

Unlike the earlier result in {5],' the proof of the latter theorem in [6] does not
immediately yield an estimate for the Carleson norm of dy in terms of the BMO
norm of logw (or the Ao bound of w). That the characterization of A in [6]
nevertheless carries over to the so-called “asymptotic case,” in which all bounds
approach their optimal values over small scales, is the main result here. While
the statement of this result is but a modest refinement of the theorem in [6], its
proof turns out to be surprisingly subtle; the challenge we repeatedly encounter is
keeping the various constants of inequality that arise close to their smallest possible
values. As a by-product of these efforts to obtain a quantitative Carleson-measure
characterization of A, we shall also make several new observations about the
doubling condition.

For an excellent account of the links between such square functions as appear
in (2), regularity theory for elliptic PDEs, quasiconformal mappings, and the clas-
sical theory of the a.e. differentiability of real functions in several variables, see the
introduction of [6]. Without further ado, we now present the definitions that will
allow us to make precise the results sketched above.

2. PRELIMINARIES

For reference, we record here the notation that is used throughout this work. The
symbol | E| denotes the Lebesgue measure of the set £ in R™. The Lebesgue integral
of the function f over E is written [, f or [, fdz; if the region of integration is
not shown, it is understood to be all of R*. When 0 < |E| < oo, the symbol fg
represents the mean value of f over E; that is, fe = (5 f)/|E|.

A weight is any non-negative, locally integrable function on R™. The sym-
bol w(E) denotes the mass of E under the weight w, i.e., w(E) = [y wdz. The

IThe argument in [5] shows that the Carleson norm of dii in (1) is equivalent to || logw||?, the
square of the BMO norm of logw. The local form of this says that logw € VMO if and only if
dji is a Carleson measure, with vanishing trace. Once again, see the next section for the relevant
definitions.



Fu

CARLESON CONDITIONS 3

r-fold concentric dilate of a ball B is written rB; the double of B is 2B. The mea-
sure of the unit ball B1(0) in R” is w,. The letter x is reserved for the normalized
characteristic function of the unit ball, i.e., x(z) is 1/w, when z € B;(0) and is 0
otherwise. The (mass-preserving) dilation of an integrable function ¢ to scale t is
defined by the rule ¢i(x) = t~"p(z). To simplify notation, we shall consistently
suppress the spatial variable z in estimates that hold uniformly over all of R™.

Let us now recall the definitions of four key concepts: doubling, the Ao, con-
dition, the space BMO, and Carleson measures. We shall first consider the basic
form of each of these and then the respective asymptotically optimal variant.

A weight w is doubling if its average over each ball is (uniformly) comparable to
its average over the concentric double of that ball; that is, there is some constant C
such that

(3) C'wp < wyp < Cuwsp

uniformly over all balls B. The smallest C for which (3) is valid is termed the
doubling constant of w and is denoted Db(w). Note that if Db(w) = 1, then w is
a.e. constant. The collection of all doubling weights is written Db.

We call a weight asymptotically doubling (see [11] and the references cited there)
if its doubling behavior becomes optimal over small scales. More precisely, we
write w € Db,, if both w € Db and the ratio of its averages of over every pair
of sufficiently small balls, each of which is contained in the double of the other, is
arbitrarily close to 1.

There is a simple continuity criterion for doubling which will prove very useful
in the sequel. While w(rB) — w(B) as r — 1 for every weight w, this convergence
of differences can be converted to a convergence of ratios precisely when w € Db,

Lemma 1. A weight w is doubling if and only if w(rB)/w(B) =1, as r = 1,
untformly over all balls B. When this holds, the convergence occurs at a rate that
depends only on the doubling constant Db(w).

See [2] or [11] for a proof; a related result in [3] applies to in the general setting
of doubling measures on homogeneous spaces.

Next, a weight satisfies the Ao, condition (see [4] and [12]) if its mass is “fairly”
distributed not just over a ball and its central half (as in the case of doubling),
but over all subsets of the ball of half its measure; more precisely, we write that
w € A, if there are constants « and 8, both less than 1, such that

w(E)/w(B) < whenever |E|/|B|< qa.

(Here E is an arbitrary Borel subset of the ball B.} This scale-invariant form of
absolute continuity has many equivalent formulations; the one of chief interest to us
is the following: A weight is in Ay just in case its arithmetic and geometric means
are uniformly comparable over all balls.? In other words, there is a constant C for

which
(4) L/ w<Cexp(—1—f logw)
BlJp ~ 1Bl Jp

2The latter formulation is due to [7], [8], and [14]; see [4] or [7] for still other definitions of Ay, .
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over all balls B. I, in addition, the constant C' can be taken arbitrarily close
to 1 for all sufficiently small balls, then we say that w is asymptotically absolutely
continuous® and we write w € Ao gs-

Third, a locally integrable function f has bounded mean oscillation if the quantity

1
) 11 =sup oz [ 17~ £l

is finite, and the set of all such functions is written BMO. The corresponding
asymptotic variant of BMO is termed VMO, for the space of functions of vanishing
mean oscillation. This requires that || f||. is not only bounded, but can be taken
arbitrarily close to 0 when the supremum is measured only over balls of small size.
BMO functions as a replacement for L™ in many contexts of harmonic analysis,
and VMO plays within BMO a role analogous to that of the bounded, uniformly
continuous functions in L* (see [15]).

What relations exist among these conditions? It is well-known (see [7]), for
example, that every A, weight is doubling and that its logarithm is in BMO.
Sharp asymptotic versions of these statements appear in [11] and can be summarized
qualitatively in the following form:

Lemma 2. Every weight in Ay o, is also in Db,, and its logarithm 1s in VMO.

Combined with the fundamental inequality of John and Nirenberg [10], this result
shows that the logarithm of a weight is in VMO if and only if some positive power
of it is in A as. Our aim here is to give another characterization of Ay 4,. Before
doing so we must give one final definition.

A non-negative Borel measure z on R}t = R™ x (0, 00) is a Carleson measure
if the ratio
1
6 — du
©) {B| Jr(s)

is bounded over all balls B, where T'(B) denotes the cylinder B x (0, radius(B))

in R:'H; the smallest bound is likewise termed the Carleson norm of y. If this
bound can be taken arbitrarily small for all small balls B, then we say that u has
vanishing trace (see [13]).

3. THE MAIN RESULT

Our point of departure is a theorem of Fefferman, Kenig, and Pipher.

Basic Theorem ([6]). Suppose that 0 €S, ¢ >0, and [ > 0. Let = V. A
weight w is in A, if and only if it is doubling and
fw * 9y (z)|2 , dt
7 d = ———dr—
ts a Carleson measure on R';_“.

That this Carleson-measure characterization of A, in the presence of doubling
carries over to the asymptotic setting is our main result.

3All of the classical formulations of As in [4] remain equivalent when optimal bounds are
required in the asymptotic limit (see [11]).
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Theorem 1. Under the same assumptions as in the prior theorem, a weight w

15 In Aco,qs if and only if it is doubling and the measure du of (7) is a Carleson

measure on Ri’“, with vanishing trace.

4. OUTLINE OF THE PROOF

Following the argument in [6], we shall focus on the special case when ¢ is the
Gaussian, i.e., p(z) = cne~ 1’ normalized so that J# = L. In this setting, the heat
exrtension u of a function w on R" is the latter’s convolution with this Gaussian ¢,
namely

u(z,t) = w (,o\/t.(z:), for (z,1) € R’_,:_"'l.

The theorem then takes the following special form:

Theorem 2 (Gaussian special case). Let u be the heat extension of a doubling
weight w, as above. Set

IVu z,t)|?
8 h{s) = sup j f drdt.
( ) ( ) yER_n Wns t=0 |="y|<3 Z t)

Then w € Ay qs if and only if
(9) h is bounded and lij;r(l)h(s) =0.

By the translation invariance of the definitions of Ay 44, Db, and h, it suffices
to consider only balls centered at the origin. Let h(s) henceforth be the integral
in (8) evaluated at y =0, i.e.,

/ / IVu (z,t)] d dt.
wns“ t=0 J|z|<s zt

We can use the heat operator H = D; — A and the divergence theorem to split
the integral defining h into two parts. As u(z,t) =w *goﬁ(z), then Hu = 0, so

that H(logu) = v~ Du = 3 ) Di(u™1D;u) = |Vu|?/u®. Hence

h
(s) Wnsn.[zo le({{ (log u)(x,t) dzdt

= f Dg(logu)(a: t) dtdz — / fdlv Vlogu)(z,t) dzdt
Wns |o|<s Jt=0 wﬂ t=0 |J:|<a

I /log ua, dz— f / V““ Yz, B gy
Wns" |z|<.| w(a: t=0Jiz|=s I f’)
=  hy(8) — ha(s).
Here 7i; = z/|z|, the outer unit normal to the boundary at the point z.

Let us pause for a moment to compare the two terms, Ay and hs. The integrand
of the first of these features the ratio of w to its Gaussian average at scale s; the
integral hy(s) is then the mean value of the logarithm of this ratio over a ball of
radius s. Modulo the reversal of averaging and taking the logarithm, the integral
hi(s) 1s thus a comparison of the averages of w over two different positive kernels,
the Gaussian and the characteristic function of the unit ball. By contrast, the
integrand of hg(s) is the ratio of the average of w with respect to a kernel of
integral zero (the normal derivative of the Gaussian) to its average with respect to
a positive kernel (the Gaussian itself).
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This difference will be crucial in the proof. Indeed, in the following pages, we
shall show that the boundary integral ha(s) vanishes with s when w is merely
asymptotically doubling; on the other hand, for the dominant term £, (s) to vanish,
we shall need the much stronger condition that w is in the class A 4s-

The argument breaks down into three steps.

e STEP I: w € Ao,as = lim,0 21(8) = 0.
e STEP II: w € Db,;, = lim,_,0 h2(s) = 0.
o STEP I1II: [w € Db, lim,q h(s) = 0] => w € Dby,.
The first two of these combine to give the necessity of the condition (9) in the

theorem, while the last will be used to show its sufficiency. We now address each
of these claims in turn.

5. NECESSITY

As noted above, the integrand of the leading term %, of the Carleson norm is, in
principle, the logarithm of the ratio of the Gaussian and standard averages of w.
To show that the integral £; is small, we aim to show that this ratio is near 1.
Colloquially, we must first “cut off the tails” of the Gaussian and then “flatten out
the bumps.” That is, we must first pass from the full heat kernel to a truncated
version and then, in turn, to the characteristic function of a ball. The challenge is to
accomplish both tasks while insuring that the ratios of the interchanged quantities
remain close to 1. Each task will be addressed in a separate lemma.

For later purposes (STEPS IT AND 111}, we choose to state the results for kernels
somewhat more general than the Gaussian. The convolution kernels ¢ we shall
consider will always be non-negative, non-trivial (i.e., [ ¢ > 0), continuous, and
rapidly decreasing functions on R"™; the last condition means that for each non-
negative integer N there is a constant Ay such that

AN
L+ =)™’
For brevity, we denote by K the set of such kernels.

(10) lp(z)| < for all z in R".

5.1. Truncation of convolution kernels. Our first lemma shows that “cutting
off the tails” of non-compactly-supported kernels has a negligible effect on the
averages of a doubling weight. To state it, let o(T) denote the truncation of a
kernel ¢ at radius 7', i.e.,

z) iflz)]<T
(P(T)(z)z o(z) | l_‘ ,
0 otherwise

and let goET) denote the usual, mass-preserving dilate of ¢{T) at scale ¢ (note that

truncation occurs before dilation).

Lemma 3. Suppose that ¢ € K. If w € Db, then

W * (piT)

w* Py

-1, asT > oo,

untformly over all positive t.
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Proof. The ratio (w+9\")/(w * ;) is no larger than 1, since w > 0 and ¢¥) < p.
The assertion here is rather that this ratio is not much smaller than 1 for large 7.
If we only use the doubling constant Db(w) and the decay properties of ¢, then it
suffices to show this solely for convolutions formed about the origin at scale ¢t = 1.

Divide R"™ into dyadic rings: For T larger than 1 and & = 0, 1, 2, ..., let
TRy = B (0) \ Byr-17(0). Since ¢ decreases rapidly and w doubles over con-
secutive rings—that is, there is a constant C depending only on Db{w) such that
w(T Ri41) € Cw(TRy), independently of T and k—then

wepl®) = [ wlepls dz+2 [ el
w0 +Z( gk-17)N TRhw(:p)d:c)

w0y 4 (S ANCE
P H0) + (E (2"—1T)N) /THO w(z) de.

k=1
The last series is summable for large N, hence

IA

IA

(11) w* (0) — wx oT(0) < CwT'N/ w(z) dz,
: Br(0)
for some constant Cy = Cy {Db(w), ¢, N).

To complete the proof, insert the kernel ¢ back into the integral on the right-hand
side of (11); this is possible with a further application of doubling. Indeed, suppose
w(—zo) > 0 at some point —zo. Continuity implies that ¢ is strictly positive in
some neighborhood of this point: say, ¢(—z) > a > 0 when |z — zp| < & < 1. Then,
by repeated doubling,

(12) -/BT(O)w(a:) dz < C,(T) w(z)dz < a”1C, T)[ w(z)p(—z) dz,

Bb(ro)
with C,(T') = (Z"Db(w))hg(n/b)H. Now choose N so large that 7=V C.(T) —= 0
as T — oo. Then (11) and (12) combine to yield

wxp(0) = (1+o(1))w*go(T)(0), as T — oo,
which is the desired estimate. O

5.2. Doubling in terms of general kernels. Let us now define the classes Db,
and Dby 4, on the model of the doubling and asymptotically doubling conditions.
As before, T* denotes the operator of translation by .
If ¢ € K, then Db, is the set of all weights w for which there is some constant C
such that*
Clwsp, < w*py < Cuw*e,
uniformly over all positive t; denote the smallest bound C by Db, (w). If, in addi-

tion, both
w wx (T
sup UEPR g wr(T7)
1/2€p<2 W* @ [Al€1 W@

approach 1 as ¢ — 0, then we write w € Db, q,.

4 A functional inequality in which the spatial variable is not shown is always to be understood
to hold uniformly over all of the underlying domain R™.
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Note that these are exactly the defining conditions for Db and Db,, when the ¢
is replaced by x, the normalized characteristic function of the unit ball. Since the
truncation of a kernel in K looks much like y, we might expect from the previous
lemma that the classes Db and Db, coincide, and perhaps even that their asymp-
totic versions, Db, and Dby, 4,, agree. For kernels that resemble the Gaussian, we
shall ultimately see that this is the case. The prior lemma provides the first step
toward the proof of this result.

Corollary 4. If ¢ € K, then Db C Db,. In fact, for each doubling weight w, there
is a constant C = C(Db(w), p) such that C7! < (w* ¢;)/(w * x¢) < C uniformly
over all positive 1.

Proof. Use the lemma to pick 7" such that (w * ¢;)/(w * <pET)) < 2. Since o™ is

both strictly positive on some ball and bounded over the ball Br(0) containing its
support, then the doubling property of w insures that ¢=! < (w*goET))/(w*Xt) <e,
O

for some constant ¢ = ¢(Db(w}), ). Take C = 2¢.
Under a mild additional assumption, the converse is also true.
Lemma 5. If p € K and ¢(0) > 0, then Db, C Db.

Proof. Note first that, when w € Db, its mean values grow at most polynomially:
There is a large number M = M (Db, (w)) and a constant C such that

(13) wxxp < CrM¥wxg,, forr>1.

Indeed, suppose that x < ¢; this represents no loss of generality, as ¢ can otherwise
be replaced by a scalar multiple of a suitable dilate. Iterating the Db, condition
shows that
Wk Yok S WH Pghp S Db¢(w)kw * Ot
which is (13), with M = log, Db, (w).
Now break up the region of integration for w * ¢, into large rings of size 2/r and
use the rapid decay of ¢ and the bound (13). With A = A3pr4, from (10), then

oo
wrxp, < Awgr"wx xe + Awg Z(Qj'lr)‘zM_”(er)"w * Xoirt
—
=1 | |
< Awprwx xet [CAwn Z(?"lr)‘zM_"(Q-’r)”"'M Wk Py,
i=1

Choose » = R to be a power of 2 so large that the bracketed term is less than 1/2.
Then

wx @ < C'w* X,
for C' = 2AR™. Thus,

wxy Swxpy < Cwrpyp <C'C"wsxy,

for C" = Db, (w)'°82f1*! . This means that (w* x2;)/(w*X.) is uniformly bounded,
ie., w & Db. (]

The last results guarantee the equivalence of the mean values and Gaussian
averages of every doubling weight. We next wish to establish that this equivalence
carries over to the asymptotic setting. To do so, we shall first prove a technical
result that shows how modest dilations and translations of a positive kernel have
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only a negligible effect on the averages of a doubling weight (compare Lemma 1).
This result will also prove essential in the final step of the main theorem.

Lemma 6. Suppose that ¢ € K and that ¢ > 0. If w € Db, then

(14) Y9t 41, asp—1,
W* P
and
TA
(15) IRk 1 as A= 0,
W * Py

uniformly for all posilive t.

Proof. By Lemma 3, it suffices to show (14) for the truncated kernel ¢{T) in place
of ¢. By translation and dilation invariance, it further suffices to work at scale
t = 1 and position z = 0. That is, we wish to show, for fixed T, that the ratio

wx i (0)

wrpM(0)
approaches 1 at a rate that depends only on ¢ and the doubling constant of w.
Since ¢!T) has compact support, we can hope to relate this to the corresponding
unweighted result, the “flat” case of averages over balls. In particular, as w is

doubling, its mass over a ball differs negligibly from its mass over small dilates of
the ball, by Lemma 1, that is,

w(B,r(0))
w(Br(0))

To exploit this, suppose p is larger than 1, expand w x gaf,T)(O) as an integral,
and split up the region of integration:

.

Br(0)

(16) =1, asp—1.

w(a:)tpf,T)(—z) dz + / w(z)cpg)(—z) de =1+ 11,

R,7(0)
for Ryr(0) = B,r(0) \ Br(0). The first integral approaches w * ¢(T)(0) as p — 1+,
Indeed,

I=p" / w(z)p M (~z/p) dz < p~"aT)(p) f w(z)p!" (—2) dz,
Br(0) Br(0)

with

(T)
(17) oT)(p) = sup {%z%%i)ﬂ Dzl < T}.

Since the kernel () is uniformly continuous and strictly positive on its support
(by the assumed positivity of ), then a!™)(p) = 1 as p = 1*. Hence,
I={1+40(1))wxeM(0), asp—1F.
The second integral /1 is small. In fact, as all the values of ¢ are comparable
on Br(0) (again, by the assumptions on ¢), the ratio

() _ SUP{SD(J:) : [2' < T}
(18) B = lle(s) (el < T)
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is finite for each 7. Pull the largest value of () out of the integral 77, use (16),
and re-insert »(T) back into the integral by dividing by its smallest value. Then

@R (0)) e o™ (—2) da
s P B) /Bm) (=)

= o()w*p™(0), asp—1t.

IA

Combining the estimates for I and I7 yields
(T)

. *pp °(0)

lim sup ——=—==

P 0 p(0)

The corresponding bound from below and the translation result (15) follow simi-
larly. O

=1.

5.3. Leveling of convolution kernels. The next result gives the “flattening out
the bumps” procedure alluded to earlier; it allows us to swap y for the convolution
kernel ¢ in the asymptotic setting.

Lemma 7. Suppose that o € K, 9> 0, and [ o = 1. If w € Dby,, then
(19)

W * @y

=1, ast—-0.
wk Xt

The same conclusion holds when w € Db, 4,.

Proof. We shall often have occasion to state that the ratio between two quantities
18 close to 1. For notational convenience, let us write

X~Y
for the assertion that
(1+8)7'Y < X < (1+¢)Y.

Quantities X and Y that satisfy this will be said to be e-comparable.
Suppose that ¢ is given and that w € Db,,. Fix a small, positive ¢. Use Lemma 3
to find a truncation radius 7" such that

(20) w g (z) & we gl ()

uniformly over all (z,?) in R:‘H. Next, use Lemma 6 to choose a number p just
smaller than 1 so that

(21) w7 (@) & wrpl)(z).
Furthermore, suppose p 1s so close to 1 that there is a small, positive r such that
(22) o (2) < (1+ €)™ * xr(2)

for all £ in R™; this is possible because (T is strictly positive and uniformly
continuous over its support Br(0). Convert (22) to scale ¢ and combine it with the
previous estimates (20) and (21). Then

wr () < (L+ &) ws oy (2) < (14w (T % x,), (2)

for all (z,t) in Ri’“. This last term may be written

(14w o™ % xpe(z) = (1 +¢)° f ( )(w s xre ()0l (2 - ) dy,
Br(z
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which has the form of an average of an average.’

To this point, the argument has been scale-invariant. At small scales ¢, however,
the first factor in the last integrand is nearly constant over the (bounded) region
of integration. Indeed, since w € Db,,, then

(23) w Xre(y) ~ w xe(z)

uniformly for all y in Br¢(z), when { is sufficiently small. Since fgosT) = 1, insert-
ing {23} into the integrand leads to the conclusion that

wxp(z) < (1+ 6)4/ o xe(@)e{" (@ — y) dy = (1 + &)*w* xe(a),
BT| I
when ¢ is small. This is one half of (19).

For the opposite inequality find a p just larger than 1 and a small, positive r
such that
(24) pi(z) > (1+6) ")+ xo(2).
Use this in place of (22) and invoke (20} and (21) once more. Then
- wx () > (1+6) 2w {7 % xie(2),

and a similar analysis finishes the proof.
To obtain (19) when w € Dby, 44, simply reverse the roles of (™) and x in the
above argument from (21) onward and use Lemma 1 in place of Lemma 6. O

We now summarize the results in this section.
Theorem 3. If ¢ is positive, continuous, and rapidly decreasing, then
Db = wa and Dbaa = Db(p'aao

5.4. Control of the leading term (STEP I). Let us now return to considering
the main term in the estimate of the Carleson norm, namely

2
hi(s) = — f log 2257 45
wWns® Jiz|<s w(z)

Recall that u(z,s?) = w * p,(z), with ¢ the normalized Gaussian. Suppose that
w € Db,,. The Gaussian satisfies all the conditions of the Lemma 7, so that

2
lgm — logw :0(1)’ ass_}o’
w* x,(2) w#* X, (z)
uniformly over all z in R". Moreover, as a consequence of asymptotic doubling,
w * x,(2)
sup |log ——=——=| =o(1 as § — 0.
S| @] =
So . 0)
W Y,
hi(s) = j log ————dz +0o(1), ass— 0.
W™ Jizl<s w(z)
In sum,

(25) € Dbe, => lim hy(s) = lim (log(w + x,)(0) — (log w) * x,(0)).
=0 20
Therefore, if w € Aco,as, then lim, 40 51 (8) = 0, completing the proof of STEP I. O

5The idea for this method stems from [9]. There, truncations of the Poisson kernel {and other
kernels with polynomial decay) are compared to their averages formed over small scales.
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5.5. Control of the secondary term (STEP IT). The lateral boundary term in
the estimate of the Carleson norm is given, after a change of variables, by

tVu(z,t )
= 2 dzdt.
(26) Wy 5" /, 0_/|,|_, u(z,t?) o

As noted, the kernel implicit in the numerator of the integrand, namely (V), - fis,
has integral zero over R"” for each fixed z. The normal vector 7i; fixes a hyperplane
through the origin that divides this kernel into its regions of positive and negative
values. In order to obtain results analogous to those for the positive kernels dis-
cussed in the previous section, we shall treat each of these half-spaces separately.
On account of the rotational invariance of the doubling condition, we may restrict
our attention, without loss of generality, to the case when fi; is €], the unit vector
in the positive ;-direction. Accordingly, let us set

c,r,zle"“’i2 if z; > 0,
0 otherwise,

(27) 95(:':) = (;‘5(:1» T ,:Bn) = {

with the constant ¢, chosen so that ¢ = 1.

We wish to compare the averages of an asymptotic doubling weight w formed
with ¢ to those formed with yx, that is, to the standard mean values of w over balls.
How much of the analysis of the previous section applies to $? Well, since ¢ is
continuous and rapidly decreasing, the truncation result (Lemma 3) holds directly
as stated for ¢. But since @ is not positive, Lemmas 6 and 7 do not on the surface
seem to apply. If we examine the proofs of these latter two lemmas, however, we
find that positivity enters only at three points: the specified convergence of the
quantity T} (p) defined in (17); the finiteness of the quantity 8() defined in (18);
and the possibility to find a p close to 1 and a small r > 0 such that (22) and (24)
hold. The first two of these conditions are fulfilled by the function ¢ when the
references to “|z| < 77 in the previous section are replaced by “|2| < T,z; > 0.7
For example, the convergence required is assured when o(™)(p) is now taken to be

T
oTMp) = sup{ @(T()(/;J) |z| < T, zy > 0}.

This equals sup{p~!exp((1 — p~%)|z|?) : |z| < T}, which converges to 1 when
p = 1. The third point, the validity of (22) and (24) for @, follows from a direct
calculation. As a result, the conclusions of all the lemmas® in question hold for @
In particular, we can re-state Lemma 7 in this context as follows:

Lemma 8. Let ¢ be as in (27). If w € Db,,, then
U % (;t
w* Xt

We now apply this to the analysis of hy(s). In terms of &, the numerator in the
integrand of hg can be written as a difference,

(29) it Vu(a, 1) - iz = Clux (F® @) (z) - w (F- @)y (2)],

for 7(*) the rotation that maps &, into ;. Since the class Db,, is rotation-
invariant, then the preceding lemma implies that the two terms in the difference

(28) =1, ast—0.

8More precisely, not quite all: The proof given above only shows that the dilation result (14)
in Lemma 6 continues to be valid for @, not the the translation result (15); only the former is
used, however, in the argument for the first part of Lemma 7.
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are g-comparable at all sufficiently small scales, when w € Db,,. That is, given any
small €, we can find § such that if 0 <t < s < §, then
s (fDE (@) & v xi(e) & w s (FIP).(2).
Hence the numerator in (26) is small:
|t u(z,t?) - fiz] < Clew * xi(2)

whenever || = s and 0 < t < s < §. As for the denominator in (26), Lemma 7
shows that
u(z, t?)
w * x¢(z)
uniformly over all z in R*. Thus, the integrand of hy(s) is dominated by C’e
pointwise, so that ha(s) < C”¢, provided only that s is sufficiently small. Therefore,

(30) w € Db;, = .ll_% ha(s) =0,

-1, asi—0,

which completes the proof of STEP II and of the necessity of condition (9) in
Theorem 2. O

6. SUFFICIENCY

Our aim is now to prove the implication
[w € Db, lim h(s) = 0] = w € Db,,.
s—+0

This gives the sufficiency of (9) in the theorem. For when w € Db,,, then (25) and
(30) combine to give the conclusion that

lim h(s) = lim (log(w * x,)(0) — (log w) * x,(0)) =0,

i.e. (using translation invariance), that w € Acs as-

Proving this implication is rather complex, however; we begin with a few prelim-
inary observations. The Carleson-measure condition that we here assume, namely
limyo0 h(5) = 0, is an averaged form of the statement that
w * (Vo)
LWk ‘
Observe that the key to our analysis so far has been a careful study of terms
of precisely this sort: the ratio of the average of a weight w with respect to a
kernel of integral zero to its average with respect to a non-negative kernel. Under
the assumption that w is a doubling weight and that the Carleson measure based
on (31) has vanishing trace, our goal is now to show that w has asymptotic doubling.
Fortunately, this goal can also be formulated by means of a similar ratio of averages.
Indeed, since Dbg, = Dby, 44, the statement w € Dby, means exactly that

w (19
W * Py
uniformly for all dilation factors p in [1/2,2] and all translations by a vector A

within the unit ball. Set $(*?) = ¢ — (T*¢),. Then [¥*#) =0, and the last
condition becomes the requirement that

{(xp)
(32) WA L0, asto0,
W @

uniformly over the indicated range of A and p.

(31) =0, ast—0.

—1, ast—0,
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The crux of the remainder of this section is the passage from (31) to (32), that is,
from Vi to $¥*#). As in much of Littlewood-Paley theory, the underlying principle
we shall invoke is that one sufficiently smooth kernel with integral zero is as good
as any other.

6.1. A decomposition lemma. The first lemma begins this “change-of-kernel”
procedure. [t decomposes the Fourier transform of a Schwartz function into its
smooth components of various dyadic frequencies.” To shorten the statement of
our results, we introduce some notation for certain special classes of Schwartz func-
tions. Let So={yp€S: [¢v=0,9Z0} and St ={p €S:9¢ >0, [¢ > 0}. For
any finite collection F = {|} - ||, 4} of seminorms on &, let

iz = sup{llflfap : ll - llayg € F} and Sr={fe€S:|fll- <1}

Lemma 9. Fiz a function ¢ in 81 and a finite family F of seminorms on 8. Then
there exists a larger (finite) family Fy so that for each M > 0 there is a constant
¢ = c(p, F, M) with the following property: For each & in Sg,, there are functions
{(n'*¥)}82, in F such that

o
¢ = E N« p3-x and |Ip®)]i5 < 27 M,
k=0

For the proof, see Stein [16, pp. 93-94].

6.2. Primitives of Schwartz functions. To be able to apply this result fruitfully,
we shall need to decompose not the zero-integral kernels themselves (say, V¢ or
1 — 2) in terms of ¢, but rather their “primitives.” The next lemma shows how
this is possible; it states that the divergence operator has a right inverse on Sp, the
set of all Schwartz functions with integral zero.

Lemma 10. There ezxists a continuous mapZ : S = 8 x --- x 8 such that

(33) ¥ =divI(¥), foral¥ecSy.

Proof. The one-variable case is easy. Given ¥ in 8y, let ®(z) = ffw U(s)ds. Then
@' =¥ and & € ¢ Since ¢(r) — 0 as |z| = o0, it remains only to show that @
satisfies the decay estimates

(34) [z ®(z)| < Cw,

for constants {Cy} that depends only on the Schwartz-seminorms of ¥. But, by
assumption, there are constants {Ax} such that |¥(z)} < Ay (1 + |2|)~V+);
when z < 1, the estimate (34) follows immediately from this by integration. We
can obtain the same estimate when z > 1 by integrating from the right, noting that
¥ = 0; for then ®(z) = — [ ¥(s)ds.

The construction is slightly trickier in higher dimensions, since the analogues
of the one-variable, “antiderivatives” of a function in Sy need not lie in §. To
counteract this, we introduce a C* cut-off function ¢ on R; we require that {(z) = 0
when z < -1 and that {{(z) = 1 when z > L.

"This is essentially the technique used by Feflerman and Stein [5] to characterize Hardy spaces
via non-tangential maximal functions formed with respect to various averaging kernels.
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The construction in R? is already typical.® Suppose that ¥ is in S(R?) and that
fR, ¥ = 0. Set

o0

(’D(l)(x,y):/z W(s,y)ds—((z)/ ¥(s,y)ds.

-0 —c0o

Then
(O - D)@ o) 37)/ (s, ) ds,

so that (¥ — D;®(")) is a C* function supported in the strip (—1,1) x R C R2.
In fact, (¥ — D,®Y)) € S, whence D;®(!) € S. A further calculation (as in the
one-variable case, separately for ¢ = —co and £ — o0) shows that &) jtself is a
Schwartz function.

Now apply this construction to the remainder (¥ — Dy ®(1)) in the y-direction:
Set

Yy oo
8@(z,y) = ] (¥ — Dy 0 W)z, 1) di ~ () / (¥ — Dy D)(z, 1) dr.
Then ®(*) € §(R?) and
(@ — D101 — D0 (2, y) f f (s,t)dsdt = 0.

Define Z(¥) = (&}, ®(2}); continuity follows as in the one-variable case. g

Consequently, the primitives of the kernels {¢ — (T*¢),} that enter into (32)
are uniformly rapidly decreasing.

Corollary 11. Fiz a function w in 8. For each positive p and each A in R™, set
TP = o — (T p),. Let ®*#) = T(WXP)) for T as in the previous lemma, so
that ¥(»0) = div &(*#) Then

{8X)  1/2<p <2, (A <1}
ts a bounded family in S x --- x §.
Proof. By the continuity of the divergence operator on & x -+ - x & = §, it suffices
to know that

{¥*) 1172 < p< 2,0 < 1}

is a bounded set in S. This, in turn, follows from Minkowski’s inequality. O

6.3. Change-of-kernel estimates. We can use the last results to change from
one kernel with integral zero to another in the numerator of (31). We show this
first in the uniform setting, then for Carleson measures.

Lemma 12. Fiz a doubling weight w and a funclion ¢ in ;. There is a family
Fy of seminorms on § and a constant C = C(Db(w), ) such that if ¥ € S, and
J ¥ =0, then

(35) sup 2 ¥sl o ogyp 122 (V)

1<t WH Py 1<t WHP,

8This construction is used by Bott and Tu {1, pp. 37-40] to prove the Poincaré lemma for
compactly-supported cohomology.
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Proof. By translation and dilation invariance, it suffices to consider only averages
centered at the origin and at scale { = 1. For brevity, let us abbreviate the supre-
mum on the right-hand side of (35) by v(t). Let F be the family of seminorms
{llz®f(z)l|oo : fx| < N}, for some N = N(w, ) to be specified below. Let Fo be
the larger family of seminorms whose existence is guaranteed by Lemma 9. Finally,
let F; be a still larger family with the following property: There is a constant K
such that if ¥ € Sz, and [ ¥ = 0, then ¥ is the divergence of an n-tuple ®, each
of the components of which is K times an element in Sx,. (The existence of such
a family F; follows from Lemma 10 and Corollary 11.)

It thus suffices to show (35) in the special case when ¥ = D;®, where @ is a
function in 87, and j is a fixed index between 1 and n. By Lemma 9, each such ¢
can be decomposed as as a sum @ = 3z 7*) ¥ py_x, with |9}z < car2~ M5,
Then

|w* ¥(0)] = |w*D‘D( )
Z?k ®) %1% (D Jcp)g_a(ﬂ).

ZMW 2)| [w* (Dj)-s (2)] da
< e @) [ 1) s o o)) do

IA

As the last integrand features the convolution of w with a non-negative kernel,
it is now possible to exploit the doubling behavior of w. To do so, we can once
again split up the region of integration dyadically: Let Ry = By (0) \ Byi-1(0) and
Ry = B1(0). Since w € Db and ¢ € K, then w € Db,. So there is a constant
C = C(Db(w), ¢) such that

W * gk (2) < C¥THH 5 p(0),  when z € R,.

(In fact, w * pa-x (2) < CFHaw * po(z) < CFHH1Lay % g (0) < CHHE+H 1w % (0).)
Inserting this into the integra] gives

0 WO 2*[2] 12}l gt (2)] de] 1)
cac *+1[Zc=“ [ 1) ) de (1) 6(0)

<

[\’JSWMSn

< (20)*+1CM2-‘=M Z C20=ON 2 p(1)w x (0);

0 =0

>
It

the last line follows from the bound ]:c|N|n(*)1$:c)| < epr27¥M . Now, choose M
and N so large that both (2C)2-M and C?2"~¥ are less than 1. Then the double
series is convergent, and |w * ¥(0)] < C'v(1)w » p(0). O

We also need a variant of this result in an averaged form.

Corollary 13. Fiz a doubling weight w and a function ¢ in Sy. If

[ x (Vo) , dt

et = e T
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i1s a Carleson measure, with vanishing trace, then the same is true of the measure
|w* W, (z)|? | dt

— dr—,

lwx e (z)* ¢

for every ¥ in S. A quantitative statement on the model of that in the previ-

ous lemma also holds: There is a family F, of seminorms on S and a constant
C = C(Db(w), p) such that if ¥ € Sz, and [ ¥ =0, then

B0 o gy HIED o HTDD)

B:|B|<2Ns |B| B lBI

du® (z,1) =

36 su
( ) B:'BFSJ |B|

for all sufficiently large numbers N .
Proof. The proof is in many respects similar to that just given; we thus only sketch
the argument. Let F, Fj, and F; be as above. Once again, for (36) it suffices to

consider ¥ = D;® for some function ¢ in Sz, and some fixed j, to take s = 1, and
to set B = By, the unit ball. Let ¢ = Djp. Then, via the decomposition lemma,

(k) 2
,fJT (T(B[)) S ZQZR‘/ 'T]t *w*![’z-*t(z)' d?ﬂ'cﬁ

=R |w*s9t(I)12 t

k) 2
2k | * |w * s, |[*}z) , dl
= "ZQ ] Rk i
2k ]W: z — 2)||w * Pa-sc(2)]* _ﬂ_if
. CZQ /Tmfn e 5
< 622%/ |w * ha-s(2)[°

() = -/R, e = D R |[w * q-x,(2)|?
xlw*(lp:.'“"!( )I d dzﬁ
|w * @i (2)[?
Here Ri(z) = By (z)\Bagi-1(z) when! > 1 and Ro(z) = B1(z). The second estimate
holds by an application of the Cauchy-Schwarz inequality, since 5(*) € Sx implies
that ||*)||, is bounded independently of k. Doubling comes into play once again:
There is a constant C so that [w * @g-x,(2)| < C¥+2+1|w * p,(z)| when = € B, and
z € Ry(z). The estimate (36) follows from inserting this, enlarging the region of
integration, and applying Fubini’s theorem:. O

6.4. Completion of the proof (STep I1I). Let u(z,t) = w+ (pﬁ(a:) be the heat
extension of a doubling weight w. Suppose that
e (Ve (@), di
—2_— z—
[w * @y ()] t
is a Carleson measure, with vanishing trace. Then we claim that w € Db,,, and
thus by STEPS I and II, that w € A 4.

Were it the case that instead of the averaged (i.e., Carleson measure) condition,
we knew the uniform pointwise condition

lw * (Vo)
W @,

then the matter would be settled. For since the Gaussian ¢ is in 84, we could use
Lemma 12 to replace Vi in the numerator by other smooth kernels of integral zero,

— 0, ast— 0,
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and the result would be
[w * (T2p) o = w * i
Wk Py

(37) — 0, ast — 0,
uniformly over all A in the unit ball and all p in [1/2,2].° This would mean that
w € Dby, 4, = Dbg,, exactly as claimed.

But instead of the estimate (37), Corollary 13 atlows us only to conclude a priori
that the measures

(38) a1y = [P (@) =~ w e pi (2 o dt
w+ ()P :
are Carleson measures, with uniformly vanishing trace over the same range of A
and p. How can we close the gap?'® The answer lies in the doubling behavior of w.
For suppose that w € Db, that the measures in (38) have uniformly vanishing
trace, but that, arbitrarily close to the boundary, the density of (at least) one of
these is somewhere “large”; specifically, suppose that

(39) Iw * (TAnﬁo)Puto(mU) —wx ‘pto(rﬂ)lz > g,

|w * @eq (zo) |2

for some ¢ less than 1, some particular point (zg, {g) in the upper half-space, and
some pg and Ag in the indicated range. Since w € Db, then a similar inequality holds
for all (z,1) in an appropriately-scaled neighborhood of (zg,#0). Indeed, our prior
result on the negligible effect of modest dilations and translations of the averaging
kernel ¢ (Lemma 6) insures that there is a p close to 1 and a A close to 0, both
depending only on Db{w), ¢, and & (not on po, Ag, g, or tg), such that

|w * (T29) pot () — w * e (2)[*
fw+ e ()2

>E

for all (z,t) in the neighborhood
Eroto = {(z,1): p7 'ty < t < plo, |z — 2o} < Ato}
of the point (zg,%g). Thus, if w € Db and (39) holds, then

;J(J\u,po)(T(B;o(zo))) > E/L dw%.

*0.fg
Since Ez,;, fills a substantial share of the Carleson cylinder, then the right-hand
side exceeds € (A" log p)| B, (20)|; this means that the Carleson norm of u{*e:#0) is

large (i.e., it exceeds a fixed share of €) at scale tg. Hence, if the Carleson measures

in (38) have uniformly vanishing trace, then their densities must vanish uniformly,
as well. This proves the desired estimate (37), and thus w € Dbg;,.

SteP 111 is therefore complete and with it the proof of Theorem 2, the Gaussian
special case of the main result. The general case (Theorem 1) follows from this by
Corollary 13. [

9The uniformity follows from Corollary 11.

10Note that F(z,t) dzdt/t being a Carleson measure with vanishing trace does not imply that
F(z,t) = 0 uniformly in « as t = 0; take F, for example, to be the characteristic function of the
cuspidal set {(z,1) : |z) < ¢3¢ < 1}.
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