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ATOMS IN THE p-LOCALIZATION OF STABLE

HOMOTOPY CATEGORY

YURIY A. DROZD AND PETRO O. KOLESNYK

Abstract. We study p-localizations, where p is an odd prime, of the
full subcategories S n of stable homotopy category consisting of CW-
complexes having cells in n successive dimensions. Using the technique
of triangulated categories and matrix problems we classify atoms (inde-
composable objects) in S n

p for n ≤ 4(p−1) and show that for n > 4(p−1)
such classification is wild in the sense of the representation theory.
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Introduction

Classification of homotopy types of polyhedra (finite CW-complexes) is
an old problem. It is well-known that it becomes essentially simpler if we
consider the stable situation, i.e. identify two polyhedra having homotopy
equivalent (iterated) suspensions. It leads to the notion of stable homotopy
category and stable homotopy equivalence. Such a classification has been
made for polyhedra of low dimensions by several authors; a good survey of
these results is the paper of Baues [2]. Unfortunately, it cannot be done for
higher dimensions, since the problem becomes extremely complicated. Actu-
ally, it results in “wild problems” of the representation theory, i.e. problems
containing classification of representations of all finitely generated algebras
over a field (cf. [3, 10, 11]; for generalities about wild problems see the
survey [9]).

In the survey [10] the first author proposed a new approach to the stable
homotopy classification which seems more “algebraic” and simpler for cal-
culations. It is based on the triangulated structure of the stable homotopy
category and uses the technique of “matrix problems”, more exactly, bimod-
ule categories in the sense of [9]. In particular, it gave simplified proofs of
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2 Y. DROZD AND P. KOLESNYK

the results of [5, 3, 4]. In [11] this technique gave new results on classification
of polyhedra with torsion free homologies.

The main difficulties in the stable homotopy classification are related to
the 2-components of homotopy groups. That is why it is natural to study
p-local polyhedra, where p is an odd prime; then we only use the p-parts
of homotopy groups. In this paper we use the technique of [10, 11] to
classify p-local polyhedra that only have cells in n successive dimensions for
n ≤ 4(p− 1). Analogous results have been obtained by Henn [13], who used
a different approach. Our description seems more straightforward and more
visual. It gives explicit construction of polyhedra by successive attaching
simpler polyhedra to each other. We also show that for n > 4(p − 1) the
stable classification of p-local polyhedra becomes a wild problem, so the
obtained results are in some sense closing.

Section 1 covers the main notions from the stable homotopy theory, bi-
module categories and their relations. In Section 2 we calculate morphisms
between Moore polyhedra and their products. In Section 3 we describe poly-
hedra in the case n = 2p− 1. This classification happens to be “essentially
finite” in the sense that there is an upper bound for the number of cells
in indecomposable polyhedra (atoms); actually, atoms have at most 4 cells.
Section 4 is the main one. Here we describe polyhedra for 2p ≤ n ≤ 4(p−1).
The result is presented in terms of strings and bands, which is usual in the
modern representation theory. String and band polyhedra are defined by
some combinatorial invariant (a word) and, in band case, an irreducible
polynomial over the residue field Z/p. In the representation theory such
description is said to be tame. Finally, in Section 5 we prove that the clas-
sification becomes wild if n > 4(p− 1).

The description obtained by matrix methods is local, just as that of [13].
Using the results of [12] we also obtain a global description of p-primary
polyhedra. Fortunately, it almost coincides with the local one, except rare
special cases, when one local object gives rise to (p− 1)/2 global ones.

The first author expresses his thanks to H.-J. Baues, who introduced him
into the world of algebraic topology and was his co-author in several first
papers on this topic.

1. Stable homotopy category and bimodule categories

We use basic definitions and facts concerning stable homotopy from [8].
We denote by S the stable homotopy category of polyhedra, i.e. finite CW-
complexes. It is an additive category and the morphism groups in it are
Hos(X,Y ) = lim−→k

Hot(X[k], Y [k]), where X[k] denotes the k-fold suspension

of X and Hot(X,Y ) denotes the set of homotopy classes of continuous maps
X → Y . Note that the direct sum in this category is the wedge (bouquet, or
one-point gluing) X ∨Y and the natural map Hos(X,Y )→ Hos(X[k], Y [k])
is an isomorphism. In what follows, we always deal with polyhedra as the
objects of this category. In particular, isomorphism means stable homotopy
equivalence. Note that all groups Hos(X,Y ) are finitely generated and the
stable homotopy groups πSn (X) = Hos(Sn, X) are torsion if n > dimX. It
is convenient to formally add to S the “negative shifts” X[−k] (k ∈ N) of
polyhedra with the natural sets of morphisms, so that X[k][l] ' X[k+ l] and
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Hos(X[k], Y [k]) ' Hos(X,Y ) for all k ∈ Z. Then S becomes a triangulated
category, where the suspension plays role of the shift and the exact triangles
are cofibre sequences X → Y → Z → X[1] (in S they are the same as
fibre sequences). From now on we consider S with these additional objects.
Actually, the category obtained in this way is equivalent to the category of
finite S-spectra [8, 15].

We denote by S n the full subcategory of S whose objects are the shifts
X[k] (k ∈ Z) of polyhedra only having cells in at most n successive dimen-
sions, or, the same, (m− 1)-connected and of dimension at most n+m for
some m. The Freudenthal Theorem [8, Theorem 1.21] implies that every ob-
ject of S n is a shift (iterated suspension) of an n-connected polyhedron of
dimension at most 2n− 1. We denote the full subcategory of S n consisting
of such polyhedra by S

n
. Moreover, if two such polyhedra are isomorphic

in S , they are homotopy equivalent. Following Baues [2], we call an object

from S n an atom if it belongs to S
n
, does not belong to S n−1 and is

indecomposable (into a wedge of non-contractible polyhedra).
Recall that the p-localization of an additive category C is the category Cp

such that Ob Cp = Ob C and HomCp(A,B) = Zp⊗HomC (A,B), where Zp ⊂
Q is the subring

{
a
b | a, b ∈ Z, p - b

}
. We consider the localized categories

Sp and S n
p and denote their groups of morphisms X → Y by Hosp(X,Y ).

Actually, Sp coincides with the stable homotopy category of finite p-local
CW-complexes in the sense of [14]. Every such space can be considered an
image in Sp of a p-primary polyhedron, i.e. such polyhedron X that the

map pk1X for some k can be factored through a wedge of spheres [8].
To study the categories S n

p we use the technique of bimodule categories,
like in [11]. We recall the corresponding notions.

Definition 1.1 (cf. [9, Section 4]). Let A and B be additive categories,
M be an A -B-bimodule, i.e. a biadditive functor A op × B → Ab (the
category of abelian groups). The bimodule category E (M ) (or the category
of elements of M ) is defined as follows.

• Ob E (M ) =
⋃
A∈ObA
B∈ObB

M (A,B).

• If u ∈M (A,B), v ∈M (A′, B′), then

HomE (M )(u, v) =
{

(f, g) | f : A→ A′, g : B → B′, gu = vf
}
.

E (M ) is also an additive category. Note that we only consider bipartite
bimodules in the sense of [9].

Usually we choose a set of additive generators of A and B, i.e. sets
{A1, A2, . . . , As } ⊂ Ob A and {B1, B2, . . . , Br } ⊂ Ob B such that ev-
ery object from A (respectively, from B) is isomorphic to a direct sum⊕s

j=1 kjAj (respectively,
⊕r

i=1 liBi). Then an object of E (M ) can be pre-

sented as a block matrix F = (Fij), where Fij is a matrix of size li × kj
with coefficients from M (Aj , Bi). If we present morphisms in the analogous
matrix form, the action of morphisms on elements from M is presented by
the usual matrix multiplication.

We use the following localized version of [11, Theorem 2.2].
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Theorem 1.2. Let n ≤ m < 2n − 1. Denote by A (respectively, by
B) the full subcategory of Sp consisting of (m − 1)-connected polyhedra
of dimension at most 2n − 2 (respectively, of (n − 1)-connected polyhe-
dra of dimension at most m). Consider the A -B-bimodule M such that
M (A,B) = Hosp(A,B). Let I be the ideal of the category E (M ) consist-
ing of all morphisms (α, β) : f → f ′ such that α factors through f and β

factors through f ′. Let also J be the ideal of S
n
p consisting of all maps

f : X → Y such that f factors both through an object from A [1] and through
an object from B. The map f 7→ Cf (the cone of f) induces an equivalence

E (M )/I ' S
n
p/J . Moreover, J 2 = 0, hence the isomorphism classes of

the categories S
n
p and S

n
p/J are the same.

Note also that all groups J (X,Y ) are finite [12, Corollary 1.10].

Finally, recall that, for k < l < k + 2p(p− 1)− 1, the only non-trivial p-
components of the stable homotopy groups Hos(Sl, Sk) are Hosp(S

k+qs , Sk) =
Z/p, where 1 ≤ s < p and qs = 2s(p− 1)− 1 [16].

2. Moore polyhedra

The only atoms in S 2
p are Moore atoms Mk (k ∈ N) which are cones of

the maps S2 pk−→ S2. We denote their d-dimensional suspensions Mk[d − 3]
by Md

k and call them Moore polyhedra. For unification, we denote Sd by Md
0 .

We need to know the morphism groups Mdr
kl = Hosp(M

r
l ,M

d
k ). We always

suppose that d−1 ≤ r < d+2p−1. Obviously,Mdd
00 = Zp,Md,d+2p−3

00 = Z/p
and Mdr

00 = 0 if r /∈ { d, d+ 2p− 3 }. If k > 0, from the cofibre sequences

(Ed
k) Sd−1

pk−→ Sd−1 →Md
k → Sd

pk−→ Sd

one easily obtains that Mdr
0k =Mdr

k0 = 0, except the cases

Md,d−1
k0 'Mdd

0k ' Z/pk,

Md,d+2p−3
k0 'Md,d+2p−3

0k '

'Md,d+2p−4
k0 'Md,d+2p−2

0k ' Z/p

The values ofMdr
kl for k, l ∈ N, d− 1 ≤ r < d+ 2p− 1 can be obtained if we

apply Hosp(Mr
l , ) to the cofibre sequences (Ed

k). It gives exact sequences

Md−1,r
0l

pk−→Md−1,r
0l →Mdr

kl →Mdr
0l

pk−→Mdr
0l ,

whence we get

(2.1) Mdr
kl =


Z/pmin(k,l) if r ∈ { d− 1, d } ,
Z/p if r ∈ { d+ 2p− 2, d+ 2p− 4 } ,
Z/p⊕ Z/p if r = d+ 2p− 3,

0 in other cases,

The only non-trivial value here is for r = d+ 2p− 3: we need to know that
the exact sequence

(2.2) 0→ Z/p α−→Md,d+2p−3
kl

β−→ Z/p→ 0
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splits. It splits indeed for k = 1 since the middle term is a module over

Mdd
11 = Z/p. If k > 1, suppose that the sequence for Md,d+2p−3

k−1,l splits. The

commutative diagram

(2.3)

Sd−1
pk−−−−→ Sd−1 −−−−→ Md

k −−−−→ Sd
pk−−−−→ Sd

p

y 1

y y p

y 1

y
Sd−1

pk−1

−−−−→ Sd−1 −−−−→ Md
k−1 −−−−→ Sd

pk−1

−−−−→ Sd

induces the commutative diagram

0 −−−−→ Z/p −−−−→ Md,d+2p−3
kl −−−−→ Z/p −−−−→ 0

1

y y 0

y
0 −−−−→ Z/p −−−−→ Md,d+2p−3

k−1,l −−−−→ Z/p −−−−→ 0

Since the second row splits, the first one splits as well. Therefore, the
sequence (2.2) splits for all values of k and l.

Definition 2.1. We fix generators of the groups Mdr
kl and denote, for r =

d+ 2p− 3,

by α
d∗∗
kl (k, l ∈ N) the generator of Md+1,r+1

kl which is in the image of the
map α from (2.2);

by αdkl (k, l ∈ N ∪ {0}) the generator of Mdr
kl which is not in Imα;

by αd
∗
kl (k ∈ N ∪ {0}, l ∈ N) the generator of Md,r+1

kl ;

by αd∗kl (k ∈ N, l ∈ N ∪ {0}) the generator of Md+1,r
kl ;

by γdkl (k, l ∈ N ∪ {0}) the generator of Mdd
kl ;

by γd∗kl (k ∈ N, l ∈ N ∪ {0}) the generator of Md+1,d
kl ,

Note that all these morphisms are actually induced by maps Sr → Sd. Using
diagrams of the sort (2.3), one easily verifies that these generators can be
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so chosen that

α
d∗∗
kl γ

r+1
ll′ =

{
α
d∗∗
kl′ if l ≤ l′,

0 if l > l′,

αd
∗
kl γ

r+1
ll′ =

{
αd
∗
kl′ if l ≤ l′,

0 if l > l′,

αdklγ
r
ll′ =

{
αdkl′ if l ≥ l′ or l = 0,

0 if 0 < l < l′,

αd∗kl γ
r
ll′ =

{
αd∗kl′ if l ≥ l′ or l = 0,

0 if 0 < l < l′,

αd
∗
kl γ

r∗
lk′ = αdkk′ ,

α
d∗∗
kl γ

r∗
lk′ = αd∗kk′ ,

γd+1
k′k α

d∗∗
kl =

{
α
d∗∗
k′l if k ≥ k′,

0 if k < k′,

γd+1
k′k α

d∗
kl =

{
αd∗k′l if k ≥ k′,
0 if k < k′,

γdk′kα
d
kl =

{
αdk′l if k ≤ k′,
0 if k > k′,

γdk′kα
d∗
kl =

{
αd
∗
k′l if k ≤ k′,

0 if k > k′,

γd∗k′kα
d
kl = αd∗k′l,

γd∗k′kα
d∗
kl = α

d∗∗
k′l.

(2.4)

(always r = d+ 2p− 3).

3. Atoms in S 2p−1
p

For n ≤ 2p− 1 the description of the category S n
p is very simple. First,

the next fact is rather obvious.

Proposition 3.1. If n < 2p − 1, all indecomposable polyhedra in S n
p are

Moore spaces Md
k . In particular, M2

k are atoms in S 2
p and there are no

atoms in S n
p if 2 < n < 2p− 1.

Proof is an easy induction. For n = 2 it is known. Suppose that 2 < n <
2p−1 and the claim is true for S n−1

p . We use Theorem 1.2 with m = 2n−2.

Then A consists of wedges of the sphere S2n−2, while the spheres Sd (n ≤
d ≤ 2n−2) and the Moore atoms Md

k (n < d ≤ 2n−2) form a set of additive

generators of B. Note that in our case Mdr
k0 = 0 for n < d ≤ r ≤ 2n − 2,

except M2n−2,2n−2
00 . Therefore, the only new indecomposable polyhedra in

S n
p are the Moore spaces M2n−1

k , which are not atoms. �
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Consider the category S 2p−1
p . Again we use Theorem 1.2 with m =

2n− 3 = 4p− 5. Now a set of additive generators of A is

A =
{
S4p−4 = M4p−4

0 , S4p−5 = M4p−5
0 , M4p−5

k

}
,

and a set of additive generators of B is
B =

{
Sd = Md

0 (2p− 1 ≤ d ≤ 4p− 5), Md
k (2p− 1 < d ≤ 4p− 5)

}
.

The only non-zero values of Hosp(A,B), where A ∈ A, B ∈ B, are

M2p,4(p−1)
kl ' Z/p, with generators α

(2p−1)∗
kl (k ∈ N, l ∈ N ∪ {0}),

M2p−1,4(p−1)
0l ' Z/p with generators α2p−1

0l (l ∈ N ∪ {0}),
M4p−5,4p−5

00 = Zp with generator γ4p−500 .
Therefore, the matrix F defining a morphism f : A→ B (A ∈ A , B ∈ B) is

a direct sum F ′⊕F ′′, where F ′′ is with coefficients fromM4p−5,4p−5
00 and F ′ is

a block matrix (Fkl)k,l∈N∪{0}, where Fkl is with coefficients fromM2p,4(p−1)
kl

if k 6= 0 and F0l is with coefficients from M2p−1,4(p−1)
0l . We denote by Fk

the horizontal stripe (Fkl)l∈N∪{0} with fixed k and by F l the vertical stripe
(Fkl)k∈N∪{0} with fixed l. Morphisms between objects from A and B act
according to the rules (2.4). They imply that two matrices F and G of such
structure define isomorphic objects from E (M ) if and only if G′′ = TF ′′T ′

for some invertible matrices T, T ′ over Zp and F ′ can be transformed to G′

by a sequence of the following transformations:
Fk 7→ TFk, where T is an invertible matrix over Z/p;
F l 7→ F lT ′, where T ′ is an invertible matrix over Z/p;
Fk 7→ Fk + UFk′ , where k′ > k or k′ = 0, k 6= 0 and U is any matrix of

appropriate size over Z/p;
F l 7→ F l + F l

′
U ′, where l′ < l and U ′ is any matrix of appropriate size

over Z/p.
Using these transformations one can easily make the matrix F ′′ diagonal
and reduce F ′ to a matrix having at most one non-zero element in each
row and in each column. Then the corresponding object from E (M ) splits
into direct sum of objects given by 1× 1 matrices. The 1× 1 matrices over
M4p−5,4p−5

00 give Moore polyhedra M4p−4
t , which are not atoms (and belong

to A ). Therefore, the atoms in S 2p−1
p are Ckl (k, l ∈ N∪{0}) corresponding

to the 1 × 1 matrices (α
(2p−1)∗
kl ) if k 6= 0 and to (α2p−1

0l ) if k = 0. We call
these polyhedra Chang atoms, in analogy with [2]. They are defined by the
cofibration sequences

M4p−4
l →M2p

k → Ckl →M4p−3
l →M2p+1

k if k 6= 0,

M4p−4
l → S2p−1 → C0l →M4p−3

l → S2p if k = 0.
(Ckl)

We can also present Chang atoms by their gluing diagrams, as in [2, 10, 11]:

C00 C0l Ck0 Ckl

4p− 3 • •

������������ •

������������ •

������������
pl

4p− 4 •
pl

•
2p •

pk
•

pk

2p− 1 • • • •
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Here bullets correspond to cells, lines show the attaching maps and these
maps are specified if necessary.

Theorem 1.2 and cofibration sequences (Ckl) easily give the following
values of the endomorphism rings of Chang atoms modulo the ideal J :

∆ = { (a, b) | a ≡ b (mod p) } ⊂ Zp × Zp for C00;

∆k = { (a, b) | a ≡ b (mod p) } ⊂ Zp × Z/pk for C0k and Ck0 (k 6= 0);

∆kl = { (a, b) | a ≡ b (mod p) } ⊂ Z/pk × Z/pl for Ckl (k 6= 0, l 6= 0).

Since all these rings are local and J 2 = 0, the endomorphism rings of
Chang atoms are local. Therefore, these polyhedra are indeed indecom-
posable (hence atoms). Moreover, we can use the unique decomposition
theorem of Krull–Schmidt–Azumaya [1, Theorem I.3.6] and obtain the final
result.

Theorem 3.2. The atoms in S 2p−1
p are Chang atoms Ckl (k, l ∈ N∪ {0}).

Every polyhedron from S 2p−1
p uniquely decomposes into a wedge of spheres,

Moore polyhedra and Chang atoms.

In Section 5 we will need the whole endomorphism ring of the atom
C = C00. Applying Hosp to the sequence (C00) as below, we obtain the
commutative diagram with exact columns and rows

(3.1) S2p oo S4p−3 oo C oo S2p−1 oo S4p−4

S4p−4

��

0 //

��

0 //

��

0 //

��

0 //

��

Zp
s ��

S2p−1

��

0 //

��

0

��

// pZp //

��

Zp s //

1 ��

Z/p

��
C

��

0 //

��

pZp //

��

Hosp(C,C) //

��

Zp //

��

0

��
S4p−3

��

0 //

��

Zp 1 //

s ��

Zp //

��

0 //

��

0

��
S2p Zp s // Z/p // 0 // 0 // 0

where s marks surjections. The central row and the central column, corre-
sponding to the polyhedron C, are easily calculated from all other values. It
shows that Hosp(C,C) has no torsion, hence coincides with ∆. Analogous
calculations show that J (Ckl, Ckl) equals Z/p if k = 0 or l = 0 (but not
both) and (Z/p)2 if both k 6= 0 and l 6= 0.

Theorem 3.2 also gives a description of genera of p-primary polyhedra in
S 2p−1. Recall that a genus is a class of polyhedra such that all their localiza-
tions are isomorphic (in the corresponding localized categories). Certainly, if
these polyhedra are p-primary, we only need to compare their p-localizations.
Equivalently, two polyhedra X,Y are in the same genus if and only if there
is a wedge of spheres W such that X ∨W ' Y ∨W in S [12, Theorem
2.5]. Let g(X) be the number of isomorphism classes of polyhedra in the
genus of X. If Λ = Hos(X,X)/ tors(X), where tors(X) is the torsion part
of Hos(X,X), then Q⊗Λ is a semi-simple Q-algebra, so there is a maximal



p-LOCALIZATION OF STABLE HOMOTOPY CATEGORY 9

order Γ ⊇ Λ in this algebra. Then Λ ⊇ mΓ for some positive integer m and
g(X) = g(Λ) equals the number of cosets

Im γ\(Γ/mΓ)×/(Λ/mΛ)×,

where R× denotes the group of invertible elements of a ring R and γ is the
natural map Γ× → (Γ/mΓ)× [12, Section 3]. If X = C0k or X = Ck0, then
Λ = Z; if X = Ckt, then Λ = 0. So g(X) = 1 for all these cases. For X = C
this formula implies that g(C) = (p− 1)/2. If ν ∈ Hosp(S

4p−4, S2p−1) is an
element of order p, the polyhedra from the genus of C can be realized as the

cones C(c) of the maps S4p−4 cν−→ S2p−1 for 1 ≤ c ≤ (p− 1)/2.

4. Atoms in S n
p for 2p ≤ n ≤ 4(p− 1)

Let now 2p ≤ n ≤ 4(p − 1). We use Theorem 1.2 with m = n + 2p − 3.
Then A has a set of additive generators

A = {Sr (m ≤ r < 2n− 1), M r
l (m < r < 2n− 1, l ∈ N },

and B has a set of additive generators
B =

{
Sd (n ≤ d ≤ m), Md

k (n < d ≤ m, k ∈ N)
}

.
Morphisms ϕ : A → B, where A ∈ A , B ∈ B, are given by block matrices
such that their blocks have coefficients fromMdr

kl . Taking into consideration
Definition 2.1, it is convenient to denote these blocks as follows.

Definition 4.1. We introduce sets

E◦ =
{
edk (n < d ≤ 2(n− p) + 1, k ∈ N ∪ {0}),

ed∗k (n ≤ d ≤ 2(n− p), k ∈ N), en0 , e
m
0

}
,

F◦ =
{
fdl (n < d ≤ 2(n− p) + 1, l ∈ N ∪ {0}),

fd∗l (n ≤ d ≤ 2(n− p), l ∈ N), fn0

}
,

and consider a morphism ϕ : A → B, where A ∈ A , B ∈ B, as a block
matrix (Φef )e∈E◦,f∈F◦ . Namely,

- the block Φedk,f
d
l

consists of coefficients at αdkl;

- the block Φed∗k ,fdl
consists of coefficients at αd∗kl ;

- the block Φedk,f
d∗
l

consists of coefficients at αd
∗
kl ;

- the block Φed∗k ,fd∗l
consists of coefficients at α

d∗∗
kl ;

- the block Φem0 ,f
n
0

consists of coefficients at γm00.
Note that for n = 4(p − 1) we need not specially add em0 to E◦, since
m = 2(n− p) + 1 in this case.

We also denote by Φe for a fixed e ∈ E◦ the horizontal stripe (Φef )f∈F◦

and by Φf for a fixed f ∈ F◦ the vertical stripe (Φef )e∈E◦ .

Note that the horizontal stripes Φedk
and Φ

e
(d+1)∗
k

have the same number

of rows and the vertical stripes Φfdl and Φf
(d+1)∗
l have the same number of

columns. All blocks Φef defined above have coefficients from Z/p, except
Φem0 ,f

n
0

which has coefficients from Zp.
Using automorphisms of Sm we can make the block Φem0 ,f

n
0

diagonal with
powers of p or zero on diagonal. So we always suppose that it is of this
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shape and exclude this block from the matrix Φ. Then we have to split the
remaining part of the vertical stripe Φfn0 and, if n = 4(p − 1), of the hori-

zontal stripe Φem0
into several stripes, respectively, Φfn,s

0 and Φem,s
0

, where

the indices s ∈ N∪ {∞} correspond to diagonal entries ps (setting p∞ = 0).
Respectively, we modify the sets E◦ and F◦. Namely, we denote

F = (F◦ \ {fn0 }) ∪ { f
n,s
0 | s ∈ N ∪ {∞}} ,

E = E◦ \ {em0 } if n < 4(p− 1),

E = (E◦ \ {em0 }) ∪ { e
m,s
0 | s ∈ N ∪ {∞}} if n = 4(p− 1).

(4.1)

Note that, if n = 4(p− 1), the number of rows in the horizontal stripe Φ
ed,s0

with s 6= ∞ equals the number of columns in the vertical stripe Φfd,s0 . We
split the sets E and F according to the upper indices. Namely, Ed consists
of all elements from E with the upper index d, d∗ or, if d = m, (m, s); Fd
consists of all elements from F with the upper index d, d∗ or, if d = n, (n, s).
We define a linear order on each Ed and Fd setting
edk < edk′ and ed∗k > ed∗k′ if k < k′, and edk < ed∗k′ for all k, k′;

if n = 4(p− 1), then em,s0 < em,s
′

0 < emk for s > s′ and any k ∈ N;

fdk < fdk′ and fd∗k > fd∗k′ if k < k′ or k > k′ = 0, and fdk < fd∗k′ for all k, k′;

fmk < fm,s0 < fm,s
′

0 for s < s′ and any k ∈ N.
The formulae (2.4) imply that two such block matrices Φ and Φ′ define

isomorphic objects from E (M ) if and only if Φ can be transformed to Φ′ by
a sequence of the following transformations:

Φe 7→ TeΦe, where Te are invertible matrices and Ted∗k
= Ted+1

k
for all

possible values of d, k;

Φf 7→ ΦfT f , where T f are invertible matrices and T f
d∗
k = T f

d+1
k for all

possible values of d, k;
if n = 4(p − 1), then, moreover, Tem,s

0
= T f

n,s
0 for all s ∈ N (not for

s =∞);
Φe 7→ Uee′Φe′ if e′ < e, where Uee′ is an arbitrary matrix of the appropriate

size;
Φf 7→ Φf ′Uf

′f if f ′ > f , where Uf
′f is an arbitrary matrix of the appro-

priate size.
These rules show that the classification of polyhedra in S n

p actually
coincides with the classification of representations of the bunch of chains
X = {Ed,Fd, <,∼ | n ≤ d ≤ m } (cf. [6] or [7, Appendix B]), where the
relation ∼ is defined by the exclusive rules:

ed∗k ∼ ed+1
k and fd∗k ∼ fd+1

k for n < d ≤ 2(n− p), k ∈ N,

and, if n = 4(p− 1),

em,s0 ∼ fn,s0 for s ∈ N (not for s =∞).

Thus the description of indecomposable representations given in [6, 7] implies
a description of indecomposable polyhedra from S n

p . Recall the necessary
combinatorics. We write e − f and f − e if e ∈ Ed and f ∈ Fd (with the
same d) and set |X| = E ∪ F.
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Definition 4.2. (1) A word is a sequence w = x1r1x2r2 . . . xl−1rl−1xl,
where xi ∈ |X|, ri ∈ {−,∼} such that
(a) ri 6= ri+1 for all 1 ≤ i < l − 1;
(b) xirixi+1 (1 ≤ i < l) according to the definition of the relations
∼ and − given above;

(c) if r1 = − (rl−1 = −), then x1 � y for all y ∈ |X| (respectively,
xl � y for all y ∈ |X|).

We say that l is the length of the word w and write l = lnw.
(2) For a word w as above we denote by E(w) = { i | 1 ≤ i ≤ l, xi ∈ E }

and F(w) = { i | 1 ≤ i ≤ l, xi ∈ F }.
(3) The inverse word w∗ of the word w is the word xlrl−1xl−1 . . . r2x2r1x1.
(4) A word w is said to be a cycle if r1 = rl−1 =∼ and xl − x1. Then

we set rl = −, xi+ql = xi and ri+ql = ri for all q ∈ Z (in particular,
r0 = −).

(5) The k-th shift of a cycle w, where k is an even integer, is the cycle

w[k] = xk+1rk+1 . . . rk−1xk (obviously, it is enough to consider 0 ≤
k < l).

(6) A cycle w is said to be non-periodic if w 6= w[k] for 0 < k < l.
(7) For a cycle w and an integer 0 < k < l we denote by ν(k,w) the

number of even integers 0 < i < k such that both xi and xi−1 belong
either to E or to F.

Note that, since x � x for all x ∈ |X|, there are no symmetric words and
symmetric cycles in the sense of [7, Appendix B].

To words and cycles correspond indecomposable representations of the
bunch of chains X called strings and bands. We describe the corresponding
matrices Φ (recall that we have already excluded the part Φemfn).

Definition 4.3. (1) If w is a word, the corresponding string matrix
Φ(w) is constructed as follows:
- its rows are labelled by the set E(w) and its columns are labelled
by the set F(w);
- the only non-zero entries are those at the places (i, i+ 1) if ri = −
and i ∈ E(w) and (i+ 1, i) if ri = − and xi ∈ F(w); they equal 1.
We denote the corresponding polyhedron by A(w) and call it a string
polyhedron whenever it does not coincide with a sphere, a Moore or
a Chang polyhedron.1

(2) If w is a non-periodic cycle, z ∈ N and π 6= t is a unital irreducible
polynomial of degree v from (Z/p)[t], the band matrix Φ(w, z, π) is
a block matrix, where all blocks are of size zv × zv, constructed as
follows:
- its horizontal stripes are labelled by the set E(w) and its vertical
stripes are labelled by the set F(w);
- the only non-zero blocks are those at the places (i, i+ 1) if ri = −
and i ∈ E(w) and (i + 1, i) if ri = − and i ∈ F(w) (note that here
i = l is also possible);

1The words consisting of one letter x correspond to spheres, the words of the form x ∼ y
correspond to Moore polyhedra, the words that only have one symbol ‘−’ correspond to
Chang polyhedra, and these are all exceptions.
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- these non-zero blocks equal Izv (the identity zv × zv matrix),
except the block at the place (l1) (if l ∈ E(w)) or (1l) (if l ∈ F(w))
which is the Frobenius matrix with the characteristic polynomial πv.
If π = t− c is linear, we replace the Frobenius matrix by the Jordan
z × z block with the eigenvalue c.
We denote the corresponding polyhedron by A(w, z, π) and call it a
band polyhedron.2

Using these notions, we obtain the following description of polyhedra in
the category S n

p .

Theorem 4.4. (1) All string and band polyhedra are indecomposable
and every indecomposable polyhedron from S n

p , except spheres, Moore
and Chang polyhedra, is isomorphic to a string or band polyhedron.

(2) The only isomorphisms between string and band polyhedra are the
following:
(a) A(w) ' A(w∗);
(b) A(w, z, π) ' A(w∗, z, π);

(c) A(w, z, π) ' A(w[k], z, π∗), where π∗ = π if ν(k,w) is even and
π∗(t) = tzπ(0)−1π(1/t) if ν(k,w) is odd.3

(3) Endomorphism rings of string and band polyhedra are local, hence ev-
ery polyhedron from S n

p uniquely decomposes into a wedge of spheres,
Moore and Chang polyhedra, and string and band polyhedra.

(4) A string or band polyhedron is an atom in S n
p if and only if the

corresponding word contains at least one letter from Ed and at least
one letter from F2(n−p)+1.

Note that in this case we can simplify the writing of the words, since for
every x ∈ |X| there is at most one element y ∈ |X| such that x ∼ y and then
x − y is impossible. Hence we can omit all symbols − and write x instead

of x ∼ y. For instance, edkf
d−1
l e

(d−2)∗
k′ fd−1l′ means edk ∼ e

(d−1)∗
k − fd−1l ∼

f
(d−2)∗
l − ed−2k′ ∼ e

(d−1)∗
k′ − fd−1l′ ∼ f (d−2)∗l′ . One can prove that there can be

at most one place in a word w where a fragment em,s ∼ fn,s or fn,s0 ∼ em,s0
occurs; moreover, if it occurs, w cannot be a cycle.

Example 4.5. We give several examples of string and band polyhedra and
their gluing diagrams. In these examples we suppose that p = 3.

(1) The “smallest” possible string atoms are for n = 6. They have 3
cells and are given by the words e6∗k f

7
0 or e60f

6∗
l . The smallest band

atoms have 4 cells. They are A(w0, 1, t∓ 1), where w0 = e7kf
7
l . Here

are their gluing diagrams:

11 • •
3l

•
3l

10 • •
9

8

7 •
3k

��������������� •
3k

���������������

6 • •

��������������� •

±1

���������������

2Band polyhedra never coincide with spheres, Moore or Chang polyhedra.
3 If π = tv + a1t

v−1 + · · · + av−1t+ av, then π∗ = tv + a−1
v (av−1t

v−1 + · · · + a1t+ 1).
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(2) More complicated band atoms are A(w0, 1, t
2+1) and A(w0, 2, t∓1).

Their gluing diagrams are

11 •
3l

•
3l

•
3l

•
3l

10 • • • •
9

8

7 •
3k

}}}}}}}}}}}}}}}}}}} •
3k

}}}}}}}}}}}}}}}}}}} •
3k

}}}}}}}}}}}}}}}}}}} •
3k

}}}}}}}}}}}}}}}}}}}

6 •

−1ssssssssssssssssssss

sss

•

��������������� •

±1}}}}}}}}}}}

}}}}}}}

ssssssssssssssssssssssss •

±1}}}}}}}}}}}

}}}}}}}

The non-trivial attachments of cells of dimension 10 come, respec-

tively, from the Frobenius matrix

(
0 −1
1 0

)
and the Jordan block(

±1 1
0 ±1

)
.

(3) For the maximal value n = 8 the smallest atoms contain 4 cells.

They are given by the words e80f
8,s
0 f110 and have the gluing diagrams

15 •
14

13

12 •
3s

11 •

���������������

10

9

8 •

���������������

(4) The band atoms for n = 8 are rather complicated and cannot be
“small”. For instance, one of the smallest is A(w, 1, t ∓ 1), where
w = e8∗k1f

9∗
l1
e10∗k2 f

11
l2
e10k3f

9
l3

. The gluing diagram for this atom is

15 •
14 •

000000000000000 •

000000000000000

13 • •
12 •
11 •

���������������

10 • •
9 •

��������������� •

���������������

8 •

±1kkkkkkkkkkkkkkkkkkkkk

kkkkkkkkkkkkkk

(the powers of 3 near vertical lines are omitted).
(5) Finally, we give an example of an atom having exactly one cell of

each dimension (we do not precise the corresponding word, since it
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can be easily restored).

15 •

000000000000000

14 •
13 •

000000000000000

12 •
11 •
10 •

���������������

9 •
8 •

���������������

Another atom with this property is the properly shifted S-dual of
this one in the sense of [15, Chapter 14].

One can also calculate genera of p-primary polyhedra for 2p ≤ n ≤ 4(p−
1). Namely, let Λ(X) denotes the ring Hos(X,X)/ tors(X). We call the end
x1 or xl of a word w spherical if it of the form ed0 or fd0 . Note that these
letters can only occur at an end of the word since they are not related by
∼ to any letter. It is rather easy to verify that Λ(X) = 0 if X is a band
polyhedron, while for a string polyhedron X = A(w)

Λ(X) =


0 if w has no spherical ends,

Z if one end of w is spherical,

∆ if both ends of w are spherical.

Hence, we obtain the following result.

Corollary 4.6. If X is a band or string polyhedron, then g(X) = 1, except
the case when X = A(w) and both ends of the word w are spherical. In the
latter case g(X) = (p− 1)/2.

5. Case n > 4(p− 1)

For n = 4p − 3 we set m = 6p − 5 = n + 2p − 2 and q = 2(n − 1) =
n+ 4p− 5 = m+ 2p− 3. Then A contains Moore polyhedra M q

k (including
Sq = M q

0 ) and B contains the shifted Chang polyhedron Cm = C00[2p− 2].
Let Nk = Hosp(M

q
k , C

m). Applying Hosp(M
q
k , ) to the cofibre sequence

0→ Sm−1 → Sn → Cm → Sm → Sn+1

we get an exact sequence

0→ Z/p λ−→ Nk
µ−→ Z/p→ 0.

Thus #(Nk) = p2. On the other hand, applying Hosp( , C) to the cofibre

sequence (Ed
k) of Section 2, we get an exact sequence

N0
pk−→ N0

η−→ Nk → 0.

Therefore the map η is an isomorphism. Setting k = 1, we see that pN0 = 0,
hence N0 ' Z/p × Z/p and Nk ' Z/p × Z/p for all k. We denote by λk
a generator of Nk which is in Imλ and by µk a generator of Nk such that
µ(µk) 6= 0.
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Analogous observations show that the generator of the cyclic groupMqq
kl =

Hosp(M
q
l ,M

q
k ) induces an isomorphism Nk → Nl if k ≥ l > 0 and zero

map if 0 < k < l. On the other hand, the diagram (3.1) implies that an
element (a, b) of the ring ∆ = Hosp(C,C) acts on Nk as multiplication by
a (recall that a ≡ b (mod p)). Therefore, a map ϕ : A → B, where A is a
wedge of Moore polyhedra M q

k and B is a wedge of Chang polyhedra Cm

can be considered as a block matrix Φ = (Φik)k∈N∪{0}
i=1,2

, where all blocks

are with coefficients from Z/p and both horizontal stripes Φ1, Φ2 have the
same number of rows. Namely, Φ1k consists of coefficients at λk and Φ2k

consists of coefficients at µk. Two such matrices define isomorphic objects
from E (M) if and only if one of them can be transformed to the other by a
sequence of the following transformations:

Φ1 7→ TΦ1 and Φ2 7→ TΦ2 with the same invertible matrix T ;
Φk 7→ ΦkT k for some invertible matrix T k;
Φk 7→ Φk + ΦlUlk for any matrix Ulk of the appropriate size, where l > k

or l = 0 < k.
It is well-known that this matrix problem is wild, i.e. contains the problem
of classification of pairs of linear maps in a vector space; hence, a problem
of classification of representations of any finitely generated algebra over the
field Z/p (cf. [9, Section 5]). Namely, consider the case when the matrix
Φ = Φ(F,G) is of the form 

I 0 0
0 I 0
F I 0
G 0 I


Here I is a unit matrix of some size, F and G are arbitrary square matrices
of the same size; line show the subdivision of Φ into blocks Φik (there are
only two vertical stripes). One easily checks that Φ(F,G) and Φ(F ′, G′)
define isomorphic objects if and only if there is an invertible matrix T such
that F ′ = TFT−1 and G′ = TGT−1. So we obtain the following result.

Theorem 5.1. The classification of p-local polyhedra in S n
p for n > 4(p−1)

is a wild problem.
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