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POLARIZATION ALGEBRAS AND THEIR RELATIONS

Ualbai Umirbaev1

Abstract. Using an approach to the Jacobian Conjecture by L.M. Drużkowski and
K. Rusek [12], G. Gorni and G. Zampieri [19], and A.V. Yagzhev [27], we describe a
correspondence between finite dimensional symmetric algebras and homogeneous tuples
of elements of polynomial algebras. We show that this correspondence closely relates
Albert’s problem [10, Problem 1.1] in classical ring theory and the homogeneous de-
pendence problem [13, page 145, Problem 7.1.5] in affine algebraic geometry related
to the Jacobian Conjecture. We demonstrate these relations in concrete examples and
formulate some open questions.

Mathematics Subject Classification (2010): Primary 14R15, 17A40, 17A50; Sec-
ondary 14R10, 17A36.

Key words: Engel algebras, nilpotent, solvable, homogeneous dependence, polynomial
mappings, the Jacobian Conjecture.

1. Introduction

The main objective of this paper is to connect two groups of specialists who are working
on a closely connected problems and sometimes have intersections. Joining the efforts of
these groups may be fruitful in studying the Jacobian Conjecture [13]. Namely, Albert’s
problem [10, Problem 1.1] in classical ring theory and the homogeneous dependence prob-
lem [13, page 145, Problem 7.1.5] in affine algebraic geometry are closely connected. Ring
theory specialists are focused in studying only binary algebras and have some positive
results in small dimensions. Affine algebraic geometry specialists have also some positive
results in small dimensions and have some negative results for m-ary algebras if m ≥ 3.

To make the subject more intriguing let’s start with two examples. A well known
quadratic homogeneous automorphism [13, page 98]

(x− ys, y + zs− xt, z − yt, s, t)(1)

of the affine space A5 over a field k corresponds to the Suttles’ example of a commutative
power-associative 5 dimensional algebra which is solvable but not nilpotent [23]. Another
well known homogeneous automorphism [13, page 97]

(x+ s(xt− ys), y + t(xt− ys), s, t)(2)

of the affine space A4 gives an example of a ternary symmetric power-associative 4 di-
mensional algebra which is also solvable but not nilpotent. Recall that (1) is a tame
automorphism and (2) is the first candidate to be non-tame in the case of 4 variables.

1Supported by an NSF grant DMS-0904713 and by an MES grant 0755/GF of Kazakhstan; Eurasian
National University, Astana, Kazakhstan and Wayne State University, Detroit, MI 48202, USA, e-mail:
umirbaev@math.wayne.edu
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The paper is organized as follows. In Section 2 we give the definition of polarization al-
gebras and prove some elementary results. In Section 3 we define symmetric algebras with
Engel condition and describe an approach to the Jacobian Conjecture by L.M. Drużkowski
and K. Rusek [12], G. Gorni and G. Zampieri [19], and A.V. Yagzhev [27]. In Section
4 we describe a connection between Albert’s problem and the homogeneous dependence
problem and consider some examples. In Section 5 we formulate some open problems.

2. Polarization algebras

Let k be an arbitrary field of characteristic zero. It is reasonable to call an algebra A
over k with one m-ary multilinear operation 〈·, ·, . . . , ·〉 symmetric if

〈x1, x2, . . . , xm〉 = 〈xσ(1), xσ(2), . . . , xσ(m)〉

for any x1, x2, . . . , xm ∈ A and for any σ ∈ Sm, where Sm is the symmetric group on m
symbols. If m = 2 then a symmetric algebra becomes a commutative (non-associative)
algebra.

Let Pn = k[x1, x2, . . . , xn] be the polynomial algebra over k in the variables x1, x2, . . . , xn.
Denote by P n

n the set of columns over Pn of height n. For convenience we write columns as
rows. Put V = kn. Every n-tuple H = (h1, h2, . . . , hn) ∈ P n

n of elements of Pn uniquely
defines the polynomial mapping H : V → V . We often say that H is a polynomial
mapping or endomorphism without mentioning V . The n-tuple X = (x1, x2, . . . , xn) rep-
resents the identity mapping. We also use notations Pn = k[X], f = f(X) ∈ Pn, and
H = H(X).

For any n-tuple H = (h1, h2, . . . , hn) we put

deg(H) = max
i

(deg(hi)),

where deg is the standard degree function on Pn.
Let H = H(X) = (h1, h2 . . . , hn) be an n-tuple of homogeneous elements of Pn of degree

m ≥ 2, i.e., all hi are homogeneous of degree m. Notice that H is written in the form
of a row vector but we always consider the vectors as column vectors. Consider the n
dimensional vector space V = kn. Let {xij|1 ≤ i ≤ m, 1 ≤ j ≤ n} be a set of independent
commutative variables. Put Xi = (xi1, xi2, . . . , xin) for all i. The polarization [11, 20] (or
full linearization)

〈X1, X2, . . . , Xm〉 =
1

m!

∑
µ⊆[m]

(−1)m−|µ|H(
∑
i∈µ

Xi)

of H, where [m] = {1, 2, . . . ,m} and |µ| is the cardinality of µ, defines a unique m-ary
symmetric operation on kn. This algebra is called the polarization algebra of H and will
be denoted by PH .

Obviously, the restitution 〈X,X, . . . , X〉 gives again H [11, 20].
Let A be an arbitrary symmetric n dimensional algebra over k and let

(f) = {f1, f2, . . . , fn}
2



be a linear basis for A. Then

Y = x1 ⊗ f1 + x2 ⊗ f2 + . . .+ xn ⊗ fn
is called a generic element of A. It is well-known (see, for example [29]) that the k-
subalgebra generated by Y in k[X]⊗k A is a free one generated algebra of the variety of
algebras generated by A. Consider the element

〈Y, Y, . . . , Y 〉 = g1 ⊗ f1 + g2 ⊗ f2 + . . .+ gn ⊗ fn
where g1, g2 . . . , gn ∈ k[x1, x2, . . . , xn]. Note that G = (g1, g2, . . . , gn) is a homogeneous
n-tuple of degree m. The n-tuple G is called the n-tuple of A corresponding to (f). If the
basis (f) is not specified then we say that G is an n-tuple of A.

Lemma 1. Let A be an arbitrary m-ary symmetric n dimensional algebra over k and let
G be an n-tuple of A. Then A is isomorphic to the polarization algebra PG.

Proof. Let G be the n-tuple of A corresponding to a basis (f). Denote by

(e) = {e1, e2, . . . , en}

the standard basis for V = kn = PG (columns of the identity matrix of order n). Let
ϕ : A→ PG be the linear mapping defined by ϕ(fi) = ei for all i.

It is sufficient to show that ϕ is a homomorphism of algebras, i.e.,

ϕ〈v1, v2, . . . , vm〉 = 〈ϕ(v1), ϕ(v2), . . . , ϕ(vm)〉

for all v1, v2, . . . , vm ∈ V . This is equivalent to

ϕ〈v, v, . . . , v〉 = 〈ϕ(v), ϕ(v), . . . , ϕ(v)〉(3)

for all v ∈ V since the both operations arem-ary symmetric and k is a field of characteristic
zero.

Put v = λ1f1+λ2f2+. . .+λnfn ∈ A and w = λ1e1+λ2e2+. . .+λnen = (λ1, λ2, . . . , λn) ∈
PG. We get ϕ(v) = w by the definition of ϕ. We also have

〈v, v, . . . , v〉 = g1(λ)⊗ f1 + g2(λ)⊗ f2 + . . .+ gn(λ)⊗ fn,

where gi(λ) = gi(λ1, λ2, . . . , λn) for all i, since G is the n-tuple of A corresponding to (f).
By the definition of the product in PG, we get

〈v, v, . . . , v〉 = g1(λ)⊗ e1 + g2(λ)⊗ e2 + . . .+ gn(λ)⊗ en.

Consequently, (3) holds. �
Thus, every m-ary symmetric finite dimensional algebra is a polarization algebra. Now

we describe the conditions when two polarization algebras are isomorphic.
Let Aut(An) be the group of all polynomial automorphisms of the the affine space

A = kn = V . The group Aut(An) acts on the set of all polynomial mappings on V by
conjugation. Denote by GLn(k) the group of all linear automorphisms of V . If H is
homogeneous of degree m then αHα−1 is homogeneous of degree m for all α ∈ GLn(k).
Two homogeneous endomorphisms H and G of the same degree m are called linearly
conjugate if there exists α ∈ GLn(k) such that αHα−1 = G.
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Lemma 2. Let H and G be homogeneous n-tuples of elements of Pn of the same degree
m ≥ 2. Then the polarization algebras PH and PG are isomorphic if and only if H and G
are linearly conjugate.

Proof. Let Hom(V, V ) be the set of all linear transformations of V . As in the proof
of Lemma 1, ϕ ∈ Hom(V, V ) is a homomorphism of algebras PH and PG if and only if
(3) holds. Consequently, ϕ is a homomorphism if and only if ϕ(H(v)) = G(ϕ(v)), i.e.,
ϕ ◦H = G ◦ ϕ. This means that ϕ is a isomorphism if and only if ϕ ◦H ◦ ϕ−1 = G. �

Corollary 1. Two symmetric m-ary algebras of dimension n are isomorphic if and only
if their n-tuples are linearly conjugate.

Denote by

St(H) = {α ∈ GLn(k) | αHα−1 = H}
the stabilizer of the homogeneous endomorphism H in GLn(k).

Lemma 3. The group of automorphisms Aut(PH) of the polarization algebra PH is iso-
morphic to the stabilizer St(H) of H in GLn(k).

Proof. As in the proof of Lemma 2, ϕ ∈ Hom(V, V ) is an endomorphism of PH if and
only if ϕ(H(v)) = H(ϕ(v)) for all v ∈ V , i.e., ϕ ◦H = H ◦ ϕ. �

Let A be an arbitrary algebra with an m-ary k-linear operation 〈·, ·, . . . , ·〉. Put A(0) = A
and A(i+1) = 〈A(i), A(i), . . . , A(i)〉 for all i ≥ 0. The algebra A is called solvable if there
exists p ≥ 0 such that A(p) = 0.

Lemma 4. Let H be a homogeneous of degree m ≥ 2 endomorphism of the polynomial

algebra Pn. Then P
(1)
H = PH if and only if h1, h2, . . . , hn are linearly independent over k.

Proof. Suppose that P
(1)
H 6= PH and let f1, f2, . . . , fn be a basis for PH such that

fs, fs+1, . . . , fn is a basis for P
(1)
H where s ≥ 2. Put

Y = x1 ⊗ f1 + x2 ⊗ f2 + . . .+ xn ⊗ fn ∈ Pn ⊗ PH .
Then

〈Y, Y, . . . , Y 〉 = g1 ⊗ f1 + g2 ⊗ f2 + . . .+ gn ⊗ fn,
where G = (g1, g2, . . . , gn) is a homogeneous n-tuple of degree m. Notice that g1 =

. . . gs−1 = 0 since fs, fs+1, . . . , fn is a basis for P
(1)
H . By Lemma 2, there exists ϕ ∈ GLn(k)

such that ϕ ◦H = G ◦ ϕ. Comparing the first components, we get

λ1h1 + λ2h2 + . . .+ λnhn = 0,

if ϕ(x1) = λ1x1 + λ2x2 + . . .+ λnxn. Notice that (λ1, λ2, . . . , λn) 6= 0 since ϕ is invertible.
If h1, h2, . . . , hn are linearly dependent over k then it is not difficult to find ϕ ∈ GLn(k)

such that the first component of G = ϕ◦H ◦ϕ−1 is zero. This means P
(1)
G 6= PG = PH . �

Let A be an arbitrary algebra with an m-ary k-linear operation 〈·, ·, . . . , ·〉. Put A1 = A,
Am = 〈A,A, . . . , A〉, and

Aq =
∑

i1+i2+...+im=q

〈Ai1 , Ai2 , . . . , Aim〉
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if there exists positive integers i1, i2, . . . , im such that i1+i2+. . .+im = q andAi1 , Ai2 , . . . , Aim

are defined. Notice that Aq is not defined for many q if m ≥ 3 (for example A2 is not
defined). The algebra A is called nilpotent if there exists a number t such that Aq = 0 for
all q ≥ t.

This is a traditional definition of nilpotent algebras corresponding to the lower central
series in group theory. We prefer a definition corresponding to the upper central series.
Recall that an element a ∈ A is called an annihilator of A if

〈b1, . . . , bi−1, a, bi+1, . . . , bm〉 = 0

for all 1 ≤ i ≤ m and for all b1, . . . , bi−1, bi+1, . . . , bm ∈ A. Denote by Ann(A) the set of
all annihilators of A.

Put Z0(A) = 0 and Z1(A) = Ann(A). Suppose that Zi(A), where i ≥ 0, is already
defined and is an ideal of A. Then Zi+1(A) is defined as the full preimage of Ann(A/Zi(A))
under the natural homomorphism A → A/Zi(A). The algebra A is called nilpotent if
there exists a natural p such that Zp(A) = A. It is well known that the two definitions of
nilpotent algebras given above are equivalent.

Every nilpotent algebra is solvable but the converse is not true in general [29].
An endomorphismH = (h1, h2, . . . , hn) is called strongly triangular if hi ∈ k[x1, . . . , xi−1]

for all i. An endomorphism H = (h1, h2, . . . , hn) is called strongly triangulable if there ex-
ists α ∈ Aut(An) such that αHα−1 is strongly triangular. A homogeneous endomorphism
H = (h1, h2, . . . , hn) is called strongly linearly triangulable if there exists α ∈ GLn(k) such
that αHα−1 is strongly triangular.

Lemma 5. A polarization algebra PH is nilpotent if and only if H is strongly linearly
triangulable.

Proof. Suppose that A = PH is nilpotent and let p be the minimal positive integer
such that Zp(A) = A. Put ki = dim (A/Zi(A) + 1 for all 1 ≤ i ≤ p. Then 1 =
kp < kp−1 < . . . < k1 ≤ n and there exists a basis (f) = {f1, f2, . . . , fn} for A such
that {fki , . . . , fn} is a basis for Zi(A) for all 1 ≤ i ≤ p. Let G = (g1, g2, . . . , gn) be
the n-tuple of A corresponding to (f). By induction on n we prove that G is strongly
triangular. Notice that G does not depend on xk1 , . . . , xn since {fk1 , . . . , fn} is a basis
for I = Z1(A) = Ann(A). Moreover, G′ = (g1, g2, . . . , gk1−1) is the k1 − 1-tuple of A/I
corresponding to the basis {f1 + I, f2 + I, . . . , fk1−1 + I}. Besides, this basis satisfies the
same conditions as (f) with the numbers 1 = kp < kp−1 < . . . < k2 ≤ k1 − 1 for A/I.
We may assume that G′ is strongly triangular since k1 − 1 < n. Consequently, G is also
strongly triangular.

Suppose that H is strongly linearly triangulable. By Lemma 2, we may assume that H
is strongly triangular. Then H does not depend on xn. Let k1 be the minimal positive
number such that H does not depend on xk1 , . . . , xn. Denote by I the span of ek1 , . . . , en,
where e1, e2, . . . , en is the standard basis for V = kn. It is easy to see that I ⊆ Ann(A).
Moreover, H ′ = (h1, h2, . . . , hk1−1) is the k1 − 1-tuple of A/I corresponding to the basis
{e1+I, e2+I, . . . , ek1−1+I}. Leading an induction on the dimension of A, we may assume
that A/I is nilpotent. Then A is also nilpotent since I ⊆ Ann(A). �
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3. An approach to the Jacobian Conjecture

In this section we describe an approach to the Jacobian Conjecture by L.M. Drużkowski
and K. Rusek [12], G. Gorni and G. Zampieri [19], and by A.V. Yagzhev [27].

It is well known [13] that a homogeneous n-tuple H has nilpotent Jacobian matrix

J(H) = (∂j(hi))1≤i,j≤n

if and only if the Jacobian

jac(X −H) = det(I − J(H))

of the endomorphism X −H = (x1−h1, x2−h2, . . . , xn−hn) is 1, where I is the identity
matrix of order n. If m ≥ 2 and J(H) is nilpotent then the polynomial endomorphism
X−H = (x1−h1, x2−h2, . . . , xn−hn) of V = kn is often called a homogeneous Keller maps
of degree m. Recall that the homogeneous Keller maps of degree 2 are automorphisms [25].
The well known Jacobian Conjecture is reduced to the study of homogeneous Keller maps
of degree 3 by Yagzhev [26] and Bass-Connel-Wright [3]. Continuing this approach, L.M.
Drużkowski and K. Rusek [12] first considered H = H(X,X,X) as a trilinear operation.
Later this algebra was called a ternary symmetric algebra by A.V. Yagzhev [27].

Let k[V ] be the algebra of all polynomial functions on the space V = kn and let V ∗

be the space of all linear functions on V . If e1, e2, . . . , en is the standard basis for V
then x1, x2, . . . , xn is the basis for V ∗ dual to e1, e2, . . . , en with respect to the evaluation
pairing

〈u∗, u〉 = u∗(u), u∗ ∈ V ∗, u ∈ V.
We have k[V ] = k[x1, x2, . . . , xn] = Pn. For every polynomial mapping F : V → V we
define F ∗ : Pn → Pn by F ∗(p)(v) = p(F (v)) for all p ∈ Pn and v ∈ V . It is well known
that F ∗ is an automorphism of Pn and if F = (f1, f2, . . . , fn) then F ∗(xi) = fi for all i.

Notice that X = (x1, x2, . . . , xn) = x1⊗e1+x2⊗e2+ . . .+xn⊗en is a generic element of
the polarization algebra PH . Then X = (x1, x2, . . . , xn) generates the free algebra PH〈X〉
of the variety of algebras generated by PH in one free variable X. This section is mainly
focused on the study of the free polarization algebra PH〈X〉.

Lemma 6. [27] A polynomial endomorphism X −H of the space V = kn is an automor-
phism if and only if the endomorphism of the free polarization algebra PH〈X〉 defined by
X 7→ X − 〈X,X, . . . , X〉 is an automorphism.

Proof. Put F = X −H and consider the endomorphism F ∗ of the polynomial algebra
Pn. Denote by Φ a unique k-linear extension of F ∗ to the space k[X] ⊗ PH = k[X]n.
Obviously, Φ is an endomorphism of the symmetric algebra since the product in PH does
not depend on x1, . . . , xn and Φ keeps fixed every element of k. Moreover,

Φ(X) = X −H = X − 〈X,X, . . . , X〉.
Consequently, Φ induces an endomorphism T of the free algebra PH〈X〉 defined by X 7→
X − 〈X,X, . . . , X〉. Let T−1 be the formal inverse to T . Since PH〈X〉 is a homogeneous
algebra, the existence of the formal inverse T−1 to T can be checked as in the case of
polynomials [13]. We have T ◦ T−1 = id, i.e., T (T−1(X)) = X. Notice that T−1(X) =
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(g1, g2, . . . , gn) = G where gi ∈ k[[X]] for all i. We get F ∗(G(X)) = X since T is induced
by Φ. This means that F ∗ ◦ G∗ = id and the formal inverses to F ∗ and T are the same.
Consequently, F ∗ is an automorphism if and only if T is an automorphism. �

There are many possible ways to define an Engel condition for m-ary algebras if
m > 2. We choose the weakest one. Let A be an m-ary symmetric algebra. For any
a1, a2, . . . , am−1 ∈ A the multiplication operator

M(a1, a2, . . . , am−1) : A −→ A

is defined by x 7→ 〈a1, a2, . . . , am−1, x〉 for all x ∈ A. We say that A is an Engel algebra if
there exists a positive integer p such that

M(a, a, . . . , a)p = 0

for all a ∈ A. If m = 2 then this is the standard definition of a commutative Engel
algebra.

The statement of the next lemma has been first noticed by G. Gorni and G. Zampieri
[19] and proved by A.V. Yagzhev [27] using the structural constants.

Lemma 7. [19, 27] A polarization algebra PH is an Engel algebra if and only if the
Jacobian matrix J(H) is nilpotent.

Proof. Consider two generic elements X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) of
PH . Let d be the derivation of the polynomial algebra k[X, Y ] = k[x1, . . . , xn, y1, . . . , yn]
such that d(xi) = yi and d(yi) = 0 for all i. Denote by D a unique k-linear extension of
d to the space k[X, Y ] ⊗ PH = k[X, Y ]n. Obviously, D is a derivation of the symmetric
algebra since the product in PH does not depend on x1, . . . , xn, y1, . . . , yn. Moreover,
D(X) = Y and D(Y ) = 0 and PH〈X, Y 〉 is a D-closed free algebra in two variables. We
have

〈X,X, . . . , X〉 = H.

Applying D, we get

mM(X,X, . . . , X)Y = D(H) = J(H)Y.

Therefore

mpM(X,X, . . . , X)pY = J(H)pY

for any positive integer p. Consequently, J(H) is nilpotent if and only if M(X,X, . . . , X)
is nilpotent. �

We give the definition of nonassociative (nonempty) words in one variable X with
respect to m-ary operation 〈·, ·, . . . , ·〉 following the definition for binary algebras [29]:

(i) X is a unique nonassociative word of length 1;
(ii) If w1, w2, . . . , wm are nonassociative words of length k1, k2, . . . , km ≥ 1, respectively,

then 〈w1, w2, . . . , wm〉 is a nonassociative word of length k1 + k2 + . . .+ km.
As in the binary case [29], it is easy to show that every nonassociative word w of length

l(w) > 1 has a unique decomposition w = 〈w1, w2, . . . , wm〉.
Notice that the free polarization algebra PH〈X〉 has grading

PH〈X〉 = G1 ⊕G2 ⊕G3 ⊕ . . .⊕Gs ⊕ . . . ,
7



where Gs the span of all nonassociative words in X of length (s− 1)m− s+ 2.
The statement (i) of the following lemma was proved in [12, 27] and the statement

(ii) was proved in [27]. The authors of [19] have used the word ”nestings” instead of
nonassociative words.

Lemma 8. Let T be the endomorphism of the free polarization algebra PH〈X〉 defined
by X 7→ X − 〈X,X, . . . , X〉 and let T−1 be the formal inverse to T . Then the following
statements are true.

(i) T−1(X) = T1 + T2 + . . .+ Ts + . . ., where T1 = X and

Ts =
∑

i1+...+im=s

〈Ti1 , . . . , Tim〉

for all s > 1.
(ii) Ts is the sum off all nonassociative words in X of degree (s − 1)m − s + 2 for all

s ≥ 1.

Proof. Since T−1 is the formal inverse to T it follows that∑
s≥1

Ts − 〈
∑
s≥1

Ts, . . . ,
∑
s≥1

Ts〉 = X.

Comparing homogeneous parts, we get (i). Leading an induction on s, we can easily get
(ii) from (i). �

Of course, the polynomials Ts are different for different values of m.

Corollary 2. Let H be a homogeneous n-tuple of elements of Pn of degree m ≥ 2. Then
the polynomial mapping X −H of V = kn is an automorphism if and only if there exists
a positive integer p = p(H) such that the polarization algebra PH satisfies all identities
Ts = 0 where s ≥ p.

Proof. By Lemma 6, X−H is an automorphism if and only if the endomorphism T of the
free polarization algebra PH〈X〉 defined by X 7→ X−〈X,X, . . . , X〉 is an automorphism.
By Lemma 8, T is automorphism if and only if there exists p such that Ts = 0 for all
s ≥ p. This means that PH satisfies the identities Ts = 0 for all s ≥ p. �

Corollary 3. The Jacobian Conjecture for polynomial algebras is true if and only if for
any finite dimensional symmetric m-ary Engel algebra A there exists a positive integer
p = p(A) such that A satisfies all identities Ts = 0 where s ≥ p.

Proof. The Jacobian Conjecture is true if and only every polynomial endomorphism
X − H with nilpotent Jacobian matrix J(H) is an automorphism. By Lemma 1, every
symmetric algebra A is isomorphic to PH . By Lemma 7, A is an Engel algebra if and only
if J(H) is nilpotent. Corollary 2 finishes the proof. �

Combining Corollary 2 and the Jacobian Conjecture for quadratic Keller maps [25] we
get the next statement.

Corollary 4. For any finite dimensional commutative Engel algebra A there exists a
positive integer p = p(A) such that A satisfies all identities Ts = 0 where s ≥ p.
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4. Albert’s problem and the homogeneous dependence problem

Recall that an algebra A (not necessarily associative) over a field k is called power-
associative [29] if each element of A generates an associative subalgebra. For power-
associative algebras, an element a is called nilpotent if an = 0 for some n and an algebra
is called nil if every its element is nilpotent.

Albert’s conjecture was [1] that every commutative power-associative finite dimensional
nilalgebra is nilpotent. Gerstenhaber and Myung [18] proved that every commutative
power-associative nil algebra of dimension≤ 4 is nilpotent. In [23] Suttles gave an example
of a commutative power-associative algebra of dimension 5 which is not nilpotent but
solvable. As we mentioned in the introduction, the automorphism (1) corresponds to the
Suttles’ example. Notice that this automorphism can be written in the form X−H where
X = (x, y, z, s, t) and H = (ys, xt−zs, yt, 0, 0). Then J(H) is nilpotent since X−H is an
automorphism. Consequently, PH is a binary commutative 5 dimensional algebra with an
Engel identity. By the definition of the product in PH we have X ·X = H. Consequently,

X ·X = (xe1 + ye2 + ze3 + se4 + te5) · (xe1 + ye2 + ze3 + se4 + te5)

= x2e1 · e1 + 2xye1 · e2 + 2xze1 · e3 + 2xse1 · e4 + 2xte1 · e5
+y2e2 · e2 + 2yze2 · e3 + 2yse2 · e4 + 2yte2 · e5 + z2e3 · e3
+2zse3 · e4 + 2zte3 · e5 + s2e4 · e4 + 2ste4 · e5 + t2e5 · e5

= H = yse1 + (xt− zs)e2 + yte3.

Comparing coefficients in monomials, we get the following nonzero products

e2 · e4 = 1/2e1, e1 · e5 = 1/2e2, e3 · e4 = −1/2e2, e2 · e5 = 1/2e3.

Using this, we can easily get that X2 · X2 = 0 and (X2 · X) · X = 0. It is well known
(see, for example [14]) that a commutative algebra over a field of characteristic zero is
power-associative if and only if the identity

X2X2 = (X2X)X

holds. Consequently, the polarization algebra PH is power-associative. It is easy to check
that PH is not nilpotent but solvable.

Now consider the automorphism (2). This automorphism can be written in the form
X −H where X = (x, y, s, t) and H = ((ys− xt)s, (ys− xt)t, 0, 0). Then PH is a ternary
symmetric 4 dimensional algebra with an Engel identity. We have

〈X,X,X〉 = x3〈e1, e1, e1〉+ 3x2y〈e1, e1, e2〉+ 3x2s〈e1, e1, e3〉+ 3x2t〈e1, e1, e4〉
+3xy2〈e1, e2, e2〉+ 6xys〈e1, e2, e3〉+ 6xyt〈e1, e2, e4〉+ 3xs2〈e1, e3, e3〉

+6xst〈e1, e3, e4〉+ 3xt2〈e1, e4, e4〉+ y3〈e2, e2, e2〉+ 3y2s〈e2, e2, e3〉
+3y2t〈e2, e2, e4〉+ 3ys2〈e2, e3, e3〉+ 6yst〈e2, e3, e4〉+ s3〈e3, e3, e3〉

+3s2t〈e3, e3, e4〉+ 3st2〈e3, e4, e4〉+ 3t3〈e4, e4, e4〉
= H = (ys− xt)se1 + (ys− xt)te2.
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From this we get the following nonzero products

〈e2, e3, e3〉 = 1/3e1, 〈e1, e3, e4〉 = −1/6e1,

〈e2, e3, e4〉 = 1/6e2, 〈e1, e4, e4〉 = −1/3e2.

Using this, it is easy to check that the free polarization algebra PH〈X〉 is a 2 dimensional
nilpotent algebra with a linear basis X, 〈X,X,X〉, Consequently, PH〈X〉 is associative.
This means that PH is power-associative. It is easy to check that PH is not nilpotent but
solvable.

A modified version of the Albert’s problem was formulated in [10, Problem 1.1].
Albert’s problem I: Is every finite dimensional commutative power-associative nilalge-
bra solvable?

This problem is still open. It has been proved [6, 8] that commutative power-associative
nil algebras of dimension ≤ 8 are solvable. This problem is also equivalently related to
possessing of symmetric associative bilinear forms [2]. Commutative power-associative
algebras with a nil basis were studied in [9, 21].

An algebra A is called a nilalgebra of bounded nilindex if there exists a positive integer
t such that xt = 0 for all x ∈ A and all possible distribution of parenthesis. Many authors
started to study the following version of the Albert’s problem.
Albert’s problem II: Is every finite dimensional commutative nilalgebra (not necessarily
power-associative) solvable?

The latest results say that all commutative nilalgebras of dimension ≤ 7 are solvable
[14, 16].

In 1960 M. Gerstenhaber proved that [17] every commutative nilalgebra of bounded
index is an Engel algebra. Many authors also started to study the following version of
the Albert’s problem.
Albert’s problem III: Is every finite dimensional commutative Engel algebra solvable?

It is proved that every finitely generated commutative algebra with the Engel identity
x(x(xy)) = 0 is solvable [7] and every finite dimensional commutative algebra with the
same identity is nilpotent [15]. The classification of homogeneous quadratic automor-
phisms in dimension 5 given in [22] can be considered as a classification of 5 dimensional
commutative Engel algebras since all quadratic Keller maps are automorphisms [25].

Of course, all three versions of the Albert’s problem can be considered for m-ary sym-
metric algebras. Let A be an arbitrary m-ary algebra and A〈X〉 be the free algebra in
one free variable X of the variety of algebras generated by A. The algebra A is called
power-associative if A〈X〉 is associative and is called nil of bounded index if A〈X〉 is
nilpotent.

The next lemma is an analogue of the result by Gerstenhaber [17] mentioned above .

Lemma 9. Let A be an arbitrary m-ary symmetric nilalgebra of bounded index. Then A
is an Engel algebra.

Proof. Let A〈X〉 be the free algebra in one free variable X of the variety of algebras gen-
erated by A. Consider the endomorphism T of A〈X〉 defined by X 7→ X−〈X,X, . . . , X〉.
Then T is an automorphism since A〈X〉 is nilpotent. Therefore the Jacobian matrix
J(T ) = 1 −mM(X, . . . , X) of T is invertible [24]. Consequently (see, for example [13]),
M(X, . . . , X) is nilpotent. �
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Now recall the formulation of the homogeneous dependence problem.
HDP(m). Let H = (h1, h2, . . . , hn) be a homogeneous n-tuple of elements of degree m
of the polynomial algebra Pn. If J(H) is nilpotent then is it true that h1, h2, . . . , hn are
linearly dependent over k?

Theorem 1. Let m ≥ 2 be an arbitrary integer. The homogeneous dependence problem
HDP(m) is true if and only if every finite dimensional m-ary symmetric Engel algebra is
solvable.

Proof. Suppose that every finite dimensional m-ary symmetric Engel algebra is solvable.
Let H = (h1, h2, . . . , hn) be a homogeneous n-tuple of elements of degree m of Pn with
nilpotent Jacobian matrix J(H). Then PH is a finite dimensional m-ary symmetric Engel
algebra by Lemma 7. Consequently, PH is solvable. Lemma 4 gives that h1, h2, . . . , hn are
linearly dependent over k.

Suppose that the homogeneous dependence problem HDP(m) is true. Let A be an
arbitrary finite dimensional m-ary symmetric Engel algebra and H = (h1, h2, . . . , hn) be
an n-tuple of A. Then A is isomorphic to PH by Lemma 1. By Lemma 7, J(H) is
nilpotent. Then h1, h2, . . . , hn are linearly dependent since HDP(m) is true. Lemma 4
gives that A(1) 6= A. Consequently, dimA(1) < dimA. Leading an induction on the
dimension of A, we may assume that A(1) is solvable. Then A is also solvable. �

Let’s consider some results on the homogeneous dependence problem. Some positive
results in small dimensions can be found in [13]. The homogeneous dependence problem
HDP(m) is negatively solved for all m ≥ 3 by M. de Bondt [4, 5]. A counterexample of
dimension 9 for m = 3 is given in [28].

Corollary 5. An analogue of the Albert’s problem III for m-ary algebras has a negative
solution if m ≥ 3.

The real algebraic case m = 2 remains open. The methods of construction of counter-
examples for m ≥ 3 might be useful in binary case. In fact, M. de Bondt [4] started
his construction from the automorphism (2). It might be interesting try to get a binary
counter-example starting from the binary automorphism (1).

Of course, specialists in affine algebraic geometry did not consider the power-associativity.
Occasionally, 5-ary algebras of dimension n ≥ 6 corresponding to the automorphisms given
in Theorem 2.1 in [4] are power-associative and every one generated subalgebra of these
algebras are nilpotent and at most 2 dimensional.

Corollary 6. Analogues of Albert’s problems I and II for m-ary algebras have negative
solutions if m ≥ 5.

5. Comments and problems

To prove a result on finite dimensional algebras we usually use an induction on the
dimension of an algebra. An advantage of considering m-ary algebras for all m ≥ 2
is that we get one more induction to prove results on finite dimensional symmetric nil
algebras of bounded index. Let A be an n dimensional m-ary symmetric nil algebra of
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bounded index. Let A〈X〉 be the free algebra in one free variable X of the variety of
algebras generated by A. Then A〈X〉 is nilpotent and finite dimensional. Put

H(X) = 〈〈X,X, . . . , X〉, X, . . . , X〉
and consider the free polarization algebra PH〈X〉. Obviously, PH〈X〉 is associative if
A〈X〉 is associative and PH〈X〉 is nilpotent if A〈X〉 is nilpotent. Moreover, dim PH〈X〉 <
dim A〈X〉. This allows to lead an induction on dim A〈X〉.

The critical case is when dim A〈X〉 = 2. In this case H = 0 and all elements of A〈X〉
except X and 〈X,X, . . . , X〉 are zeroes. Examples given in Theorem 2.1 in [4] correspond
exactly to this case. They do not allow to use an induction on dim A〈X〉 to solve Albert’s
problems I and II. But this induction may be useful in solving some other problems.

By Lemma 8, the structure of the free polarization algebra PH〈X〉 is very important in
the study of the Jacobian Conjecture. Notice that the polarization algebras corresponding
to (1) and (2) are not nilpotent but the corresponding free polarization algebras in one
variable are nilpotent. An example of a homogeneous 4-tuple H of degree 3 with nilpotent
Jacobian matrix J(H) such that PH〈X〉 is given by G. Gorni and G. Zampieri [19]. In
fact, the corresponding automorphism

(x+ s(xt− ys), y + t(xt− ys), s+ t3, t)

is obtained by only one elementary transformation from (2). The same result we can get
if we consider the automorphism

(x− ys, y + zs− xt, z − yt, s+ t2, t)

obtained from (1) by one elementary transformation. In this case PH becomes a binary
algebra. So, elementary transformations hurt the nilpotency and the power-associativity.
In both cases PH〈X〉 is solvable since PH is solvable. It seems that elementary transfor-
mations do not hurt solvability of PH〈X〉.

All examples in [4] based on quasi-translations and elementary transformations. Recall
that X −H is called a quasi-translation if (X −H)−1 = X + H. In this case PH〈X〉 is
two dimensional nilpotent algebra.

Problem 1. Is PH〈X〉 solvable if J(H) is nilpotent?

The weakest form of nil elements in nonassociative algebras can be defined in the
following way. Let A be an m-ary algebra and a ∈ A. Put a(0) = a and a(i+1) =
〈a(i), a(i), . . . , a(i)〉. An element a ∈ A is called weak nil if there exists a positive integer p
such that a(p) = 0. An algebra is called weak nil if every its element is weak nil.

Problem 2. Is every finite dimensional symmetric m-ary Engel algebra is weak nil?

This problem can be equivalently formulated in purely affine algebraic geometry lan-
guage.

Problem 3. Let H be a arbitrary n-tuple with nilpotent Jacobian matrix J(H) and H(0) =
0. Then is the polynomial endomorphism H nilpotent?

Obviously, this problem can be reduced to homogeneous mappings.
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[12] L.M. Drużkowski, K. Rusek, The formal inverse and the Jacobian conjecture. Ann. Polon. Math. 46

(1985), 85–90.
[13] A. van den Essen, Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics,

190, Birkhauser verlag, Basel, 2000.
[14] J.C. Gutiérrez Fernández, On commutative power-associative nilalgebras. Comm. Algebra 32 (2004),

no. 6, 2243-2250.
[15] J.C. Gutiérrez Fernández, Commutative finite-dimensional algebras satisfying x(x(xy))=0 are nilpo-

tent. Comm. Algebra 37 (2009), no. 10, 3760-3776.
[16] J.C. Gutiérrez Fernández, On commutative nilalgebras of low dimension. Algebra Discrete Math. 9

(2010), no. 1, 16–30.
[17] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices. II. Duke Math. J. 27

(1960), 21-31.
[18] M. Gerstenhaber, H.C. Myung, On commutative power-associative nilalgebras of low dimension.

Proc. Amer. Math. Soc. 48 (1975), 29–32.
[19] G. Gorni, G. Zampieri, Yagzhev polynomial mappings: on the structure of the Taylor expansion of

their local inverse. Ann. Polon. Math. 64 (1996), no. 3, 285–290.
[20] H. Kraft, Geometric methods in the theory of invariants. (Russian) Mir, Moscow, 1987.
[21] I.P. Shestakov, Finite-dimensional algebras with a nil basis. (Russian) Algebra i Logika 10 (1971),

87-99. English translation: Algebra and Logic 10 (1971), 58–65.
[22] X. Sun, Classification of quadratic homogeneous automorphisms in dimension five. Comm. Algebra

42 (2014), no. 7, 2821–2840.
[23] D.A. Suttles, A counterexample to a conjecture of Albert, Notices Amer. Math. Soc. 19 (1972)

A–566.
[24] U.U. Umirbaev, On Schreier varieties of algebras. Algebra Logic 33 (1994), no. 3, 180–193.
[25] S. Wang, A jacobian criterion for separability. J. Algebra 65 (1980), 453–494.
[26] A.V. Yagzhev, On Keller’s problem. Siberian Math. J. 21 (1980), no. 5, 747–754.

13



[27] A.V. Yagzhev, Endomorphisms of polynomial rings and free algebras of different varieties. (Russian)
Proceedings of Shafarevich Seminar, Moscow, 1999-2000, issue 2, 15–47.

[28] G. Zampieri, Homogeneous polynomial invariants for cubic-homogeneous functions. Univ. Iagel. Acta
Math. 46 (2008), 99–103.

[29] K.A. Zhevlakov, A.M. Slinko, I.P. Shestakov, A.I. Shirshov, Rings that are nearly associative. Aca-
demic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.

14


	60_Umirbaev_cover
	60_Umirbaev

