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THE GEOMETRY AND TOPOLOGY OF
TORIC HYPERKAHLER MANIFOLDS

ROGER BIELAWSKI & ANDREwW S. DANCER!

ABSTRACT. We study hyperkidhler manifolds that can be obtained as hyperkahler
quotients of flat quaternionic space by tori, and in particular, their relation to toric
varieties and Delzant polytopes. When smooth, these hyperkahler quotients are com-
plete. We also show that for smooth projective toric varieties X the cotangent bundle
of X carries a hyperkédhler metric, which is complete only if X is a product of projec-
tive spaces. We identify the homotopy type of our hyperkihler manifolds as that of a
union of compact toric varieties intersecting along toric subvarieties. We give explicit
formulas for the hyperkidhler metric and its Kdhler potential.

A 4n-dimensional manifold is hyperkahler if it possesses a Riemannian metric g
which is Kahler with respect to three complex structures Ji, Jg, ;3 satisfying the
quaternionic relations JyJo = —JoJ; = J3 ete. To date the most powerful technique
for constructing such manifolds is the hyperkidhler quotient method of Hitchin, Karl-
hede, Lindstrom and Rogek [HKLR]. The power of this method lies in the fact that
a flat hyperkahler space may have highly nontrivial quotients.

In this paper we shall make a detailed study of a class of hyperkahler quotients
of flat quaternionic space H® by subtori of T¢. The geometry of these spaces turns
out to be closely connected with the theory of toric varieties, that is, varieties of
complex dimension n admitting an action of (C*)™ with an open dense orbit. The
toric varieties we shall be concerned with have a Kahler metric preserved by the
action of T™ < (C*)".

If 4n is the dimension of our hyperkahler quotient there is an isometric action of
T"™ which is holomorphic with respect to all the complex structures. We shall refer
to our manifolds as toric hyperkdihler manifolds (cf. [Gol]).

We shall study various topological and metric properties of toric hyperkahler man-
ifolds. First we give necessary and sufficient conditions for a hyperkahler quotient
M of quaternionic space by our torus actions to be smooth (Theorem 3.2) or an
orbifold (Theorem 3.3). When smooth, M is complete as a Riemannian manifold.
We show that the hyperkahler moment map ¢ for the induced torus action on M
is a fiber connected surjection onto R3® (this can be viewed as an analogue of the
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convexity theorem for compact toric varieties). We also explain how to read off the
singular orbits and fixed points of the T™ action from the image of ¢ (Theorem 3.1).

Our discussion is influenced by the work of Delzant [De] and Guillemin
[Gul),[Gu2], who have shown that a large class of toric varieties can be obtained
as Kihler quotients of C¢ by subtori of 7¢. A guiding principle of our work is that,
while a compact Kahler toric variety is determined by a convex polytope, a complete
toric hyperkahler orbifold is determined by an arrangement of hyperplanes.

In section 4 we discuss how the existence of a large family of compact 3-Sasakian
manifolds found by Boyer, Galicki and Mann [BGM 1,3] can be read off from our
results.

In section 5 we show that the generic complex structure of a toric hyperkahler
orbifold is that of an affine variety (Theorem 5.1). In section 6 we discuss the
topology of toric hyperkahler orbifolds M. We show that it depends only the torus
used to obtain M and not on the moment map (Theorem 6.1). We identify the
homotopy type of toric hyperkahler orbifolds as that of a union of finitely many
toric varieties intersecting along toric subvarieties (Theorem 6.5). These two results
yield homotopy equivalences between certain projective varieties (Corollary 6.13).
We give a formula for the Betti numbers for a class of toric hyperkahler orbifolds in
terms of the Newton polytopes of these varieties.

If X is a toric variety arising from Delzant’s construction, we show in section 7 that
the cotangent bundle T X carries a natural hyperkahler metric whose restriction to
the zero section is the Kahler metric on X. This hyperkidhler metric is complete
only when X is a product of projective spaces. We also discuss when the metric on
T* X can be smoothly completed.

The last two sections deal with the Kdhler geometry of our manifolds. We give
an explicit formula for the Kéhler form (Theorem 8.3), generalizing the formula of
Guillemin {Gul] for compact toric varieties. We also give an explicit description of
the Riemannian metric (Theorem 9.1), which corresponds to finding a solution of
generalized Bogomolny equations of Pedersen and Poon [PP].

Finally, in the Appendix, we show that the Betti numbers of a certain class of
spaces admitting a decomposition into a union of toric varieties admit a descrip-
tion not much more complicated than that of toric varieties. Many of our toric
hyperkahler orbifolds are topologically equivalent to such spaces.

Let us remark here that a particular class of our manifolds was studied by Goto
[Gol] (see Remark 3.6). Even for this class our point of view is different from Goto’s
as we particularly stress the relation with algebraic toric varieties. There is also
some relation with the work of Nakajima [Na) (see Remark 3.6).
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1. MOMENT MAPS, KAHLER AND HYPERKAHLER QUOTIENTS

Let (M2",w) be a symplectic manifold and suppose that w is invariant under an
action of a Lie group G. An equivariant map g from M to the dual of the Lie algebra
of G is called a moment map if it satisfies

(1) (o), p) = (X, 0),
where v € TM, p € g and X, is the corresponding Hamiltonian vector field. If u
exists, we say the action on M is Hamiltonian. Condition (1.1) and the equivariance
requirement determine g up to addition of a constant in the center of g*. If the
action of G on p~'(0) has finite stabilizers then 0 is a regular value and p=1(0)
is smooth. If furthermore the action of G on p~!(0) is free and G is compact,
then ©~1(0)/G is a smooth symplectic manifold. If M is Kéhler, so is the quotient
p~1(0)/G. Moreover, if G is compact and the Kihler metric on M is complete, then
the quotient metric is also complete. If we assume that the action of G extends to an
action of the complexified group G©, then a theorem of Kirwan [Kil] says that the
symplectic quotient ~1(0)/G coincides with the quotient M™"/GC, Here M™i® jg
the open set of points in M whose paths of steepest descent under the function ||p|?
have limit points in z~!(0), the norm being given by a biinvariant inner product on
g

A modification of the Kahler quotient construction applies to hyperkahler mani-
folds and was developed in [HKLR]. In this casc each complex structure J; gives a
Kahler form w; and, in many cases, a moment map ;. If our group G is compact
and acts freely on the common zero set of these moment maps, then the quotient
by G of this zero set is a hyperkidhler manifold. This can be seen by considering
w = wg + v/—1ws which is a holomorphic-symplectic form with respect to the com-
plex structure J;. Similarily the map gy = gy ++/~1p3 is holomorphic with respect
to J; (it is actually the moment map corresponding to the action of G and the
form w) and so the zero set of p4 is Kéhler. The hyperkihler quotient is the Kahler
quotient of #;1(0) by G. Once more, if G is compact and M is complete, then the
hyperkahler quotient is complete.

2. TORIC VARIETIES

In this section we shall give a quick overview of Kiihler quotients of C% by tori
and in particular of Delzant’s construction of certain toric varieties from polytopes
[De]. We follow the exposition of Guillemin [Gul],[Gu2].

The real torus 7¢ = {(t,... ,tq) € C? : |t;| = 1} acts diagonally on C? preserving
the flat Kahler metric whose Kahler form is

d
V=1
(2.1) 0 > dzy A dz.
k=1
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The moment map for this action is
1
(2.2) nz) = 5 >l lfer + ¢,
k=1

where the e; are the standard basis vectors of R? and ¢ is an arbitrary constant in R9.
If N is a subtorus of 7'¢ whose Lie algebra n ¢ R” is gencrated by rational vectors,
then we can perform the Kédhler quotient construction with respect to N. Such
a subtorus is determined by a collection of nonzero vectors {uy,...,uq} (which we
shall always take to be primitive) generating Z". For then we obtain exact sequences

of vector spaces

(2.3) 0 yn — R L LR 0,

(2.4) 0 —— R® y Re s n

where the map 3 sends e; to u;. There is a corresponding exact sequence of groups
(2.5) 15 N-oTST" 51,

In order to obtain a smooth Kahler quotient one has to make certain assumptions
on N. We will not discuss these in full generality (but see below for the case when the
u; come from a polytope). In the next section we shall give necessary and sufficient
conditions for the corresponding hyperkahler quotient to be smooth.

The torus N acts on C* preserving the Kihler form (2.1), and the moment map
for N is, from (2.2),

d

1
(2.6) uz) =3 3 lalfok +c,

k=1

where ay = 1*(ex). The constant ¢ is of the form

d
(27) c= Z ’\kaka
k=1
for some scalars Ay, ..., Ax € R If 0 is a regular value of the moment map (2.6), we

obtain a smooth Kihler quotient X = p~!(0)/N which is a toric variety. The torus
T = T%/N of (2.5) acts on X in a Hamiltonian fashion and, when X is compact,
the image of the induced moment map X — R" is a convex polytope A called the
Delzant polytope of X. (Note that its vertices are not required to lie on an integer
lattice and in this respect the Delzant polytope differs from the Newton polytope of
algebraic toric varieties).
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In fact, Delzant [De] has shown that this construction produces all compact con-
nected symplectic manifolds of dimension 2n with an effective Hamiltonian action
of T™. We first observe that if X is such a manifold then the image of the moment
map for the torus action is a convex polytope A in R™. Delzant proves that there
are precisely n edges meeting at each vertex of A (that is, A is simple), and that
the directions of these n edges are given by a Z-basis of Z". Now A is defined by a
system of inequalities of the form

(28) (:IJ,'U,;) 2 /\,’, (‘l = ].,. e ,d),

where ; is the inward-pointing normal vector to the i-th (n — 1)-dimensional face
of A, and d is the number of (n — 1)-dimensional faces. We can now consider the
Kahler quotient construction, described above, where the vectors u; and the scalars
A; are the ones occuring in (2.8). It turns out that X is just the resulting Kahler
quotient, so is in fact a toric variety with a Kahler metric preserved by 7™ < (C*)™.
This action is just the original torus action given on X. Conversely, any smooth
compact toric variety with a Kahler metric invariant under 7% < (C*)" is simply-
connected [Fu]. The 7™ action is therefore Hamiltonian and the toric variety comes
from Delzant’s construction.

The Kihler quotient X = p~1(0)/N can be identified as follows with the quotient,
of an open subset (Cd)min of C* by the complexified torus NC. Every orbit in C*
of the complexified torus (T%)C is of the form

(2.9) C} = {(21,...,24) : s =0 iff i ¢ I}

for some multi-index I = (i1,...,%), 1 <41 < ... <4, <d(weallow r =0). If F
is a face of A of codimension 7, then F' is defined by replacing the inequalities of
(2.8) by equalities for i belonging to the complement of some multi-index I of length
d —r. If we let C%& = C¢ then the set

(2.10) ci =Jck
F

is open and equal to (Cd)min, so X is biholomorphic to C4 /N€. (Note that to be
consistent with the notation later in this paper our definition of C? is dual to that
of Guillemin [Gul],[Gu2]).

Example 2.1. Consider the following n + 1 vectors in R*: u; = e;, 1 <1 < n, and
Unt1 = —(€1 + ...+ €,). For any negative scalars Aq,..., A,41, the polytope A
defined by (2.8) is similar to the standard simplex in R* (see Fig.1 for n = 2). Here
C4 = C**! — {0} and N€ is the diagonal C*, so X is CP".



Fig. 1.

Fig. 3.

CP

Fig. 5.

Fig. 2.

CP?

Fig. 4.

Fig. 6.

cp?
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Example 2.2. In this example the vectors u; are not determined by a polytope.
We take uy = —ey, ug = ug = ¢; in Rand Ay = =1,A; = § and A3 = 0. This
time n is spanned by (1,1,0) and (1,0,1) and the zero set of the moment map (2.6)
is described by the equations: |z1|? + |22|2 = 1, —|22|2 + |z3{2 = 1. In this case

(€)™ = (C? - {0}) x C* and X is CP".
This last example becomes highly nontrivial in the hyperkéhler setting.

Let us notice that, if we fix uq,...,uq, the resulting variety still depends on
the choice of the moment map, that is, on the scalars Aq,..., Ay, In particular
the topology of the quotient will change when we pass through a critical value ¢,
where ¢ is given by (2.7). The change in topology corresponds to a proper birational
morphism of the toric varieties ([Od,Gul}).

Example 2.3. Consider the vectors w1 = e, ug = €3, 43 = —e1, ug = —€1 — €32
in R? (see Fig.2). If A3 > Ag 4+ v/2)4, then the polytope A is a trapezoid and the
corresponding surface X is P(O @ O(1)), the (equivariant) blow-up of CP? at one
point [Au]. If, however, A3 < Az + v/2A4, then A is just an isosceles right triangle,
and so, by Example 2.1, X is CP2.

Example 2.4. In the previous example, let us instead take uy = —ae; — e for some
positive integer a. This time, for sufficiently large As, the corresponding surface is
the Hirzebruch surface P(O & O(a)). Moving the line orthogonal to uz beyond the
intersection point of lines orthogonal to ue and w4 corresponds to blowing down the
divisor D with D-D = —a. The blown-down surface is the weighted projective space
CP2(1,1,a), which is nonsingular only for @ = 1.

A toric variety is also determined by a fan F, that is, a collection of rational
strongly convex polyhedral cones in R* such that each face of a cone in F is also a
cone in F and the intersection of two cones in F is a face of each [Fuj. A convex
polytope A described by (2.8) determines a fan F as follows: the cone {d ¢  tiu; :
t; > 0} belongs to F if and only if the (n — 1)-dimensional faces of A corresponding
to u;, 2 € I, meet in A. The passage from a polytope to the fan is equivalent to
forgetting the Kahler metric of X.

3. TORIC HYPERKAHLER MANIFOLDS

We shall now discuss hyperkihler quotients of HY by subtori of T4.
The quaternionic vector space H? is a flat hyperkéhler manifold with complex struc-
tures Jq, J2, J3 given by right multiplication by 4, j, k. The real torus T acts on H?
by left diagonal multiplication, preserving the hyperkahler structure. If we choose
one complex structure, say J,, and identify H? with C? x C?, then the action can
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be written as
(3.1) t-(z,w) = (t-2z,t7" w).

On the other hand, taking the complex structure J; identifies H¢ with T*C?%, with
the natural torus action induced from that on C¢.

The three moment maps p1, jt9, 13 corresponding to the complex structures can
be written as

L
1
(3.22) zw) = S (zl® = lwel?) ex + c1,
k=1
d
(3.2b) (2 + V-1ps)(z,w) = Z Zrwi e + c2 + vV —1es,
k=1

where ¢y, co,c3 are arbitrary constant vectors in R¢. Notice, that unlike in the
Kahler case, the hyperkdhler moment map (p, p22, pt3) is surjective for any choice of
¢1,¢2,c3, and in fact gives a homeomorphism H¢ /T¢ — R3¢,

Now, let u; (i = 1,... ,d), define a subtorus N of 7% by (2.3) and (2.5). As before
we assume that the vectors u; generate Z™. The moment maps for the action of N

are (cf. (2.6))

d

1
(3.32) (w) =5 3 (1l = k) o e
d
(3.3b) (#2 + vV—1us (Z 'w Z kak o+ c2+v—lcs.
k=1
The constants c; are of the form
d r
(3.3¢) ;= Mau, (i=1,23)

where )‘{; € R. We shall adopt the notation
M= AA), (k=1,...,d).

We shall denote the hyperkahler quotient ;~!(0)/N corresponding to u =
(u1y...,ug) and A = (Ar,...,Ag) by M(x,]), or sometimes just M. It is a hy-
perkihler stratified manifold [DS].
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It will be important to consider the hyperplanes in R"
(3.4) H ={yeR"; yuw) =M}, (=123 k=1,...,d
and the codimension 3 flats (affine subspaces) in R3"
(3.5) Hy = Hp x H} x H.

It is these flats, rather than the intersection of half-spaces as for toric varieties,
that determine the structure of toric hyperkiahler manifolds.

The action of T = T%/N on M(u, \) preserves the hyperkihler structure and
gives rise to a hyperkihler moment map ¢ = (¢1,d2,¢3). The following result
describes its essential properties.

Theorem 3.1. Let uq,...,uq span Z™ and let Ay, ..., g € R3. Then:

(i} The hyperkihler moment map ¢ : M — R3™ for the action of T™ defines a
homeomorphism M/T™ — R3".

(ii) If z € R3", then the Lie algebra of the T™-stabiliser of a point in ¢~ 1(z) is
spanned by the vectors uy for which x € Hy.

Proof. We claim that (z,w) is in the zero sct of (3.3) if and only if there exist
a € R*,b e C" such that

1

(3.6) zZewg + A2+ V=122 = (b, u), §(|Zk|2 — |we]?) + AL = (@, ug)

for k=1,...,d. (The first inner product is complex). Indeed the complex equation
(3.3b) means that the real and imaginary parts of Y4_, (zxwg + A2 + V—1A3)ex are

in Ker1*, which from (2.4) equals Im *. Now

d
(3.7) B8*(s) = Z(s, Ug) €k,

k=1

yielding the first equation of (3.6). The same argument works for ;.

As remarked after equation (3.2), the moment map for the action of T¢ on H¢
defines a homeomorphism from H¢ /7 onto R3. Since the vectors uy generate R,
(3.6) shows that the map (z,w) — (a,b) gives a homeomorphism of the quotient
by T¢ of the zero-set of (3.3) onto R3*. We therefore obtain a homeomorphism of
M/T™ onto R3". We see from (2.4) that (a,b) is the value of ¢ at the point in M
with representative (z,w), so we have proved (i).

The T™-stabiliser of the point in M represented by (z,w) is just the quotient of the
Td4-stabiliser of (z,w) by the N-stabiliser of (2, w). Now 2z = wg = 0 if and only
if both (a,ux) = AL and (b,ux) = A} + /=1A%, that is, if and only if (a,b) € Hk.
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Therefore the T%-stabilizer of (z,w) is the subtorus of T whose Lie algebra is
generated by the vectors e, for which (a,b) € Hg. Part (ii) of the theorem now
follows from (2.3). O

This result shows at once that, even if ug, A} define a polytope A by (2.8) corre-
sponding to a toric variety X, we cannot in general expect our manifold M (u, A) to
be T"-equivariantly diffeomorphic to T* X . We can see this by considering the fixed
points of 7" on T*X. Fixed points on X correspond to the vertices of A and are
therefore isolated. It follows that no nonzero tangent vector at such a fixed point is
fixed by the isotropy action, so the set of fixed points of T™ on T* X is just the set of
fixed points on X and so is in one-to-one correspondence with the vertices of A. If,
however, some n faces of A corresponding to linearly independent u; meet outside
A, then we get additional fixed points of T™ on M (u, ).

We shall see in section 6 that M(u,A) is typically not homeomorphic to T* X,
even non-equivariantly.

We shall now give necessary and sufficient conditions for x=1(0)/N to be smooth
or an orbifold. We shall assume that the flats Hy, are distinct, i.e. (ug, Ax) # (ur, Ar)
for k # L

Theorem 3.2. Suppose we are given vectors uy, ... ,uq generating Z" and elements
A, ..., g of R® such that the flats Hy are distinct. Then the hyperkihler quotient
M(u, M) is smooth if and only if every n+ 1 flats among the Hy have empty inter-
section and whenever some n flats Hy, ..., Hy, have nonempty intersection, then
the set {ug,,...,ux, } 1 a Z-basis for Z™.

Theorem 3.3. With assumptions of Theoremn 3.2 M(u, A) is an orbifold, with at
worst abelian quotient singularities, if and only if every n + 1 flats among the Hy
have empty intersection.

Proof. (a). We begin by noting that if J is a maximal set of indices satisfying
Nies Hi # 0, then the set {ux : k € J} spans R®. For if ¢ ¢ J, then by maximality
ﬂkeJU{t} Hj, is empty, so w, is in the span of {uy : & € J}. As we always suppose
that the set of all u; spans R™, the claim follows.

Now we consider the following statements:
1) for all z € R3", the set {ux : = € Hy} is a part of a Z-basis for Z",
2) for all z € R3", the set {ux : © € Hg} is linearly independent

We claim that 1) is equivalent to the condition of Theorem 3.2 and 2) to that
of Theorem 3.3. It is obvious that 1) and 2} imply the respective conditions. Con-
versely, let z € R®" and let I be the set of indices k such that £ € Hi. Let J be a
maximal element of the set of indices containing I and satisfying nke ;s Hy # 0. By
the observation made at the beginning of the proof, the set {ux;k € J} spans R®
and in particular #J > n. The claim now easily follows.
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(b). Next, we shall show that 1), 2) are equivalent to the action of N on the zero

level set of p being free or locally free respectively.
Let (z,w) € p~1(0) and let (a,b) € R® x C* be ¢(2,w), as in (3.6). We also regard
(a,b) as a point z € R*™ in the obvious way. If I = {k : z € Hy}, we let R¢ denote
the span of {ex : k € I}, and Ty be the associated subtorus of 7¢. The proof of
Theorem 3.1(ii) shows that 77 is the stabilizer of (z,w) for the T% action. Now notice
that R? N n is nonzero if and only if 8 has a nontrivial kernel on R, that is, if and
only if the set {uy : k € I'} = {ug : = € Hy} is not linearly independent. So this set
is linearly independent precisely when the stabilizer of (2, w) for the action of N is
finite. Suppose in this situation that NN 77y is finite but nontrivial. This means that
there is a non-integral vector in Q¢ whose image under £ is an integral combination
of the u;. Therefore we have an integral vector of the form X 37, . aruy, where
m > 2, the a; are relatively prime, and ¢ is coprime to m. This happens precisely
when the set {ux : = € Hi} is not a part of a Z-basis.

Finally, we observe from 3.1(i) that any (a,b) x R® x C*, and hence any x € R3",
can occur in (3.6).

(c). The discussion of §1 shows that freeness or local freeness of the action of N
on p~1(0) imply that the quotient is smooth or an orbifold respectively.

We shall now show the necessity of the condition of Theorem 3.3. Suppose that
M (u, A) is an orbifold and let J be a maximal set of indices satisfying (¢ ; Hx # 0.
Therefore {uy : k € J} spans R* and [, ; Hyx is a point, say .

From Theorem 3.1 it follows that m = ¢~!(z) is fixed by T™. Since M is an
orbifold, it has a well defined tangent space at m of the form R** /T for some finite
linear group T, and pulling back to R*® we obtain a linear representation of 7" with
a finite kernel. (The dimension of M must be 4n because of 3.1(i).) As the T"
action is hyperkahler, we see that we have the standard representation of T™ as the
maximal torus in Sp(n).

Moreover some T"™-invariant neighbourhood of m is equivariantly diffeomorphic
to an invariant neighbourhood of zero in this representation. Theorem 3.1(ii) now
shows that #J < n, establishing the necessity of the condition of Theorem 3.3.

In particular, if M is a manifold then the condition of 3.3 holds and hence the
action of N on x~(0) is locally free, so as mentioned in §1, the zero set of p is
smooth. As the action of N is generically free, smoothness of M now implies that
the action of N on p~1(0) is free. From above, we have now shown the necessity of
the condition of Theorem 3.2. [

Remark 8.4. It follows that for any fixed set of vectors uy, the hyperkahler quotient
M(u, A) is an orbifold for a generic choice of vectors A;. On the other hand, this
quotient is a manifold for a generic choice of vectors Ay if and only if any set of
n independent vectors among the u; is a Z-basis for Z". Furthermore, if the latter
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condition is satisfied, then the set of Ay for which M (u, A) is singular has codimension
3 in R%* and hence the set of Ay for which M(xu, ) is regular is path-connected.
Therefore we expect the topology of regular M (u, A) to be independent of the vectors
Ak. We will show in section 6 that this is indeed the case.

Theorems 3.1 and 3.3 imply

Corollary 3.5. Suppose that M(u, A) is an orbifold (with all Hy distinct). Then

(i) the set of fized points for the action of T™ is finite and in one-to-one cor-
respondence with the set of intersection points of n among the flats Hy,
(k=1,...,d).

(ii) The T™-stabiliser of a point in ¢=1(x), v € R3®, is the connected subgroup
of T™ whose Lie algebra is spanned by the vectors uy for which x € Hy.

If the condition of Theorem 3.2 or Theorem 3.3 is satisfied, we shall refer to
M(u, A) as a toric hyperkahler manifold or toric hyperkihler orbifold respectively.
In the former case it is a complete 4n-dimensional Riemannian manifold with a
hyperkihler action of the torus 7" = T¢/N of (2.5). Let us remark that not all
hyperkéhler manifolds with such an action can be obtained by as a hyperkahler
quotient of H* by a torus. An example is the Riemannian version of the Taub-NUT
metric [Ha], defined on R* or the higher-dimensional hyperkahler manifolds recently
constructed by Gibbons and Rychenkova [GR]. This is a consequence of the fact
that T¢ is not the only maximal abelian group prescrving the hyperkéhler structure
of HY. There are also examples with infinite topological type, due to Goto [Go2],
obtained as quotients of a quaternionic Hilbert space.

Remark 8.6. Goto [Gol] considers a special class of hyperkiihler quotients of H* by
tori. In his case n = my+mg+...+mg, d = n+k and the u; are the vectors e; of the
standard basis of R™ together with the k vectors — 3 ;Z, e;, 8; = m1+ma+...+m;,
j=1,...,k. For this class of toric hyperkahler manifolds Goto obtains statements
essentially equivalent to Corollary 3.5 and Theorems 3.2 and 6.5. On the other
hand, Nakajima [Na] studies very general properties of a class of quotients of flat
quaternionic spaces by unitary groups. In the abelian case, his class of subtori of
T¢, while larger than that of Goto, is still quite special - when n = 2, for instance,
it does not include tori from Example 2.4 for a # 0, 1.

As examples of toric hyperkiahler manifolds, consider the hyperkahler quotients
corresponding to examples 2.1 and 2.2. In the first case we obtain the Calabi metric
[Ca] on T*CP™, while the second case yields an asymptotically locally Fuclidean
metric on the resolution of the Kleinian singularity C*/Zj. This metric has been
described in [GH],[Hi],[Kr].

The following example illustrates the dependence of M (u, A) on the arrangement
of flats (3.5) and not on the intersection of half-spaces (2.8)
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Example 3.7. Let n = 2 and u; = e;, up = e, ug = —e; +e3. For negative scalars
A1, Az, Ag with A2 > A;+ A3 the intersection of half-spaces (2.8) is illustrated in Figure
3. The corresponding toric variety is the line bundle O(1) over CP!. Now consider
the hyperkahler orbifold M(u,A) with the same u, and AL = A, A2 = A3 = 0.
Figure 4 shows the hyperplanes H} (k = 1,2,3). This is the same hyperplane
arrangement as for the projective space CP? (see Fig. 1). In fact M (u, A) is T*CP?
because the hyperkihler quotient of H® by N = {(t, —t,t) : ¢t € S'} is the same as
that by {(¢,¢,t) : t € S'}.

4. COMPACT 3-SASAKIAN MANIFOLDS.

We shall briefly discuss how the ideas of the previous sections can be used to
produce a large family of compact 3-Sasakian manifolds considered in [BGM1,2]. We
recall here that 3-Sasakian manifolds are a special class of Einstein manifolds with
positive scalar curvature. Also, a 3-Sasakian manifold admits a locally free action of
Sp(1), and the quotient is a quaternionic Kéhler orbifold. A Riemannian manifold
(S, g) is 3-Sasakian if and only if the Riemannian cone C(S) = (Rt x S,dr? + r2g)
is hyperkihler.

Theorem 4.1. Let u = (uy,...,uq) be a collection of vectors generating Z™ and
suppose that the following two conditions hold:

(1) every subset of w with n elements is linearly independent;
(ii) every subset of u with less than n elements is a part of a Z-basis of Z™.

Then the hyperkdhler quotient M (u,Q) is the Riemannian cone over a compact 3-
Sasakian manifold S = S(u).

Proof. Let us first show that the only singularity of M (u, 0} is the point correspond-
ing to z = w = 0. From the proof of Theorem 3.2 it follows that (z,w) € H¢
will yield a singular point of M (u,0) precisely when there exists (a,b) € R® x C*,
such that zywy = (b,us), J2k|? — |wk|®? = 2{a,ux) for £k = 1,...,d, and the set
{ug; (b,ux) = {a,ur) = 0} is not a part of a Z-basis of Z". Assumption (ii) means
that this can only happen if this set has at least n elements, but assumption (i)
implies that in this case a =b=0and so z=w = 0.

Now we recall that H? is the Riemannian cone over the standard sphere S44-1
and S9! is a 3-Sasakian manifold. The 3-Sasakian structure of §49~! is given by
the right diagonal action of Sp(1) on H?. Since we have chosen all A; to be zero,
the zero-set of the moment map (3.3) is invariant under the action of both R* and
Sp(1). As the action of N commutes with that of R*, and as the only singularity is
at the origin, M (u, 0} is a Riemannian conc over a manifold S. The action of Sp(1)
also commutes with N, and induces an action on § defining a 3-Sasakian structure.
Finally S is compact since M{u,0) is complete (as a stratified manifold) and the
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cone is complete only if its base is. This implies that § is complete and so compact

by Myers’s theorem. Alternatively we could realize S as the 3-Sasakian quotient
[BGM2] of S4-1. O

Remark 4.2. Usually the Sp(1) action on § = S(u) has many different orbit types
and so the quotient of & by Sp(1) is only a quaternionic-Kihler orbifold. It is
a manifold only when N is the circle acting diagonally on H"*! which gives the
homogenous quaternionic-Kéhler manifold Gra(C*+1).

Remark 4.8. The conditions of this theorem are rarely compatible with those of
Theorem 3.2. In fact one can show that if M{u,A) is a toric hyperkihler manifold
of dimension greater than 4 and the vectors u;,...,uq satisfy the conditions of
Theorem 4.1, then M (u, A) is either H* or T*CP".

Remark 4.4. For n = 1 the conditions of Theorem 4.1 are void. When n = 2 the
conditions are satisfied if each pair of the vectors wuy is linearly independent and each
ux has relatively prime coordinates. In this case the resulting quaternionic-Kahler
orbifold is 4-dimensional and its quaternionic-K&ahler structure is invariant under the
action of T2.

5. COMPLEX STRUCTURES

We shall now describe the generic complex structure of our toric hyperkahler
orbifolds.

Theorem 5.1. Let M = M (u, ) be a toric hyperkahler orbifold and suppose that
every n+ 1 flats H: x H have empty intersection in R**. Then M, equipped with
N€
]

the complex structure Jy, 1is biholomorphic to the affine variety Spec A(W where

W C C% x C* x C* is defined by the equations
(5.1) zewg = (byug) — (M2 4+V=1X}), (k=1,...,d),

and N acts on C* x C* x C* by t- (2,w,b) = (t-z,t7 ! w,b).

Proof. By (3.6), the variety W is precisely the zero-set of the complex moment
map (3.3b). We have to show that the action of N on W has at most discrete
stabilizers and that each NC-orbit meets the zero-set of the moment map ;. This
will prove that the variety W is smooth (since W is the zero-set of the moment map
for the complex-symplectic NC action) and that M, the Kahler quotient of W by
N, can be identified with the complex quotient W/NC. The argument we use is a
slight modification of the one used for the construction of toric varieties as Kahler
quotients (see [Gu2)).
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Let (z,w) € C* x C?. Then the image of the NC-orbit of (2, w) under the moment
map yy is the set

(5.2) Z ticy; — Z sy +c1; ti, s >0 Cnt,
{1;2:#0} {i;wi50}

The proof of this is essentially the same as in [Gu2;Appendix 1]. The moment map
restricted to the orbit is given in our case by the Legendre transform of the function
F:n®NR? — R defined by

1 | .
9 FO-) T el T aemoran,
{iiz;i #£0} {3;u; #0}

where a;, b; are positive constants. This is a strictly convex function and all the
arguments of Guillemin go through.

If (z,w) is a point of W then, from the proof of 3.1, we know that E:=1(zkwk +

A2+ V=1A})ex = B*(b) for some b € C*. If for all k we have (b, ux) # AZ +/—=1A3,
then zxawy, is nonzero for all k and so the full group (7)€ acts freely at (z,w). From
(5.2), as the vectors o; span n*, the restriction of u; to N®(z,w) is surjective.
On the other hand, if (b, ux) = A2 + /—=1A3 precisely when k € I, where I is some
multi-index, then zpwy, = 0 if and only if £ € I. In particular the stabiliser group
of (z,w) for the action of N is a subgroup of TF. Since the flats HZ x H3, k € I,
now have nonempty intersection, the assumption of the theorem implies, as in the
proof of Theorem 3.3, that the vectors ug, k& € I, are independent. Therefore the
map f sending e; to u; must be injective on R¢ =Lie(Ty). and, from (2.3),(2.4),
we see that n MR = 0. The analogous statement for complex vector spaces is
proved similarly, so the stabiliser for the NC action is discrete. We also see that
R? = (RH)L + nt = (R%.) + nt, and, since ¢* is just the orthogonal projection onto
n = n*, it follows that n* is spanned by the set {c;;7 € I'}. Therefore, from (5.2),
p1 is still surjective on N¢(z, w). This proves Theorem 5.1. O

Example 5.2. Consider the hyperkahler quotient corresponding to Example 2.1
with n = 1. The variety W is described by the two equations zyw; = b — v; and
ZoWe = —b—vg, where v = /\£+\/—-1)\2. The assumption of Theorem 5.1 is satisfied
if v; # —v,. Eliminating b, we can view W as the hypersurface in C! with equation
z1wy + 22wo = T, where 7 # 0. The ring of invariant polynomials for the action of
NC€ 2= C* is generated by zjwz, 22wy, z1wy. We find that (M, J;) is biholomorphic
to the variety zy = z(r — 2) which can be viewed either as a semisimple adjoint orbit
in 5[(2, C) or the resolution of the Kleinian singularity C?/Z,. Similarily, for n > 1,
(M, J,) is biholomorphic to a semisimple adjoint orbit in sl(n + 1, C).
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6. TOPOLOGY OF TORIC HYPERKAHLER MANIFOLDS

Our next task is to show how the vectors uy,...,uq € R* and Ay,..., g € R?
determine the topology of M (w, A). First of all we have

Theorem 6.1. Suppose that M(u, ) and M(u, ') are two toric hyperkihler orb-

ifolds with the same choice of vectors uy, ... ,uq. Then M{u,A) is homeomorphic to
M(u, X).

In other words the homeomorphism type of M depends only on the torus N and
not on the moment map (3.3). Before proving this, let us establish a few related
facts.

Proposition 6.2. Let M{(u, ) be a toric hyperkahler orbifold such that every n+1
hyperplanes H} have empty intersection. Then M (u, ) is diffeomorphic to M(u, '),
where X, = (AL, 0,0) for each k.

Proof. Let us write M (A1, A2, A3) for M (u, ). Applying Theorem 5.1 with respect to
the complex structure J shows that M (A, A%, A) is diffeomorphic to M(A!, A2,0).
Applying it again, with respect to J2, shows that M(A!, A2, 0) is diffeomorphic to
M(AL,0,0). O

Now we notice that, if the condition of Theorem 3.2 or Theorem 3.3 holds, then
the hypothesis of the above proposition holds for a generic direction in R3. More
precisely:

Lemma 6.3. Suppose that we are given vectors uy, ... ,uq generating R® and el-
ements A1,...,As of R such that every n+ 1 flats Hy defined by (3.4)-(3.5) have
empty intersection. Then for a generic element (a,b,c), a® 4+ b? 4 ¢ = 1, of the
2-sphere, every n+ 1 of the hyperplanes {y € R™; (y,ux) = aA} + bAZ + cA} have

emply intersection.

Proof. Suppose not. Then we can find a particular set of n+1 indices, say 1,... ,n+
1, such that the set of (a,b,c), for which the corresponding hyperplanes intersect,
generates R3. Consider the 3-dimensional V subspace of R**! spanned by vectors
A= (A%, X)), = 1,2,3. We can write A*, £ = 1,2, 3, as a linear combination
of vectors v* € V, i = 1,2,3, such that the equations (y,us) = v}, have a common
solution y;. The corresponding linear combinations of vectors ¥; give now a common
point of the flats Hg, k =1,... ,n + 1, contradicting the assumption. O

Lemma 6.4. Let M(u, ) and M(u, )"} be two toric hyperkihler orbifolds such that
there is an element A of SO(3) with AA\, = X} fork=1,...,d. Then M(u, ) and
M(u, X) are T™-equivariantly diffeomorphic.

Proof. Consider an element A € Sp(1) covering A. The right diagonal action of A
‘on H* maps the zero-set of (3.3) to the zero-set of (3.3) with A replaced by A,
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k=1,...,d. This map commutes with the action of 7% and induces the required
diffeomorphism. O

Proof of Theorem 6.1. Because of Proposition 6.2 and Lemmata 6.3 and 6.4 we can
assume that all Ay and A} lie on the z;-axis. Let U be the set of A = (A},...,AL) €
R? such that M(u, ) is an orbifold, where Ay = (AL,0,0). The complement of U is
the set of A! for which n + 1 of the hyperplanes

(6.1) H! = {z € R*; (z,u) = A\}}

have nonempty intersection. We shall show first that the topology of M does not
change as long as we stay within a connected component of U. In what follows we
will omit the superscript 1. If A and A’ lie in the same component of U, then there is a
homeomorphism h of R™ onto itself mapping each half-space {z € R"*; (z,ux) < Ax}
onto the corresponding half-space {z € R™; (z,ux) < A} and similarily for the
opposite half-spaces. We consider now, as in [Gol], the homeomorphism 7 between
R>o x Ryp and R x Ry¢ given by

(6.2) 7(z,y) = (%( 2 —yz),ﬂfy)

which we extend diagonally to a homeomorphism, also denoted by 7, between
(R>o0 x R>0)? and (R x Ryo)% Let V() be the subset R?* consisting of vec-
tors p = (p1,...,pq) such that there is an « € R™ with pr = {(a,ux) — Ax,
k =1,...,d. Since the vectors uy generate R™, the map v : V(1) —» R" send-
ing p to a is a homeomorphism. We define similarily V()') and . Let us extend
the homeomorphisms A, v,v’ to homeomorphisms & : R* x (Ry0)% = R* x (R>0)¢,
v V() X (Rs0)? = R® x (Ry0)% and v : V(X') x (R»0)? = R® x (Ryo)?
by putting the identity map on the second factor. We obtain a homeomorphism
® between 77 (V(A) X (R>0)?) and 7! (V(X') x (R»0)¢) defined as the compo-
sition @ = 77l o (v')"' o howv o7 Finally let us denote by 7 the map from
C* x C? to (R0 X R>0)¢ given by w(z,w) = (|21, [wil, ..., |2al, |wg|). Let us write
Pom = (Py,...,P4) and each Py, which takes values in Ryo x R>q, as (@}, B2).
We can now define a homeomorphism ¥ between the 0-level set of (3.3) for A and
the 0-level set of (3.3) for A’ by putting

21 Zd N Wy
U(z,w) = (<I>}(z, w)|—z-1-T, B2, w)m,fbf(z,w)m, e ,(Df,(z,w)w—) .

This homeomorphism is T¢-equivariant and induces a homeomorphism between
M (u, A) and M (u, X).

We have now shown that as long as A does not pass through a critical point, i.e. a
point for which n+1 hyperplanes (6.1) have nonempty intersection, then the topology
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of M{u,]) does not change. It remains to show that it does not change even when
we pass through a critical point. Let A = (Aq,...,As) be a critical point. We can
assume that it is the hyperplanes H{, ..., H} +1 that have a nonempty intersection.
Moreover, since we can get from one component of U to another in such a way that
we avoid intersections of codimension 1 walls, we can assume that {H{,... ,H} ;}
is a maximal set of hyperplanes with nonempty intersection.

Let U_ (resp. U;) denote the component of U to which (A; —¢, Ag,... , Ag) belongs
for a small positive (resp. negative) e. It will be enough to show that the topology of
M does not change as we pass from U_ to U,.. Let us consider an orbifold M (u, A)
where ) is obtained from (Ay,...,Aq) by replacing A, = (A},0,0) with (A}, 82, 65)
for small d;,d3. Using Lemma 6.3 we can obtain a toric hyperkihler orbifold by
projecting A onto the subspace R{a,b,c) ® R? for generic small b,c and a close to
1. Now we can use Lemma 6.4 to obtain an element A(b, c) of R* ~ R(1,0,0) ® R®.
Moreover Proposition 6.2 and Lemma 6.4 show that the topology of corresponding
orbifolds does not depend on (b,c). However, by changing the signs of b and ¢ we
can guarantee that for some choices of (b,c) A(b,c) belongs to U_ while for other
choices it belongs to U,. This proves Theorem 6.1. O

We shall now discuss the homotopy type of M (u, A). Because of Theorem 6.1 we
can assume that the vectors Ay are of the form (A}, 0,0).
In what follows we shall use a similar argument to that of Goto [Gol]. We shall
consider the hyperplancs H}. defined by (6.1). These hyperplanes divide R® into a
finite family of closed convex polyhedra, some unbounded. Let A be the polyhedral
complex consisting of all faces of all dimensions of these polyhedra. We recall [Gr]
that a polyhedral complex is a family of polyhedra such that every face of a member
of A is itself a member of A and the intersection of any two members of A is a face of
each of them. We define the polyhedral (in fact polytopal) complex C to consist of all
bounded polyhedra in .A. This complex is nonempty since, as the vectors uj generate
R", C must contain a vertex corresponding to the intersection of n hyperplanes H}.
We index the elements of C by some set Z and denote the polyhedra in C by A,,
s € Z. Finally, we denote by |C| the support [ J,c7 A4 of the complex.

Recall that ¢ = (¢1, P2, ¢3) : M — R* x R® x R* is the moment map for the
action of 7" on M. We define subsets D, of M by

(6.3) D, = ¢ 1(A,,0,0), sel.

The following result describes the topology of M (u, A).

Theorem 6.5. Let M = M{(u,A) be a toric hyperkdhler orbifold, where A\ =
(A},0,0) for each k. Then:

(i) U,ezDPs = ¢71(IC],0,0) is a T™-equivariant deformation retract of M.
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(ii) Pach D, is a Kahler subvariety of (M, Ji,w1), isotropic with respect to the
form we + w3 and invariant under the T™-action.

(i) Each Dy is T™-equivariantly isometric and biholomorphic to the toric vari-
ety determined by the polytope A,, where T™ is the subtorus of T™ acting
effectively on D,.

Proof. Once more we consider the homeomorphism 7 between Ry XRyo and RxR>g
defined by (6.2). Let j; be the deformation map of R x R>¢ defined by j,(u,v) =
(u,tv). Then the composite map 3y = 771 0 j, o 7 is a deformation of Ry>p X Rxo.
Let us write 3:(z,y) = (3}(z,y), 72(z,y)). Now we define a deformation of C? by the
map h: [0,1] x C® = C? where

z

} t) = : ) IRl ; 3 -T'D_ ’
(6 200) = (380eh o) 2, A ) 2
and extend this diagonally to a deformation of C* x C. We observe that h is

T%-equivariant and the moment map (3.2) satisfies
(6.4) p10hi(z,w) = pi(z,w), ((p2+ V—1pa)ohe)(z,w) = t{pz + vV-1u3)(z,w)

for any t € [0,1] (recall that we are setting c; = ¢z = 0).

Therefore h preserves the zero-set of (3.3). Since h is T®-equivariant, we obtain a
T™-equivariant deformation of M. Moreover ho(M) = (¢ + v/—1¢3)~(0), because
of (3.6) and the fact that b = (¢ 4 v—1¢3)(z, w).

We have now deformed M to (¢2 + /—1¢3)~1(0), which, by (3.6), corresponds to
the quotient by N of the set of (z,w,a) € C? x C? x R™ such that

1
(65) zrwg =0, E(lzk|2 - Iwklz) + ’\i‘. = (a’uk>a (k =1,... :d)'

Let us recall once more that a = ¢1(z, w). We claim that there is a deformation
map p: [0,1] x R* — R®, such that p(1,a) = a, the map a — p(0, a) is a retraction
onto |C| = U,cz As, and, if a lies on a hyperplane H}, then p(t,a) lies on this
hyperplane for all ¢ € [0,1]. To see this we observe that the complement of |C| =
UseI A, in R” is a union of convex unbounded polyhedra K; with non-empty interior
such that the intersection of any two of them will be a common face (of positive
codimension) of each. Moreover each K; is line-free (if K; contains a line, spanned
by a vector v, then v is parallel to all hyperplanes H} hence orthogonal to all u,
contradicting the assumption that the vectors uy span R"). Therefore we can think
of each K; as a convex polytope P whose unique face at infinity Fy has been removed.
We can find a deformation retraction of K; = P — F onto the part of the boundary
consisting of bounded faces. Moreover we can assume that this deformation of P —Fj
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is an extension of any given deformation of 4P — Fy.
Therefore, by doing it first on the intersections of K;’s and then extending to their
interiors, we can define the desired deformation map p.

Fork =1,...,d, put pF(a) = 2(p(t, a), ux) — 2\L. We now define a T¢-equivariant
deformation f; of the set given by (6.5):

( (0,0) if 2z = wg =0,

ft(Zk,’wk) — < Zy Zky 1 2k y

(0, -jf(a)wk) if  wg # 0,

and

fila) =p(t,a).
Observe that ¢;(fi(z,w)) = p(t,a). The deformation f; induces a T™-equivariant
deformation of (¢ + /—1¢3)~'(0) onto |J,c7 Ds, proving part (i).

For (ii)-(iii) we observe, as in [Gol], that ecach D, can be obtained as a Kihler
quotient of a submanifold U, of C* x €% by the construction of section 2 for the
polytope A,. The submanifold U, is Kidhler with respect to wy and isotropic with
respect to wz + v/—1ws, so all statements of (ii)-(iii) follow. O

There is a very simple formula relating the Betti numbers of a compact toric

orbifold to the combinatorics of the corresponding convex polytope [Fu]. We would
like to give a similar formula for the Betti numbers of toric hyperkahler orbifolds in
terms of the polytopal complex C; however we have been able to do this only under
an additional assumption on C.
Let us recall that if C is a polytopal complex and F' € C, then the star st(F;C) of F
in C is the smallest subcomplex of C containing all the members of C which contain
F. The antistar ast(F;C) of F in C is the subcomplex of C consisting of all the
members of C not intersecting F'. If A is a convex polytope, then we denote by C(A)
the complex consisting of all faces of A. We make the following definition:

Definition 6.6. A polytopal complez C is star-collapsible if there exists a filtration
@ =Co C...CC,=C by subcomplezes such that, for any i < r, there is a polytope
A; € C; and a vertex x; € A; such that C; — Ci—1 = C(A;) — ast(z;C(A;)).

Note that C is star-collapsible if we can, starting with C, find at each stage a
vertex z; of C; belonging to only one maximal element A; of C;. We then obtain
Ci—1 by replacing the subcomplex C(A;) with ast(z;;C(4;)). Observe that if C is
connected and star-collapsible then |C;_;| is a deformation retract of |C;| for any
i > 2. Since |C1] is just a point, it follows that |C| is contractible.

If C satisfies this definition, we can give a formula for the Betti numbers of our
orbifolds:
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Theorem 6.7. Let M = M(u,A) be a toric hyperkahler orbifold such that the cor-
responding polytopal complex C is star-collapsible. Then HI(M,Q) = 0 if j is odd
and

T .
(6.6) bar = dim H** (M, Q) = "(—1)*"* (;) d;,

i=k '
where d; denotes the number of i-dimensional elements of the complex C. Equiva-
lently, the Poincaré polynomial Pp(t) = 3" bit* of M is

(6.7) Pu(t) = idk(tz — 1),
k=0

In particular the Euler characteristic x(M) is Py(—1) = dy, which is the number
of vertices of C. O

Remark 6.8. For toric hyperkdhler manifolds, H*(M, Z) has no torsion, so Theorem
6.7 tells us the cohomology over the integers.

Remark 6.9. The formula for the Euler number is valid without any restrictions on
the complex C.

The proof of (a generalization of) Theorem 6.7 will be given in the Appendix.
It will be also shown there that for n = 2 the assumption on the complex C is
redundant.

Proposition 6.10. Formulas (6.6) and (6.7) hold for any toric hyperkdihler orbifold
of dimenston four or eight.

Example 6.11. Consider M (u, A) where u, Ax are as in Example 2.2. The poly-
topes Ay of Theorem 6.5 are just two intervals with a common point. Hence the
deformation retract of M(u,A) given by this theorem is the union of two copies of
CP?! intersecting at a point. This retract is of course the exceptional divisor of the
resolution of C? /Z.

Example 6.12. Suppose ux, A; are as in Example 2.3. If A3 > Ay + V24, then
|C] is the union of a trapezoid and an isosceles right triangle intersecting along a
line segment (see Fig. 5). The deformation rctract of M, given by Theorem 6.5, is
the union of CP? (the blowup of CP? at one point) and CP?, intersecting along the
exceptional divisor of CP2. We calculate, according to (6.6), bs = by = 2.

If we move the hyperplane (z,u3) = As beyond the point of intersection of (z,u2) =
Az and (z,u4) = Ag (in other words A3 < Ay + V2X4), then |C| becomes the
union of two isosceles right triangles meeting in a point (Fig. 6). Therefore the
deformation retract of M is now the union of two copies of CP? intersecting at a
point. Theorem 6.1 implies that the two varieties, i.c. CPe Ug CP?, where E = CP!
has self-intersection -1 in &;‘?, and CP? v CP? are homotopy equivalent.
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More generally we have (recall that an arrangement of hyperplanes is called simple
if no more than n of them have a nonempty intersection):

Corollary 6.13. Let a simple arrangement of hyperplanes (6.1) be given. Then the
homotopy type of the compact variety of Theorem 6.5(i) depends only on the vectors
Uk -

7. TORIC HYPERKAHLER MANIFOLDS FROM POLYTOPES.

In this section we shall discuss the toric hyperkahler manifolds corresponding to a
convex polytope A in R™. That is, we shall consider M (u, A) where u = (uq, ... ,uq),
A=(A1,...,Ad), A = (A}, 0,0) and A is the intersection of half-spaces

(7.1) (z,ug) > AL, (k=1,...,d).

as in §2. We shall always assume that A is simple, that is, there are precisely n
edges meeting at each vertex of A. In this sitvation we shall write Ma for M (u, A).
It is useful to observe that with this choice of Ag, a collection of flats Hy, intersect if
and only if the corresponding collection of hyperplancs H} intersect.

We shall be particularly interested in the relation between Ma and the Kahler toric
variety X a obtained by the construction of section 2. First of all we shall show
that the cotangent bundle of a toric manifold always carries a hyperkahler metric
(usually incomplete).

Theorem 7.1. Let Xa be a smooth compact toric variety corresponding to a
Delzant polytope A. Then T*Xa with its natural complex-symplectic structure is
T™-equivariantly isomorphic to an open subset Up of the (usually singular) space
(Ma, J1,wa +V—=1ws). If we identify Un with T* X, the hyperkihler metric of Ma
restricted to the zero section of T* X a is the Kihler metric on X determined by A.

Proof. Consider the open subset ¥ = C4 x C* of H* ~ C* x C?%, where C4 is given
by (2.10). Now Y is a hyperkihler T%-invariant submanifold of H* so in particular
is N-invariant, where N denotes the torus of (2.5). Moreover the action of N on Y
is free, because it is free on C4 . Therefore we can perform the hyperkéhler quotient
construction on Y and obtain a smooth manifold Ua which is an open subset of Ma.
Note that Up is preserved by the T™ action on Mx.

We want to identify Ua, the hyperkédhler quotient of Y by N, with the complex-
symplectic quotient of ¥ by NC (with respect to the complex structure .J).
For this we have to show that every N® orbit in the intersection of Y with
the zero-set of (3.3b) (where ¢ = ¢3 = 0) meets the zero-set of (3.3a). Let
(z,w) be in the zero-set of (3.3b), where z € C4. From the proof of Theo-
rem 5.1 we know that the image of the NC-orbit of (z,w) under (3.3a) is § =
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{E{i;z.—;éo} tict = 3 (0.0} Si0 €15 tiy 80 > 0}. We also know {Gu2] that the im-
age under (2.6) is the set {Z{‘.;z#o} tic; +c1; £ > O} and that for z € C4 this set

is open. However, since z € C%, this last set contains 0, so S contains 0.

We have shown that (Ua,J;) is the complex-symplectic quotient of ¥ by N,
and so is

{(z,w) € C*%; 8 _ (zpwp)oe = 0, z € C}
NC '

The equation on top simply says that the vector w € Ty C%4 annihilates the vertical
tangent vectors of the projection C§ — C4 /NC = Xa. This shows that (Ua,J;)
is biholomorphic to T* X . It is also clear that the symplectic forms are the same,
since the form ws + v/—Iws on T*C‘A is just Z dzr A dwy. The statement about the
metrics follows as in (iii) of Theorem 6.5. I

The metric on T* X is complete precisely when Up = Ma. However our next
result shows that this occurs only when X4 is the product of projective spaces.

Theorem 7.2. Let Xa be a smooth compact toric variety as in 7.1. Then the
following conditions are equivalent:
(i) Ua = Ma =T*Xp;
(ii) If some collection of hyperplanes containing (n — 1)-dimensional faces of A
do not meet in A, then they do not meet outside A,
(iii) Xa s the product of projective spaces.

Proof. Observe that (ii) is equivalent to requiring that all vertices (intersections of
n hyperplanes) lie in A. It is also clear from Theorem 6.5 or remark after Theorem
3.1 that (ii} is necessary for (i). Let us show that it is sufficient.

Without loss of generality we can assume that A contains 0 in its interior, so all the
A} must be negative. Now, u7'(0) can be written as the set of (z,w) satisfying

1 4 /1
bl = 3 (gt o) o
k=1

k=1

It follows that if (z,w) € u7'(0), then z lies in (u})~*(0) where p} is the moment
map (2.6) with a different choice of c. Hence z belongs to C4, where A’ is the
intersection of half-spaces (7.1) with A} of possibly larger absolute value (note that
(ii) implies that A’ is Delzant). Condition (ii) also shows that in fact z € C4.
Hence the hyperkihler quotient of H® by N is the same as the hyperkihler quotient
of Y = C4 x C? by N. The proof of Theorem 7.1 now shows that Ua = Ma.

The implication (iii) = (ii) is obvious. Let us now show the converse. As usual,
we denote by ug, the vectors defining A. We consider the fan F corresponding to
the polytope A and defined at the end of section 2. Condition (ii) implies that for
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any independent set of vectors {ug,, ... ,u, } the cone {3 tyu, : t; > 0} belongs to
F. Indeed, since the vectors are independent, the hyperplanes orthogonal to them
must intersect, so by (ii) they intersect in A.

From this two facts follow: 1) any vector in R® can be written uniquely as 3 ¢;ug,
with ¢; > 0 and uy,,...,ux, linearly independent; 2) if A’ is another Delzant poly-
tope, then there are no nontrivial equivariant birational morphisms Xao — Xa:. For
1) notice that if a vector could be written thus in two ways, then then the cones
spanned by the two sets of uz, would intersect in their interior, contradicting the
definition of the fan. For 2) we first recall [Od] that such a morphism corresponds
to removing a number of (n — 1)-dimensional walls in cones of the fan F of Xa to
obtain the fan F’ of X a:. Consider an n-dimensional cone ¢ in F’ that is not in F.
If o is a cone over a simplex, then the vectors generating ¢ are linearly independent
and we get a contradiction as o € F. If ¢ has more than n generating vectors,
then taking two independent n-element sets such that the cones spanned by them
have n-dimensional intersection we obtain a contradiction with the fact that the
intersection of two cones in F is a face of each of them.

We appeal now to Reid’s version [Re] of Mori’s theory for projective toric varieties
(see also the exposition in [Od]). We can conclude from fact 2) above, and Corollary
2.28(1) and Theorem 2.27(2) in [Od], that R® = )" V; where each V; is a vector space
of positive dimension and each 1-dimensional cone of F lies in some V;. Moreover,
each V; is spanned by the cones it contains. (In Oda’s terminology, the V; are the
spaces 7y (R) where R ranges over the extremal rays of NE(Xa)). We denote by
F; the restriction of F to V;, that is, the cones of F; are precisely the cones of
F contained in V;. Now Corollary 2.6 of [Re] shows that each F; is a fan of a
projective space of an appropriate dimension. It remains to show that the sum 3 V;
is direct. Suppose that the sum Vj + ... 4+ V, is direct and that V,,, intersects
@'; V; nontrivially. If v lies in the intersection, then, because of the definition of the
spaces V;, it can be written as Y t;ux, with t; > 0, ug, € @] Vi and also as 3 S5y,
with s; > 0, w; € Vi1, where the ug, and the u;; are linearly independent. By
fact 1) the two sets {ug,} and {w;} are equal and the vectors uy, must belong to
both €] V; and to V,41. The vector —uy, also belongs to both @] V; and to V4.
Moreover, since the fan F,,, is the fan of a projective space, —uk, belongs to the
open cone in F,; generated by all 1-dimensional cones of F,; except ug, and so
it can be written as their combination with all coefficients positive. Repeating the
previous argument with v = —uyg, shows that all 1-dimensional cones of F,; belong
to @7 Vi and so Vy41 C @7 Vi. In fact we have shown that any 1-dimensional cone
of F441 is a 1-dimensional cone of some F;, i« < s. However, each of these fans is the
fan of a projective space, and the only way that all generators of a fan of a projective
space can lie among generators of fans of other projective spaces lying in a direct
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sum of the relevant vector spaces is when F,; is equal to F;, for some 7 < s. Such
a repetition does not alter the conclusion that F is the fan of a product of projective
spaces. [J

We can also ask when Mjp is smooth. This is equivalent to asking whether the
hyperkihler metric on T* X can be smoothly completed. Delzant’s work shows
that the toric variety Xa obtained by the construction of section 2 is smooth if
and only if whenever n of the defining hyperplanes meet at a vertex of the simple
polytope A, the corresponding vectors u; form a Z-basis of Z". This condition is
not, however, sufficient for Ma to be smooth. Indeed, Theorem 3.2 requires that the
Delzant condition holds at any intersection of n hyperplanes even if the intersection
is outside A. In particular each of the varieties D, of Theorem 6.5 must be smooth.

Proposition 7.3. Let X be a smooth projective toric variely of complex dimension
n. Then the following statements are equivalent,

(i) X carries a T"-invariant Kahler metric such that, if & denotes the corre-
sponding Delzant polytope, then Mp is smooth.

(ii) every set of n independent generators u; of the fan of X is a Z-basis of £". O

Proof. The above discussion shows that (i) implies (ii). As X is projective and
toric it can be embedded equivariantly in projective space so admits a T"-invariant
Kahler metric, so can be obtained from the Delzant construction. As in Remark
3.4, by adjusting A; we can choose an invariant Kahler metric on X so that non+1
flats intersect. Condition (ii), together with the argument at the beginning of 3.2,
now shows that the condition of 3.2 holds, so Ma is smooth. I

Remark 7.4. On the other hand, every smooth projective toric variety carries a T"-
invariant Kahler metric such that Ma is an orbifold, i.e. the hyperkahler metric on
T*Xa can be completed with at most abelian quotient singularities. This follows
from Remark 3.4.

Condition (ii) of Proposition 7.3 is rather restrictive. Let us choose an n-
dimensional cone of ¥, which we can take to be generated by vectors e;, (1 =
1,...,n). Then any other generator u; of F must have coordinates in {—1,0,1}. In
particular the number of 1-dimensional cones of F is bounded by 3" — 2 (we exclude
the zero vector and e; + ...+ ¢,,) and so there only finitely many such varieties in
each dimension.

When n = 2, Proposition 7.3 quickly leads to a classification.

Proposition 7.5. Let X be a smooth compact toric variety of complex dimension
2 satisfying assumption (i) of Proposition 7.3. Then X is one of the following:
CP?%, CP! x CP!, the equivariant blow-up of one of these spaces at a point, or
the equivariant blow-up of CP* x CP! at two points not lying in the closure of a
1-dimensional orbet. 0O
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8. KAHLER POTENTIALS

Guillemin has derived a formula for the Kahler form of a toric variety in terms of
the associated polytope [Gul]. We shall now find an expression in terms of u, A for
the Kahler form, say w;, on the hyperkahler manifold M (u, A).

The Kéhler form w (and so the metric) of a Kahler manifold X is locally deter-
mined by a Kahler potential, a real-valued function K locally defined on X such
that 200K = w. In general, finding the Kahler potential of a hyperkihler manifold
is a complicated problem. It is simpler, however, if the hyperkahler metric on M
admits a description in terms of the Legendre transform [HKLR]. In hyperkdhler
geometry the term “Legendre transform” refers to the construction of the twistor
space of a hyperkidhler manifold via a complex symplectomorphism.

This construction has a particularly simple description when the 4n-dimensional
hyperkihler manifold M admits a free Hamiltonian action of an n-dimensional
abelian group G preserving the hyperkahler structure. Then M described as a
principal G-bundle over an open subset of R? ® R* where the projection is just the
moment map ¢ = (¢1, pa, #3) : M = R® ® R3. Since the group action preserves the
hyperkahler structure, the Kahler potential with respect to any complex structure
does not depend on the fiber coordinate. It is convenient to introduce the map
= (201,02 +V=1¢3) : M - R* x C*.

The following theorem holds (as in the rest of this paper, we are not using the

summation convention):

Theorem 8.1 [LR,HKLR]. In the above situation the Kihler potential for the
form wy on M 1is

. —~ OF
(8.1) K=n (F—gs,a—&)

where F = F(s;,v;,0;) 1s a real-valued function on R* x C* satisfying the linear
equations

(82) Fs"sj + Fviﬁj =0.
O

An equivalent characterization of F' is that it is given by a contour integral in an

auxiliary variable (:
1

1

where 77 : R* x C* — C*, is defined by 7; = v; — (s; — (?3;. Here H is the complex

F =Re

Hamiltonian used to construct the twistor space.
Our manifolds fall into this class of examples with G = T, provided we restrict
to an open dense subset.
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Example 8.2. Consider the open subset of H* on which the diagonal action of the
torus T is free. We have [LR,HKLR]

d
1
H('?l,--- 7"(1)() = ZZ"?ilH?)i

and
=
(8.3) F(s,v,0) = 1 Z (ri — siln(s; +13)),
i=1
where 72 = s? + 4v;0;. Here v;, s; are related to our standard coordinates z;, w; by

v; = zyw; and s; = |z|? — |w;|®. The Kihler potential is given by K = 3 3 ;.

We now want to calculate the Kahler potential for the form w; on our hyperkihler
quotient M = M(u, A) (or more precisely on the open dense subset where T acts
freely). Our metric was given as the hyperkéhler quotient of the metric of Example
8.2 by some subtorus of T9. In the coordinates s;,v;, the equations definining the
zero-set of the moment map (3.3) become linear:

d
(848.) Z Sk + 2Ak o =0,
k=1

(84b) (v + /\,23 + v -—-1/\2)0% =0.

Mn.

x>
il

1

The function F given by (8.3) restricts to the flats defined by (8.4), and gives the
Kéihler potential on M via formula (8.1) [HKLR, section 2(C)]. Therefore all that
remains to be done is to express this restricted function in terms of the coordinates
(a,b) = (p1(m), ($2 + v/ —1¢3)(m)), where (¢1, $2, ¢3) is the hyperkdhler moment
map for the action of T" on M.

Let m € M, and suppose that the image of m in R? x C? is a point (s,v) satisfying
(8.4). Using (3.6) we obtain:

(8.5) sk = 2(a, up) — 2%, vp = (b, ux) — A} — V-1A3

and so we have the function F for (M,w;). We calculate the Kahler potential
according to (8.1) and obtain

n n d OF 881; n d OF
F— 20.,—: —i=1§ai£3_ai=F 2;;0,8—‘%

d aF 1

— 1 — . 1
_F-‘kzﬂ(Sk+2/\k)6—Sk = Z (“\?+2/\k 111(3};+7'k)),

M-
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where at the last step we use the equation

oF 1 d Sk Sk Sk 1
— == L - 1+2E))1=-2Y"1 .
Bsk 4 — (Tk n(Sk + Tk) S+ T ( + T‘k)) 4 Z n(Sk + Tk)

This gives the next theorem, in which 7 : M — R* x C" is the projection defined
above, and 0, is the Dolbeault operator corresponding to the complex structure J;.

Theorem 8.3. On the open dense subset where the action of T™ 1s free, the Kdhler
form wy on the toric hyperkdhler manifold M = M (u, A) is given by:

d
(8.6) wy = \/;—16151#* (Z (ri + 2Xg In(sk + rk))) ,

k=1
where sy and vg are given by (8.5) and 2 = 52 + dvuv,. O

In the situation of Theorem 7.1, restricting (8.6) to Ua and then to Xa, that is,
the subset of Ua where v = ... = v4 = 0, gives the formula of Guillemin [Gul] for
the Kahler form of the toric variety Xa.

9. THE METRIC AND GENERALIZED MONOQOPOLES

Pedersen and Poon [PP] have given an explicit formula for the metric of a hy-
perkahler 4n-manifold M with a free action of T preserving the hyperkahler struc-
ture. Using the coordinate system a;,b;, they find that if F' is the function of
Theorem 8.1 for M, then by putting

(9.1) (®i5, 4;) = (2Fa,.aj, Z V=1(Fyp,db - F, j, di‘),))
i

we obtain a solution to the generalized Bogomolny equations with gauge group 7.
We call such a solution a monopole. More precisely, we can define a pair (A, ®) by
putting A = (A1,...,4,) and ® = (Pq,...,D,,) where &; = (D;1,...,P;,). Then
A is a 1-form on R® ® R® with values in R® and ®; are Higgs fields R ® R® — R".
If we put wjl- = a;, w}’ = Re b;, wf- = Im b;, then (A, ®) satisfy the linear system of
PDEs

Rw?w? = Zeﬂﬁ’)‘vw;’ P
8

Vw?@j = ng(I),' ,

(9.2)

where € is the alternating symbol, V = d+ A is a connection on the trivial R™ bundle
over R® ® R™ and R is its curvature.
The hyperkahler metric ¢ on M is given by



28 ROGER BIELAWSKI & ANDREW S. DANCER

(9.3) g=—Y_ [®i(daida; + dbidb;) + @7} (dy; + A:)(dy; + 4;)] ,
1,7
where dy; = V/=1(0,F,, — &, F,,) are the fiber coordinates given by Killing vector
fields corresponding to the action of T™.
We shall now find the monopole corresponding to the metric on the toric
hyperkahler manifold M = M(u,A). We have to calculate partial derivatives
Faia;y Fagbys Foip, where F is given by (8.3) and (8.5). We have

d d
BF 3Sk 1
(9.4) Fy, = Z E Ba. = —3 Z In(sg + ) (ug)i,
k=1 k=1
and then
d G 4 Iok Zd: 'Urk) Uk )i
(9.5) Foo, = - Z 98; % (ug); j
’ k=1 Sk + Tk k=1
1 d %h d k(u (1
9.6 Fop = —= i k) (1 );
( ) a:b; 2 ; S +r ; Sk -+ Tk)Tk
and
(9 7) i ?Lk)J uk),
’ (s +Te)TE

This gives us the monopole and therefore the following explicit formula for the metric
on M in terms of the moment map.

Theorem 9.1. On the open dense subset where the action of T™ is free, the hy-
perkdhler metric g on M is gwen by (9.3), where

(B35, A4;) ( 22 uk)J(Uk \/_ZZ (ux); T.Lk:)l (v (lgz—ﬁkdbz))

=1 k=1 (5k+7k)7‘k

and Biy- are infinitesimal isometries given by
J

‘/_

dy; = (8y - 81)lel(sk + 75 ) (g )i
k=1

O

Once more, in the situation of Theorem 7.1 restricting to »;, = 0 gives a formula
for the Kahler metric on the toric variety Xa:

g=- Z [@;jda;daj + (I);jldyidyj] .
i.J
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APPENDIX: COHOMOLOGY OF VARIETIES WITH
AN EQUIVARIANT TORIC DECOMPOSITION.

Let X be a compact complex variety. We say that X admits an equivariant toric
decomposition if X is a union of compact toric varieties Xy, ..., X,, such that, for
any I C {1,...,s}, the intersection (;c; X; is an invariant toric subvariety of each
X;, 1 € I. In other words X is the support of a complex of toric varieties. We shall
assume that all the X; come from the Delzant construction.

We can associate to a variety X with such a decomposition a polytopal complex

C(X) in some Euclidean space R" as follows. For each I C {1,...,s} we define
a polytope Ay, isometric to a polytope determining miel X;, in such a way that
Ar={Nier Agiy-
What matters here is that the natural map ¢ : X — |C{X)| maps closures of orbits
in X to elements of C in a one-to-one fashion. Conversely, to any polytopal complex
C we can associate a compact complex variety X (C) admitting an equivariant toric
decomposition.

An example of such an X is the deformation retract of M (u,A) produced in
Theorem 6.5 (i). Theorem 6.7 therefore follows immediately from the next theorem.

Theorem 10.1. Let X be a compact complex variety admatting an equivariant toric
decomposition into toric orbifolds such that the associated polyhedral complex C(X)
is star-collapsible. Then the Poincaré polynomial Px(t) = Y, dim H*(X,Q)t* of X
18

(10.1) Px(t) = Zn:dk(tz — 1)k,
k=0

where d; denotes the number of i-dimensional elements of the complex C(X).

Remarks. (i) The Betti numbers of X are then given by (6.6).

(ii) Once more, if X has a decomposition into toric manifolds, then the integer
cohomology has no torsion.

(iii) Without the assumption of star-collapsibility Theorem 10.1 may fail; for
example, consider the union of three copies of CP? joined together so as to form a
ring. Observe that this particular example will not arise as the deformation retract
of one of our toric hyperkahler manifolds.

As a first step in the proof of 10.1, we let § = Cy € ... € C, = C(X) be the
filtration given by Definition 6.4 and let @ = Z, C ... C Z, = X be the filtration of
X by closed subvarieties defined by

(10.2) Z; = ¢ ([Cil),

where ¢ : X — |C(X)| is the natural map. Then Z; — Zi-1 =
¢~ (A; — |ast(zi; C(A;))]) for some A; € C; and z; € A;.
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Lemma 10.2. LetY be a compact toric Kahler orbifold with an associated moment
map ¢ onto a polytope A in R*. If x is a vertex of A, then ¢~ (A — |ast(z; A)]) is
biholomorphic to C* /T for some finite group T'.

Proof. In the terminology of fans ¢~1(A—|ast(z; A)|) is a toric variety corresponding
to a maximal cone. As A is simple this cone is simplicial and the result follows from
[Fu;p.34]. O

We can now apply the following result.

Lemma 10.3. Let X be a compact complex variety admitting a filtration by closed
subvarieties 8 = Zy C ... C Z, = X such that, for any i <7, Z; — Z;_, is homeo-
morphic to C™ /T; for some integer m; and some finite group I'; acting linearly on
C™i. Then dim HY(X,Q) = #{i : dimgr(Z; — Z;—1) = q}. Furthermore, if each T;
is trivial, then the integer cohomology of X has no torsion.

Proof. For any ¢, we have the long exact sequence
.= Hq_l(Z,'_l) - Hg(Z, —Zi1) = HYZ,)) > HY(Z;—1) > ...,

where the cohomology can be taken over the rationals or integers.

Now, HI(C™ /T;,Q) is 0 if ¢ # 2m; and is Q if ¢ = 2m; (to see this consider the
above long exact sequence with Z; replaced by the cone ([0, 1] x (S2™~1/T,))/({0} x
(S?™=1/T,)) and Z;_, replaced by the lens space S¥™~1/T';). Observe also that
Z1, being closed, is a single point. It follows, by induction, that the odd cohomology
of each Z; vanishes and hence the sequence splits off at each even level. Again by
induction, we can show the formula for the cven Betti numbers. If T'; is trivial,
then our statement about HZ(C™: /T;) is true with Z replacing Q, which proves the

second assertion of the lemma. O

Example 10.4. Let X be a compact toric Kahler orbifold with an associated mo-
ment map ¢ onto a polytope A in R”. Let T be a dense 1-parameter subgroup of
the torus T™ and let ¢ be the induced moment map for the action of T'. The only
critical points of ¢ are the fixed points z1,...,z, of T™. Moreover, if W; is the set
of points whose path of steepest descent for ¢r ends up in z;, then W; = C™ /T,
and (after renumbering of the z;) the filtration given by Z; = Wy U. .. UW; satisfies
the conditions of Lemma 10.3. This is an example of the plus decomposition of
Bialynicki-Birula [BB] [Ki2].

Lemma 10.2 shows that if X satisfies the hypotheses of 10.1 then it has a filtration
of the kind considered in 10.3. We can now finish the proof of Theorem 10.1 by
induction on the length r of the filtration of X. As remarked above, Z; is a point.
Moreover, each Z; is a variety with an equivariant toric decomposition, since it is a
union of orbits of tori and it is closed. Therefore we can assume that the statement



TORIC HYPERKAHLER MANIFOLDS 31

holds for Z,_;. Let Z, — Z,_y = ¢~ (A ~ |ast(z; A)|) and let dimA = m. By
lemmas 10.2 and 10.3, by(Z,) = bq(Z,—1) for q # 2m and b2, (2, ) = bam(Zr-1) + 1.
On the other hand, the number dj of k-dimensional faces of C(Z,) satisfies d}, =

dz_l + (TZ’) Hence

idi(tz _ 1)k - idz—l(tz _ 1)k + i (T) (t2 _ l)k — id{,'l(tz _ 1)k +t2m,
k=0 k=0

k=0 k=0

which proves the formula for the Poincaré polynomial of Z,,. O

Finally let us prove Proposition 6.10. If n = 1 the polytopal complex C corre-
sponding to a simple arrangement of hyperplanes consists of a finite union of inter-
vals in R, so it is clear that C is star-collapsible. For n = 2, since C has contractible
support in this case, the result follows from the next proposition.

Proposition 10.5. Let C be the polytopal compler corresponding to a simple ar-
rangement of lines in R? and let C' be a subcomplex of C with contractible support.

Then C' is star-collapsible.

Proof. The statement will follow if we can show that any such C’ has a free vertex,
that is, a vertex belonging to only one maximal element of C’. For we can then
take this vertex to be z, and the maximal elemnent containing it to be A,. Then
! _1 = (C'=C(A,))Uast(z,; A,) is still a subcomplex of C with contractible support.
By repeating we can obtain the desired filtration.
Suppose that C' does not have a free vertex. This in particular implies that each
vertex belongs to at least two edges. Therefore, if we walk along |C’|, choosing at
each vertex the rightmost edge different from the one that we arrived on, we will
never stop. We can start the walk at a vertex of the convex hull of |C’|, and choose
the initial step to be rightwards, viewed from the outside of [C'|.

Since the number of vertices is finite we must make a loop during our walk, i.e.
there will be a sequence of vertices zy,...,Z,, y4+1 = 1. Let L be a minimal loop,
ie. for 1 <i< j<n,z # ;. Since |C'| is contractible, the interior of L must
be in [C’| and so every vertex x; of L is a vertex of a 2-dimensional element of C’.
Now, let zp, p # 1, be a vertex of L at which the loop turns to the left. i.e. the
angle between the incoming and outgoing edge is positive. Such a point exists since
we get back to ;. Suppose that z, belongs to two maximal elements. Then, since
|C’| lies to the left of L near z, (as we always chose the right-most edge during our
walk), there must be three lines meecting at x, which contradicts the simplicity of
the line arrangement. O
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