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ZDZISLAW WOJTKOWIAK1

L Introduction.

The &im of tbis paper is to apply the programme from [1] to investigate maps

between p-rompleted classifying spaces of compact connected Lie groups. However instead

of cohomology with rational coefficients we shall use complex K-theory with p-adic

coefficients.

We aBsume throughout that G a.nd G' are compact, connected Lie groups with

maximal tori T, T' a.nd Weyl groups W , W ' .

Definition 1.1 (see [2] page 2) Let R be a commutative ring. We say that a

homomorpbism of R-modules

is adm.issible if for each w EW there exiets w'E W I such that f/J 0 w = W I 0 f/J •

Definition 1.2 We say that two admissible maps , and ; from 7r1(T) 8 R to

1r1(T ') 8 R are equivalent if there exists w'E W I such that ,p = wI 0 t/J •

1 The results of tbis paper grew up in the correspondence with Professor J. Frank Adams
during the period 1987-1988. These results form chapter 6 of our second thesis presented at
Universitat Autonoma de Bracelona. We would like to thank very much Professor J. Frank
Adams for correspondence, suggestions and constant encouragement.
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It is clear that the relation defined above is an equivalence relation on the set of

admissible maps from r 1(T) ~ R to 1"1(T') ~ R .

We shall denote by HOIDR(T,T ') the set of equivalence classes of a.dmissible maps

from ~l(T) ~ R to 1'1(T') ~ R .

We recall from [2] Theorem 1.1 that for any map f: (BG)p ---+ (BG')p there is

an admissible map t :r 1(T) ~ zp ---+ 'K1(T' ) e Zp , unique up to the action of W' , 80

f determines uniquely an equivalence class '1'* in HomZ (T,T') which we shall denote
p

by X(f).

Theorem 1.3 If p does not divide the order of W then the map

x: [(BG) ,(BG') ] ---+HomZ (T,T')
p p p

ia bijective.

For any space we set

where Q is a field of p-a.dic numbers.
p •

We point out that H «BG)p,Qp) defined by the formula (*) is equal to the singular

cohomology of BG with Qp--eoefficients.

Theorem 1.4 If p does not divide the order of W then the natural map
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is injective.

In [1], to study maps between classifying SpateS, cohomology groups were uaed.

However if one deals only with one fixed prime ii is ~ecessary to use complex K-theory if

one wants to get analogous results.

We denote by KO( ,R) the Oth-term. of complex K-theory with R-eoefficients. Let

DR be the set of operations in KO( ,R). The functor KO( ,R) is equipped with the

natural augmentation KO( ,R) ---t R .

Let HomO (KO(X,R); KO(Y,R)) be the set of R-algebra homomorphism which
R

commute with the action of 0R and augmentations.

Theorem 1.5 If P does not divide the order of W then the natural map

t: [(BG)p,(BG I )p] --+ Hom
Oz

(KO«BG I )p,Zp)' KO«BG)p' Zp))

P
is bijective.

° °(We point out tha.t K ((BG)p'Zp) = K (BG,Zp).)

Corollary 1.6 Let n be the order of W . If P does not divide n then the maps

and
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x: [BG,(BG ' )1/ ] --+ HomZ (T,T / )
n [1/n]

are bijective.

The next result shows that there is a direct relation between Theorem 1.3 and

Theorems 1.4 and 1.5.

Theorem 1.7 Let f and g be two maps !rom (BG)p to (BG ')p . Then the

following conditions are equivalent:

i) X(f) = X(g) in HomZ (T,T / ) ,
p

ii) K~(f,Zp) =K:(g,Zp) ,

iii) H (f,Qp) = H (g,Qp) .

The rest of the paper contains proofs of the announced results. We shall prove the

results in almost reversed order to that in which we announced them. However we feel this

was a natural way to present our results, while the proofs, require a change of order.

We would like to thank the referee for pointing several misprints. The referee also informed

us that the related results were obtaind by J. Aguade, D. Notbohm. and L. Smith.

2. Proofs.

Proof of Theorem 1.7.

* *i) =t iii). The condition X(f) = X(g) implies H (f,Qp) = H (g,Qp) because

* *H ((BG)p,Qp) --+ H ((BT)p,Qp) and the similar map for G' are injective.

ili) =t i). It follows from [2] Theorem 1.1 and üi) that the compositions
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*
* r * *

H ((BT)p,Qp) ......: ._H ((BT')p,Qp) +--H ((BG')p,Qp)

g

are equal. The same arguments aB in the proof of Theorem 1.7 in [1] shows that

x(f) = X(g) .

ü) ~ üi). For a connected, compact Lie group G the Chern character

is injective and after tensoring with Q becomes an isomorphisID. Therefore the

Iunctoriality oI the Chern character implies that ii) is equivalent to üi).

Proof of Theorem 1.4

First we collect some facts which we shall use in the proof.

Let 'K = li!!l- Ifn be a direct limit of finite groups. We set
n

where R(lfn) is the complex representation ring of a finite group 'Kn .

Let us notice that

o

2.1.

The natural map
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induces

2.2. If 7r = li!!l-?fn is a p-group Le. each ?fn is a p-group then
n

is an isomorphism, and the map

is injective.

For a torus T we denote by T(n) a subgroup of T consisting of elements which

m
are in the kernel of the multiplica.tion by pn. We set T(m) = U T(n).

n=l

The proof of the theorem will follow dosely the line of the proof of Theorem 1 in [6]

with few modificationB. Let f,g: (BG)p --+ (BG ')p be two maps such that

* *H (f,Qp) = H (g,Qp) . Let i: BT(m) --+ (BG )p be the map induced by the indusion of

T into G. Then it follows from [3] Theorem 1.1 that the maps f 0 i and goi are

induced by homomorphisIDs ;, f/J: T(m) --+ G'. The ehern character

eh : KO(BT(m),Z ) --+ Hev(BT{m),Q ) is injective. The equality
* f P

H (B;,Q ) = H (B"Q ) implies that KO(B;,Z ) = KO(B"Z ). Let us notice thaip p p p
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T(m) is a p-group. Hence 2.2 implies that ; and , induce the same homomorphism of

representations rings

R(;) = R(;) : R(G') ----+ R(T(m)) .

We can &Ssume that the images of ; and , are in T' . Let ia : Z/pm ----+ T(m)

be an indusion. Then the restrictions of ; and , to ia(Z/pm) are conjugate by some

element of W . There is an uncountable number of families i1(Z/paJ), ... ,im(Z/pm) which

generate T(m), but the group W is finite. Hence tP and , are conjugate by some

element of W . This implies that the maps B; and B; are homotopic. The Weyl group

W acts on T(m) and therefore it acts also on BT(m), and we can assume that tbis action

is free. The space BT(m)/W is homologically equivalent at a prime p to (BG)p' Hence

Theorem 1 from [5] implies that f and g are homotopic.

3. K-theory.

To realize the programme {rom [1] in a case of a single prime it is necessary to

replace cohomology by K-theory. The reason is very simple. In a global situation

considered in [1] one has the Steenrod operations for almost &11 primes. In a single prime

*ca.Be, H ((BG)p,Qp) can have only Steenrod operations for one prime, but

KO((BG) ,Q ) has Adams operations "k for all k E Z . It is well known that ,k
p P

operations are closely related to Steenrod operations for all primes. This principle allows UB

to get the similar results in a single prime case, as the results got in [1] in almost all

primes case.

Lemma 3.1 Let UB set X(n) = B(Z/paJ)n . There ia a bijection
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Proof. 1t ia weil known that KO(X(n),zp) = Zp [ [Hp... ,Hn] 1 and

KO(X(m),zp) = Zp [[KI ,... ,Kml] where the generator Hi (resp. Ki ) corresponds to

the ith-projection (Z/paJ)n (resp. (Z/paJ)ID) -----t Z/paJ .

Let r E HomO (KO(X(n),Z ),KO(X(m),Z ) . Then
Z p P

P
. i

f(Hk) = , a. . K1
11 ....• Km, where the summation is over all indices (i1,... ,im)l lp ,lm m

such that i1 + + im > 0 and it ~ 0 for t = 1,,,.,m . The fact that r commutes with

,2 implies the equality

i1 im 2 2 i1 2 im
(1 + ' a. . K1 ..... K ) -1 = ~ a. . ((K1 + 2K1) · .... (K +2K) .l lp".,lm m l lp ... ,lm m m

i1 m
Comparing coefficients at K1 •...• Km we get

where P and p' are polynomials in a· . with j1 + ... + .im < i1 + ... i and
Jp"',Jm m

jD ~ iD for t = l,,,.,ID . Therefore a
J
. • are uniquely determined by

(... ~ p'''Jm

Cl k = a1° 0' Cn k = &0 I 0 0 ,... ,c k = &0 0 1 ., , ,,,., -;&, , , ••• ID, , ... , ,

Let us notice that
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satisfies (*) ,hence f is given by the formula (**) . An element f defines a matrice

C = (c..) with coefficiente in Z . Such a matrice C defines a homomorphiem !rom
l,J p

(Z/paJ)m to (Z/paJ)n. Thie homomorphism inducee f. Thie finishes the proof of the

lemma.

Proof of Theorem 1.5.

The fact that t/J is injective followe immediately from Theorem 1.7 and Theorem 1.4.

Let f: KO((BG ') ,Z ) ---t KO((BG) ,Z ) be a Z -algebra "homomorphismp p p p p

commuting with augmentations and the action of Oz . Let
P

i : KO((BG)p'Zp) ---t KO(BT(m),Zp) and i I : KO((BG I )p,Zp) ---t KO(BT I (m),Zp) be

induced by inclusions of maximal tori into Lie groups. 1t follows from [4] Theorem 4.1

that there is a Z -algebra homomorphismp

commuting with Oz -action such that i 0 f = F 0 i I . From the proof of Theorem 4.1 it
p

follows that F is compatible with augmentations. Lemma 3.1 implies that there is

g : BT(aJ) ---t BT I (Q)) which on KO( ,Zp) induces F. The arguments like those used in

the proof of Theorem 1.7 in [1] shows that the map

induced by g is admissible.
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This implies that the coIDlX>sition

k: BT(m)~ BT'(m) -----t (BG')p

has the property, thai for any w E W , the map k 0 w is homotopic to k. We can

a8sume that the action of W on BT(m) is free. Hence it follows !rom [5] Theorem 1 that

there is K: (BG) -----t (BG') such that K is restricted to BT(m) is homotopic to k.
p P

It is an obvious verification that KO(K,Zp) = f .

Proof of Theorem 1.3.

The injectivity of the map X follows from Theorem 1.7 and Theorem 1.4.

To show that X is surjective one USeB [5] Theorem 1 in the same way as in the

proof of Theorem 1.5.

Proof of CoroUary 1.6.

The corollary follows from the Sullivan arithmetic square and the lack of phantoms in

the situations considered.
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