THE GEOMETRY AND TOPOLOGY OF TORIC HYPERKÄHLER MANIFOLDS

Roger Bielawski and Andrew S. Dancer

Department of Mathematics	Max-Planck-Institut
McMaster University	für Mathematik
Hamilton	Gottfried-Claren-Str. 26
Ontario L8S 4KI	53225 Bonn
Canada	Germany

THE GEOMETRY AND TOPOLOGY OF TORIC HYPERKÄHLER MANIFOLDS

Roger Bielawski \& Andrew S. Dancer ${ }^{1}$

Abstract

We study hyperkähler manifolds that can be obtained as hyperkähler quotients of flat quaternionic space by tori, and in particular, their relation to toric varieties and Delzant polytopes. When smooth, these hyperkähler quotients are complete. We also show that for smooth projective toric varieties X the cotangent bundle of X carries a hyperkähler metric, which is complete only if X is a product of projective spaces. We identify the homotopy type of our hyperkähler manifolds as that of a union of compact toric varieties intersecting along toric subvarieties. We give explicit formulas for the hyperkähler metric and its Kähler potential.

A $4 n$-dimensional manifold is hyperkähler if it possesses a Riemannian metric g which is Kähler with respect to three complex structures J_{1}, J_{2}, J_{3} satisfying the quaternionic relations $J_{1} J_{2}=-J_{2} J_{1}=J_{3}$ etc. To date the most powerful technique for constructing such manifolds is the hyperkähler quotient method of Hitchin, Karlhede, Lindström and Roček [HKLR]. The power of this method lies in the fact that a flat hyperkähler space may have highly nontrivial quotients.

In this paper we shall make a detailed study of a class of hyperkähler quotients of flat quaternionic space \mathbb{H}^{d} by subtori of T^{d}. The geometry of these spaces turns out to be closely connected with the theory of toric varieties, that is, varieties of complex dimension n admitting an action of $\left(\mathbb{C}^{*}\right)^{n}$ with an open dense orbit. The toric varieties we shall be concerned with have a Kähler metric preserved by the action of $T^{n} \leq\left(\mathbb{C}^{*}\right)^{n}$.

If $4 n$ is the dimension of our hyperkähler quotient there is an isometric action of T^{n} which is holomorphic with respect to all the complex structures. We shall refer to our manifolds as toric hyperkähler manifolds (cf. [Go1]).

We shall study various topological and metric properties of toric hyperkähler manifolds. First we give necessary and sufficient conditions for a hyperkähler quotient M of quaternionic space by our torus actions to be smooth (Theorem 3.2) or an orbifold (Theorem 3.3). When smooth, M is complete as a Riemannian manifold. We show that the hyperkähler moment map ϕ for the induced torus action on M is a fiber connected surjection onto $\mathbb{R}^{3 n}$ (this can be viewed as an analogue of the

[^0]convexity theorem for compact toric varieties). We also explain how to read off the singular orbits and fixed points of the T^{n} action from the image of ϕ (Theorem 3.1).

Our discussion is influenced by the work of Delzant [De] and Guillemin [Gu1],[Gu2], who have shown that a large class of toric varieties can be obtained as Kähler quotients of \mathbb{C}^{d} by subtori of T^{d}. A guiding principle of our work is that, while a compact Kähler toric variety is determined by a convex polytope, a complete toric hyperkähler orbifold is determined by an arrangement of hyperplanes.

In section 4 we discuss how the existence of a large family of compact 3-Sasakian manifolds found by Boyer, Galicki and Mann [BGM 1,3] can be read off from our results.

In section 5 we show that the generic complex structure of a toric hyperkähler orbifold is that of an affine variety (Theorem 5.1). In section 6 we discuss the topology of toric hyperkähler orbifolds M. We show that it depends only the torus used to obtain M and not on the moment map (Theorem 6.1). We identify the homotopy type of toric hyperkähler orbifolds as that of a union of finitely many toric varieties intersecting along toric subvarieties (Theorem 6.5). These two results yield homotopy equivalences between certain projective varieties (Corollary 6.13). We give a formula for the Betti numbers for a class of toric hyperkähler orbifolds in terms of the Newton polytopes of these varieties.

If X is a toric variety arising from Delzant's construction, we show in section 7 that the cotangent bundle $T^{*} X$ carries a natural hyperkähler metric whose restriction to the zero section is the Kähler metric on X. This hyperkähler metric is complete only when X is a product of projective spaces. We also discuss when the metric on $T^{*} X$ can be smoothly completed.

The last two sections deal with the Kähler geometry of our manifolds. We give an explicit formula for the Kähler form (Theorem 8.3), generalizing the formula of Guillemin [Gu1] for compact toric varieties. We also give an explicit description of the Riemannian metric (Theorem 9.1), which corresponds to finding a solution of generalized Bogomolny equations of Pedersen and Poon [PP].

Finally, in the Appendix, we show that the Betti numbers of a certain class of spaces admitting a decomposition into a union of toric varieties admit a description not much more complicated than that of toric varieties. Many of our toric hyperkähler orbifolds are topologically equivalent to such spaces.

Let us remark here that a particular class of our manifolds was studied by Goto [Go1] (see Remark 3.6). Even for this class our point of view is different from Goto's as we particularly stress the relation with algebraic toric varieties. There is also some relation with the work of Nakajima [Na] (see Remark 3.6).

1. Moment maps, Kähler and hyperkähler quotients

Let ($M^{2 n}, \omega$) be a symplectic manifold and suppose that ω is invariant under an action of a Lie group G. An equivariant $\operatorname{map} \mu$ from M to the dual of the Lie algebra of G is called a moment map if it satisfies

$$
\begin{equation*}
\langle d \mu(v), \rho\rangle=\omega\left(X_{\rho}, v\right) \tag{1.1}
\end{equation*}
$$

where $v \in T M, \rho \in \mathfrak{g}$ and X_{ρ} is the corresponding Hamiltonian vector field. If μ exists, we say the action on M is Hamiltonian. Condition (1.1) and the equivariance requirement determine μ up to addition of a constant in the center of \mathfrak{g}^{*}. If the action of G on $\mu^{-1}(0)$ has finite stabilizers then 0 is a regular value and $\mu^{-1}(0)$ is smooth. If furthermore the action of G on $\mu^{-1}(0)$ is free and G is compact, then $\mu^{-1}(0) / G$ is a smooth symplectic manifold. If M is Kähler, so is the quotient $\mu^{-1}(0) / G$. Moreover, if G is compact and the Kähler metric on M is complete, then the quotient metric is also complete. If we assume that the action of G extends to an action of the complexified group $G^{\mathbf{C}}$, then a theorem of Kirwan [Ki1] says that the symplectic quotient $\mu^{-1}(0) / G$ coincides with the quotient $M^{\text {min }} / G^{\mathbb{C}}$. Here $M^{\text {min }}$ is the open set of points in M whose paths of steepest descent under the function $\|\mu\|^{2}$ have limit points in $\mu^{-1}(0)$, the norm being given by a biinvariant inner product on g.

A modification of the Kähler quotient construction applies to hyperkähler manifolds and was developed in [HKLR]. In this case each complex structure J_{i} gives a Kähler form ω_{i} and, in many cases, a moment map μ_{i}. If our group G is compact and acts freely on the common zero set of these moment maps, then the quotient by G of this zero set is a hyperkähler manifold. This can be seen by considering $\omega=\omega_{2}+\sqrt{-1} \omega_{3}$ which is a holomorphic-symplectic form with respect to the complex structure J_{1}. Similarily the map $\mu_{+}=\mu_{2}+\sqrt{-1} \mu_{3}$ is holomorphic with respect to J_{1} (it is actually the moment map corresponding to the action of $G^{\mathbf{C}}$ and the form ω) and so the zero set of μ_{+}is Kähler. The hyperkähler quotient is the Kähler quotient of $\mu_{+}^{-1}(0)$ by G. Once more, if G is compact and M is complete, then the hyperkähler quotient is complete.

2. Toric varieties

In this section we shall give a quick overview of Kähler quotients of \mathbb{C}^{d} by tori and in particular of Delzant's construction of certain toric varieties from polytopes [De]. We follow the exposition of Guillemin [Gu1],[Gu2].
The real torus $T^{d}=\left\{\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{C}^{d}:\left|t_{i}\right|=1\right\}$ acts diagonally on \mathbb{C}^{d} preserving the flat Kähler metric whose Kähler form is

$$
\begin{equation*}
\frac{\sqrt{-1}}{2} \sum_{k=1}^{d} d z_{k} \wedge d \bar{z}_{k} \tag{2.1}
\end{equation*}
$$

The moment map for this action is

$$
\begin{equation*}
\mu(z)=\frac{1}{2} \sum_{k=1}^{d}\left|z_{k}\right|^{2} e_{k}+c \tag{2.2}
\end{equation*}
$$

where the $e_{\boldsymbol{i}}$ are the standard basis vectors of $\mathbb{R}^{\boldsymbol{d}}$ and c is an arbitrary constant in $\mathbb{R}^{\boldsymbol{d}}$. If N is a subtorus of T^{d} whose Lie algebra $\mathfrak{n} \subset \mathbb{R}^{d}$ is generated by rational vectors, then we can perform the Kähler quotient construction with respect to N. Such a subtorus is determined by a collection of nonzero vectors $\left\{u_{1}, \ldots, u_{d}\right\}$ (which we shall always take to be primitive) generating \mathbb{Z}^{n}. For then we obtain exact sequences of vector spaces

$$
\begin{align*}
& 0 \longrightarrow \mathbb{Z} \mathbb{R}^{d} \xrightarrow{\beta} \mathbb{R}^{n} \longrightarrow 0 \tag{2.3}\\
& 0 \longrightarrow \mathbb{R}^{n} \xrightarrow{\beta^{*}} \mathbb{R}^{d} \longrightarrow \mathfrak{i}^{*} \tag{2.4}\\
& n^{*} \longrightarrow 0
\end{align*}
$$

where the map β sends e_{i} to u_{i}. There is a corresponding exact sequence of groups

$$
\begin{equation*}
1 \rightarrow N \rightarrow T^{d} \rightarrow T^{n} \rightarrow 1 \tag{2.5}
\end{equation*}
$$

In order to obtain a smooth Kähler quotient one has to make certain assumptions on N. We will not discuss these in full generality (but see below for the case when the u_{i} come from a polytope). In the next section we shall give necessary and sufficient conditions for the corresponding hyperkähler quotient to be smooth.

The torus N acts on \mathbb{C}^{d} preserving the Kähler form (2.1), and the moment map for N is, from (2.2),

$$
\begin{equation*}
\mu(z)=\frac{1}{2} \sum_{k=1}^{d}\left|z_{k}\right|^{2} \alpha_{k}+c, \tag{2.6}
\end{equation*}
$$

where $\alpha_{k}=\imath^{*}\left(e_{k}\right)$. The constant c is of the form

$$
\begin{equation*}
c=\sum_{k=1}^{d} \lambda_{k} \alpha_{k} \tag{2.7}
\end{equation*}
$$

for some scalars $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$. If 0 is a regular value of the moment map (2.6), we obtain a smooth Kähler quotient $X=\mu^{-1}(0) / N$ which is a toric variety. The torus $T^{n}=T^{d} / N$ of (2.5) acts on X in a Hamiltonian fashion and, when X is compact, the image of the induced moment map $X \rightarrow \mathbb{R}^{n}$ is a convex polytope Δ called the Delzant polytope of X. (Note that its vertices are not required to lie on an integer lattice and in this respect the Delzant polytope differs from the Newton polytope of algebraic toric varieties).

In fact, Delzant [De] has shown that this construction produces all compact connected symplectic manifolds of dimension $2 n$ with an effective Hamiltonian action of T^{n}. We first observe that if X is such a manifold then the image of the moment map for the torus action is a convex polytope Δ in \mathbb{R}^{n}. Delzant proves that there are precisely n edges meeting at each vertex of Δ (that is, Δ is simple), and that the directions of these n edges are given by a \mathbb{Z}-basis of \mathbb{Z}^{n}. Now Δ is defined by a system of inequalities of the form

$$
\begin{equation*}
\left\langle x, u_{i}\right\rangle \geq \lambda_{i}, \quad(i=1, \ldots, d) \tag{2.8}
\end{equation*}
$$

where u_{i} is the inward-pointing normal vector to the i-th ($n-1$)-dimensional face of Δ, and d is the number of $(n-1)$-dimensional faces. We can now consider the Kähler quotient construction, described above, where the vectors u_{i} and the scalars λ_{i} are the ones occuring in (2.8). It turns out that X is just the resulting Kähler quotient, so is in fact a toric variety with a Kähler metric preserved by $T^{n} \leq\left(\mathbb{C}^{*}\right)^{n}$. This action is just the original torus action given on X. Conversely, any smooth compact toric variety with a Kähler metric invariant under $T^{n} \leq\left(\mathbb{C}^{*}\right)^{n}$ is simplyconnected [Fu]. The T^{n} action is therefore Hamiltonian and the toric variety comes from Delzant's construction.

The Kähler quotient $X=\mu^{-1}(0) / N$ can be identified as follows with the quotient of an open subset $\left(\mathbb{C}^{d}\right)^{\min }$ of \mathbb{C}^{d} by the complexified torus $N^{\mathbb{C}}$. Every orbit in \mathbb{C}^{d} of the complexified torus $\left(T^{d}\right)^{\mathbf{C}}$ is of the form

$$
\begin{equation*}
\mathbb{C}_{I}^{d}=\left\{\left(z_{1}, \ldots, z_{d}\right): z_{i}=0 \text { iff } i \notin I\right\} \tag{2.9}
\end{equation*}
$$

for some multi-index $I=\left(i_{1}, \ldots, i_{r}\right), 1 \leq i_{1}<\ldots<i_{r} \leq d$ (we allow $r=0$). If F is a face of Δ of codimension r, then F is defined by replacing the inequalities of (2.8) by equalities for i belonging to the complement of some multi-index I of length $d-r$. If we let $\mathbb{C}_{F}^{d}=\mathbb{C}_{I}^{d}$ then the set

$$
\begin{equation*}
\mathbb{C}_{\Delta}^{d}=\bigcup_{F} \mathbb{C}_{F}^{d} \tag{2.10}
\end{equation*}
$$

is open and equal to $\left(\mathbb{C}^{d}\right)^{\min }$, so X is biholomorphic to $\mathbb{C}_{\Delta}^{d} / N^{\mathbf{C}}$. (Note that to be consistent with the notation later in this paper our definition of \mathbb{C}_{I}^{d} is dual to that of Guillemin [Gu1],[Gu2]).

Example 2.1. Consider the following $n+1$ vectors in $\mathbb{R}^{n}: u_{i}=e_{i}, 1 \leq i \leq n$, and $u_{n+1}=-\left(e_{1}+\ldots+e_{n}\right)$. For any negative scalars $\lambda_{1}, \ldots, \lambda_{n+1}$, the polytope Δ defined by (2.8) is similar to the standard simplex in \mathbb{R}^{n} (see Fig. 1 for $n=2$). Here $\mathbb{C}_{\Delta}^{d}=\mathbb{C}^{n+1}-\{0\}$ and $N^{\mathbf{C}}$ is the diagonal \mathbb{C}^{*}, so X is $\mathbb{C} P^{n}$.

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 5.

Fig. 4.

Example 2.2. In this example the vectors u_{i} are not determined by a polytope. We take $u_{1}=-e_{1}, u_{2}=u_{3}=e_{1}$ in \mathbb{R} and $\lambda_{1}=-1, \lambda_{2}=\frac{1}{2}$ and $\lambda_{3}=0$. This time \mathfrak{n} is spanned by $(1,1,0)$ and $(1,0,1)$ and the zero set of the moment map (2.6) is described by the equations: $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1,-\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1$. In this case $\left(\mathbb{C}^{d}\right)^{\min }=\left(\mathbb{C}^{2}-\{0\}\right) \times \mathbb{C}^{*}$ and X is $\mathbb{C} P^{1}$.

This last example becomes highly nontrivial in the hyperkähler setting.
Let us notice that, if we fix u_{1}, \ldots, u_{d}, the resulting variety still depends on the choice of the moment map, that is, on the scalars $\lambda_{1}, \ldots, \lambda_{d}$. In particular the topology of the quotient will change when we pass through a critical value c, where c is given by (2.7). The change in topology corresponds to a proper birational morphism of the toric varieties ([Od,Gu1]).

Example 2.3. Consider the vectors $u_{1}=e_{1}, u_{2}=e_{2}, u_{3}=-e_{1}, u_{4}=-e_{1}-e_{2}$ in \mathbb{R}^{2} (see Fig.2). If $\lambda_{3}>\lambda_{2}+\sqrt{2} \lambda_{4}$, then the polytope Δ is a trapezoid and the corresponding surface X is $\mathbb{P}(O \oplus O(1))$, the (equivariant) blow-up of $\mathbb{C} P^{2}$ at one point [Au]. If, however, $\lambda_{3}<\lambda_{2}+\sqrt{2} \lambda_{4}$, then Δ is just an isosceles right triangle, and so, by Example 2.1, X is $\mathbb{C} P^{2}$.

Example 2.4. In the previous example, let us instead take $u_{4}=-a e_{1}-e_{2}$ for some positive integer a. This time, for sufficiently large λ_{3}, the corresponding surface is the Hirzebruch surface $\mathbb{P}(O \oplus O(a))$. Moving the line orthogonal to u_{3} beyond the intersection point of lines orthogonal to u_{2} and u_{4} corresponds to blowing down the divisor D with $D \cdot D=-a$. The blown-down surface is the weighted projective space $\mathbb{C} P^{2}(1,1, a)$, which is nonsingular only for $a=1$.

A toric variety is also determined by a fan \mathcal{F}, that is, a collection of rational strongly convex polyhedral cones in \mathbb{R}^{n} such that each face of a cone in \mathcal{F} is also a cone in \mathcal{F} and the intersection of two cones in \mathcal{F} is a face of each [Fu]. A convex polytope Δ described by (2.8) determines a fan \mathcal{F} as follows: the cone $\left\{\sum_{i \in I} t_{i} u_{i}\right.$: $\left.t_{i} \geq 0\right\}$ belongs to \mathcal{F} if and only if the ($n-1$)-dimensional faces of Δ corresponding to $u_{i}, i \in I$, meet in Δ. The passage from a polytope to the fan is equivalent to forgetting the Kähler metric of X.

3. TORIC HYPERKÄHLER MANIFOLDS

We shall now discuss hyperkähler quotients of \mathbb{H}^{d} by subtori of T^{d}.
The quaternionic vector space \mathbb{H}^{d} is a flat hyperkähler manifold with complex structures J_{1}, J_{2}, J_{3} given by right multiplication by i, j, k. The real torus T^{d} acts on \mathbb{H}^{d} by left diagonal multiplication, preserving the hyperkähler structure. If we choose one complex structure, say J_{2}, and identify \mathbb{H}^{d} with $\mathbb{C}^{d} \times \mathbb{C}^{d}$, then the action can
be written as

$$
\begin{equation*}
t \cdot(z, w)=\left(t \cdot z, t^{-1} \cdot w\right) \tag{3.1}
\end{equation*}
$$

On the other hand, taking the complex structure J_{1} identifies \mathbb{H}^{d} with $T^{*} \mathbb{C}^{d}$, with the natural torus action induced from that on \mathbb{C}^{d}.

The three moment maps $\mu_{1}, \mu_{2}, \mu_{3}$ corresponding to the complex structures can be written as

$$
\begin{equation*}
\mu_{1}(z, w)=\frac{1}{2} \sum_{k=1}^{d}\left(\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}\right) e_{k}+c_{1} \tag{3.2a}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mu_{2}+\sqrt{-1} \mu_{3}\right)(z, w)=\sum_{k=1}^{d}\left(z_{k} w_{k}\right) e_{k}+c_{2}+\sqrt{-1} c_{3} \tag{3.2~b}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3} are arbitrary constant vectors in \mathbb{R}^{d}. Notice, that unlike in the Kähler case, the hyperkähler moment map $\left(\mu_{1}, \mu_{2}, \mu_{3}\right)$ is surjective for any choice of c_{1}, c_{2}, c_{3}, and in fact gives a homeomorphism $\mathbb{H}^{d} / T^{d} \rightarrow \mathbb{R}^{3 d}$.

Now, let $u_{i}(i=1, \ldots, d)$, define a subtorus N of T^{d} by (2.3) and (2.5). As before we assume that the vectors u_{i} generate \mathbb{Z}^{n}. The moment maps for the action of N are (cf. (2.6))

$$
\begin{equation*}
\mu_{1}(z, w)=\frac{1}{2} \sum_{k=1}^{d}\left(\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}\right) \alpha_{k}+c_{1} \tag{3.3a}
\end{equation*}
$$

$$
\begin{equation*}
\left(\mu_{2}+\sqrt{-1} \mu_{3}\right)(z, w)=\sum_{k=1}^{d}\left(z_{k} w_{k}\right) \alpha_{k}+c_{2}+\sqrt{-1} c_{3} \tag{3.3b}
\end{equation*}
$$

The constants c_{j} are of the form

$$
\begin{equation*}
c_{j}=\sum_{k=1}^{d} \lambda_{k}^{j} \alpha_{k}, \quad(j=1,2,3) \tag{3.3c}
\end{equation*}
$$

where $\lambda_{k}^{j} \in \mathbb{R}$. We shall adopt the notation

$$
\lambda_{k}=\left(\lambda_{k}^{1}, \lambda_{k}^{2}, \lambda_{k}^{3}\right), \quad(k=1, \ldots, d)
$$

We shall denote the hyperkähler quotient $\mu^{-1}(0) / N$ corresponding to $\underline{u}=$ $\left(u_{1}, \ldots, u_{d}\right)$ and $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ by $M(\underline{u}, \underline{\lambda})$, or sometimes just M. It is a hyperkähler stratified manifold [DS].

It will be important to consider the hyperplanes in \mathbb{R}^{n}

$$
\begin{equation*}
H_{k}^{j}=\left\{y \in \mathbb{R}^{n} ;\left\langle y, u_{k}\right\rangle=\lambda_{k}^{j}\right\}, \quad(j=1,2,3, \quad k=1, \ldots, d) \tag{3.4}
\end{equation*}
$$

and the codimension 3 flats (affine subspaces) in $\mathbb{R}^{3 n}$

$$
\begin{equation*}
H_{k}=H_{k}^{1} \times H_{k}^{2} \times H_{k}^{3} . \tag{3.5}
\end{equation*}
$$

It is these flats, rather than the intersection of half-spaces as for toric varieties, that determine the structure of toric hyperkähler manifolds.

The action of $T^{n}=T^{d} / N$ on $M(\underline{u}, \underline{\lambda})$ preserves the hyperkähler structure and gives rise to a hyperkähler moment map $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$. The following result describes its essential properties.

Theorem 3.1. Let u_{1}, \ldots, u_{d} span \mathbb{Z}^{n} and let $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{R}^{3}$. Then:
(i) The hyperkähler moment map $\phi: M \rightarrow \mathbb{R}^{3 n}$ for the action of T^{n} defines a homeomorphism $M / T^{n} \rightarrow \mathbb{R}^{3 n}$.
(ii) If $x \in \mathbb{R}^{3 n}$, then the Lie algebra of the T^{n}-stabiliser of a point in $\phi^{-1}(x)$ is spanned by the vectors u_{k} for which $x \in H_{k}$.

Proof. We claim that (z, w) is in the zero set of (3.3) if and only if there exist $a \in \mathbb{R}^{n}, b \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
z_{k} w_{k}+\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}=\left\langle b, u_{k}\right\rangle, \quad \frac{1}{2}\left(\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}\right)+\lambda_{k}^{1}=\left\langle a, u_{k}\right\rangle \tag{3.6}
\end{equation*}
$$

for $k=1, \ldots, d$. (The first inner product is complex). Indeed the complex equation (3.3b) means that the real and imaginary parts of $\sum_{k=1}^{d}\left(z_{k} w_{k}+\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}\right) e_{k}$ are in $\operatorname{Ker} \imath^{*}$, which from (2.4) equals $\operatorname{Im} \beta^{*}$. Now

$$
\begin{equation*}
\beta^{*}(s)=\sum_{k=1}^{d}\left\langle s, u_{k}\right\rangle e_{k}, \tag{3.7}
\end{equation*}
$$

yielding the first equation of (3.6). The same argument works for μ_{1}.
As remarked after equation (3.2), the moment map for the action of T^{d} on \mathbb{H}^{d} defines a homeomorphism from \mathbb{H}^{d} / T^{d} onto $\mathbb{R}^{3 d}$. Since the vectors u_{k} generate \mathbb{R}^{n}, (3.6) shows that the map $(z, w) \rightarrow(a, b)$ gives a homeomorphism of the quotient by T^{d} of the zero-set of (3.3) onto $\mathbb{R}^{3 n}$. We therefore obtain a homeomorphism of M / T^{n} onto $\mathbb{R}^{3 n}$. We see from (2.4) that (a, b) is the value of ϕ at the point in M with representative (z, w), so we have proved (i).
The T^{n}-stabiliser of the point in M represented by (z, w) is just the quotient of the T^{d}-stabiliser of (z, w) by the N-stabiliser of (z, w). Now $z_{k}=w_{k}=0$ if and only if both $\left\langle a, u_{k}\right\rangle=\lambda_{k}^{1}$ and $\left\langle b, u_{k}\right\rangle=\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}$, that is, if and only if $(a, b) \in H_{k}$.

Therefore the T^{d}-stabilizer of (z, w) is the subtorus of T^{d} whose Lie algebra is generated by the vectors e_{k} for which $(a, b) \in H_{k}$. Part (ii) of the theorem now follows from (2.3).

This result shows at once that, even if u_{k}, λ_{k}^{1} define a polytope Δ by (2.8) corresponding to a toric variety X, we cannot in general expect our manifold $M(\underline{u}, \underline{\lambda})$ to be T^{n}-equivariantly diffeomorphic to $T^{*} X$. We can see this by considering the fixed points of T^{n} on $T^{*} X$. Fixed points on X correspond to the vertices of Δ and are therefore isolated. It follows that no nonzero tangent vector at such a fixed point is fixed by the isotropy action, so the set of fixed points of T^{n} on $T^{*} X$ is just the set of fixed points on X and so is in one-to-one correspondence with the vertices of Δ. If, however, some n faces of Δ corresponding to linearly independent u_{i} meet outside Δ, then we get additional fixed points of T^{n} on $M(\underline{u}, \underline{\lambda})$.

We shall see in section 6 that $M(\underline{u}, \underline{\lambda})$ is typically not homeomorphic to $T^{*} X$, even non-equivariantly.

We shall now give necessary and sufficient conditions for $\mu^{-1}(0) / N$ to be smooth or an orbifold. We shall assume that the flats H_{k} are distinct, i.e. $\left(u_{k}, \lambda_{k}\right) \neq\left(u_{l}, \lambda_{l}\right)$ for $k \neq l$.

Theorem 3.2. Suppose we are given vectors u_{1}, \ldots, u_{d} generating \mathbb{Z}^{n} and elements $\lambda_{1}, \ldots, \lambda_{d}$ of \mathbb{R}^{3} such that the flats H_{k} are distinct. Then the hyperkähler quotient $M(\underline{u}, \underline{\lambda})$ is smooth if and only if every $n+1$ flats among the H_{k} have empty intersection and whenever some n flats $H_{k_{1}}, \ldots, H_{k_{n}}$ have nonempty intersection, then the set $\left\{u_{k_{1}}, \ldots, u_{k_{n}}\right\}$ is a \mathbb{Z}-basis for \mathbb{Z}^{n}.

Theorem 3.3. With assumptions of Theorem 3.2 $M(\underline{u}, \underline{\lambda})$ is an orbifold, with at worst abelian quotient singularities, if and only if every $n+1$ flats among the H_{k} have empty intersection.

Proof. (a). We begin by noting that if J is a maximal set of indices satisfying $\bigcap_{k \in J} H_{k} \neq \emptyset$, then the set $\left\{u_{k}: k \in J\right\}$ spans \mathbb{R}^{n}. For if $t \notin J$, then by maximality $\bigcap_{k \in J \cup\{t\}} H_{k}$ is empty, so u_{t} is in the span of $\left\{u_{k}: k \in J\right\}$. As we always suppose that the set of all u_{k} spans \mathbb{R}^{n}, the claim follows.

Now we consider the following statements:

1) for all $x \in \mathbb{R}^{3 n}$, the set $\left\{u_{k}: x \in H_{k}\right\}$ is a part of a \mathbb{Z}-basis for \mathbb{Z}^{n},
2) for all $x \in \mathbb{R}^{3 n}$, the set $\left\{u_{k}: x \in H_{k}\right\}$ is linearly independent

We claim that 1) is equivalent to the condition of Theorem 3.2 and 2) to that of Theorem 3.3. It is obvious that 1) and 2) imply the respective conditions. Conversely, let $x \in \mathbb{R}^{3 n}$ and let I be the set of indices k such that $x \in H_{k}$. Let J be a maximal element of the set of indices containing I and satisfying $\bigcap_{k \in J} H_{k} \neq \emptyset$. By the observation made at the beginning of the proof, the set $\left\{u_{k} ; k \in J\right\}$ spans \mathbb{R}^{n} and in particular $\# J \geq n$. The claim now easily follows.
(b). Next, we shall show that 1), 2) are equivalent to the action of N on the zero level set of μ being free or locally free respectively.
Let $(z, w) \in \mu^{-1}(0)$ and let $(a, b) \in \mathbb{R}^{n} \times \mathbb{C}^{n}$ be $\phi(z, w)$, as in (3.6). We also regard (a, b) as a point $x \in \mathbb{R}^{3 n}$ in the obvious way. If $I=\left\{k: x \in H_{k}\right\}$, we let \mathbb{R}_{I}^{d} denote the span of $\left\{e_{k}: k \in I\right\}$, and T_{I} be the associated subtorus of T^{d}. The proof of Theorem 3.1(ii) shows that T_{I} is the stabilizer of (z, w) for the T^{d} action. Now notice that $\mathbb{R}_{I}^{d} \cap \mathfrak{n}$ is nonzero if and only if β has a nontrivial kernel on \mathbb{R}_{I}^{d}, that is, if and only if the set $\left\{u_{k}: k \in I\right\}=\left\{u_{k}: x \in H_{k}\right\}$ is not linearly independent. So this set is linearly independent precisely when the stabilizer of (z, w) for the action of N is finite. Suppose in this situation that $N \cap T_{I}$ is finite but nontrivial. This means that there is a non-integral vector in \mathbb{Q}_{I}^{d} whose image under β is an integral combination of the u_{i}. Therefore we have an integral vector of the form $\frac{q}{m} \sum_{k \in I} a_{k} u_{k}$, where $m \geq 2$, the a_{k} are relatively prime, and q is coprime to m. This happens precisely when the set $\left\{u_{k}: x \in H_{k}\right\}$ is not a part of a \mathbb{Z}-basis.

Finally, we observe from 3.1 (i) that any $(a, b) \times \mathbb{R}^{n} \times \mathbb{C}^{n}$, and hence any $x \in \mathbb{R}^{3 n}$, can occur in (3.6).
(c). The discussion of $\S 1$ shows that freeness or local freeness of the action of N on $\mu^{-1}(0)$ imply that the quotient is smooth or an orbifold respectively.

We shall now show the necessity of the condition of Theorem 3.3. Suppose that $M(\underline{u}, \underline{\lambda})$ is an orbifold and let J be a maximal set of indices satisfying $\bigcap_{k \in J} H_{k} \neq \emptyset$. Therefore $\left\{u_{k}: k \in J\right\}$ spans \mathbb{R}^{n} and $\bigcap_{k \in J} H_{k}$ is a point, say x.

From Theorem 3.1 it follows that $m=\phi^{-1}(x)$ is fixed by T^{n}. Since M is an orbifold, it has a well defined tangent space at m of the form $\mathbb{R}^{4 n} / \Gamma$ for some finite linear group Γ, and pulling back to $\mathbb{R}^{4 n}$ we obtain a linear representation of T^{n} with a finite kernel. (The dimension of M must be $4 n$ because of $3.1(\mathrm{i})$.) As the T^{n} action is hyperkähler, we see that we have the standard representation of T^{n} as the maximal torus in $S p(n)$.

Moreover some T^{n}-invariant neighbourhood of m is equivariantly diffeomorphic to an invariant neighbourhood of zero in this representation. Theorem 3.1(ii) now shows that $\# J \leq n$, establishing the necessity of the condition of Theorem 3.3.

In particular, if M is a manifold then the condition of 3.3 holds and hence the action of N on $\mu^{-1}(0)$ is locally free, so as mentioned in $\S 1$, the zero set of μ is smooth. As the action of N is generically free, smoothness of M now implies that the action of N on $\mu^{-1}(0)$ is free. From above, we have now shown the necessity of the condition of Theorem 3.2.

Remark 3.4. It follows that for any fixed set of vectors u_{k}, the hyperkähler quotient $M(\underline{u}, \underline{\lambda})$ is an orbifold for a generic choice of vectors λ_{k}. On the other hand, this quotient is a manifold for a generic choice of vectors λ_{k} if and only if any set of n independent vectors among the u_{i} is a \mathbb{Z}-basis for \mathbb{Z}^{n}. Furthermore, if the latter
condition is satisfied, then the set of λ_{k} for which $M(\underline{u}, \underline{\lambda})$ is singular has codimension 3 in $\mathbb{R}^{3 d}$ and hence the set of λ_{k} for which $M(\underline{u}, \underline{\lambda})$ is regular is path-connected. Therefore we expect the topology of regular $M(\underline{u}, \underline{\lambda})$ to be independent of the vectors λ_{k}. We will show in section 6 that this is indeed the case.

Theorems 3.1 and 3.3 imply
Corollary 3.5. Suppose that $M(\underline{u}, \underline{\lambda})$ is an orbifold (with all H_{k} distinct). Then
(i) the set of fixed points for the action of T^{n} is finite and in one-to-one correspondence with the set of intersection points of n among the flats H_{k}, ($k=1, \ldots, d$).
(ii) The T^{n}-stabiliser of a point in $\phi^{-1}(x), x \in \mathbb{R}^{3 n}$, is the connected subgroup of T^{n} whose Lie algebra is spanned by the vectors u_{k} for which $x \in H_{k}$.

If the condition of Theorem 3.2 or Theorem 3.3 is satisfied, we shall refer to $M(\underline{u}, \underline{\lambda})$ as a toric hyperkähler manifold or toric hyperkähler orbifold respectively. In the former case it is a complete $4 n$-dimensional Riemannian manifold with a hyperkähler action of the torus $T^{n}=T^{d} / N$ of (2.5). Let us remark that not all hyperkähler manifolds with such an action can be obtained by as a hyperkähler quotient of \mathbb{H}^{d} by a torus. An example is the Riemannian version of the Taub-NUT metric [Ha], defined on \mathbb{R}^{4} or the higher-dimensional hyperkähler manifolds recently constructed by Gibbons and Rychenkova [GR]. This is a consequence of the fact that T^{d} is not the only maximal abelian group prescrving the hyperkähler structure of \mathbb{H}^{d}. There are also examples with infinite topological type, due to Goto [Go2], obtained as quotients of a quaternionic Hilbert space.

Remark 3.6. Goto [Go1] considers a special class of hyperkähler quotients of \mathbb{H}^{d} by tori. In his case $n=m_{1}+m_{2}+\ldots+m_{k}, d=n+k$ and the u_{i} are the vectors e_{i} of the standard basis of \mathbb{R}^{n} together with the k vectors $-\sum_{i=1}^{s_{j}} e_{i}, s_{j}=m_{1}+m_{2}+\ldots+m_{j}$, $j=1, \ldots, k$. For this class of toric hyperkähler manifolds Goto obtains statements essentially equivalent to Corollary 3.5 and Theorems 3.2 and 6.5 . On the other hand, Nakajima [Na] studies very general properties of a class of quotients of flat quaternionic spaces by unitary groups. In the abelian case, his class of subtori of T^{d}, while larger than that of Goto, is still quite special - when $n=2$, for instance, it does not include tori from Example 2.4 for $a \neq 0,1$.

As examples of toric hyperkähler manifolds, consider the hyperkähler quotients corresponding to examples 2.1 and 2.2. In the first case we obtain the Calabi metric [Ca] on $T^{*} \mathbb{C} P^{n}$, while the second case yields an asymptotically locally Euclidean metric on the resolution of the Kleinian singularity $\mathbb{C}^{2} / \mathbb{Z}_{3}$. This metric has been described in $[\mathrm{GH}],[\mathrm{Hi}],[\mathrm{Kr}]$.

The following example illustrates the dependence of $M(\underline{u}, \underline{\lambda})$ on the arrangement of flats (3.5) and not on the intersection of half-spaces (2.8)

Example 3.7. Let $n=2$ and $u_{1}=e_{1}, u_{2}=e_{2}, u_{3}=-e_{1}+e_{2}$. For negative scalars $\lambda_{1}, \lambda_{2}, \lambda_{3}$ with $\lambda_{2}>\lambda_{1}+\lambda_{3}$ the intersection of half-spaces (2.8) is illustrated in Figure 3. The corresponding toric variety is the line bundle $O(1)$ over $\mathbb{C} P^{1}$. Now consider the hyperkähler orbifold $M(\underline{u}, \underline{\lambda})$ with the same u_{k} and $\lambda_{k}^{1}=\lambda_{k}, \lambda_{k}^{2}=\lambda_{k}^{3}=0$. Figure 4 shows the hyperplanes $H_{k}^{1} \quad(k=1,2,3)$. This is the same hyperplane arrangement as for the projective space $\mathbb{C} P^{2}$ (see Fig. 1). In fact $M(\underline{u}, \underline{\lambda})$ is $T^{*} \mathbb{C} P^{2}$ because the hyperkähler quotient of \mathbb{H}^{3} by $N=\left\{(t,-t, t): t \in S^{1}\right\}$ is the same as that by $\left\{(t, t, t): t \in S^{1}\right\}$.

4. Compact 3-Sasakian manifolds.

We shall briefly discuss how the ideas of the previous sections can be used to produce a large family of compact 3-Sasakian manifolds considered in [BGM1,2]. We recall here that 3-Sasakian manifolds are a special class of Einstein manifolds with positive scalar curvature. Also, a 3-Sasakian manifold admits a locally free action of $S p(1)$, and the quotient is a quaternionic Kähler orbifold. A Riemannian manifold (\mathcal{S}, g) is 3-Sasakian if and only if the Riemannian cone $C(\mathcal{S})=\left(\mathbb{R}^{+} \times \mathcal{S}, d r^{2}+r^{2} g\right)$ is hyperkähler.

Theorem 4.1. Let $\underline{u}=\left(u_{1}, \ldots, u_{d}\right)$ be a collection of vectors generating \mathbb{Z}^{n} and suppose that the following two conditions hold:
(i) every subset of \underline{u} with n elements is lincarly independent;
(ii) every subset of \underline{u} with less than n elements is a part of a \mathbb{Z}-basis of \mathbb{Z}^{n}.

Then the hyperkähler quotient $M(\underline{u}, \underline{0})$ is the Riemannian cone over a compact 3Sasakian manifold $\mathcal{S}=\mathcal{S}(\underline{u})$.

Proof. Let us first show that the only singularity of $M(\underline{u}, \underline{0})$ is the point corresponding to $z=w=0$. From the proof of Theorem 3.2 it follows that $(z, w) \in \mathbb{H}^{d}$ will yield a singular point of $M(\underline{u}, \underline{0})$ precisely when there exists $(a, b) \in \mathbb{R}^{n} \times \mathbb{C}^{n}$, such that $z_{k} w_{k}=\left\langle b, u_{k}\right\rangle,\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}=2\left\langle a, u_{k}\right\rangle$ for $k=1, \ldots, d$, and the set $\left\{u_{k} ;\left\langle b, u_{k}\right\rangle=\left\langle a, u_{k}\right\rangle=0\right\}$ is not a part of a \mathbb{Z}-basis of \mathbb{Z}^{n}. Assumption (ii) means that this can only happen if this set has at least n elements, but assumption (i) implies that in this case $a=b=0$ and so $z=u=0$.

Now we recall that \mathbb{H}^{d} is the Riemannian cone over the standard sphere $S^{4 d-1}$ and $S^{4 d-1}$ is a 3 -Sasakian manifold. The 3-Sasakian structure of $S^{4 d-1}$ is given by the right diagonal action of $S p(1)$ on \mathbb{H}^{d}. Since we have chosen all λ_{i} to be zero, the zero-set of the moment map (3.3) is invariant under the action of both \mathbb{R}^{+}and $S p(1)$. As the action of N commutes with that of \mathbb{R}^{+}, and as the only singularity is at the origin, $M(\underline{u}, \underline{0})$ is a Riemannian conc over a manifold \mathcal{S}. The action of $S p(1)$ also commutes with N, and induces an action on \mathcal{S} defining a 3-Sasakian structure. Finally \mathcal{S} is compact since $M(\underline{u}, \underline{0})$ is complete (as a stratified manifold) and the
cone is complete only if its base is. This implies that \mathcal{S} is complete and so compact by Myers's theorem. Alternatively we could realize \mathcal{S} as the 3-Sasakian quotient [BGM2] of $S^{4 d-1}$.

Remark 4.2. Usually the $S p(1)$ action on $\mathcal{S}=\mathcal{S}(\underline{u})$ has many different orbit types and so the quotient of \mathcal{S} by $S p(1)$ is only a quaternionic-Kähler orbifold. It is a manifold only when N is the circle acting diagonally on \mathbb{H}^{n+1} which gives the homogenous quaternionic-Kähler manifold $\mathrm{Gr}_{2}\left(\mathbb{C}^{n+1}\right)$.

Remark 4.3. The conditions of this theorem are rarely compatible with those of Theorem 3.2. In fact one can show that if $M(\underline{u}, \underline{\lambda})$ is a toric hyperkähler manifold of dimension greater than 4 and the vectors u_{1}, \ldots, u_{d} satisfy the conditions of Theorem 4.1, then $M(\underline{u}, \underline{\lambda})$ is either \mathbb{H}^{n} or $T^{*} \mathbb{C} P^{n}$.

Remark 4.4. For $n=1$ the conditions of Theorem 4.1 are void. When $n=2$ the conditions are satisfied if each pair of the vectors u_{k} is linearly independent and each u_{k} has relatively prime coordinates. In this case the resulting quaternionic-Kähler orbifold is 4 -dimensional and its quaternionic-Kähler structure is invariant under the action of T^{2}.

5. Complex structures

We shall now describe the generic complex structure of our toric hyperkähler orbifolds.

Theorem 5.1. Let $M=M(\underline{u}, \underline{\lambda})$ be a toric hyperkähler orbifold and suppose that every $n+1$ flats $H_{k}^{2} \times H_{k}^{3}$ have empty intersection in $\mathbb{R}^{2 n}$. Then M, equipped with the complex structure J_{1}, is biholomorphic to the affine variety Spec $A[W]{ }^{N^{\mathbf{C}}}$ where $W \subset \mathbb{C}^{d} \times \mathbb{C}^{d} \times \mathbb{C}^{n}$ is defined by the equations

$$
\begin{equation*}
z_{k} w_{k}=\left\langle b, u_{k}\right\rangle-\left(\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}\right), \quad(k=1, \ldots, d) \tag{5.1}
\end{equation*}
$$

and $N^{\mathbb{C}}$ acts on $\mathbb{C}^{d} \times \mathbb{C}^{d} \times \mathbb{C}^{n}$ by $t \cdot(z, w, b)=\left(t \cdot z, t^{-1} \cdot w, b\right)$.
Proof. By (3.6), the variety W is precisely the zero-set of the complex moment map (3.3b). We have to show that the action of N^{C} on W has at most discrete stabilizers and that each $N^{\mathbb{C}}$-orbit meets the zero-set of the moment map μ_{1}. This will prove that the variety W is smooth (since W is the zero-set of the moment map for the complex-symplectic $N^{\mathbb{C}}$ action) and that M, the Kähler quotient of W by N, can be identified with the complex quotient $W / N^{\mathbf{C}}$. The argument we use is a slight modification of the one used for the construction of toric varieties as Kähler quotients (see [Gu2]).

Let $(z, w) \in \mathbb{C}^{d} \times \mathbb{C}^{d}$. Then the image of the $N^{\mathbf{C}}$-orbit of (z, w) under the moment map μ_{1} is the set

$$
\begin{equation*}
\left\{\sum_{\left\{i ; z_{i} \neq 0\right\}} t_{i} \alpha_{i}-\sum_{\left\{i ; w_{i} \neq 0\right\}} s_{i} \alpha_{i}+c_{1} ; t_{i}, s_{i}>0\right\} \subset \mathfrak{n}^{*} \tag{5.2}
\end{equation*}
$$

The proof of this is essentially the same as in [Gu2;Appendix 1]. The moment map restricted to the orbit is given in our case by the Legendre transform of the function $F: \mathfrak{n}^{\mathbf{C}} \cap \mathbb{R}^{\boldsymbol{d}} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
F(y)=\frac{1}{4} \sum_{\left\{i ; z_{i} \neq 0\right\}} a_{i} e^{2 \alpha_{i} \cdot y}+\frac{1}{4} \sum_{\left\{i ; w_{i} \neq 0\right\}} b_{i} e^{-2 \alpha_{i} \cdot y}+c_{1} \cdot y \tag{5.3}
\end{equation*}
$$

where a_{i}, b_{i} are positive constants. This is a strictly convex function and all the arguments of Guillemin go through.

If (z, w) is a point of W then, from the proof of 3.1 , we know that $\sum_{k=1}^{d}\left(z_{k} w_{k}+\right.$ $\left.\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}\right) e_{k}=\beta^{*}(b)$ for some $b \in \mathbb{C}^{n}$. If for all k we have $\left\langle b, u_{k}\right\rangle \neq \lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}$, then $z_{k} w_{k}$ is nonzero for all k and so the full group $\left(T^{d}\right)^{\mathbf{C}}$ acts freely at (z, w). From (5.2), as the vectors α_{i} span \mathfrak{n}^{*}, the restriction of μ_{1} to $N^{\mathbb{C}}(z, w)$ is surjective.

On the other hand, if $\left\langle b, u_{k}\right\rangle=\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}$ precisely when $k \in I$, where I is some multi-index, then $z_{k} w_{k}=0$ if and only if $k \in I$. In particular the stabiliser group of (z, w) for the action of $N^{\mathbb{C}}$ is a subgroup of $T_{I}^{\mathbb{C}}$. Since the flats $H_{k}^{2} \times H_{k}^{3}, k \in I$, now have nonempty intersection, the assumption of the theorem implies, as in the proof of Theorem 3.3, that the vectors $u_{k}, k \in I$, are independent. Therefore the map β sending e_{i} to u_{i} must be injective on $\mathbb{R}_{I}^{d}=\operatorname{Lie}\left(T_{I}\right)$. and, from (2.3),(2.4), we see that $\mathfrak{n} \cap \mathbb{R}_{I}^{d}=0$. The analogous statement for complex vector spaces is proved similarly, so the stabiliser for the $N^{\mathbf{C}}$ action is discrete. We also see that $\mathbb{R}^{d}=\left(\mathbb{R}_{I}^{d}\right)^{\perp}+\mathfrak{n}^{\perp}=\left(\mathbb{R}_{I^{c}}^{d}\right)+\mathfrak{n}^{\perp}$, and, since i^{*} is just the orthogonal projection onto $\mathfrak{n} \equiv \mathfrak{n}^{*}$, it follows that \mathfrak{n}^{*} is spanned by the set $\left\{\alpha_{i} ; i \notin I\right\}$. Therefore, from (5.2), μ_{1} is still surjective on $N^{\mathbf{C}}(z, w)$. This proves Theorem 5.1.

Example 5.2. Consider the hyperkähler quotient corresponding to Example 2.1 with $n=1$. The variety W is described by the two equations $z_{1} w_{1}=b-\nu_{1}$ and $z_{2} w_{2}=-b-\nu_{2}$, where $\nu_{k}=\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}$. The assumption of Theorem 5.1 is satisfied if $\nu_{1} \neq-\nu_{2}$. Eliminating b, we can view W as the hypersurface in \mathbb{C}^{4} with equation $z_{1} w_{1}+z_{2} w_{2}=\tau$, where $\tau \neq 0$. The ring of invariant polynomials for the action of $N^{\mathbf{C}} \cong \mathbb{C}^{*}$ is generated by $z_{1} w_{2}, z_{2} w_{1}, z_{1} w_{1}$. We find that (M, J_{1}) is biholomorphic to the variety $x y=z(\tau-z)$ which can be viewed either as a semisimple adjoint orbit in $\mathfrak{s l}(2, \mathbb{C})$ or the resolution of the Kleinian singularity $\mathbb{C}^{2} / \mathbb{Z}_{2}$. Similarily, for $n>1$, $\left(M, J_{1}\right)$ is biholomorphic to a semisimple adjoint orbit in $\mathfrak{s l}(n+1, \mathbb{C})$.

6. TOPOLOGY OF TORIC HYPERKÄHLER MANIFOLDS

Our next task is to show how the vectors $u_{1}, \ldots, u_{d} \in \mathbb{R}^{n}$ and $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{R}^{3}$ determine the topology of $M(\underline{u}, \underline{\lambda})$. First of all we have

Theorem 6.1. Suppose that $M(\underline{u}, \underline{\lambda})$ and $M\left(\underline{u}, \underline{\lambda}^{\prime}\right)$ are two toric hyperkähler orbifolds with the same choice of vectors u_{1}, \ldots, u_{d}. Then $M(\underline{u}, \underline{\lambda})$ is homeomorphic to $M\left(\underline{u}, \underline{\lambda}^{\prime}\right)$.

In other words the homeomorphism type of M depends only on the torus N and not on the moment map (3.3). Before proving this, let us establish a few related facts.

Proposition 6.2. Let $M(\underline{u}, \underline{\lambda})$ be a toric hyperkähler orbifold such that every $n+1$ hyperplanes H_{k}^{1} have empty intersection. Then $M(\underline{u}, \underline{\lambda})$ is diffeomorphic to $M\left(\underline{u}, \underline{\lambda}^{\prime}\right)$, where $\lambda_{k}^{\prime}=\left(\lambda_{k}^{1}, 0,0\right)$ for each k.

Proof. Let us write $M\left(\underline{\lambda^{1}}, \underline{\lambda^{2}}, \underline{\lambda}^{3}\right)$ for $M(\underline{u}, \underline{\lambda})$. Applying Theorem 5.1 with respect to the complex structure J_{3} shows that $M\left(\underline{\lambda^{1}}, \underline{\lambda^{2}}, \underline{\lambda^{3}}\right)$ is diffeomorphic to $M\left(\underline{\lambda^{1}}, \underline{\lambda^{2}}, 0\right)$. Applying it again, with respect to J_{2}, shows that $M\left(\underline{\lambda^{1}}, \underline{\lambda}^{2}, 0\right)$ is diffeomorphic to $M\left(\underline{\lambda}^{1}, 0,0\right)$.

Now we notice that, if the condition of Theorem 3.2 or Theorem 3.3 holds, then the hypothesis of the above proposition holds for a generic direction in \mathbb{R}^{3}. More precisely:

Lemma 6.3. Suppose that we are given vectors u_{1}, \ldots, u_{d} generating \mathbb{R}^{n} and elements $\lambda_{1}, \ldots, \lambda_{d}$ of \mathbb{R}^{3} such that every $n+1$ flats H_{k} defined by (3.4)-(3.5) have empty intersection. Then for a generic element $(a, b, c), a^{2}+b^{2}+c^{2}=1$, of the 2 -sphere, every $n+1$ of the hyperplanes $\left\{y \in \mathbb{R}^{n} ;\left\langle y, u_{k}\right\rangle=a \lambda_{k}^{1}+b \lambda_{k}^{2}+c \lambda_{k}^{3}\right\}$ have empty intersection.

Proof. Suppose not. Then we can find a particular set of $n+1$ indices, say $1, \ldots, n+$ 1, such that the set of (a, b, c), for which the corresponding hyperplanes intersect, generates \mathbb{R}^{3}. Consider the 3 -dimensional V subspace of \mathbb{R}^{n+1} spanned by vectors $\lambda^{i}=\left(\lambda_{1}^{i}, \ldots, \lambda_{n+1}^{i}\right), i=1,2,3$. We can write $\lambda^{i}, i=1,2,3$, as a linear combination of vectors $v^{i} \in V, i=1,2,3$, such that the equations $\left\langle y, u_{k}\right\rangle=v_{k}^{i}$ have a common solution y_{i}. The corresponding linear combinations of vectors y_{i} give now a common point of the flats $H_{k}, k=1, \ldots, n+1$, contradicting the assumption.

Lemma 6.4. Let $M(\underline{u}, \underline{\lambda})$ and $M\left(\underline{u}, \underline{\lambda}^{\prime}\right)$ be two toric hyperkähler orbifolds such that there is an element A of $S O(3)$ with $A \lambda_{k}=\lambda_{k}^{\prime}$ for $k=1, \ldots, d$. Then $M(\underline{u}, \underline{\lambda})$ and $M\left(\underline{u}, \underline{\lambda}^{\prime}\right)$ are T^{n}-equivariantly diffeomorphic.
Proof. Consider an element $\tilde{A} \in S p(1)$ covering A. The right diagonal action of \tilde{A} on \mathbb{H}^{d} maps the zero-set of (3.3) to the zero-set of (3.3) with λ_{k} replaced by λ_{k}^{\prime},
$k=1, \ldots, d$. This map commutes with the action of T^{d} and induces the required diffeomorphism.

Proof of Theorem 6.1. Because of Proposition 6.2 and Lemmata 6.3 and 6.4 we can assume that all λ_{k} and λ_{k}^{\prime} lie on the x_{1}-axis. Let U be the set of $\lambda^{1}=\left(\lambda_{1}^{1}, \ldots, \lambda_{d}^{1}\right) \in$ \mathbb{R}^{d} such that $M(\underline{u}, \underline{\lambda})$ is an orbifold, where $\lambda_{k}=\left(\lambda_{k}^{1}, 0,0\right)$. The complement of U is the set of λ^{1} for which $n+1$ of the hyperplanes

$$
\begin{equation*}
H_{k}^{1}=\left\{x \in \mathbb{R}^{n} ;\left\langle x, u_{k}\right\rangle=\lambda_{k}^{1}\right\} \tag{6.1}
\end{equation*}
$$

have nonempty intersection. We shall show first that the topology of M does not change as long as we stay within a connected component of U. In what follows we will omit the superscript 1 . If λ and λ^{\prime} lie in the same component of U, then there is a homeomorphism h of \mathbb{R}^{n} onto itself mapping each half-space $\left\{x \in \mathbb{R}^{n} ;\left\langle x, u_{k}\right\rangle \leq \lambda_{k}\right\}$ onto the corresponding half-space $\left\{x \in \mathbb{R}^{n} ;\left\langle x, u_{k}\right\rangle \leq \lambda_{k}^{\prime}\right\}$ and similarily for the opposite half-spaces. We consider now, as in [Go1], the homeomorphism τ between $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ and $\mathbb{R} \times \mathbb{R}_{\geq 0}$ given by

$$
\begin{equation*}
\tau(x, y)=\left(\frac{1}{2}\left(x^{2}-y^{2}\right), x y\right) \tag{6.2}
\end{equation*}
$$

which we extend diagonally to a homeomorphism, also denoted by τ, between $\left(\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}\right)^{d}$ and $\left(\mathbb{R} \times \mathbb{R}_{\geq 0}\right)^{d}$. Let $V(\underline{\lambda})$ be the subset \mathbb{R}^{d} consisting of vectors $p=\left(p_{1}, \ldots, p_{d}\right)$ such that there is an $a \in \mathbb{R}^{n}$ with $p_{k}=\left\langle a, u_{k}\right\rangle-\lambda_{k}$, $k=1, \ldots, d$. Since the vectors u_{k} generate \mathbb{R}^{n}, the map $v: V(\underline{\lambda}) \rightarrow \mathbb{R}^{n}$ sending p to a is a homeomorphism. We define similarily $V\left(\underline{\lambda}^{\prime}\right)$ and v^{\prime}. Let us extend the homeomorphisms h, v, v^{\prime} to homeomorphisms $h: \mathbb{R}^{n} \times\left(\mathbb{R}_{\geq 0}\right)^{d} \rightarrow \mathbb{R}^{n} \times\left(\mathbb{R}_{\geq 0}\right)^{d}$, $v: V(\underline{\lambda}) \times\left(\mathbb{R}_{\geq 0}\right)^{d} \rightarrow \mathbb{R}^{n} \times\left(\mathbb{R}_{\geq 0}\right)^{d}$ and $v^{\prime}: V\left(\underline{\lambda}^{\prime}\right) \times\left(\mathbb{R}_{\geq 0}\right)^{d} \rightarrow \mathbb{R}^{n} \times\left(\mathbb{R}_{\geq 0}\right)^{d}$ by putting the identity map on the second factor. We obtain a homeomorphism Φ between $\tau^{-1}\left(V(\underline{\lambda}) \times\left(\mathbb{R}_{\geq 0}\right)^{d}\right)$ and $\tau^{-1}\left(V\left(\underline{\lambda}^{\prime}\right) \times\left(\mathbb{R}_{\geq 0}\right)^{d}\right)$ defined as the composition $\Phi=\tau^{-1} \circ\left(v^{\prime}\right)^{-1} \circ h \circ v \circ \tau$. Finally let us denote by π the map from $\mathbb{C}^{d} \times \mathbb{C}^{d}$ to $\left(\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}\right)^{d}$ given by $\pi(z, w)=\left(\left|z_{1}\right|,\left|w_{1}\right|, \ldots,\left|z_{d}\right|,\left|w_{d}\right|\right)$. Let us write $\Phi \circ \pi=\left(\Phi_{1}, \ldots, \Phi_{d}\right)$ and each Φ_{k}, which takes values in $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$, as $\left(\Phi_{k}^{1}, \Phi_{k}^{2}\right)$. We can now define a homeomorphism Ψ between the 0 -level set of (3.3) for $\underline{\lambda}$ and the 0 -level set of (3.3) for $\underline{\lambda}^{\prime}$ by putting

$$
\Psi(z, w)=\left(\Phi_{1}^{1}(z, w) \frac{z_{1}}{\left|z_{1}\right|}, \ldots, \Phi_{d}^{1}(z, w) \frac{z_{d}}{\left|z_{d}\right|}, \Phi_{1}^{2}(z, w) \frac{w_{1}}{\left|w_{1}\right|}, \ldots, \Phi_{d}^{2}(z, w) \frac{w_{d}}{\left|w_{d}\right|}\right) .
$$

This homeomorphism is T^{d}-equivariant and induces a homeomorphism between $M(\underline{u}, \underline{\lambda})$ and $M\left(\underline{u}, \underline{\lambda}^{\prime}\right)$.

We have now shown that as long as λ does not pass through a critical point, i.e. a point for which $n+1$ hyperplanes (6.1) have nonempty intersection, then the topology
of $M(\underline{u}, \underline{\lambda})$ does not change. It remains to show that it does not change even when we pass through a critical point. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ be a critical point. We can assume that it is the hyperplanes $H_{1}^{1}, \ldots, H_{n+1}^{1}$ that have a nonempty intersection. Moreover, since we can get from one component of U to another in such a way that we avoid intersections of codimension 1 walls, we can assume that $\left\{H_{1}^{1}, \ldots, H_{n+1}^{1}\right\}$ is a maximal set of hyperplanes with nonempty intersection.
Let U_{-}(resp. U_{+}) denote the component of U to which $\left(\lambda_{1}-\epsilon, \lambda_{2}, \ldots, \lambda_{d}\right)$ belongs for a small positive (resp. negative) ϵ. It will be enough to show that the topology of M does not change as we pass from U_{-}to U_{+}. Let us consider an orbifold $M(\underline{u}, \underline{\lambda})$ where $\underline{\lambda}$ is obtained from $\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ by replacing $\lambda_{1}=\left(\lambda_{1}^{1}, 0,0\right)$ with $\left(\lambda_{1}^{1}, \delta_{2}, \delta_{3}\right)$ for small δ_{2}, δ_{3}. Using Lemma 6.3 we can obtain a toric hyperkähler orbifold by projecting $\underline{\lambda}$ onto the subspace $\mathbb{R}(a, b, c) \otimes \mathbb{R}^{d}$ for generic small b, c and a close to 1. Now we can use Lemma 6.4 to obtain an element $\lambda(b, c)$ of $\mathbb{R}^{d} \simeq \mathbb{R}(1,0,0) \otimes \mathbb{R}^{d}$. Moreover Proposition 6.2 and Lemma 6.4 show that the topology of corresponding orbifolds does not depend on (b, c). However, by changing the signs of b and c we can guarantee that for some choices of $(b, c) \lambda(b, c)$ belongs to U_{-}while for other choices it belongs to U_{+}. This proves Theorem 6.1.

We shall now discuss the homotopy type of $M(\underline{u}, \underline{\lambda})$. Because of Theorem 6.1 we can assume that the vectors λ_{k} are of the form $\left(\lambda_{k}^{1}, 0,0\right)$.
In what follows we shall use a similar argument to that of Goto [Gol]. We shall consider the hyperplanes H_{k}^{1} defined by (6.1). These hyperplanes divide $\mathbb{R}^{\boldsymbol{n}}$ into a finite family of closed convex polyhedra, some unbounded. Let \mathcal{A} be the polyhedral complex consisting of all faces of all dimensions of these polyhedra. We recall [Gr] that a polyhedral complex is a family of polyhedra such that every face of a member of \mathcal{A} is itself a member of \mathcal{A} and the intersection of any two members of \mathcal{A} is a face of each of them. We define the polyhedral (in fact polytopal) complex \mathcal{C} to consist of all bounded polyhedra in \mathcal{A}. This complex is nonempty since, as the vectors u_{k} generate $\mathbb{R}^{n}, \mathcal{C}$ must contain a vertex corresponding to the intersection of n hyperplanes H_{k}^{1}. We index the elements of \mathcal{C} by some set \mathcal{I} and denote the polyhedra in \mathcal{C} by Δ_{s}, $s \in \mathcal{I}$. Finally, we denote by $|\mathcal{C}|$ the support $\bigcup_{s \in \mathcal{I}} \Delta_{s}$ of the complex.

Recall that $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right): M \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ is the moment map for the action of T^{n} on M. We define subsets \mathcal{D}_{s} of M by

$$
\begin{equation*}
\mathcal{D}_{s}=\phi^{-1}\left(\Delta_{s}, 0,0\right), \quad s \in \mathcal{I} \tag{6.3}
\end{equation*}
$$

The following result describes the topology of $M(\underline{u}, \underline{\lambda})$.
Theorem 6.5. Let $M=M(\underline{u}, \underline{\lambda})$ be a toric hyperkähler orbifold, where $\lambda_{k}=$ ($\lambda_{k}^{1}, 0,0$) for each k. Then:
(i) $\bigcup_{s \in \mathcal{I}} \mathcal{D}_{s}=\phi^{-1}(|\mathcal{C}|, 0,0)$ is a T^{n}-equivariant deformation retract of M.
(ii) Each \mathcal{D}_{s} is a Kähler subvariety of $\left(M, J_{1}, \omega_{1}\right)$, isotropic with respect to the form $\omega_{2}+i \omega_{3}$ and invariant under the T^{n}-action.
(iii) Each \mathcal{D}_{s} is T^{m}-equivariantly isometric and biholomorphic to the toric variety determined by the polytope Δ_{s}, where T^{m} is the subtorus of T^{n} acting effectively on \mathcal{D}_{s}.

Proof. Once more we consider the homeomorphism τ between $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$ and $\mathbb{R} \times \mathbb{R}_{\geq 0}$ defined by (6.2). Let j_{t} be the deformation map of $\mathbb{R} \times \mathbb{R}_{\geq 0}$ defined by $j_{t}(u, v)=$ $(u, t v)$. Then the composite map $\rho_{t}=\tau^{-1} \circ j_{t} \circ \tau$ is a deformation of $\mathbb{R}_{\geq 0} \times \mathbb{R}_{\geq 0}$. Let us write $\jmath_{t}(x, y)=\left(\jmath_{t}^{1}(x, y), \jmath_{t}^{2}(x, y)\right)$. Now we define a deformation of \mathbb{C}^{2} by the $\operatorname{map} h:[0,1] \times \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ where

$$
h(t, z, w)=\left(\jmath_{t}^{1}(|z|,|w|) \frac{z}{|z|}, \jmath_{t}^{2}(|z|,|w|) \frac{w}{|w|}\right)
$$

and extend this diagonally to a deformation of $\mathbb{C}^{d} \times \mathbb{C}^{d}$. We observe that h is T^{d}-equivariant and the moment map (3.2) satisfies

$$
\begin{equation*}
\mu_{1} \circ h_{t}(z, w)=\mu_{1}(z, w), \quad\left(\left(\mu_{2}+\sqrt{-1} \mu_{3}\right) \circ h_{t}\right)(z, w)=t\left(\mu_{2}+\sqrt{-1} \mu_{3}\right)(z, w) \tag{6.4}
\end{equation*}
$$

for any $t \in[0,1]$ (recall that we are setting $c_{2}=c_{3}=0$).
Therefore h preserves the zero-set of (3.3). Since h is T^{d}-equivariant, we obtain a T^{n}-equivariant deformation of M. Moreover $h_{0}(M)=\left(\phi_{2}+\sqrt{-1} \phi_{3}\right)^{-1}(0)$, because of (3.6) and the fact that $b=\left(\phi_{2}+\sqrt{-1} \phi_{3}\right)(z, w)$.
We have now deformed M to $\left(\phi_{2}+\sqrt{-1} \phi_{3}\right)^{-1}(0)$, which, by (3.6), corresponds to the quotient by N of the set of $(z, w, a) \in \mathbb{C}^{d} \times \mathbb{C}^{d} \times \mathbb{R}^{n}$ such that

$$
\begin{equation*}
z_{k} w_{k}=0, \quad \frac{1}{2}\left(\left|z_{k}\right|^{2}-\left|w_{k}\right|^{2}\right)+\lambda_{k}^{1}=\left\langle a, u_{k}\right\rangle, \quad(k=1, \ldots, d) \tag{6.5}
\end{equation*}
$$

Let us recall once more that $a=\phi_{1}(z, w)$. We claim that there is a deformation $\operatorname{map} p:[0,1] \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that $p(1, a)=a$, the map $a \mapsto p(0, a)$ is a retraction onto $|\mathcal{C}|=\bigcup_{s \in \mathcal{I}} \Delta_{s}$, and, if a lies on a hyperplane H_{k}^{1}, then $p(t, a)$ lies on this hyperplane for all $t \in[0,1]$. To see this we observe that the complement of $|\mathcal{C}|=$ $\bigcup_{s \in \mathcal{I}} \Delta_{s}$ in \mathbb{R}^{n} is a union of convex unbounded polyhedra K_{i} with non-empty interior such that the intersection of any two of them will be a common face (of positive codimension) of each. Moreover each K_{i} is line-free (if K_{i} contains a line, spanned by a vector v, then v is parallel to all hyperplanes H_{k}^{1} hence orthogonal to all u_{k}, contradicting the assumption that the vectors u_{k} span \mathbb{R}^{n}). Therefore we can think of each K_{i} as a convex polytope P whose unique face at infinity F_{0} has been removed. We can find a deformation retraction of $K_{i}=P-F_{0}$ onto the part of the boundary consisting of bounded faces. Moreover we can assume that this deformation of $P-F_{0}$
is an extension of any given deformation of $\partial P-F_{0}$.
Therefore, by doing it first on the intersections of K_{i} 's and then extending to their interiors, we can define the desired deformation map p.

For $k=1, \ldots, d$, put $p_{t}^{k}(a)=2\left\langle p(t, a), u_{k}\right\rangle-2 \lambda_{k}^{1}$. We now define a T^{d}-equivariant deformation f_{t} of the set given by (6.5):

$$
f_{t}\left(z_{k}, w_{k}\right)= \begin{cases}(0,0) & \text { if } \quad z_{k}=w_{k}=0 \\ \left(\frac{\sqrt{p_{t}^{k}(a)}}{\left|z_{k}\right|} z_{k}, 0\right) & \text { if } \quad z_{k} \neq 0 \\ \left(0, \frac{\sqrt{-p_{t}^{k}(a)}}{\left|w_{k}\right|} w_{k}\right) & \text { if } \quad w_{k} \neq 0\end{cases}
$$

and

$$
f_{t}(a)=p(t, a)
$$

Observe that $\phi_{1}\left(f_{t}(z, w)\right)=p(t, a)$. The deformation f_{t} induces a T^{n}-equivariant deformation of $\left(\phi_{2}+\sqrt{-1} \phi_{3}\right)^{-1}(0)$ onto $\bigcup_{s \in \mathcal{I}} \mathcal{D}_{s}$, proving part (i).

For (ii)-(iii) we observe, as in [Gol], that each \mathcal{D}_{s} can be obtained as a Kähler quotient of a submanifold U_{s} of $\mathbb{C}^{d} \times \mathbb{C}^{d}$ by the construction of section 2 for the polytope Δ_{s}. The submanifold U_{s} is Kähler with respect to ω_{1} and isotropic with respect to $\omega_{2}+\sqrt{-1} \omega_{3}$, so all statements of (ii)-(iii) follow.

There is a very simple formula relating the Betti numbers of a compact toric orbifold to the combinatorics of the corresponding convex polytope [Fu]. We would like to give a similar formula for the Betti numbers of toric hyperkähler orbifolds in terms of the polytopal complex \mathcal{C}; however we have been able to do this only under an additional assumption on \mathcal{C}.
Let us recall that if \mathcal{C} is a polytopal complex and $F \in \mathcal{C}$, then the $\operatorname{star} \operatorname{st}(F ; \mathcal{C})$ of F in \mathcal{C} is the smallest subcomplex of \mathcal{C} containing all the members of \mathcal{C} which contain F. The antistar $\operatorname{ast}(F ; \mathcal{C})$ of F in \mathcal{C} is the subcomplex of \mathcal{C} consisting of all the members of \mathcal{C} not intersecting F. If Δ is a convex polytope, then we denote by $\mathcal{C}(\Delta)$ the complex consisting of all faces of Δ. We make the following definition:

Definition 6.6. A polytopal complex \mathcal{C} is star-collapsible if there exists a filtration $\emptyset=\mathcal{C}_{0} \subset \ldots \subset \mathcal{C}_{r}=\mathcal{C}$ by subcomplexes such that, for any $i \leq r$, there is a polytope $\Delta_{i} \in \mathcal{C}_{i}$ and a vertex $x_{i} \in \Delta_{i}$ such that $\mathcal{C}_{i}-\mathcal{C}_{i-1}=\mathcal{C}\left(\Delta_{i}\right)-\operatorname{ast}\left(x_{i} ; \mathcal{C}\left(\Delta_{i}\right)\right)$.

Note that \mathcal{C} is star-collapsible if we can, starting with \mathcal{C}, find at each stage a vertex x_{i} of \mathcal{C}_{i} belonging to only one maximal element Δ_{i} of \mathcal{C}_{i}. We then obtain \mathcal{C}_{i-1} by replacing the subcomplex $\mathcal{C}\left(\Delta_{i}\right)$ with ast $\left(x_{i} ; \mathcal{C}\left(\Delta_{i}\right)\right)$. Observe that if \mathcal{C} is connected and star-collapsible then $\left|\mathcal{C}_{\boldsymbol{i}-1}\right|$ is a deformation retract of $\left|\mathcal{C}_{\boldsymbol{i}}\right|$ for any $i \geq 2$. Since $\left|\mathcal{C}_{1}\right|$ is just a point, it follows that $|\mathcal{C}|$ is contractible.

If \mathcal{C} satisfies this definition, we can give a formula for the Betti numbers of our orbifolds:

Theorem 6.7. Let $M=M(\underline{u}, \underline{\lambda})$ be a toric hyperkähler orbifold such that the corresponding polytopal complex \mathcal{C} is star-collapsible. Then $H^{j}(M, \mathbb{Q})=0$ if j is odd and

$$
\begin{equation*}
b_{2 k}=\operatorname{dim} H^{2 k}(M, \mathbb{Q})=\sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k} d_{i}, \tag{6.6}
\end{equation*}
$$

where d_{i} denotes the number of i-dimensional elements of the complex \mathcal{C}. Equivalently, the Poincaré polynomial $P_{M}(t)=\sum b_{i} t^{i}$ of M is

$$
\begin{equation*}
P_{M}(t)=\sum_{k=0}^{n} d_{k}\left(t^{2}-1\right)^{k} \tag{6.7}
\end{equation*}
$$

In particular the Euler characteristic $\chi(M)$ is $P_{M}(-1)=d_{0}$, which is the number of vertices of \mathcal{C}.

Remark 6.8. For toric hyperkähler manifolds, $H^{*}(M, \mathbb{Z})$ has no torsion, so Theorem 6.7 tells us the cohomology over the integers.

Remark 6.9. The formula for the Euler number is valid without any restrictions on the complex \mathcal{C}.

The proof of (a generalization of) Theorem 6.7 will be given in the Appendix. It will be also shown there that for $n=2$ the assumption on the complex \mathcal{C} is redundant.

Proposition 6.10. Formulas (6.6) and (6.7) hold for any toric hyperkähler orbifold of dimension four or eight.

Example 6.11. Consider $M(\underline{u}, \underline{\lambda})$ where u_{k}, λ_{k} are as in Example 2.2. The polytopes $\Delta_{\boldsymbol{s}}$ of Theorem 6.5 are just two intervals with a common point. Hence the deformation retract of $M(\underline{u}, \underline{\lambda})$ given by this theorem is the union of two copies of $\mathbb{C} P^{1}$ intersecting at a point. This retract is of course the exceptional divisor of the resolution of $\mathbb{C}^{2} / \mathbb{Z}_{3}$.

Example 6.12. Suppose u_{k}, λ_{k} are as in Example 2.3. If $\lambda_{3}>\lambda_{2}+\sqrt{2} \lambda_{4}$, then $|\mathcal{C}|$ is the union of a trapezoid and an isosceles right triangle intersecting along a line segment (see Fig. 5). The deformation retract of M, given by Theorem 6.5, is the union of $\widetilde{\mathbb{C P} P^{2}}$ (the blowup of $\mathbb{C P}^{2}$ at one point) and $\mathbb{C} P^{2}$, intersecting along the exceptional divisor of $\widehat{\mathbb{C P}^{2}}$. We calculate, according to (6.6), $b_{2}=b_{4}=2$.
If we move the hyperplane $\left\langle x, u_{3}\right\rangle=\lambda_{3}$ beyond the point of intersection of $\left\langle x, u_{2}\right\rangle=$ λ_{2} and $\left\langle x, u_{4}\right\rangle=\lambda_{4}$ (in other words $\lambda_{3}<\lambda_{2}+\sqrt{2} \lambda_{4}$), then $|\mathcal{C}|$ becomes the union of two isosceles right triangles meeting in a point (Fig. 6). Therefore the deformation retract of M is now the union of two copies of $\mathbb{C} P^{2}$ intersecting at a point. Theorem 6.1 implies that the two varieties, i.c. $\widetilde{\mathbb{C P} P^{2}} \cup_{E} \mathbb{C} P^{2}$, where $E=\mathbb{C} P^{1}$ has self-intersection -1 in $\widetilde{\mathbb{C} P^{2}}$, and $\mathbb{C} P^{2} \vee \mathbb{C} P^{2}$ are homotopy equivalent.

More generally we have (recall that an arrangement of hyperplanes is called simple if no more than n of them have a nonempty intersection):

Corollary 6.13. Let a simple arrangement of hyperplanes (6.1) be given. Then the homotopy type of the compact variety of Theorem $6.5(i)$ depends only on the vectors u_{k}.

7. TORIC HYPERKÄHLER MANIFOLDS FROM POLYTOPES.

In this section we shall discuss the toric hyperkähler manifolds corresponding to a convex polytope Δ in \mathbb{R}^{n}. That is, we shall consider $M(\underline{u}, \underline{\lambda})$ where $\underline{u}=\left(u_{1}, \ldots, u_{d}\right)$, $\underline{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{d}\right), \lambda_{k}=\left(\lambda_{k}^{1}, 0,0\right)$ and Δ is the intersection of half-spaces

$$
\begin{equation*}
\left\langle x, u_{k}\right\rangle \geq \lambda_{k}^{1}, \quad(k=1, \ldots, d) \tag{7.1}
\end{equation*}
$$

as in $\S 2$. We shall always assume that Δ is simple, that is, there are precisely n edges meeting at each vertex of Δ. In this situation we shall write M_{Δ} for $M(\underline{u}, \underline{\lambda})$. It is useful to observe that with this choice of λ_{k}, a collection of flats H_{k} intersect if and only if the corresponding collection of hyperplanes H_{k}^{1} intersect.
We shall be particularly interested in the relation between M_{Δ} and the Kähler toric variety X_{Δ} obtained by the construction of section 2 . First of all we shall show that the cotangent bundle of a toric manifold always carries a hyperkähler metric (usually incomplete).

Theorem 7.1. Let X_{Δ} be a smooth compact toric variety corresponding to a Delzant polytope Δ. Then $T^{*} X_{\Delta}$ with its natural complex-symplectic structure is T^{n}-equivariantly isomorphic to an open subset U_{Δ} of the (usually singular) space $\left(M_{\Delta}, J_{1}, \omega_{2}+\sqrt{-1} \omega_{3}\right)$. If we identify U_{Δ} with $T^{*} X_{\Delta}$, the hyperkähler metric of M_{Δ} restricted to the zero section of $T^{*} X_{\Delta}$ is the Kähler metric on X_{Δ} determined by Δ.

Proof. Consider the open subset $Y=\mathbb{C}_{\Delta}^{d} \times \mathbb{C}^{d}$ of $\mathbb{H}^{d} \simeq \mathbb{C}^{d} \times \mathbb{C}^{d}$, where \mathbb{C}_{Δ}^{d} is given by (2.10). Now Y is a hyperkähler T^{d}-invariant submanifold of \mathbb{H}^{d} so in particular is N-invariant, where N denotes the torus of (2.5). Moreover the action of N on Y is free, because it is free on \mathbb{C}_{Δ}^{d}. Therefore we can perform the hyperkähler quotient construction on Y and obtain a smooth manifold U_{Δ} which is an open subset of M_{Δ}. Note that U_{Δ} is preserved by the T^{n} action on M_{Δ}.

We want to identify U_{Δ}, the hyperkähler quotient of Y by N, with the complexsymplectic quotient of Y by $N^{\mathbf{C}}$ (with respect to the complex structure J_{1}). For this we have to show that every $N^{\mathbb{C}}$ orbit in the intersection of Y with the zero-set of (3.3b) (where $c_{2}=c_{3}=0$) meets the zero-set of (3.3a). Let (z, w) be in the zero-set of (3.3b), where $z \in \mathbb{C}_{\Delta}^{d}$. From the proof of Theorem 5.1 we know that the image of the $N^{\mathbf{C}}$-orbit of (z, w) under (3.3a) is $S=$
$\left\{\sum_{\left\{i ; z_{i} \neq 0\right\}} t_{i} \alpha_{i}-\sum_{\left\{i ; w_{i} \neq 0\right\}} s_{i} \alpha_{i}+c_{1} ; t_{i}, s_{i}>0\right\}$. We also know [Gu2] that the image under (2.6) is the set $\left\{\sum_{\left\{i ; z_{i} \neq 0\right\}} t_{i} \alpha_{i}+c_{1} ; t_{i}>0\right\}$ and that for $z \in \mathbb{C}_{\Delta}^{d}$ this set is open. However, since $z \in \mathbb{C}_{\Delta}^{d}$, this last set contains 0 , so S contains 0 .

We have shown that $\left(U_{\Delta}, J_{1}\right)$ is the complex-symplectic quotient of Y by N^{C}, and so is

$$
\frac{\left\{(z, w) \in \mathbb{C}^{2 d} ; \sum_{k=1}^{d}\left(z_{k} w_{k}\right) \alpha_{k}=0, z \in \mathbb{C}_{\Delta}^{d}\right\}}{N^{\mathbf{C}}}
$$

The equation on top simply says that the vector $w \in T_{z}^{*} \mathbb{C}_{\Delta}^{d}$ annihilates the vertical tangent vectors of the projection $\mathbb{C}_{\Delta}^{d} \rightarrow \mathbb{C}_{\Delta}^{d} / N^{\mathbb{C}}=X_{\Delta}$. This shows that $\left(U_{\Delta}, J_{1}\right)$ is biholomorphic to $T^{*} X_{\Delta}$. It is also clear that the symplectic forms are the same, since the form $\omega_{2}+\sqrt{-1} \omega_{3}$ on $T^{*} \mathbb{C}_{\Delta}^{d}$ is just $\sum d z_{k} \wedge d w_{k}$. The statement about the metrics follows as in (iii) of Theorem 6.5.

The metric on $T^{*} X_{\Delta}$ is complete precisely when $U_{\Delta}=M_{\Delta}$. However our next result shows that this occurs only when X_{Δ} is the product of projective spaces.

Theorem 7.2. Let X_{Δ} be a smooth compact toric variety as in 7.1. Then the following conditions are equivalent:
(i) $U_{\Delta}=M_{\Delta}=T^{*} X_{\Delta}$;
(ii) If some collection of hyperplanes containing ($n-1$)-dimensional faces of Δ do not meet in Δ, then they do not meet outside Δ;
(iii) X_{Δ} is the product of projective spaces.

Proof. Observe that (ii) is equivalent to requiring that all vertices (intersections of n hyperplanes) lie in Δ. It is also clear from Theorem 6.5 or remark after Theorem 3.1 that (ii) is necessary for (i). Let us show that it is sufficient.

Without loss of generality we can assume that Δ contains 0 in its interior, so all the λ_{k}^{1} must be negative. Now, $\mu_{1}^{-1}(0)$ can be written as the set of (z, w) satisfying

$$
\frac{1}{2} \sum_{k=1}^{d}\left|z_{k}\right|^{2} \alpha_{k}=\sum_{k=1}^{d}\left(\frac{1}{2}\left|w_{k}\right|^{2}-\lambda_{k}^{1}\right) \alpha_{k} .
$$

It follows that if $(z, w) \in \mu_{1}^{-1}(0)$, then z lies in $\left(\mu_{1}^{\prime}\right)^{-1}(0)$ where μ_{1}^{\prime} is the moment map (2.6) with a different choice of c. Hence z belongs to $\mathbb{C}_{\Delta^{\prime}}^{d}$ where Δ^{\prime} is the intersection of half-spaces (7.1) with λ_{k}^{1} of possibly larger absolute value (note that (ii) implies that Δ^{\prime} is Delzant). Condition (ii) also shows that in fact $z \in \mathbb{C}_{\Delta}^{d}$. Hence the hyperkähler quotient of \mathbb{H}^{d} by N is the same as the hyperkähler quotient of $Y=\mathbb{C}_{\Delta}^{d} \times \mathbb{C}^{d}$ by N. The proof of Theorem 7.1 now shows that $U_{\Delta}=M_{\Delta}$.

The implication (iii) \Rightarrow (ii) is obvious. Let us now show the converse. As usual, we denote by $u_{k_{i}}$ the vectors defining Δ. We consider the fan \mathcal{F} corresponding to the polytope Δ and defined at the end of section 2. Condition (ii) implies that for
any independent set of vectors $\left\{u_{k_{1}}, \ldots, u_{k_{s}}\right\}$ the cone $\left\{\sum t_{i} u_{k_{i}}: t_{i} \geq 0\right\}$ belongs to \mathcal{F}. Indeed, since the vectors are independent, the hyperplanes orthogonal to them must intersect, so by (ii) they intersect in Δ.
From this two facts follow: 1) any vector in \mathbb{R}^{n} can be written uniquely as $\sum t_{i} u_{k_{i}}$ with $t_{i}>0$ and $u_{k_{1}}, \ldots, u_{k_{s}}$ linearly independent; 2) if Δ^{\prime} is another Delzant polytope, then there are no nontrivial equivariant birational morphisms $X_{\Delta} \rightarrow X_{\Delta^{\prime}}$. For 1) notice that if a vector could be written thus in two ways, then then the cones spanned by the two sets of $u_{k_{i}}$ would intersect in their interior, contradicting the definition of the fan. For 2) we first recall [Od] that such a morphism corresponds to removing a number of $(n-1)$-dimensional walls in cones of the fan \mathcal{F} of X_{Δ} to obtain the fan \mathcal{F}^{\prime} of $X_{\Delta^{\prime}}$. Consider an n-dimensional cone σ in \mathcal{F}^{\prime} that is not in \mathcal{F}. If σ is a cone over a simplex, then the vectors generating σ are linearly independent and we get a contradiction as $\sigma \notin \mathcal{F}$. If σ has more than n generating vectors, then taking two independent n-element sets such that the cones spanned by them have n-dimensional intersection we obtain a contradiction with the fact that the intersection of two cones in \mathcal{F} is a face of each of them.

We appeal now to Reid's version [Re] of Mori's theory for projective toric varieties (see also the exposition in [Od]). We can conclude from fact 2) above, and Corollary $2.28(1)$ and Theorem $2.27(2)$ in [Od], that $\mathbb{R}^{n}=\sum V_{i}$ where each V_{i} is a vector space of positive dimension and each 1-dimensional cone of \mathcal{F} lies in some V_{i}. Moreover, each V_{i} is spanned by the cones it contains. (In Oda's terminology, the V_{i} are the spaces $\pi_{+}(R)$ where R ranges over the extremal rays of $N E\left(X_{\Delta}\right)$). We denote by \mathcal{F}_{i} the restriction of \mathcal{F} to V_{i}, that is, the cones of \mathcal{F}_{i} are precisely the cones of \mathcal{F} contained in V_{i}. Now Corollary 2.6 of [Re] shows that each \mathcal{F}_{i} is a fan of a projective space of an appropriate dimension. It remains to show that the sum $\sum V_{i}$ is direct. Suppose that the sum $V_{1}+\ldots+V_{s}$ is direct and that V_{s+1} intersects $\bigoplus_{1}^{s} V_{i}$ nontrivially. If v lies in the intersection, then, because of the definition of the spaces V_{i}, it can be written as $\sum t_{i} u_{k_{i}}$ with $t_{i}>0, u_{k_{i}} \in \bigoplus_{1}^{s} V_{i}$ and also as $\sum s_{j} u_{l_{j}}$ with $s_{j}>0, u_{l_{j}} \in V_{s+1}$, where the $u_{k_{i}}$ and the $u_{l_{j}}$ are linearly independent. By fact 1) the two sets $\left\{u_{k_{i}}\right\}$ and $\left\{u_{l_{j}}\right\}$ are equal and the vectors $u_{k_{i}}$ must belong to both $\bigoplus_{1}^{s} V_{i}$ and to V_{s+1}. The vector $-u_{k_{1}}$ also belongs to both $\bigoplus_{1}^{s} V_{i}$ and to V_{s+1}. Moreover, since the fan \mathcal{F}_{s+1} is the fan of a projective space, $-u_{k_{1}}$ belongs to the open cone in \mathcal{F}_{s+1} generated by all 1-dimensional cones of \mathcal{F}_{s+1} except $u_{k_{1}}$ and so it can be written as their combination with all coefficients positive. Repeating the previous argument with $v=-u_{k_{1}}$ shows that all 1-dimensional cones of \mathcal{F}_{s+1} belong to $\bigoplus_{1}^{s} V_{i}$ and so $V_{s+1} \subset \bigoplus_{1}^{s} V_{i}$. In fact we have shown that any 1-dimensional cone of \mathcal{F}_{s+1} is a 1 -dimensional cone of some $\mathcal{F}_{i}, i \leq s$. However, each of these fans is the fan of a projective space, and the only way that all generators of a fan of a projective space can lie among generators of fans of other projective spaces lying in a direct
sum of the relevant vector spaces is when \mathcal{F}_{s+1} is equal to \mathcal{F}_{i}, for some $i \leq s$. Such a repetition does not alter the conclusion that \mathcal{F} is the fan of a product of projective spaces.

We can also ask when M_{Δ} is smooth. This is equivalent to asking whether the hyperkähler metric on $T^{*} X_{\Delta}$ can be smoothly completed. Delzant's work shows that the toric variety X_{Δ} obtained by the construction of section 2 is smooth if and only if whenever n of the defining hyperplanes meet at a vertex of the simple polytope Δ, the corresponding vectors u_{i} form a \mathbb{Z}-basis of \mathbb{Z}^{n}. This condition is not, however, sufficient for M_{Δ} to be smooth. Indeed, Theorem 3.2 requires that the Delzant condition holds at any intersection of n hyperplanes even if the intersection is outside Δ. In particular each of the varieties \mathcal{D}_{s} of Theorem 6.5 must be smooth.

Proposition 7.3. Let X be a smooth projective toric variety of complex dimension n. Then the following statements are equivalent;
(i) X carries a T^{n}-invariant Kähler metric such that, if Δ denotes the corresponding Delzant polytope, then M_{Δ} is smooth.
(ii) every set of n independent generators u_{i} of the fan of X is a \mathbb{Z}-basis of \mathbb{Z}^{n}.

Proof. The above discussion shows that (i) implies (ii). As X is projective and toric it can be embedded equivariantly in projective space so admits a T^{n}-invariant Kähler metric, so can be obtained from the Delzant construction. As in Remark 3.4 , by adjusting λ_{i} we can choose an invariant Kähler metric on X so that no $n+1$ flats intersect. Condition (ii), together with the argument at the beginning of 3.2, now shows that the condition of 3.2 holds, so M_{Δ} is smooth.

Remark 7.4. On the other hand, every smooth projective toric variety carries a $T^{n_{-}}$ invariant Kähler metric such that M_{Δ} is an orbifold, i.e. the hyperkähler metric on $T^{*} X_{\Delta}$ can be completed with at most abelian quotient singularities. This follows from Remark 3.4.

Condition (ii) of Proposition 7.3 is rather restrictive. Let us choose an n dimensional cone of \mathcal{F}, which we can take to be generated by vectors $e_{i}, \quad(i=$ $1, \ldots, n)$. Then any other generator u_{i} of \mathcal{F} must have coordinates in $\{-1,0,1\}$. In particular the number of 1 -dimensional cones of \mathcal{F} is bounded by $3^{n}-2$ (we exclude the zero vector and $e_{1}+\ldots+e_{n}$) and so there only finitely many such varieties in each dimension.
When $n=2$, Proposition 7.3 quickly leads to a classification.
Proposition 7.5. Let X be a smooth compact toric variety of complex dimension 2 satisfying assumption (ii) of Proposition 7.3. Then X is one of the following: $\mathbb{C} P^{2}, \mathbb{C} P^{1} \times \mathbb{C} P^{1}$, the equivariant blow-up of one of these spaces at a point, or the equivariant blow-up of $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$ at two points not lying in the closure of a 1-dimensional orbit.

8. KÄhLER POTENTIALS

Guillemin has derived a formula for the Kähler form of a toric variety in terms of the associated polytope [Gu1]. We shall now find an expression in terms of $\underline{u}, \underline{\lambda}$ for the Kähler form, say ω_{1}, on the hyperkähler manifold $M(\underline{u}, \underline{\lambda})$.

The Kähler form ω (and so the metric) of a Kähler manifold X is locally determined by a Kähler potential, a real-valued function K locally defined on X such that $2 i \partial \bar{\partial} K=\omega$. In general, finding the Kähler potential of a hyperkähler manifold is a complicated problem. It is simpler, however, if the hyperkähler metric on M admits a description in terms of the Legendre transform [HKLR]. In hyperkähler geometry the term "Legendre transform" refers to the construction of the twistor space of a hyperkähler manifold via a complex symplectomorphism.

This construction has a particularly simple description when the $4 n$-dimensional hyperkähler manifold M admits a free Hamiltonian action of an n-dimensional abelian group G preserving the hyperkähler structure. Then M described as a principal G-bundle over an open subset of $\mathbb{R}^{n} \otimes \mathbb{R}^{3}$ where the projection is just the moment map $\phi=\left(\phi_{1}, \phi_{2}, \phi_{3}\right): M \rightarrow \mathbb{R}^{n} \otimes \mathbb{R}^{3}$. Since the group action preserves the hyperkähler structure, the Kähler potential with respect to any complex structure does not depend on the fiber coordinate. It is convenient to introduce the map $\pi=\left(2 \phi_{1}, \phi_{2}+\sqrt{-1} \phi_{3}\right): M \rightarrow \mathbb{R}^{n} \times \mathbb{C}^{n}$.

The following theorem holds (as in the rest of this paper, we are not using the summation convention):

Theorem 8.1 [LR,HKLR]. In the above situation the Kähler potential for the form ω_{1} on M is

$$
\begin{equation*}
K=\pi^{*}\left(F-\sum_{i=1}^{n} s_{i} \frac{\partial F}{\partial s_{i}}\right) \tag{8.1}
\end{equation*}
$$

where $F=F\left(s_{i}, v_{i}, \bar{v}_{i}\right)$ is a real-valued function on $\mathbb{R}^{n} \times \mathbb{C}^{n}$ satisfying the linear equations

$$
\begin{equation*}
F_{s_{i} s_{j}}+F_{v_{i} \bar{v}_{j}}=0 \tag{8.2}
\end{equation*}
$$

An equivalent characterization of F is that it is given by a contour integral in an auxiliary variable ζ :

$$
F=\operatorname{Re} \frac{1}{2 \pi \sqrt{-1}} \oint_{c} \frac{1}{\zeta^{2}} H(\eta, \zeta) d \zeta
$$

where $\eta: \mathbb{R}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, is defined by $\eta_{i}=v_{i}-\zeta s_{i}-\zeta^{2} \bar{v}_{i}$. Here H is the complex Hamiltonian used to construct the twistor space.

Our manifolds fall into this class of examples with $G=T^{n}$, provided we restrict to an open dense subset.

Example 8.2. Consider the open subset of \mathbb{H}^{d} on which the diagonal action of the torus T^{d} is free. We have [LR,HKLR]

$$
H\left(\eta_{1}, \ldots, \eta_{d}, \zeta\right)=\frac{1}{4} \sum_{i=1}^{d} \eta_{i} \ln \eta_{i}
$$

and

$$
\begin{equation*}
F(s, v, \bar{v})=\frac{1}{4} \sum_{i=1}^{d}\left(r_{i}-s_{i} \ln \left(s_{i}+r_{i}\right)\right) \tag{8.3}
\end{equation*}
$$

where $r_{i}^{2}=s_{i}^{2}+4 v_{i} \bar{v}_{i}$. Here v_{i}, s_{i} are related to our standard coordinates z_{i}, w_{i} by $v_{i}=z_{i} w_{i}$ and $s_{i}=\left|z_{i}\right|^{2}-\left|w_{i}\right|^{2}$. The Kähler potential is given by $K=\frac{1}{4} \sum r_{i}$.

We now want to calculate the Kähler potential for the form ω_{1} on our hyperkähler quotient $M=M(\underline{u}, \underline{\lambda})$ (or more precisely on the open dense subset where T^{n} acts freely). Our metric was given as the hyperkähler quotient of the metric of Example 8.2 by some subtorus of T^{d}. In the coordinates s_{i}, v_{i}, the equations definining the zero-set of the moment map (3.3) become linear:

$$
\begin{equation*}
\sum_{k=1}^{d}\left(s_{k}+2 \lambda_{k}^{1}\right) \alpha_{k}=0 \tag{8.4a}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=1}^{d}\left(v_{k}+\lambda_{k}^{2}+\sqrt{-1} \lambda_{k}^{3}\right) \alpha_{k}=0 \tag{8.4b}
\end{equation*}
$$

The function F given by (8.3) restricts to the flats defined by (8.4), and gives the Kähler potential on M via formula (8.1) [HKLR, section 2(C)]. Therefore all that remains to be done is to express this restricted function in terms of the coordinates $(a, b)=\left(\phi_{1}(m),\left(\phi_{2}+\sqrt{-1} \phi_{3}\right)(m)\right)$, where $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is the hyperkähler moment map for the action of T^{n} on M.
Let $m \in M$, and suppose that the image of m in $\mathbb{R}^{d} \times \mathbb{C}^{d}$ is a point (s, v) satisfying (8.4). Using (3.6) we obtain:

$$
\begin{equation*}
s_{k}=2\left\langle a, u_{k}\right\rangle-2 \lambda_{k}^{1}, \quad v_{k}=\left\langle b, u_{k}\right\rangle-\lambda_{k}^{2}-\sqrt{-1} \lambda_{k}^{3} \tag{8.5}
\end{equation*}
$$

and so we have the function F for $\left(M, \omega_{1}\right)$. We calculate the Kähler potential according to (8.1) and obtain

$$
\begin{aligned}
F-\sum_{i=1}^{n} a_{i} \frac{\partial F}{\partial a_{i}} & =F-\sum_{i=1}^{n} \sum_{k=1}^{d} a_{i} \frac{\partial F}{\partial s_{k}} \frac{\partial s_{k}}{\partial a_{i}}=F-2 \sum_{i=1}^{n} \sum_{k=1}^{d} a_{i} \frac{\partial F}{\partial s_{k}}\left(u_{k}\right)_{i} \\
& =F-\sum_{k=1}^{d}\left(s_{k}+2 \lambda_{k}^{1}\right) \frac{\partial F}{\partial s_{k}}=\frac{1}{4} \sum_{k=1}^{d}\left(r_{k}+2 \lambda_{k}^{1} \ln \left(s_{k}+r_{k}\right)\right),
\end{aligned}
$$

where at the last step we use the equation

$$
\frac{\partial F}{\partial s_{k}}=\frac{1}{4} \sum_{k=1}^{d}\left(\frac{s_{k}}{r_{k}}-\ln \left(s_{k}+r_{k}\right)-\frac{s_{k}}{s_{k}+r_{k}}\left(1+\frac{s_{k}}{r_{k}}\right)\right)=-\frac{1}{4} \sum_{k=1}^{d} \ln \left(s_{k}+r_{k}\right) .
$$

This gives the next theorem, in which $\pi: M \rightarrow \mathbb{R}^{n} \times \mathbb{C}^{n}$ is the projection defined above, and ∂_{1} is the Dolbeault operator corresponding to the complex structure J_{1}.

Theorem 8.3. On the open dense subset where the action of T^{n} is free, the Kähler form ω_{1} on the toric hyperkähler manifold $M=M(\underline{u}, \underline{\lambda})$ is given by:

$$
\begin{equation*}
\omega_{1}=\frac{\sqrt{-1}}{2} \partial_{1} \bar{\partial}_{1} \pi^{*}\left(\sum_{k=1}^{d}\left(r_{k}+2 \lambda_{k}^{1} \ln \left(s_{k}+r_{k}\right)\right)\right) \tag{8.6}
\end{equation*}
$$

where s_{k} and v_{k} are given by (8.5) and $r_{k}^{2}=s_{k}^{2}+4 v_{k} \bar{v}_{k}$.
In the situation of Theorem 7.1, restricting (8.6) to U_{Δ} and then to X_{Δ}, that is, the subset of U_{Δ} where $v_{1}=\ldots=v_{d}=0$, gives the formula of Guillemin [Gu1] for the Kähler form of the toric variety X_{Δ}.

9. The metric and generalized monopoles

Pedersen and Poon [PP] have given an explicit formula for the metric of a hyperkähler $4 n$-manifold M with a free action of T^{n} preserving the hyperkähler structure. Using the coordinate system a_{i}, b_{i}, they find that if F is the function of Theorem 8.1 for M, then by putting

$$
\begin{equation*}
\left(\Phi_{i j}, A_{j}\right)=\left(2 F_{a_{i} a_{j}}, \sum_{l} \sqrt{-1}\left(F_{a_{j} b_{l}} d b_{l}-F_{a_{j} \bar{b}_{l}} d \bar{b}_{l}\right)\right) \tag{9.1}
\end{equation*}
$$

we obtain a solution to the generalized Bogomolny equations with gauge group T^{n}. We call such a solution a monopole. More precisely, we can define a pair (A, Φ) by putting $A=\left(A_{1}, \ldots, A_{n}\right)$ and $\Phi=\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ where $\Phi_{i}=\left(\Phi_{i 1}, \ldots, \Phi_{i n}\right)$. Then A is a 1 -form on $\mathbb{R}^{3} \otimes \mathbb{R}^{n}$ with values in \mathbb{R}^{n} and Φ_{i} are Higgs fields $\mathbb{R}^{3} \otimes \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. If we put $w_{j}^{1}=a_{j}, w_{j}^{2}=\operatorname{Re} b_{j}, w_{j}^{3}=\operatorname{Im} b_{j}$, then (A, Φ) satisfy the linear system of PDEs

$$
\begin{align*}
R_{w_{i}^{\alpha} w_{j}^{\beta}} & =\sum_{\gamma} \epsilon_{\alpha \beta \gamma} \nabla_{w_{i}^{\gamma}} \Phi_{j} \tag{9.2}\\
\nabla_{w_{i}^{\alpha}} \Phi_{j} & =\nabla_{w_{j}^{\beta}} \Phi_{i}
\end{align*}
$$

where ϵ is the alternating symbol, $\nabla=d+A$ is a connection on the trivial \mathbb{R}^{n} bundle over $\mathbb{R}^{3} \otimes \mathbb{R}^{n}$ and R is its curvature.
The hyperkähler metric g on M is given by

$$
\begin{equation*}
g=-\sum_{i, j}\left[\Phi_{i j}\left(d a_{i} d a_{j}+d b_{i} d \bar{b}_{j}\right)+\Phi_{i j}^{-1}\left(d y_{i}+A_{i}\right)\left(d y_{j}+A_{j}\right)\right] \tag{9.3}
\end{equation*}
$$

where $d y_{i}=\sqrt{-1}\left(\bar{\partial}_{1} F_{a_{i}}-\partial_{1} F_{a_{i}}\right)$ are the fiber coordinates given by Killing vector fields corresponding to the action of T^{n}.

We shall now find the monopole corresponding to the metric on the toric hyperkähler manifold $M=M(\underline{u}, \underline{\lambda})$. We have to calculate partial derivatives $F_{a_{i} a_{j}}, F_{a_{i} b_{j}}, F_{a_{i} b_{j}}$ where F is given by (8.3) and (8.5). We have

$$
\begin{equation*}
F_{a_{i}}=\sum_{k=1}^{d} \frac{\partial F}{\partial s_{k}} \frac{\partial s_{k}}{\partial a_{i}}=-\frac{1}{2} \sum_{k=1}^{d} \ln \left(s_{k}+r_{k}\right)\left(u_{k}\right)_{i}, \tag{9.4}
\end{equation*}
$$

and then

$$
\begin{align*}
& F_{a_{i} a_{j}}=-\sum_{k=1}^{d} \frac{\frac{\partial s_{k}}{\partial a_{j}}+\frac{\partial r_{k}}{\partial a_{j}}}{s_{k}+r_{k}}\left(u_{k}\right)_{i}=-\sum_{k=1}^{d} \frac{\left(u_{k}\right)_{j}\left(u_{k}\right)_{i}}{r_{k}}, \tag{9.5}\\
& F_{a_{i} b_{j}}=-\frac{1}{2} \sum_{k=1}^{d} \frac{\frac{\partial r_{k}}{\partial b_{j}}}{s_{k}+r_{k}}\left(u_{k}\right)_{i}=-\sum_{k=1}^{d} \frac{\bar{v}_{k}\left(u_{k}\right)_{j}\left(u_{k}\right)_{i}}{\left(s_{k}+r_{k}\right) r_{k}}, \tag{9.6}
\end{align*}
$$

and

$$
\begin{equation*}
F_{a_{i} \bar{b}_{j}}=-\sum_{k=1}^{d} \frac{v_{k}\left(u_{k}\right)_{j}\left(u_{k}\right)_{i}}{\left(s_{k}+r_{k}\right) r_{k}} . \tag{9.7}
\end{equation*}
$$

This gives us the monopole and therefore the following explicit formula for the metric on M in terms of the moment map.

Theorem 9.1. On the open dense subset where the action of T^{n} is free, the hyperkähler metric g on M is given by (9.3), where

$$
\left(\Phi_{i j}, A_{j}\right)=\left(-2 \sum_{k=1}^{d} \frac{\left(u_{k}\right)_{j}\left(u_{k}\right)_{i}}{r_{k}}, \sqrt{-1} \sum_{l=1}^{n} \sum_{k=1}^{d} \frac{\left(u_{k}\right)_{j}\left(u_{k}\right)_{l}}{\left(s_{k}+r_{k}\right) r_{k}}\left(v_{k} d \bar{b}_{l}-\bar{v}_{k} d b_{l}\right)\right)
$$

and $\frac{\partial}{\partial y_{j}}$ are infinitesimal isometries given by

$$
d y_{i}=\frac{\sqrt{-1}}{2}\left(\partial_{1}-\bar{\partial}_{1}\right) \sum_{k=1}^{d} \ln \left(s_{k}+r_{k}\right)\left(u_{k}\right)_{i} .
$$

Once more, in the situation of Theorem 7.1 restricting to $v_{k}=0$ gives a formula for the Kähler metric on the toric variety X_{Δ} :

$$
g=-\sum_{i, j}\left[\Phi_{i j} d a_{i} d a_{j}+\Phi_{i j}^{-1} d y_{i} d y_{j}\right]
$$

Appendix: Cohomology of varieties with
 AN EQUIVARIANT TORIC DECOMPOSITION.

Let X be a compact complex variety. We say that X admits an equivariant toric decomposition if X is a union of compact toric varieties X_{1}, \ldots, X_{s}, such that, for any $I \subset\{1, \ldots, s\}$, the intersection $\bigcap_{i \in I} X_{i}$ is an invariant toric subvariety of each $X_{i}, i \in I$. In other words X is the support of a complex of toric varieties. We shall assume that all the X_{i} come from the Delzant construction.

We can associate to a variety X with such a decomposition a polytopal complex $\mathcal{C}(X)$ in some Euclidean space \mathbb{R}^{N} as follows. For each $I \subset\{1, \ldots, s\}$ we define a polytope Δ_{I}, isometric to a polytope determining $\bigcap_{i \in I} X_{i}$, in such a way that $\Delta_{I}=\bigcap_{i \in I} \Delta_{\{i\}}$.
What matters here is that the natural map $\phi: X \rightarrow|\mathcal{C}(X)|$ maps closures of orbits in X to elements of \mathcal{C} in a one-to-one fashion. Conversely, to any polytopal complex \mathcal{C} we can associate a compact complex variety $X(\mathcal{C})$ admitting an equivariant toric decomposition.

An example of such an X is the deformation retract of $M(\underline{u}, \underline{\lambda})$ produced in Theorem 6.5 (i). Theorem 6.7 therefore follows immediately from the next theorem.
Theorem 10.1. Let X be a compact complex variety admitting an equivariant toric decomposition into toric orbifolds such that the associated polyhedral complex $\mathcal{C}(X)$ is star-collapsible. Then the Poincaré polynomial $P_{X}(t)=\sum_{i} \operatorname{dim} H^{i}(X, \mathbb{Q}) t^{i}$ of X is

$$
\begin{equation*}
P_{X}(t)=\sum_{k=0}^{n} d_{k}\left(t^{2}-1\right)^{k} \tag{10.1}
\end{equation*}
$$

where d_{i} denotes the number of i-dimensional elements of the complex $\mathcal{C}(X)$.
Remarks. (i) The Betti numbers of X are then given by (6.6).
(ii) Once more, if X has a decomposition into toric manifolds, then the integer cohomology has no torsion.
(iii) Without the assumption of star-collapsibility Theorem 10.1 may fail; for example, consider the union of three copies of $\mathbb{C} P^{1}$ joined together so as to form a ring. Observe that this particular example will not arise as the deformation retract of one of our toric hyperkähler manifolds.

As a first step in the proof of 10.1 , we let $\emptyset=\mathcal{C}_{0} \subset \ldots \subset \mathcal{C}_{r}=\mathcal{C}(X)$ be the filtration given by Definition 6.4 and let $\emptyset=Z_{0} \subset \ldots \subset Z_{r}=X$ be the filtration of X by closed subvarieties defined by

$$
\begin{equation*}
Z_{i}=\phi^{-1}\left(\left|\mathcal{C}_{i}\right|\right) \tag{10.2}
\end{equation*}
$$

where $\phi: X \rightarrow|\mathcal{C}(X)|$ is the natural map. Then $Z_{i}-Z_{i-1}=$ $\phi^{-1}\left(\Delta_{i}-\left|\operatorname{ast}\left(x_{i} ; \mathcal{C}\left(\Delta_{i}\right)\right)\right|\right)$ for some $\Delta_{i} \in \mathcal{C}_{i}$ and $x_{i} \in \Delta_{i}$.

Lemma 10.2. Let Y be a compact toric Kähler orbifold with an associated moment map ϕ onto a polytope Δ in \mathbb{R}^{n}. If x is a vertex of Δ, then $\phi^{-1}(\Delta-|a s t(x ; \Delta)|)$ is biholomorphic to \mathbb{C}^{n} / Γ for some finite group Γ.

Proof. In the terminology of fans $\phi^{-1}(\Delta-|\operatorname{ast}(x ; \Delta)|)$ is a toric variety corresponding to a maximal cone. As Δ is simple this cone is simplicial and the result follows from [Fu;p.34].

We can now apply the following result.
Lemma 10.3. Let X be a compact complex variety admitting a filtration by closed subvarieties $\emptyset=Z_{0} \subset \ldots \subset Z_{r}=X$ such that, for any $i \leq r, Z_{i}-Z_{i-1}$ is homeomorphic to $\mathbb{C}^{m_{i}} / \Gamma_{i}$ for some integer m_{i} and some finite group Γ_{i} acting linearly on $\mathbb{C}^{m_{i}}$. Then $\operatorname{dim} H^{q}(X, \mathbb{Q})=\#\left\{i: \operatorname{dim}_{\mathbb{R}}\left(Z_{i}-Z_{i-1}\right)=q\right\}$. Furthermore, if each Γ_{i} is trivial, then the integer cohomology of X has no torsion.

Proof. For any i, we have the long exact sequence

$$
\ldots \rightarrow H^{q-1}\left(Z_{i-1}\right) \rightarrow H_{c}^{q}\left(Z_{i}-Z_{i-1}\right) \rightarrow H^{q}\left(Z_{i}\right) \rightarrow H^{q}\left(Z_{i-1}\right) \rightarrow \ldots
$$

where the cohomology can be taken over the rationals or integers.
Now, $H_{c}^{q}\left(\mathbb{C}^{m_{i}} / \Gamma_{i}, \mathbb{Q}\right)$ is 0 if $q \neq 2 m_{i}$ and is \mathbb{Q} if $q=2 m_{i}$ (to see this consider the above long exact sequence with Z_{i} replaced by the cone $\left([0,1] \times\left(S^{2 m_{i}-1} / \Gamma_{i}\right)\right) /(\{0\} \times$ ($\left.S^{2 m_{i}-1} / \Gamma_{i}\right)$) and Z_{i-1} replaced by the lens space $\left.S^{2 m_{i}-1} / \Gamma_{i}\right)$. Observe also that Z_{1}, being closed, is a single point. It follows, by induction, that the odd cohomology of each Z_{i} vanishes and hence the sequence splits off at each even level. Again by induction, we can show the formula for the cven Betti numbers. If Γ_{i} is trivial, then our statement about $H_{c}^{q}\left(\mathbb{C}^{m_{i}} / \Gamma_{i}\right)$ is true with \mathbb{Z} replacing \mathbb{Q}, which proves the second assertion of the lemma.

Example 10.4. Let X be a compact toric Kähler orbifold with an associated moment map ϕ onto a polytope Δ in \mathbb{R}^{n}. Let T be a dense 1-parameter subgroup of the torus T^{n} and let ϕ_{T} be the induced moment map for the action of T. The only critical points of ϕ_{T} are the fixed points x_{1}, \ldots, x_{r} of T^{n}. Moreover, if W_{i} is the set of points whose path of steepest descent for ϕ_{T} ends up in x_{i}, then $W_{i} \cong \mathbb{C}^{m_{i}} / \Gamma_{i}$, and (after renumbering of the x_{i}) the filtration given by $Z_{i}=W_{1} \cup \ldots \cup W_{i}$ satisfies the conditions of Lemma 10.3. This is an example of the plus decomposition of Bialynicki-Birula [BB] [Ki2].

Lemma 10.2 shows that if X satisfies the hypotheses of 10.1 then it has a filtration of the kind considered in 10.3. We can now finish the proof of Theorem 10.1 by induction on the length r of the filtration of X. As remarked above, Z_{1} is a point. Moreover, each Z_{i} is a variety with an equivariant toric decomposition, since it is a union of orbits of tori and it is closed. Therefore we can assume that the statement
holds for Z_{r-1}. Let $Z_{r}-Z_{r-1}=\phi^{-1}(\Delta-|\operatorname{ast}(x ; \Delta)|)$ and let $\operatorname{dim} \Delta=m$. By lemmas 10.2 and $10.3, b_{q}\left(Z_{r}\right)=b_{q}\left(Z_{r-1}\right)$ for $q \neq 2 m$ and $b_{2 m}\left(Z_{r}\right)=b_{2 m}\left(Z_{r-1}\right)+1$. On the other hand, the number d_{k}^{r} of k-dimensional faces of $\mathcal{C}\left(Z_{r}\right)$ satisfies $d_{k}^{r}=$ $d_{k}^{r-1}+\binom{m}{k}$. Hence
$\sum_{k=0}^{n} d_{k}^{r}\left(t^{2}-1\right)^{k}=\sum_{k=0}^{n} d_{k}^{r-1}\left(t^{2}-1\right)^{k}+\sum_{k=0}^{m}\binom{m}{k}\left(t^{2}-1\right)^{k}=\sum_{k=0}^{n} d_{k}^{r-1}\left(t^{2}-1\right)^{k}+t^{2 m}$,
which proves the formula for the Poincaré polynomial of Z_{r}.

Finally let us prove Proposition 6.10. If $n=1$ the polytopal complex \mathcal{C} corresponding to a simple arrangement of hyperplanes consists of a finite union of intervals in \mathbb{R}, so it is clear that \mathcal{C} is star-collapsible. For $n=2$, since \mathcal{C} has contractible support in this case, the result follows from the next proposition.

Proposition 10.5. Let \mathcal{C} be the polytopal complex corresponding to a simple arrangement of lines in \mathbb{R}^{2} and let \mathcal{C}^{\prime} be a subcomplex of \mathcal{C} with contractible support. Then \mathcal{C}^{\prime} is star-collapsible.

Proof. The statement will follow if we can show that any such \mathcal{C}^{\prime} has a free vertex, that is, a vertex belonging to only one maximal element of \mathcal{C}^{\prime}. For we can then take this vertex to be x_{r} and the maximal element containing it to be Δ_{r}. Then $\mathcal{C}_{r-1}^{\prime}=\left(\mathcal{C}^{\prime}-\mathcal{C}\left(\Delta_{r}\right)\right) \cup$ ast $\left(x_{r} ; \Delta_{r}\right)$ is still a subcomplex of \mathcal{C} with contractible support. By repeating we can obtain the desired filtration.
Suppose that \mathcal{C}^{\prime} does not have a free vertex. This in particular implies that each vertex belongs to at least two edges. Therefore, if we walk along $\left|\mathcal{C}^{\prime}\right|$, choosing at each vertex the rightmost edge different from the one that we arrived on, we will never stop. We can start the walk at a vertex of the convex hull of $\left|\mathcal{C}^{\prime}\right|$, and choose the initial step to be rightwards, viewed from the outside of $\left|\mathcal{C}^{\prime}\right|$.

Since the number of vertices is finite we must make a loop during our walk, i.e. there will be a sequence of vertices $x_{1}, \ldots, x_{n}, x_{n+1}=x_{1}$. Let L be a minimal loop, i.e. for $1 \leq i<j \leq n, x_{i} \neq x_{j}$. Since $\left|\mathcal{C}^{\prime}\right|$ is contractible, the interior of L must be in $\left|\mathcal{C}^{\prime}\right|$ and so every vertex x_{i} of L is a vertex of a 2 -dimensional element of \mathcal{C}^{\prime}. Now, let $x_{p}, p \neq 1$, be a vertex of L at which the loop turns to the left. i.e. the angle between the incoming and outgoing edge is positive. Such a point exists since we get back to x_{1}. Suppose that x_{p} belongs to two maximal elements. Then, since $\left|\mathcal{C}^{\prime}\right|$ lies to the left of L near x_{p} (as we always chose the right-most edge during our walk), there must be three lines meeting at x_{p} which contradicts the simplicity of the line arrangement.

Acknowledgements

We thank Krzysztof Galicki, Andy Nicas and Greg Sankaran for comments and conversations. We are particularly grateful to Jarosław Wiśniewski for explaining to us the rudiments of Mori's theory and for suggesting its use in the proof of Theorem 7.2. R.B. wishes to thank both McMaster University and the Max-Planck-Institut für Mathematik for hospitality and financial support. A.S.D. thanks NSERC for financial support.

References

[Au] M. Audin The topology of torus actions on symplectic manifolds. Birkhäuser, Boston (1991).
[BB] A. Bialynicki-Birula Some theorems on actions of algebraic groups. Annals of Math. 98, 480-497 (1973).
[BGM1] C.P. Boyer, K. Galicki and B.M. Mann Quaternionic reduction and Einstein manifolds. Communications in Analysis and Geometry 1, 229-279 (1993).
[BGM2] C.P. Boyer, K. Galicki and B.M. Mann The geometry and topology of 3Sasakian manifolds. J. Reine Angew. Math. 455, 183-220 (1994).
[BGM3] C.P. Boyer, K. Galicki and B.M. Mann 3-Sasakian manifolds with arbitrary second Betti number, (in preparation).
[Ca] E. Calabi Métriques kählériennes et fibrés holomorphes. Ann. Éc. Norm. Sup. 12, 269-294 (1979).
[De] T. Delzant Hamiltoniens périodiques et images convexe de l'application moment. Bull. Soc. Math. France 116, 315-339 (1988).
[DS] A.S. Dancer and A. Swann The structure of quaternionic Kähler quotients. in: Proceedings on Geometry and Physics (Aarhus and Odense, 1995) (J.E. Andersen et al., eds.), Lect. Notes in Pure and Applied Math.,vol.184, Marcel Dekker, New York (to appear).
[Fu] W. Fulton Introduction to toric varieties. Ann. Math. Studies 131, Princeton University Press, Princeton (1993).
[GH] G.W. Gibbons and S.W. Hawking Gravitational multi-instantons. Phys. Lett. 78B, 430-432 (1978).
[GR] G.W. Gibbons and P. Rychenkova HyperKähler quotient construction of BPS monopole moduli spaces. Cambridge DAMTP preprint (1996).
[Go1] R. Goto On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method. in: "Infinite Analysis" (Kyoto 1991) part A, Adv. Ser. Math. Phys. 16, World Scientific, (1992).
[Go2] R. Goto On the hyper-Kähler manifolds of type A_{∞}. Geom. Fun. Anal. 4, 424-454 (1994).
[Gr] B. Grünbaum Convex polytopes. Interscience, London (1967).
[Gu1] V. Guillemin Kähler structures on toric varieties. J. Diff. Geom. 40, 285-309 (1994).
[Gu2] V. Guillemin Moment maps and combinatorial invariants of Hamiltonian T^{n} spaces. Birkhäuser, Boston (1994).
[Ha] S.W. Hawking Gravitational instantons. Phys. Lett. 60A, 81-83 (1977).
[Hi] N.J. Hitchin Polygons and gravitons. Math. Proc. Camb. Phil. Soc. 85, 465-476 (1979).
[HKLR] N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček Hyperkähler metrics and supersymmetry. Commun. Math. Phys. 108, 535-589 (1987).
[Ki1] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry. Princeton University Press, Princeton (1984).
[Ki2] F. Kirwan Intersection homology and torus actions. J. Amer. Math. Soc. 1, 385-400 (1988).
[Kr] P.B. Kronheimer The construction of ALE spaces as hyper-Kähler quotients. J. Diff. Geom. 29, 665-683 (1989).
[LR] U. Lindström and M. Roček Scalar tensor duality and $N=1,2$ nonlinear σ-models. Nucl. Phys. B 222, 285-308 (1983).
[Na] H. Nakajima. Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76, 365-416 (1994).
[Od] T. Oda Convex bodies and algebraic geometry: an introduction to the theory of toric varieties. Springer, Heidelberg (1988).
[PP] H. Pedersen and Y.S. Poon Hyper-Kähler metrics and a generalization of the Bogomolny equations. Comm. Math. Phys. 117, 569-580 (1988).
[Re] M. Reid Decomposition of toric morphisms. in: "Arithmetic and geometry. Papers dedicated to I.R. Shafarevich on the occasion of his sixtieth birthday." vol. II, Progress in Mathematics vol. 36, Birkhäuser, Boston (1983).

Max-Planck-Institut fur Mathematik, Gottfried-Claren-Strasse 26, 53225 Bonn, Germany
E-mail address: rogerb@mpim-bonn.mpg.de
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4 K 1
E-mail address: dancer@icarus.math.memaster.ca

[^0]: 1 Supported in part by NSERC grant OGP0184235

