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NEW SERIES OF RATIONAL MODULI COMPONENTS OF

RANK 2 BUNDLES ON PROJECTIVE SPACE

CHARLES ALMEIDA, MARCOS JARDIM, ALEXANDER TIKHOMIROV,
AND SERGEY TIKHOMIROV

Abstract. We present a new family of monads whose cohomology is a stable
rank two vector bundle on P3. We also study the irreducibility and smoothness

together with a geometrical description of some of these families. These facts

are used to construct a new infinite series of rational moduli components of
stable rank two vector bundles with trivial determinant and growing second

Chern class. We also prove that the moduli space of stable rank two vector

bundles with trivial determinant and second Chern class equal to 5 has exactly
three irreducible components.
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1. Introduction

In [26] Maruyama proved that the rank r stable vector bundles on a projective
variety X with fixed Chern classes c1, ..., cr can be parametrized by an algebraic
quasi-projective variety, denoted by BX(r, c1, ..., cr). Although this result has been
known for almost 40 years, there are just a few concrete examples and established
facts about such varieties, even for cases like X = P3 and r = 2. For instance,
BP3(2, 0, 1) was studied by Barth in [2], BP3(2, 0, 2) was described by Harthorne in
[14], BP3(2,−1, 2) studied by Harthorne and Sols in [17] and by Manolache in [25],
while BP3(2,−1, 4) was described by Banica and Manolache in [1]. This probably
happened due to the fact that the questions of irreducibility (solved in [30] and
[31]), and smoothness (answered in [22]) of the so-called instanton component of
the moduli space BP3(2, 0, c2) remained opened until 2014.

In this paper, we continue the study of the moduli space BP3(2, 0, n), which we
will simply denote by B(n) from now on, with the goal of providing new examples
of families of vector bundles, and understanding their geometry. It is more or less
clear from the table in [16, Section 5.3] that B(1) and B(2) should be irreducible,
while B(3) and B(4) should have exactly two irreducible components; see [12] and
[8], respectively, for the proof of the statements about B(3) and B(4). For n ≥ 5,
two families of irreducible components have been studied, namely the instanton
components, whose generic point corresponds to an instanton bundle, and the Ein
components, whose generic point corresponds to a bundle given as cohomology of
a monad of the form

0→ OP3(−c)→ OP3(−b)⊕OP3(−a)⊕OP3(a)⊕OP3(b)→ OP3(c)→ 0

where b ≥ a ≥ 0 and c > a + b. All of the components of B(n) for n ≤ 4 are of
either of these types; here we focus on a new family of bundles that appear as soon
as n ≥ 5.
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More precisely, we study the family of vector bundles in B(a2 +k) for each a ≥ 2
and k ≥ 1 which arise as cohomologies of monads of the form:

0→ OP3(−a)⊕ Vk ⊗OP3(−1)→ V2k+4 ⊗OP3 → Vk ⊗OP3(1)⊕OP3(a)→ 0

which will be denoted by G(a, k). We provide a bijection between such monads and
monads of the form:

0→ OP3(−a)
σ−→ Ẽ

τ−→ OP3(a)→ 0

where Ẽ is a rank 4 instanton bundle of charge k. When k = 1 these facts, are used
to prove our first main result. (See Theorem 20 below.)

Main Theorem 1. For each a ≥ 2 not equal to 3, G(a, 1) is a nonsingular dense
subset of an irreducible rational component of B(a2 + 1) of dimension

4 ·
(
a+ 3

3

)
− a− 1.

Our second main result provides a complete description of all the irreducible
components of B(5). (See Theorem 22 below.)

Main Theorem 2. The moduli space B(5) has exactly 3 irreducible components,
namely:

(i) the instanton component, of dimension 37, which consists of those bundles
given as cohomology of monads of the form

(1) 0→ V5 ⊗OP3(−1)→ V12 ⊗OP3 → V5 ⊗OP3(1)→ 0, and

(2) 0→ V2 ⊗OP3(−2)→ V3 ⊗OP3(−1)⊕ V3 ⊗OP3(1)→ V2 ⊗OP3(2)→ 0;

(ii) the Ein component, of dimension 40, which consists of those bundles given
as cohomology of monads of the form

(3) 0→ OP3(−3)→ OP3(−2)⊕ V2 ⊗OP3 ⊕OP3(2)→ OP3(3)→ 0;

(iii) the closure of the family G(2, 1), of dimension 37, which consists of those
bundles given as cohomology of monads of the form

(4) 0→ OP3(−2)⊕OP3(−1)→ V6 ⊗OP3 → OP3(1)⊕OP3(2)→ 0 and

(5)
0→ OP3(−2)⊕V2⊗OP3(−1)→ OP3(−1)⊕V6⊗OP3⊕OP3(1)→ V2⊗OP3(1)⊕OP3(2)→ 0.

(iv) All these components are rational varieties.

Indeed, Hartshorne and Rao proved in [16] that every stable rank 2 bundle on P3

with Chern classes c1(E) = 0 and c1(E) = 5 is the cohomology of one of the monads
listed above. Rao showed in [29] that bundles given as cohomology of monads of
the form (2) lie in the closure of the family of instanton bundles of charge 5, which
was shown to be irreducible firstly by Coanda, Tikhomirov and Trautmann in [9];
see also [30]. The irreducibility of the family of bundles which arise as cohomology
of monads of the form (3) was established by Ein in [11].

Finally, our first main result yields the third component, and we also show that
the family of bundles given by the monads of the form (5) lies in the closure of the
family G(2, 1).
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Notation and Conventions.

• In this work, k is an algebraically closed field of characteristic zero,
• Vn denotes a k-vector space of dimension n.
• P(F ) := Proj(Sym•OX

F ), for given scheme X and a coherent OX -sheaf F ,
• OP(F )(1) the Grothendieck sheaf on P(F ),
• V(F ) := Spec(Sym•OX

F ), for X and F as above,
• P(F ) := P(F∨),
• P3 := P(V4) the projective 3-space,
• Isom(Vn⊗OX , F )→ X the principal GL(n,k)-bundle of frames of a rank
n locally free OX -sheaf F ,

• X := P3 ×X, for a given scheme X,
• pX : X→ X the projection onto the second factor, for X and X as above,
• f : X→ Y the morphism induced by the morphism of schemes f : X → Y ,
• FX := f∗F , EX := f∗E, for a given OY -sheaf F , a given OY-sheaf (or, a

complex of sheaves) E , and f : X → Y and f : X→ Y as above,
• E(a, 0) := E⊗OP3(a) �OX , for X and E as above, and a ∈ Z,

• X gX←−− X×Z Y
fY−−→ Y the projections of the fibre product X×Z Y induced

by the morphisms X
f−→ Z

g←− Y ,
• Hi(F ) the i-th cohomology group of the sheaf F on P3,
• Gr(n, Vk) the grassmannian variety of n-dimensional subspaces of Vk.
• Since we are working with rank 2 vector bundles on P3, and Gieseker sta-

bility is equivalent to µ−stability, we will not make any distinction between
these two concepts.

• We will not make any distinction between vector bundles and locally free
sheaves.

• [E] the isomorphism class of a given rank 2 stable vector bundle E on P3

considered as a point in the moduli space M of stable rank 2 sheaves on
P3,

• ΦX : X → M, x 7→ [E|P3×{x}] the morphism defined by the OX-sheaf E

which is family of stable rank 2 vector bundles on P3 with base X, for M
as above. We call ΦX the modular morphism defined by the family E.
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2. Monads

Recall that a monad is a complex of vector bundles of the form:

(6) A
α // B

β
// C

such that α is injective, and β is surjective. We call the sheaf E := kerβ/ imα the
cohomology of the monad (6). When α is locally left invertible, then E is a vector
bundle.

The notion of monad is important in the study of vector bundles on P3 because
Horrocks proved in [18] that every vector bundle on P3 is cohomology of a monad
of the form (6) with A, B and C being sums of line bundles.

For completeness, we include in this section some useful results about monads
that will be required in this work. The following lemma gives a relation between
isomorphism classes of monads and its cohomology vector bundles; a proof can be
found in [27, Lemma 4.1.3].

Lemma 1. Let E and E′ be, respectively, cohomology of the following monads:

(7) M : A
a // B

b // C

(8) M ′ : A′
a′ // B′

b′ // C ′

If one has that
Hom(B,A′) = Hom(C,B′) = Ext1(C,A′) =

= Ext1(B,A′) = Ext1(C,B′) = Ext2(C,A′) = 0,

then there exists a bijection between the set of all morphisms from E to E′ and the
set of all morphisms of monads from (7) to (8).

The following important corollary will be used several times in what follows, and
a proof can also be found in [27, Lemma 4.1.3, Corollary 2].

Corollary 2. Consider the monad

M : A
a // B

b // C

and its dual monad:

M∨ : C∨
b∨ // B∨

a∨ // A∨.

If these monads satisfy the hypothesis of Lemma 1, and there exists an isomorphism
f : E → E∨ between its cohomology bundles such that f∨ = −f , then there are
isomorphisms h : C → A∨, and q : B → B∨, such that q∨ = −q, and h ◦ b = a∨ ◦ q.

Recall that every locally free sheaf E on P3 is the cohomology of a monad of the
form [18]:

(9) 0→ ⊕ri=1OP3(ai)→ ⊕sj=1OP3(bj)→ ⊕tk=1OP3(ck)→ 0

In this work we will be interested in rank 2 locally free sheaves with vanishing
first Chern class. Under these conditions, we have E∨ ' E, thus the monad (9) is
self dual, which implies that t = r, s = 2r + 2, and {ai} = {−ck}. In addition, the
middle entry of the monad is also self dual, so that (9) reduces to

0→ ⊕ri=1OP3(ai)→ ⊕r+1
j=1 (OP3(bj)⊕OP3(−bj))→ ⊕ri=1OP3(−ai)→ 0.
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Finally, recall also that r coincides with the number of generators of H1
∗(E) =⊕

p∈Z H1(E(p)) as a graded module over the ring of homogeneous polynomials in

four variables, while ai are the degrees of these generators, cf. [21, Theorem 2.3].

3. Symplectic instanton bundles

Instanton bundles are a particularly important class of stable rank 2 vector
bundles due to their many remarkable properties and applications in mathematical
physics. Besides this, instanton bundles form the only known irreducible component
of the moduli space B(c) for every cinN.

We will now present the main results concerning instanton sheaves that will be
used below. We start by recalling the definition of instanton sheaves on P3; see [19,
Introduction] for further information on these objects.

Definition 3. An instanton sheaf on P3 is a torsion free coherent sheaf E with
c1(E) = 0 satisfying the following cohomological conditions:

(10) h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

The integer n := c2(E) is called the charge of E. When E is locally free, we say
that E is an instanton bundle.

We remark that instanton bundles of rank r > 2 and non locally free instanton
sheaves of rank r ≥ 2 on P3 are not µ-semistable in general, and also The vanishing
of h1(E(−2)) does not imply the vanishing of h2(E(−2)). The definition above is
the right generalization of the usual definition of an instanton vector bundle in the
sense that, applying the Beilison spectral sequence [27, Ch. II, Thm. 3.1.4]

(11) Epq1 = Hq(E(−p− 1)⊗ Ω−pP3 )⊗ op3(p+ 1)⇒ Ep+q∞ =

{
E, p+ q = 0,
0, p+ q 6= 0,

to an arbitrary rank r instanton sheaf E of charge k, the vanishing (10) yields that
E is the cohomology of a monad of the form

(12) 0→ Vk ⊗OP3(−1)→ Vr+2k ⊗OP3 → Vk ⊗OP3(1)→ 0.

Conversely, the cohomology of a monad as above is an instanton sheaf as defined
in Definition 3, see [19, Theorem 3].

The cokernel N of any monomorphism of sheaves OP3(−1)→ Ω1
P3(1) is called a

null correlation sheaf :

(13) 0→ OP3(−1)
s−→ Ω1

P3(1)→ N → 0.

Such sheaves are precisely the rank 2 instanton sheaves of charge 1, and are
parametrized by the projective space PH0(Ω1

P3(2)) ' P5. If N is locally free, we
say that N is a null correlation bundle. The set of non locally free null correlation
sheaves are parametrized by the Grassmanian of lines in P3: given a line l ⊂ P3 the
corresponding null correlation sheaf Nl is defined by the sequence

(14) 0→ Nl → V2 ⊗OP3
ε−→ Ol(1)→ 0.

For the purposes of this paper, it is important to study rank 4 instanton bundles
of charge 1. Some of the following facts might be well known, but for lack of a
reference we include proofs here.
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Lemma 4. Every rank 4 instanton bundle E of charge 1 over P3 fits into an exact
sequence:

(15) 0→ V2 ⊗OP3 → E → N → 0,

where N is a null correlation sheaf. If N is a null correlation bundle, then sequence
(15) splits. In addition,

(16) h0(E) = 2, hi(E) = 0, i ≥ 1.

Proof. As observed in the paragraph right below Definition 3, E can be obtained
as cohomology of a monad (12) for r = 4 and k = 1:

(17) ME : 0 // OP3(−1)
α // V6 ⊗OP3

β
// OP3(1) // 0.

Without loss of generality, we can choose homogeneous coordinates [x : y : z : w]
in P3 and a basis in V6, such that the map β can be written as

(18) β :=
(
x y z w 0 0

)
.

Hence using the display of the above monad, we have that E fits into the following
short exact sequence

(19) 0→ OP3(−1)→ V2 ⊗OP3 ⊕ Ω(1)→ E → 0.

From the above short exact sequence we can build up the following commutative
diagramm

0

��

0

��

V2 ⊗OP3

��

V2 ⊗OP3

��

0 // OP3(−1) // V2 ⊗OP3 ⊕ Ω(1) //

��

E

��

// 0

0 // OP3(−1) // Ω(1) //

��

N

��

// 0

0 0

The rightmost column is the desired sequence.
If N is locally free, then Ext1(N,OP3) ' H1(N) = 0, so the sequence in display

(15) splits. The equality (16) follows from (15). �

Note that, substituting N instead of E into the Beilinson spectral sequence (11)
yields the monad for N :

(20) MN : 0→ OP3(−1)
α−→ V4 ⊗OP3

β−→ OP3(1)→ 0, N = kerβ/imα,
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fitting together with the monad (17) in the commutative diagram

(21) 0

��

V2 ⊗OP3

��

0 // OP3(−1)
α // V6 ⊗OP3

β
//

��

OP3(1) // 0

0 // OP3(−1)
α // V4 ⊗OP3

β
//

��

OP3(1) // 0

0

in which the middle column is obtained from the exact triple 0→ 6→ 0V2 → V6 →
V4 → 0 arising as the cohomology sequence of the exact triple 0 → V2 ⊗ ΩP3 →
E ⊗ ΩP3 → N ⊗ ΩP3 → 0 induced by the triple (15). In addition, from (21) and
(18) we obtain

(22) β =
(
x y z w

)
.

Proposition 5. Let E be a rank 4 instanton bundle E of charge 1 over P3, then
h0(S2E) = 3, h1(S2E) = 5, h2(S2E) = 0.

Proof. Taking the symmetric power of the sequence in display (19), we obtain that
S2E fits into the following short exact sequence:

0 // V2 ⊗OP3(−1)⊕ Ω // (S2V2 ⊗OP3)⊕ (V2 ⊗ Ω(1))⊕ S2Ω(2) // S2E // 0.

From the long exact sequence of cohomology we have

0→ S2V2 → H0(S2E)→ k→ Λ2W∨ → H1(S2E)→ 0,

where W is the 4-dimensional k−vector space such that P3 = P(W ), and

0→ H2(S2E)→ 0.

From which we conclude that H2(S2E) = 0. The map k→ Λ2W∨ is given by the
skew-form corresponding to the morphism OP3(−1) → Ω(1), in the definition of
E, and in particular is non-zero, which implies that k → Λ2W∨ is injective, and
therefore

H0(S2E) ' S2V2 and H1(S2E) ' Λ2W∨/k

from which our result follows. �

In the remaining part of this section we will discuss the existence of a symplectic
structure on an arbitrary rank 4 instanton bundle of charge 1. Recall that a locally
free sheaf E is said to be symplectic if it admits a symplectic structure, that is,
there exists an isomorphism ϕ : E → E∨, such that ϕ∨ = −ϕ. A symplectic
instanton bundle is a pair (E,ϕ) consisting of an instanton bundle E together
with a symplectic structure ϕ on it; two symplectic instanton bundles (E,ϕ) and

(E′, ϕ′) are isomorphic if there exists a bundle isomorphism g : E
∼→ E′ such that

ϕ = g∨ ◦ ϕ′ ◦ g.
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Proposition 6. Any rank 4 instanton bundle E of charge 1 admits a symplectic
structure. In particular, if E splits as E = V2 ⊗ OP3 ⊕ N where N is a null
correlation bundle, then any symplectic structure ϕ on E splits as ϕ = ϕ1 ⊕ ϕ2

where ϕ1 and ϕ2 are symplectic structures on V2 ⊗OP3 and N , respectively.

Proof. Let E be an instanton rank 4 bundle. If E splits as E = V2 ⊗ OP3 ⊕ N ,
where N is a null correlation bundle, then det(V2 ⊗ OP3) = detN = OP3 , hence
both rank 2 bundles V2 ⊗OP3 and N admit symplectic structures, say,

(23) ϕ1 : V2 ⊗OP3
∼−→ (V2 ⊗OP3)∨, ϕ2 : N

∼−→ N∨.

Then

(24) ϕ = ϕ1 ⊕ ϕ2 : E
∼−→ E∨

is a symplectic structure on E. Since

(25) Hom(V2 ⊗OP3 , N) = Hom(N,V2 ⊗OP3) = 0,

it follows immediately that any symplectic stucture on E splits as in (24).
Now let E be a non-splitting instanton, i. e. E/V2 ⊗ OP3 is a null correlation

sheaf Nl which is is not locally free at the points of the line l given by the equations,
say, {x = y = 0}. This means that the morphism α in the monad (20) for N = Nl
is vanishes at l, so that

(26) α = A

(
x

y

)
, A = (αij), 1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

where A is a (4× 2)-matrix of rank 2. The condition that β ◦ α in (20) is the zero
morphism together with (26) and (22) implies that all the coefficients αij of the
matrix A, except α12 and α21, vanish and α12 +α21 = 0. Thus, taking without loss
of generality α12 = 1, we obtain

(27) α =


y
−x
0
0

 .

Since the cohomology sheaf of the middle monad in (21) is locally free, the morphism
α in that diagram is a subbundle morphism. This together with (27) implies, again
without loss of generality, that there exists a (2× 2)-matrix C = (cij) such that

(28) α =


y
−x
0
0

c11x+ c12y + z
c21x+ c22y + w


It now follows from (28) and (18) that the skew symmetric (6× 6)-matrix J of the
following (2× 2)-block form

J =

 Q O −Ct
O O −1
C 1 O

 , where Q =

(
0 −1
1 0

)
,

satisfies the condition α = Jβt. This means that, taking −J for the matrix of the
symplectic form q : V6 → V ∨6 with respect to the above choice of the basis in V6,
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we obtain that α and β as morphisms satisfy the condition β = α∨ ◦ q. In other
words, the monad (17) is symplectic. Then by Corollary 2 its cohomology bundle
E also admits a symplectic structure. �

4. Modified instanton monads

We will now study monads of the following form, with a ≥ 2 and k ≥ 1:

(29) 0→ OP3(−a)⊕ Vk ⊗OP3(−1)
α−→ V2k+4 ⊗OP3

β−→ OP3(a)⊕ Vk ⊗OP3(1)→ 0,

which we call modified instanton monads. The family of isomorphism classes of
bundles arising as cohomology of such monads will be denoted by G(a, k). Note
that, so far, G(a, k) could possibly be empty.

Proposition 7. For each a ≥ 2 and k ≥ 1, the family G(a, k) is non-empty and
contains stable bundles, while every [E ] ∈ G(a, k) is µ-semistable. In addition, every
[E ] ∈ G(a, 1) is stable.

Proof. Let F be an rank 2 instanton bundle of charge k. Let a ≥ 2 and take
σ ∈ H0(F (2a)) such that its zero locus X = (σ)0 := {σ = 0} is a curve; such σ
always exists if F is a ’t Hooft instanton bundle, for instance. Let Y be a complete
intersection curve given by the intersection of two surfaces of degree a such that
X ∩ Y = ∅. According to [16, Lemma 4.8], there exists a bundle E and a section
τ ∈ H0(E(a)) such that (τ)0 = Y ∪X which is given as cohomology of a monad of
the form (29). In addition, since F is stable, X is not contained in any surface of
degree a, hence neither is Y ∪X, and E is also stable.

It is straightforward to check that every [E ] ∈ G(a, k) satisfies h0(E(−1)) = 0,
thus E is µ-semistable.

Now fix k = 1, and assume that there is [E ] ∈ G(a, 1) satisfying h0(E) 6= 0.
Setting K := kerβ, it follows that h0(K) 6= 0, hence the quotient K ′ := K/OP3 fits
into the following exact sequence

0→ K ′ → V5 ⊗OP3
β′−→ OP3(1)⊕OP3(a)→ 0.

By [6, Theorem 2.7] K ′ is µ-stable. However, the monomorphism α : OP3(−a) ⊕
OP3(−1) → K induces a monomorphism OP3(−1) → K ′; by the µ-stability of K ′,
we should have

−1 < µ(K ′) = −a+ 1

3
=⇒ a < 2,

providing the desired contradiction. �

Next, we provide a cohomological characterization for modified instanton bun-
dles.

Proposition 8. A vector bundle E on P3 is the cohomology of a monad of the form
(29) if and only if H1

∗(E) has one generator in degree −a and k generators in degree
−1, and its Chern classes are c1(E) = 0, and c2(E) = a2 + k.

Proof. The “only if” part is straightforward. If E is a self dual vector bundle on
P3 with one generator in degree −a and k generators in degree −1, then by [21,
Theorem 2.3], E is cohomology of a monad of the type:

0→ OP3(−a)⊕ Vk ⊗OP3(−1)
α−→ ⊕2k+4

i=1 OP3(ki)
β−→ OP3(a)⊕ Vk ⊗OP3(1)→ 0.

Computing the Chern class give us c2(E) = a2+k−
∑6
i=1 k

2
i , since c2(E) = a2+k,

we have ki = 0 for all i. �
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The modified instanton bundles are also related to usual instanton bundles of
higher rank in a very important way. The precise relationship is outlined in the
next couple of lemmas, and then summarized in Proposition 12 below.

Lemma 9. (i) Given a vector bundle [E ] ∈ G(a, k), there exists a rank 4 instanton
bundle E of charge k, and sections σ ∈ H0(E(a)), τ ∈ H0(E∨(a)) such that the
complex:

(30) 0→ OP3(−a)
σ−→ E

τ−→ OP3(a)→ 0

is a monad whose cohomology coincides with E.
(ii) The construction of the monad (30) is functorial in the sense that, if E

∼−→ E′,

then the induced isomorphism E
∼−→ E′ extends to an isomorphism of monads

(31) 0 // OP3(−a)
σ //

f'
��

E
τ //

g'
��

OP3(a) //

h'
��

0

0 // OP3(−a)
σ′ // E′

τ ′ // OP3(a) // 0.

Proof. The monad (29) naturally includes into a diagram

(32) OP3(a)
i // Vk ⊗OP3(1)⊕OP3(a) // 0

0 //

OO

V2k+4 ⊗OP3 //

β

OO

0

OO

0 //

OO

Vk ⊗OP3(−1)⊕OP3(−a)
ε //

α

OO

OP3(−a),

OO

where i, resp., ε, is a canonical monomorphism, resp., epimorphism. In the bounded
derived category Db(CohP3) of the category CohP3 of coherent sheaves on P3 this
diagram can be considered as a complex of morphisms

(33) OP3(a)[−1]→ E → OP3(−a)[1],

and the image [E] of the bundle E under the natural inclusion of CohP3 as a full
subcategory in Db(CohP3) is the convolution of this complex:

(34) [E] = Conv
(
OP3(a)[−1]→ E → OP3(−a)[1]

)
.

Note that the complex (33) clearly satisfies the conditions of Lemma 1.5 from [28],
hence by this Lemma the convolution (34) is defined uniquely up to an isomorphism.

On the other hand, we may look at the diagram (32) as a double complex K••

in CohP3, and from the definition of convolution it follows that (34) coincides in
Db(CohP3) with the middle cohomology of the total complex Tot•(K••) of the
double complex K••, i.e.:

(35) [E] =
[
H0
(
Tot•(K••)

)]
.

To obtain the monad (30), define the morphisms

α̃ : Vk ⊗OP3(−1) ↪→ OP3(−a)⊕ (Vk ⊗OP3(−1))
α
↪→ V2k+4 ⊗OP3 ,

where the first morphism is the inclusion, and

β̃ : V2k+4 ⊗OP3

β
� OP3(−a)⊕ (Vk ⊗OP3(−1)) � Vk ⊗OP3(1),
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where the last morphism is the natural projection. Consider also

σ̃ : OP3(−a) ↪→ OP3(−a)⊕ (Vk ⊗OP3(−1))
α
↪→ V2k+4 ⊗OP3 , and

β̃ : V2k+4 ⊗OP3

β
� OP3(−a)⊕ (Vk ⊗OP3(−1)) � OP3(a).

These morphisms give rise to a double complex Ap,q (we put p = q = −1 in the
lower left corner):

(36) 0 // Vk ⊗OP3(1) // 0

OP3(−a)
σ̃ //

OO

V2k+4 ⊗OP3
τ̃ //

β̃

OO

OP3(a)

OO

0 //

OO

Vk ⊗OP3(−1) //

α̃

OO

0

OO

Associated to Ap,q, there is a spectral sequence
′′
Ep,qd , whose first page is

′′
Ep,q1 =:

Hq(A•,p). More precisely,
′′
Ep,q1 = 0 when q 6= 0 and

′′
Ep,11 is the complex

(37) 0→ OP3(−a)
σ→ E

τ→ OP3(a)→ 0,

where σ and τ are the morphisms induced from σ̃ and τ̃ , respectively, and E =
ker β̃/imα̃; note that σ is a monomorphism, while τ is an epimorphism. It follows

that
′′
Ep,qd converges in the second page with

′′
Ep,q2 = 0 when p, q 6= 0 and

′′
E1,1

2 =
ker τ/ imσ. By general theory, ker τ/ imσ coincides with the cohomology of the
total complex associated to the bicomplex Ap,q, which is precisely a monad as in
display (29).

Note also that from (32) it follows easily that H0
(
Tot•(K∗,∗)

)
is isomorphic to

the cohomology sheaf of the middle vertical complex in (36), so that, by (35),

(38) [E] =
[
H0
(
Vk ⊗OP3(−1)

α̃−→ V2k+4 ⊗OP3
β̃−→ Vk ⊗OP3(1)

)]
.

�

Lemma 10. Given a monad

(39) 0→ OP3(−a)
σ−→ E

τ−→ OP3(a)→ 0,

with Ẽ being a rank 4 instanton bundle of charge k, there is a monad of the form
(29) whose cohomology coincides with the cohomology of the above monad.

Proof. Since E is the cohomology of a monad of the form

(40) 0→ Vk ⊗OP3(−1)
α̃−→ V2k+4 ⊗OP3

β̃−→ Vk ⊗OP3(1)→ 0

for some subbundle morphism α̃ and some epimorphism β̃, we have exact triples

0 → Vk ⊗ OP3(−1) → ker(β̃)
δ−→ Ẽ → 0, 0 → ker(β̃)

j−→ Vk ⊗ OP3 → OP3(1) → 0.
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They induce the exact sequences

Hom(OP3(−a), ker(β̃))
δ∗−→ Hom(OP3(−a), E)→ 0,

0→ Hom(OP3(−a), ker(β̃))
j∗−→ Hom(OP3(−a), V2k+4 ⊗OP3),

Hom(V2k+4 ⊗OP3 ,OP3(a))
j∗−→ Hom(ker(β̃),OP3(a))→ 0,

0→ Hom(E,OP3(a))
δ∗−→ Hom(ker(β̃),OP3(a)).

(41)

Take any σ′ ∈ δ−1
∗ (σ) and any τ̃ ∈ (j∗)−1(δ∗(τ)) and set σ̃ = j∗(σ). Consider the

double complex (36) with these morphisms σ̃, τ̃ and the morphisms a, b instead of

α̃, resp., β̃. Proceeding with this complex as in the proof of Lemma (9), we obtain
the monad (37) with the cohomology sheaf E. �

Next, we argue that the instanton bundle E obtained in Lemma 9 comes with a
natural symplectic structure.

Lemma 11. If E is a rank 4 instanton bundle of charge k that fits in a monad
of the form (30), such that the cohomology is a vector bundle, then E admits a
symplectic structure, and τ is determined by σ.

Proof. Since E is a rank 2 vector bundle with c1(E) = 0, there is a (unique up

to scaling) symplectic isomorphism ϕ : E
'−→ E∨. By Corollary 2, there is an

isomorphism of monads:

0 // OP3(−a)
σ //

g'
��

E
τ //

ϕ'
��

OP3(a) //

h'
��

0

0 // OP3(−a)
τ∨ // E∨

σ∨ // OP3(a) // 0

such that ϕ∨ = −ϕ, so (E,ϕ) is a symplectic instanton bundle, and τ = σ∨ ◦ϕ. �

Putting Lemmas 9, 10 and 11 together, we obtain the following statement.

Proposition 12. A rank 2 bundle E belongs to G(a, k), i.e., E is the cohomology of
a monad of the form (29) if and only if it is also the cohomology E = H0(AE,ϕ,σ)
of a monad of the form:

(42) AE,ϕ,σ : 0→ OP3(−a)
σ−→ E

σ∨◦ϕ−−−→ OP3(a)→ 0,

where (E,ϕ) is a rank 4 symplectic instanton bundle of charge k.

5. Set G(a, 1) and related families of sheaves

We introduce a piece of notation which we will use below. Denote by I(k)
the set of isomorphism classes of symplectic rank 4 instanton bundles with c2 =
k. as before, let Vk and V2k+4 be the fixed vector spaces of dimensions k and
2k + 4, respectively, and let (∧2V ∨2k+4)0 be an open subset of the vector space

∧2V ∨2k+4 consisting of nondegenerate symplectic forms on V2k+4. Next, for a given
morphism α̃ : Vk⊗OP3(−1)→ V2k+4⊗OP3) we denote by a the homomorphism Vk⊗
U4 → V2k+4 corresponding to the morphism α̃ under the isomorphism Hom(Vk ⊗
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OP3(−1), V2k+4 ⊗ OP3) ∼= W := Hom(Vk ⊗ U4, V2k+4), where U4 := H0(OP3(1))∨.
We will call α̃ the morphism associated to a ∈W .

Recall the description of symplectic rank 4 instantons (E,ϕ) in terms of sym-
plectic monads (43) below. Namely, for a given point

m = (a, q) ∈W × (∧2V ∨2k+4)0

consider the monad (40) in which α̃ the morphism associated to the homomorphism

a, and the morphism β̃ is such that β̃ = α̃t(q), where α̃t(q) is the composition

V2k+4 ⊗OP3

q⊗idOP3−−−−−→ V ∨2k+4 ⊗OP3
α̃∨−−→ V ∨k ⊗OP3(1):

(43) Am : 0→ Vk ⊗OP3(−1)
α̃−→ V2k+4 ⊗OP3

α̃t(q)−−−→ V ∨k ⊗OP3(1)→ 0.

We call Am a symplectic monad. We also will denote by H0(Am) the cohomology
bundle of the monad Am.

Consider the set M(k) of symplectic monads (43):

(44) M(k) = {(a, q) ∈W × (∧2V ∨2k+4)0 | (a, q) satisfies the conditions (i)-(ii)}

where:
(i) the morphism α̃ associated to a is a subbundle morphism,
(ii) the composition α̃t(q) ◦ α̃ is the zero morphism.
Since W is a vector space, and the condition (i), resp., (ii) is an open, resp., closed
condition on the point a ∈ W , it follows that M(k) has a natural structure of a
locally closed subscheme of the affine space W × ∧2V ∨2k+4. In the sequel we will
assume that this scheme structure is reduced.

From now on we will restrict to the case k = 1. Set M̃ := M(1). Note that
the condition (i) of the definition of M(k) is empty in the case k = 1, since in
this case the the vanishig of ∧2(V ∨1 ⊗OP3(1)) clearly implies αt(q) ◦ α = 0. Hence,

M̃ is a nonempty open (hence dense) subset of the affine space W × ∧2V ∨6 , where

W = Hom(V1 ⊗ U4, V6) ' k24. In particular, M̃ is irreducible and

(45) dim M̃ = dimW + dim∧2V ∨6 = 45.

Proposition 13. Any rank 4 instanton of charge 1 appears as a cohomology bundle
of a symplectic monad

(46) Am : 0→ OP3(−1)
α̃−→ V6 ⊗OP3

α̃t(q)−−−→ OP3(1)→ 0.

from M̃ .

Proof. Let E be a rank 4 instanton of charge 1. According to Proposition (6), E

admits a symplectic structure ϕ : E
∼−→ E∨. It then known from [7, Section 3]

that, under the condition h0(E) = h1(−2) = 0 on a symplectic bundle E, this

bundle is a cohomology of a symplectic monad from M̃ . However, the proof given
therein, works without changes under the slightly weaker conditions (10) used in
the Definition 3. �

On M̃ = P3 × M̃ there is the universal symplectic monad

(47) A
M̃

: 0→ O
M̃

(−1, 0)
α−→ V6 ⊗OM̃

αt

−−→ O
M̃

(1, 0)→ 0
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with the cohomology sheaf

(48) Ẽ = kerαt/imα

Here αt = α∨ ◦ q
M̃

and

q
M̃

: V6 ⊗OM̃

∼−→ V ∨6 ⊗OM̃

is the tautological symplectic structure on V6 ⊗ OM̃
. From now on we fix an

isomorphism of the monad A
M̃

with its dual monad A∨
M̃

by the following diagram:

A
M̃

: 0 // O
M̃

(−1, 0)
α //

−id '
��

V6 ⊗OM̃

αt
//

q
M̃ '
��

O
M̃

(1, 0) //

id '
��

0

A∨
M̃

: 0 // O
M̃

(−1, 0)
(αt)∨

// V ∨6 ⊗OM̃

α∨ // O
M̃

(1, 0) // 0

This isomorphism induces the symplectic structure

(49) ϕ
M̃

: Ẽ
'−→ Ẽ∨,

so that, for any m ∈ M̃ ,

(50) Em = Ẽ|P3×{m}, ϕm = ϕ
M̃
|P3×{m} : Em

∼−→ E∨m,

is a symplectic rank 4 instanton on P3. Note that, by the universality of the space

M̃ , for any given symplectic rank 4 instanton (E,ϕ), there exists a unique point

m ∈ M̃ such that (E,ϕ) = (Em, ϕm), where Em and ϕm are given by (50).

Let p
M̃

: M̃ → M̃ be the projection. It follows from (16) and the Base Change
that the O

M̃
-sheaf

(51) Ũ := p
M̃∗Ẽ

is a rank 2 locally free sheaf and there is an exact triple on M̃:

(52) 0→ Ũ
M̃

ev−→ Ẽ→ Ñ→ 0, Ñ := coker(ev),

and, for any m ∈ M̃ , the restriction of this triple onto P3×{m} coincides with the
triple (15) for E = Em. We thus have a map

(53) Ψ : M̃ → P5 = P(∧2V ∨4 ), m 7→ [Ñ|P3×{m}].

The map Ψ has the following explicit description. Given a point m = (a, q) ∈ M̃ ,

consider a homomorphism f(a, q) : V4
a−→ V6

q−→ V ∨6
a∨−−→ V ∨4 . It is clearly skew-

symmetric: f(a, q) ∈ ∧2V ∨4 . An easy diagram chasing with the display of the
monad A

M̃
|P3×{m} (i. e., equivalently, of the monad (46)) using (52) shows that

(54) Ψ(m) = kf(a, q) ∈ P(∧2V ∨4 ),

so that Ψ is a well-defined morphism. By the universality of the monad A
M̃

, Ψ is
surjective.

We next consider the set

(55) M := {m ∈ M̃ | Ñ|P3×{m} is locally free}.

From the definition om M it follows that it is a nonempty open subset of M̃ , hence

it is irreducible, since M̃ is irreducible. Denote

(56) E := ẼM, ϕM := ϕ
M̃
|M : E

'−→ E∨,
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where ϕ
M̃

is the symplectic structure defined in (49),

(57) U := ŨM , N := ÑM.

Note that, by Lemma 4, for any m ∈ M , the triple (52) restricted onto P3 × {m}
splits:

(58) Em = O⊕2
P3 ⊕Nm,

where Nm is a null correlation bundle. Moreover, in view of (25) and the Base
Change, these splittings for all m ∈M yield the global splitting

(59) E = UM ⊕N.

Now, for a ≥ 2 and any m ∈M , the triple (15) twisted by OP3(a), in which we set
E = Em, yields:

(60) h0(Em(a)) = 4

(
a+ 3

3

)
− a− 2, hi(Em(a)) = 0, i > 0.

Formulas (50), (60) and the Base Change show that the sheaf

(61) F = pM∗(E(a, 0))

is a locally free OM -sheaf of rank r = h0(Em(a)). Consider the scheme

(62) T = P(F∨)

By the above, T is set-theoretically described as

(63) T = {(m,kσ) | m ∈M, 0 6= σ ∈ H0(Em(a))},
and the natural projection ρ : T → M, (m,kσ) 7→ m is a locally trivial Pr−1-
bundle. Note that, since M is an open subset of the affine space W , it follows that
T is an irreducible variety, and from (45) and (60) we have

(64) dimT = h0(Em(a))− 1 + dimM = 4

(
a+ 3

3

)
− a+ 42.

On T and M = P3 ×M we have canonical morphisms F∨T
ev
� L and FM

can−−→
E(a, 0), respectively, where L = OP(F∨)(1) is the Grothendieck sheaf. Consider the
composition of morphisms

(65) σ : OP3 � L∨
ev∨T−−→ FT

canT−−−→ ET(a, 0).

By definition, for any point (m,kσ) ∈ T the restriction σ|P3×{(m,kσ)} coincides, up
to a twist by OP3(−a), with the morphism σ : OP3(−a)→ Em. In view of (58) we
may represent σ as

σ = (σ1, σ2), σ1 ∈ H0(O⊕2
P3 (a)), σ2 ∈ H0(Nm(a)).

For the pair σ = (σ1, σ2) 6= (0, 0) we will adopt in the sequel, together with the
notation kσ for the set {(λσ1, λσ2)|λ ∈ k×}, the equivalent notation:

(66) [σ1 : σ2] := {(λσ1, λσ2)|λ ∈ k×},

and also understand [σ1 : σ2] as a point of the projective space P(H0(O⊕2
P3 (a)) ⊕

H0(Nm(a))). Under this notation, define an open subset S of T as

S := {(m, [σ1 : σ2]) ∈ T | (i) σ = (σ1, σ2) : OP3(−a)→ Em

is a subbundle morphism and (ii) σ1 6= 0, σ2 6= 0.}.
(67)
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The subset S is clearly open in T . Moreover, it is nonempty. Indeed, for any point
m ∈ M , Em decomposes as in (58). Take any a ≥ 2. Since the direct summand
Nm is a null correlation bundle, it follows quickly from the triple (13) for N = Nm,
twisted by OP3(a), that Nm(a) is generated by global sections. From this it follows
easily (cf. [14, Proof of Prop. 1.4]) that a general section σ1 ∈ H0(Nm(a)) has
1-dimensional zero-locus Z(σ1). Next, since a general section σ2 ∈ H0(O⊕2

P3 (a)) has
for its zero locus a complete intersection curve Z(σ2) = D1∩D2 for two surfaces D1,
D2 of degree a, it follows that for general D1 and D2 we have Z(σ1) ∩ Z(σ2) = ∅.
Hence, the section σ = (σ1, σ2) ∈ H0(Em(a)) has no seroes and therefore defines a
subbundle morphism σ : OP3(−a)→ Em.

It follows that S is irreducible and dense in T since T is irreducible. The mor-
phism σS is included in the monad A := (A

M̃
)S on S:

(68) A : 0→ OP3(−a) � L∨
σS−−→ ES

σt
S−−→ OP3(a) � L→ 0

where σtS is the composition ES
ϕS−−→ E∨S

σ∨S−−→ OP3(a) � L. By construction, for
any point (m,kσ) ∈ S, the restriction of the monad A onto P3 × {(m,kσ)} is
isomorphic to the monad AEm,ϕm,σ in (42). Hence,

(69) H0(A)P3×{(m,kσ)} = H0(AEm,ϕm,σ), (m,kσ) ∈ S.

In (73)-(80) below we will extend the constructions (61)-(63), (67)-(69) of the
data F , T , S, A and H0A) over M to the constructions of the corresponding data

F̃ , T̃ , S̃, Ã and H0(Ã) over M̃ . As a consequence, it will follow that:

(70) F = F̃M, T = M ×
M̃
T̃ ,

(71) S
� � open dense

// S̃,

(72) A = (Ã)S, H0(A) = (H0(Ã))S.

For this, we first remark that formulas (60) are still true for any m ∈ M̃ , so that
the sheaf

(73) F̃ := p
M̃∗(Ẽ(a, 0))

is a locally free O
M̃

-sheaf of rank r = h0(Em(a)) given by (60), and the scheme

(74) T̃ := P(F̃∨).

is set-theoretically described as

(75) T̃ = {(m,kσ) | m ∈ M̃, 0 6= σ ∈ H0(Em(a))}.

The natural projection ρ̃ : T̃ → M̃, (m,kσ) 7→ m is a locally trivial Pr−1-bundle,

so that, since M̃ is an open subset of the vector space W , it follows that T̃ is an
irreducible variety of dimension

(76) dim T̃ = h0(Em(a))− 1 + dim M̃ = 4

(
a+ 3

3

)
− a+ 42.

Next, we have an open subset S̃ of T̃ defined as

(77) S̃ := {(m,kσ) ∈ T̃ | σ : OP3(−a)→ Em is a subbundle morphism.}
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Since the condition (ii) in (67) is open, comparing (67) and (77) we obtain that S is

an open subset of T ∩ S̃, where the intersection is taken in T̃ . Since S is nonempty

and T̃ is irreducible, (71) follows and, moreover,

(78) ρ̃S = ρ.

Next, we have the extension of the universal monad (68) from S to S̃:

(79) Ã : 0→ OP3(−a) � L∨
σ−→ ẼS̃

σt

−→ OP3(a) � L→ 0,

satisfying the relation similar to (69):

(80) H0(Ã)|P3×{(m,kσ)} = H0(AEm,ϕm,σ), (m,kσ) ∈ S̃.
Clearly, the relations (70) follow from (56), (73)-(75) and the Base Change; respec-
tively, the relations (72) follow from (79)-(80).

Now (71), (80), and Proposition 12 together with the irreducibility of S̃ yield

Proposition 14. (i) For a ≥ 2, the set G(a, 1) of isomorphism classes of cohomol-
ogy sheaves of monads (29) for k = 1 is the image of the modular morphism

ΦS̃ : S̃ → B(a2 + 1), (m,kσ) 7→ [H0(Ã)|P3×{(m,kσ)}],

defined by the family H0(Ã) of sheaves over S̃. Its closure G(a, 1) in B(a2 + 1) is
an irreducible variety.
(ii) The set G(a, 1)0 := ΦS(S) is dense in G(a, 1).

In the remaining part of this section we will construct a new family of monads
AY on P3, with base Y and cohomology sheaves belonging to G(a, 1), for which the
related modular morphism

ΦY : Y → B(a2 + 1), y 7→ [H0(AY )|P3×{y}]

has G(a, 1)0 as its image (see Proposition 15 below). This family will be used in
the next Section to prove one of the main results of the paper - the rationality of
G(a, 1).

To construct the variety Y , consider the moduli space of B := B(1) of locally free
null correlation bundles on P3. This is well known to be isomorphic to P5rG(2, 4),
where G(2, 4) is the Plücker hyperquadric (see, e.g., [27, Thm. 4.3.4]). Moreover,
on B = P3×B there is the universal family N of null correlation bundles. Consider
the vector bundle

(81) E = V2 ⊗OB ⊕N .

and denote

(82) Eb = E|P3×{b}, Nb = N |P3×{b}, b ∈ B,
so that

(83) Eb = V2 ⊗OP3 ⊕Nb, b ∈ B.
Next, consider the varieties

B1 = V(∧2(V2 ⊗OB)) r {0− section} → B,

B2 = V(pB∗(∧2N )) r {0− section} → B.

Over these varieties there are tautological symplectic structures

(84) ϕB1
: V2 ⊗OB1

'−→ (V2 ⊗OB1
)∨, ϕB2

: NB2

'−→N∨B2
.
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Consider the variety

(85) B̃ := B1 ×B B2

with natural projections ζ̃i : B̃ → Bi, i = 1, 2, and ζ : B̃ → B. The symplectic
structures (23) induce on the vector bundle

(86) EB̃ = V2 ⊗OB̃ ⊕N B̃

the symplectic structure

(87) ϕB̃ = ϕ1 ⊕ϕ2 : EB̃ → E∨
B̃
,

where

ϕ1 := (ϕB1)B̃ : V2 ⊗OB̃

'−→ (V2 ⊗OB̃)∨, ϕ2 := (ϕB2)B̃ : N B̃

'−→N∨
B̃
.

Under the notation (82), we thus have the following description of the varieties B1,

B2 and B̃:

B1 = {(b, ϕ1) | b ∈ B, V2 ⊗OP3
ϕ1−→
'

(V2 ⊗OP3)∨ is a symplectic structure},

B2 = {(b, ϕ2) | b ∈ B, Nb
ϕ2−→
'

N∨b is a symplectic structure},

B̃ = {(b, ϕ1, ϕ2) | (b, ϕi) ∈ Bi, i = 1, 2}.

(88)

The following constructions (see (89)-(100)) are parallel to the constructions (61)-
(68). Twisting the equality (83) by OP3(a), we obtain as in (60): h0(Eb(a)) =
4
(
a+3

3

)
− a− 2, hi(Eb(a)) = 0, i > 0. Thus, as in (61), the sheaf

(89) FB = pB∗(E(a, 0))

is a locally free OB-sheaf of rank r = h0(Eb(a)). Consider the variety

(90) T := P(F∨B ).

Similarly to (63) we have

(91) T = {(b,kσ) | b ∈ B, 0 6= σ ∈ H0(Eb(a))},
For any point (b,kσ) ∈ T in view of (83) we may represent σ as a pair σ =
(σ1, σ2), σ1 ∈ H0(V2⊗OP3(a)), σ2 ∈ H0(Nb(a)), Thus, using the notation (66) we
can rewrite (91) as

(92) T = {(b, [σ1 : σ2]) | b ∈ B, [σ1 : σ2] ∈ P(H0(Eb(a)))},
On the other hand, representing σ as a morphism σ : OP3(−a) → Eb, we see
that, when (b,kσ) runs through T , the morphisms σ, as in (65), globalize to the
morphism on T :

(93) σT : OP3(−a) � L∨T → ET ,

where LT is the Grothendieck sheaf OT /B(1).
Next, similar to (67), we define an open subset S of T as

S := {(b, [σ1 : σ2]) ∈ T | (i) (σ1, σ2) : OP3(−a)→ Em

is a subbundle morphism and (ii) σ1 6= 0, σ2 6= 0.}.
(94)

Note that S is a nonempty set. (The proof mimics that of nonemptiness of the
subset M of T given in paragraph after (67).)

By the Base Change, the sheaf

(95) FB̃ = pB̃∗(EB̃(a, 0))
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is isomorphic to the sheaf (FB)B̃ . Thus the variety Ỹ := P(F∨
B̃

) is isomorphic to

B̃ ×B T :

(96) Ỹ = B̃ ×B T .
Thus by (88) and (91) we have

(97) Ỹ = {(b, ϕ1, ϕ2, [σ1 : σ2]) | (b, ϕ1, ϕ2) ∈ B̃, [σ1 : σ2] ∈ P(H0(Eb(a)))},

and the natural projection Ỹ → B̃, (β,kσ) 7→ β is a locally trivial Pr−1-bundle.

We now use (96) and the open subset S of T to define an open subset Y of Ỹ as

(98) Y := B̃ ×B S.

Here Y is a nonempty open in Ỹ since S is nonempty. It follows that Y is irreducible

and dense in Ỹ since Ỹ is irreducible. In addition, using (94) and (97), we obtain
the description of Y as:

Y = {(b, ϕ1, ϕ2, [σ1 : σ2]) ∈ Ỹ | (i) (σ1, σ2) : OP3(−a)→ Em

is a subbundle morphism and (ii) σ1 6= 0, σ2 6= 0.}.
(99)

The morphism σY := (σT )Y is included in the universal monad on Y:

(100) AY : 0→ OP3(−a) � L∨Y
σY−−→ EY

σt
Y−−→ OP3(a) � LY → 0,

where LY = (LT )Y and σtY is the composition EY
ϕY−−→ E∨Y

σ∨Y−−→ OP3(a) � LY .
By construction, for any point (β,kσ) ∈ Y , β = (b, ϕ1, ϕ2), the restriction of the
monad AY onto P3 × {(β,kσ)} is isomorphic to the monad AEb,ϕ1⊕ϕ2,σ in (42).
Hence,

(101) H0(AY )|P3×{(β,kσ)} = H0(AEb,ϕ1⊕ϕ2,σ), (β,kσ) ∈ Y, β = (b, ϕ1, ϕ2).

Now consider the rank 2 the vector bundle U on M defined in (51)and (57) and
its associated principal frame bundle

(102) I := Isom(V2 ⊗OM ,U)
ξ−→M

together with the tautological isomorphism on I

(103) V2 ⊗OI
∼−→ UI .

Consider the sheaves EI and NI. Applying to (59) the functor ξ∗ and using
(103) we obtain the isomorphism

(104) EI
∼= V2 ⊗OI ⊕NI.

Besides, by (56), we have a symplectic structure on EI:

(105) ϕI := (ϕM)I : EI
'−→ E∨I .

This symplectic structure in view of (104) splits into a direct sum of two symplectic
structures

ϕI = ϕI,1 ⊕ϕI,2,

ϕI,1 : V2 ⊗OI
'−→ (V2 ⊗OI)

∨, ϕI,2 : NI
'−→ N∨I .

(106)

Remark that, by the definition of the morphism Ψ given in (53) and (54), we have
Ψ(M) = B. Now, comparing (86)-(88) with (104)-(106), we obtain a morphism

(107) Γ : I → B̃, x 7→ (b, ϕ1, ϕ2), b = Ψ(ξ(x)), ϕi = ϕI,i|P3×{x}, i = 1, 2,
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such that

(108) EI
∼= (EB̃)I, ϕI

∼= (ϕ widetildeB)I,

and these isomorphisms are compatible with the direct sum decompositions (104),
(106) and (86), (87). From (107) and the surjectivity of Ψ it follows that Γ is also
surjective.

Set

(109) X := I ×M S, Y
ΓY←−− X ξS−→ S, FI := pI∗(EI(a, 0)).

From (61), (89), (108) and the Base Change we obtain

FI ∼= (FB̃)I ,

so that, in view of (96) and (62), the variety X̃ := P(F∨X ) satisfies the relations

(110) I ×M T = X̃ = I ×B̃ Ỹ .
The definition of X (see (109)) and the first relation (110) imply that there exists

an open embedding X ↪→ X̃ such that X = X̃ ×T S. Therefore, comparing the
descriptions (99) and (67) of Y and S and using the second relation (110), we
obtain:

(111) X = I ×B̃ Y.
This together with (108) implies that

(112) EX = (EY)X.

Moreover, since X = I ×M S, we have

(113) AX = (AY)X,

where the monads A and AY were defined in (68) and (100), respectively.
Consider the modular morphisms

(114) ΦX : X → B(a2 + 1), ΦY : Y → B(a2 + 1),

(115) ΦS : S → B(a2 + 1), ΦS̃ : S̃ → B(a2 + 1),

defined by the (families of) sheavesH0(AX),H0(AY),H0(A),H0(Ã), respectively.
From (113), (111) and (109) it follows that ΦX factors through ΓY and through
ξX :

(116) ΦX = ΦY ◦ ΓY = ΦS ◦ ξS .
Here ξS is surjective by the surjectivity of ξ, and ΓY is surjective as Γ is surjective.
Hence,

(117) G(a, 1)0 = ΦS(S) = ΦY (Y ).

On the other hand, in view of (71), G(a, 1)0 is dense in G(a, 1) = ΦS̃(S̃), hence also

dense in G(a, 1). We thus obtain

Proposition 15. Let ΦY : Y → B(a2 + 1) be the modular morphism defined by the
family of sheaves H0(AY), where AY is the monad (100). Then G(a, 1)0 = ΦY (Y )

is dense in G(a, 1).
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6. Series of irreducible rational components of the moduli spaces
B(a2 + 1)

Consider the variety Y defined in (98). We first will relate to Y a new variety
Pa, together with a natural projection

π : Y → Pa.
The morphism π will be later related to the modular morphism ΦY : Y → B(a2 +1)
(for the precise formulation see Theorem 18).

For this, take any point y ∈ Y . According to (99), y is a collection of data

y = (b, ϕ1, ϕ2, [σ1 : σ2]),

where
(i) b ∈ B,

(ii) ϕ1 : V2⊗OP3
'−→ (V2⊗OP3)∨ and ϕ2 : Nb

'−→ N∨b are symplectic isomorphisms:

(118) ϕ1 ∈ H0(∧2(V2 ⊗OP3)∨) r {0} = ∧2V ∨2 r {0} ∼= k×,

(119) ϕ2 ∈ H0(∧2N∨b ) r {0} = H0(OP3) r {0} ∼= k×,

(iii)

(120) 0 6= σ1 ∈ H0(V2 ⊗OP3(a)) = Hom(V ∨2 ,Wa), Wa := H0(OP3(a)),

(121) 0 6= σ2 ∈ H0(Nb(a)),

(iv) σ = (σ1, σ2) considered as a morphism σ : OP3(−a) → V2 ⊗ OP3 ⊕ Nb is a
subbundle morphism.

In Hom(V ∨2 ,Wa) consider an open subset

Homin(V ∨2 ,Wa) = {σ1 ∈ Hom(V ∨2 ,Wa) | σ1 : V ∨2 →Wa is a monomorphism}.
One can easily see (use the argument in paragraph after (67)) that

(122) Homin(V ∨2 ,Wa) = {σ1 ∈ Hom(V ∨2 ,Wa) | dimZ(σ1) = 1},
where by Z(σ1) we denote, as before, the zero-locus of the section σ1 ∈ H0(V2 ⊗
OP3(a)). Besides, note that the group GL(V2) naturally acts on Homin(V ∨2 ,Wa)
via its action on V ∨2 , and we have an isomorphism

(123) Homin(V ∨2 ,Wa)/GL(V2)
'−→ Gr(2,Wa)

and the factorization morphism

(124) τ1 : Homin(V ∨2 ,Wa)→ Gr(2,Wa), σ1 7→ im(σ1 : V ∨2 ↪→Wa).

Next, as it was mentioned in Section 5 (see paragraph after (67)), the set

H0(Nb(a))∗ := {σ2 ∈ H0(Nb(a)) | dimZ(σ2) = 1}
is open dense in H0(Nb(a)). Besides, it is clearly invariant under the action of the
group

(125) Aut(Nb(a)) = k×.

(Recall that the null correlation bundle Nb is stable and therefore simple, i.e.,
End(Nb) = k.) Hence,

(126) P(H0(Nb(a)))∗ := H0(Nb(a))∗/Aut(Nb(a))
open
↪→ P(H0(Nb(a))) ' Pr,
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where r = 2
(
a+3

3

)
− a− 3, and we have the factorization morphism

(127) τ2 : H0(Nb(a))∗ → P(H0(Nb(a)))∗, σ2 7→ kσ2.

Now the condition (iv) imposed on (σ1, σ2) can be rewritten in the form:

(σ1, σ2) ∈ Hb,a := {(σ1, σ2) ∈ Homin(V ∨2 ,Wa)×H0(Nb(a))∗ |
Z(σ1) ∩ Z(σ2) = ∅}.

(128)

Clearly, Hb,a is a dense open subset of Homin(V ∨2 ,Wa)×H0(Nb(a))∗. This subset
is invariant under the action of the group k× by homotheties and, denoting

P(Hb,a) := Hb,a/k
×,

and using (124) and (127), we obtain the factorization morphism

(129) τ : P(Hb,a)→ Gr(2,Wa)× P(H0(Nb(a)))∗, [σ1 : σ2] 7→ (τ1(σ1), τ2(σ2)).

To globalize the above pointwise (for b ∈ B) constructions over B, let K =
pB∗(N (a, 0)). The variety P(K∨) has the description P(K∨) = {(b,kσ2) | b ∈
B, kσ2 ∈ P(H0(Nb(a)))}. Consider its dense open subset

Πa := {(b,kσ2) ∈ P(K∨) | kσ2 ∈ P(H0(Nb(a)))∗}

and set

(130) Ga := Gr(2,Wa)×Πa, Ga = {(b, V,kσ2) | V ∈ Gr(2,Wa), (b,kσ2) ∈ Πa}.

By construction, Ga is a rational variety.
Next, remark that, comparing the definitions (94) (128) of S and Hb,a, we obtain

S = {(b, [σ1 : σ2]) | b ∈ B, [σ1 : σ2] ∈ P(Hb,a)}.

Thus, by (129), we have a well-defined morphism

(131) τ : S → Ga, (b, [σ1 : σ2]) 7→ (b, τ1(σ1), τ2(σ2)).

Consider the group G̃ = GL(V2) × k×, its normal subgroup G′ = {(ρidV2 , ρ) | ρ ∈
k×}, and let

(132) G = G̃/G′

be the factor group. We will use the following notation for elements of G:

[g1 : λ] := (g1, λ)H = {(ρg1, ρλ) | ρ ∈ k×}, (g1, λ) ∈ G̃.

The group G naturally acts on S as:

(133) aS : S ×G→ S, ((b, [σ1 : σ2]), [g1 : λ]) 7→ (b, [g1 ◦ σ1 : λσ2]),

and formulas (123)-(131) show that

(134) Ga = S/G

and the morphism

(135) τ : S → Ga
in (131) is the quotient morphism for this action and it is a principal G-bundle and
therefore in view of (60) we have:

(136) dimGa = dimP(Hb,a) + dimB − dimG = 4

(
a+ 3

3

)
− a− 2.
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The principal G-bundle S τ−→ Ga by construction is locally trivial, hence there exists

a local section U
s
↪→ S of the projection τ : S → Ga:

(137) S

τ

��

U
. �

s

>>

� � open
// Ga.

Here U is rational since Ga is rational as it was mentioned above.

Now consider the variety P(∧2(V2 ⊗OP3×B)⊕ ∧2N ) together with the embed-
dings P(∧2(V2 ⊗OB)) ↪→ P(∧2(V2 ⊗OB)⊕ ∧2N )←↩ P(∧2N ) and denote

PB̃ := P(∧2(V2 ⊗OB)⊕ ∧2N ) r {P(∧2(V2 ⊗OB)) tP(∧2N )}

By construction, the natural projection PB̃ → B is a locally trivial fibration with
fiber

(138) F ' P1 r {2 points}.

Using the description (88) of the varieties B1, B2 and the notation (66) in which
we put ϕ1, ϕ2 in place of σ1, σ2, we obtain

(139) PB̃ = {(b, [ϕ1 : ϕ2]) | (b, ϕi) ∈ Bi, i = 1, 2}.

Remark that the group k× naturally acts on B̃ as

(140) B̃ × k× → B̃, ((b, ϕ1, ϕ2), λ) 7→ (b, λϕ1, λϕ2),

(here we use the description (88) of B̃), so that

(141) PB̃ = B̃/k×,

and we have the factorization morphism

(142) πB̃ : B̃ → PB̃, (b, ϕ1, ϕ2) 7→ (b, [ϕ1 : ϕ2]).

Consider the varieties
(143)

PY := PB̃ ×B S = {(b, [ϕ1 : ϕ2], [σ1 : σ2]) | (b, [ϕ1 : ϕ2]) ∈ PB̃, (b, [σ1 : σ2]) ∈ S},

and
(144)

Pa := PB̃ ×B Ga = {(b, [ϕ1 : ϕ2], V,kσ2) | (b, [ϕ1 : ϕ2]) ∈ PB̃, (b, V,kσ2) ∈ Ga},

where Ga was defined in (130). From (136) and (138) we have

(145) dimPa = dimGa + dim F = 4

(
a+ 3

3

)
− a− 1.

Note that the local triviality of the fibration PB → B yields that the natural
projection

(146) prY : PY → S

is a locally trivial fibration with fiber F given in(138).
The morphism πB̃ in (142) induces the morphism

(147) πY : Y → PY, (b, ϕ1, ϕ2, [σ1 : σ2]) 7→ (b, [ϕ1 : ϕ2], [σ1 : σ2]),
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and from (140)-(142) it follows that πY is a factorization morphism of the following
k×-action on Y :

(148) aY : Y × k× → Y, ((b, ϕ1, ϕ2, [σ1 : σ2]), λ) 7→ (b, λϕ1, λϕ2, [σ1 : σ2]).

Respectively, the morphism τ : Ya → Ga defined in (131) induces a morphism

(149) τY : PY → Pa, (b, [ϕ1 : ϕ2], [σ1 : σ2]) 7→ (b, [ϕ1 : ϕ2], τ1(σ1), τ2(σ2)).

We now define the morphism π : Y → Pa as the composition

(150) π = τY ◦πY : Y → Pa, (b, ϕ1, ϕ2, [σ1 : σ2]) 7→ (b, [ϕ1 : ϕ2], τ1(σ1), τ2(σ2)).

We will now proceed to the study of the fibers of the morphism π.

Definition 16. Introduce on Y the following equivalence relation:

(151) y = (b, ϕ1, ϕ2, [σ1 : σ2]) ∼ (b̃, ϕ̃1, ϕ̃2, [σ̃1 : σ̃2]) = ỹ

if there exists an isomorphism of symplectic monads

Ay : 0→ OP3(−a)
(σ1,σ2)−−−−→ V2 ⊗OP3 ⊕Nb

(σ∨1 ◦ϕ1,σ
∨
2 ◦ϕ2)−−−−−−−−−−→ OP3(a)→ 0

and

Aỹ : 0→ OP3(−a)
(σ̃1,σ̃2)−−−−→ V2 ⊗OP3 ⊕Nb̃

(σ̃∨1 ◦ϕ̃1,σ̃
∨
2 ◦ϕ̃2)−−−−−−−−−−→ OP3(a)→ 0,

i. e., a commutative diagram with vertical isomorphisms

(152) Ay : 0 // OP3(−a)
(σ1,σ2)

//

h− '
��

V2 ⊗OP3 ⊕Nb
(σ∨1 ◦ϕ1,σ

∨
2 ◦ϕ2)

//

(g1,g2) '
��

OP3(a) //

h+ '
��

0

Aỹ : 0 // OP3(−a)
(σ̃1,σ̃2)

// V2 ⊗OP3 ⊕Nb̃
(σ̃∨1 ◦ϕ̃1,σ̃

∨
2 ◦ϕ̃2)

// OP3(a) // 0.

We denote by

(153) [y] = [b, ϕ1, ϕ2, [σ1 : σ2]]

the equivalence class of a point y = (b, ϕ1, ϕ2, [σ1 : σ2]) ∈ Y under the equivalence
relation (151).

Note that, in diagram (152),

(154) g1 ∈ Isom(V2 ⊗OP3 , V2 ⊗OP3) ∼= GL(V2);

and g2 ∈ Isom(Nb, Nb̃) which in view of the stability of Nb implies that

(155) b = b̃, g2 = λ · idNb
, λ ∈ k×;

besides, the isomorphisms h−, h+ are multiplications by some constants µ, ν ∈ k×,
respectively:

(156) h− = µ · idOP3 (−a), h+ = ν · idOP3 (a).

Furthermore, in view of (118) and (118) we have

(157) ϕ̃1 = λ1ϕ1, ϕ̃2 = λ2ϕ2, λ1, λ2 ∈ k×,

and, in view of the symplecticity of ϕ1, ϕ2, we obtain using (154) and (155):

(158) g∨1 ◦ ϕ1 ◦ g1 = det(g1)ϕ1, g∨2 ◦ ϕ2 ◦ g2 = λ2ϕ2.

The leftmost square of diagram (152) together with (156) yields:

(159) σ̃1 =
1

µ
g1 ◦ σ1, σ̃2 =

λ

µ
σ2,
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Respectively, the rightmost square of diagram (152) yields

νσ∨1 ◦ ϕ1 = σ̃∨1 ◦ ϕ̃1 ◦ g1, νσ∨2 ◦ ϕ2 = λσ̃∨2 ◦ ϕ̃2.

Substituting here (156)-(159) we obtain the relations

ν =
λ1 det(g1)

µ
and ν =

λ2λ
2

µ
,

respectively. Whence

(160) λ1 det(g1) = λ2λ
2.

This relation shows that the G-action (133) on S lifts to the following G-action on
PY :

aPY : PY ×G→ PY,

((b, [ϕ1 : ϕ2], [σ1 : σ2]), [g1 : λ]) 7→ (b, [
ϕ1

det(g1)
:
ϕ2

λ2
], [g1 ◦ σ1 : λσ2]).

(161)

(162) Pa = PY/G

and the morphism

(163) τY : PY → Pa
in (149) is the quotient morphism for this action and it is a locally trivial principal
G-bundle. We thus have a commutative diagram

PY τY //

prY

��

Pa
prG

��

S τ // Ga,

where prG is a natural projection. Since by (146) the morphism prY : PY → S
is a locally trivial fibration with fibre F the open section U

s
↪→ S in the diagram

(137), after possible shrinking U , can be lifted to an open section F× U s̃
↪→ PY of

the projection τY : PY → Pa:

PY

τY

��

F× U
- 


s

;;

� �open
// Pa.

Since F is rational by (138) and U is rational, it follows that

(164) Pa is rational.

Next, from (147)-(148), (161) and (163) it follows that the morphism π : Y → Pa
in (150) is the quotient morphism of the following action of the group

(165) G̃ = k× ×G

on Y :

aY : Y × G̃→ Y,

((b, ϕ1, ϕ2, [σ1 : σ2]), (µ, [g1 : λ])) 7→ (b,
µϕ1

det(g1)
,
µϕ2

λ2
, [g1 ◦ σ1 : λσ2]).

(166)
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Moreover,

(167) π : Y → Pa = Y/G̃ is a principal G̃-bundle,

and computations (154)-(161) show that the equivalence class [y] of any point y ∈ Y
coincides with the G̃-orbit of y:

(168) [y] = aY ({y} × G̃) = π−1(π(y)), y ∈ Y.
In other words, Pa is the set of equivalence classes of points of Y :

(169) Pa = {[y] | y ∈ Y }.
Remark that, by Corollary 2, the equality [y] = [ỹ], i.e. the isomorphism of

symplectic monads Ay and Aỹ in (152) is equivalent to the isomorphism of their
cohomology rank 2 bundles as symplectic bundles (H0(Ay), ψy) and (H0(Aỹ), ψỹ),
i.e., to the commutativity of the diagram

(170) H0(Ay)
ψy

'
//

'f

��

H0(Ay)∨

H0(Aỹ)
ψỹ

'
// H0(Aỹ)∨.

f∨ '

OO

Here ψy, respectively, ψỹ, is a symplectic isomorphism induced by the symplectic
isomorphism of the monad Ay with its dual A∨y , respectively, of Aỹ with A∨ỹ . Thus,

denoting by [H0(Ay), ψy] the isomorphism class of the pair (H0(Ay), ψy), we have:

(171) [y] = [H0(Ay), ψy] = [H0(Ay)].

This together with (167)-(169) shows that the modular morphism

ΦY : Y → B(a2 + 1), y 7→ [H0(Ay)]

factors through an injective map Θ : Pa → B(a2 + 1), i.e.

(172) ΦY = Θ ◦ π.
Since Y is clearly smooth, the map Θ is actually a morphism. This outcomes from
the following well known general result. (For the convenience of the reader we give
its proof here.)

Lemma 17. Let X, Y, Z be quasiprojective varieties with Y smooth, and let a :
X → Y and b : X → Z be morphisms such that a is surjective and b is constant on
the fibers of a. Then there exists a morphism f : Y → Z such that b = f ◦ a.

Proof. Consider the morphism g : X → Y × Z, x 7→ (a(x), b(x)), and let Y
a′←−

Y ×Z b′−→ Z be the projections onto factors so that a = a′ ◦ g and b = b′ ◦ g. Since b
is constant on the fibers of p, it follows that ã := a′|g(X) : g(X)→ Y is a bijection.
Therefore, as Y is smooth, ã is an isomorphism (see, e.g., [S, Ch.2, Section 4.4,
Thm. 2.16]). The desired morphism f is now the composition f = b′ ◦ ã−1. �

Now Proposition 15 together with (145), (164), (167) and (172) yields

Theorem 18. There exists an injective morphism Θ : Pa ↪→ B(a2 + 1) such that
the modular morphism ΦY : Y → B(a2 + 1) factorizes as

(173) ΦY : Y
π−→ Pa

Θ
↪→ B(a2 + 1),
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where π : Y → Pa is a principal G̃-bundle with the group G̃ defined in (165) and

(132). The irreducible variety G(a, 1) containing a rational variety G(a, 1)0 = Θ(Pa)
as a dense subset is rational of dimension 4

(
a+3

3

)
− a− 1.

We next obtain the following important formula.

Lemma 19. For every [E ] ∈ G(a, 1)0 with a ≥ 2, it holds

h1(End(E)) = 4 ·
(
a+ 3

3

)
− a− 1 + εa,

where ε(a) = 1 when a = 3, and ε(a) = 0 when a 6= 3.

Proof. Since E is a self dual rank 2 bundle, we have End(E) ' S2E ⊕ Λ2E =
S2E ⊕ OP3 , thus h1(End(E)) = h1(S2E). We will compute the latter.

For [E ] ∈ G(a, 1)0, consider a monad of the form (30) whose cohomology sheaf is
isomorphic to E as a complex M• with terms M−1 = OP3(−a), M0 = E, M1 =
OP3(a). Proceed to the double complex M•⊗M•, and to its total complex T •. The
last complex naturally decomposes into its symmetric and antisymmetric parts; the
symmetric part is the complex

(174) 0→ E(−a)→ S2E ⊕OP3 → E(a)→ 0,

whose middle cohomology sheaf is isomorphic to S2E. Therefore the monad (174)
can be broken into two short exact sequences

0→ K → S2E ⊕OP3 → E(a)→ 0 and 0→ E(−a)→ K → S2E → 0.

Since h0(E(−a)) = h0(S2E) = 0, it follows that h0(K) = 0; in addition, h1(E(a)) =
h2(S2E ⊕ OP3) = 0 (use Proposition 5) implies that h2(K) = 0. It then follows
that

(175) h1(S2E) = h1(K) + h2(E(−a)) = h1(K) + ε(a),

since h1(E(−a)) = 0 for a ≥ 2.
To complete our calculation, consider the exact sequence

0→ H0(S2E ⊕OP3)→ H0(E(a))→ H1(K)→ H1(S2E ⊕OP3)→ 0.

Since h0(S2E⊕OP3) = 4 and h1(S2E⊕OP3) = 5 by Corollary 5, we conclude that

h1(K) = h0(E(a)) + 1 = h0(N(a)) + V2 ⊗ h0(OP3(a)) + 1,

which, together with the equality in equation (175), yields the desired formula. �

It is interesting to observe that the right hand side of the formula in Lemma
19 yields the expected value when a = 2 and a = 3, respectively 37 and 77; when
a ≥ 4, one can check that 4 ·

(
a+3

3

)
− a− 1 > 8(a2 + 1)− 3.

Noting that, in view of Theorem (18), the dimension of G(a, 1) matches h1(End(E))
for a = 2 and a ≥ 4, as calculated in Lemma 19, and using Proposition 14, we have
therefore completed the proof of the first main result of this paper.

Theorem 20. For a = 2 and a ≥ 4, the rank 2 bundles given as cohomology of
monads of the form

0→ OP3(−a)⊕OP3(−1)→ V6 ⊗OP3 → OP3(1)⊕OP3(a)→ 0

fill out a dense subset of an irreducible rational component of B(a2+1) of dimension

4 ·
(
a+ 3

3

)
− a− 1.
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In particular, for the case a = 2, we conclude that rank 2 bundles given as coho-
mology of monads of the form (4) yield an open subset of an irreducible component
of B(5) with expected dimension 37.

7. Monads of the form (5)

We finally consider the set

H = {[E] ∈ B(5) | E is cohomology of a monad of the form (5)}.
We prove:

Proposition 21. The set H satisfies the condition

(176) dim(H \ (G(a, 1) ∩H)) ≤ 36.

Proof. Let E be the cohomology bundle of the following monad:
(177)

0→ OP3(−2)⊕V2⊗OP3(−1)
α−→ OP3(−1)⊕V6⊗OP3⊕OP3(1)

α∨−−→ V2⊗OP3(1)⊕OP3(2)→ 0.

Since the bundle V2 ⊗ OP3(−1) is a uniquely defined subbundle of the bundle
OP3(−2)⊕V2⊗OP3(−1) (respectively, OP3(−1) is a uniquely defined quotient bundle
of OP3(−1)⊕ V6 ⊗OP3 ⊕OP3(1)), there is a well-defined morphism
(178)

α̃ : V2⊗OP3(−1) ↪→ OP3(−2)⊕V2⊗OP3(−1)
α→ OP3(−1)⊕V6⊗OP3⊕OP3(1) � OP3(−1).

Consider first the case

(179) α̃ 6= 0.

It follows that α̃ is a surjection, hence the kernel of the composition map is iso-
morphic to OP3(−1). In this case we obtain a morphism α1 = α|ker α̃ : OP3(−1)→
V6 ⊗OP3 ⊕OP3(1). Thus similar to (178) there is a well-defined morphism

α′ : OP3(−1)
α1→ V6 ⊗OP3 ⊕OP3(1) � V6 ⊗OP3 ,

together with its dual morphism β′ as in (40) with k = 1, so that, eventually, we
obtain the anti self dual monads (40) with k = 1 and (30) with E being a rank 4
instanton bundle of charge 1, which implies that E ∈ G(2, 1). This means that the
condition (179) is equivalent to [E ] ∈ H ∩ G(2, 1), that is:

[E ] ∈ H \ (H ∩ G(2, 1)) ⇐⇒ α̃ = 0.

We therefore proceed to the case

α̃ = 0.

This condition implies that im(α0) ⊂ V6⊗OP3 ⊕OP3(1), where α0 := α|V2⊗OP3 (−1).

Moreover, since α is a subbundle morphism, it follows that im(α0) 6⊂ OP3(1), so
that there is a well-defined injective morphism

ᾱ : V2 ⊗OP3(−1)
α0→ V6 ⊗OP3 ⊕OP3(1) � V6 ⊗OP3 .

Again similar to the anti self dual monads (40) and (30) we obtain the anti-self-dual
monads

0→ V2 ⊗OP3(−1)
α0→ OP3(−1)⊕ V6 ⊗OP3 ⊕OP3(1)

α∨0→ V2 ⊗OP3(1)→ 0,

E1 := kerα∨0 /imα0,
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(180) 0→ OP3(−2)
γ→ E1

γ∨→ OP3(2)→ 0, E = ker γ∨/imγ,

(181) 0→ V2 ⊗OP3(−1)
ᾱ→ V6 ⊗OP3

ᾱ∨→ V2 ⊗OP3(1)→ 0, E2 := ker ᾱ∨/imᾱ,

(182) 0→ OP3(1)
δ→ E1

δ∨→ OP3(−1)→ 0, E2 ' ker δ∨/imδ,

where γ and δ are the induced morphisms and E2 is a rank 2 bundle with c1(E2) = 0
and c2(E2) = 2.

The monad (180) induces an exact triple

(183) 0→ E → G
ε→ OP3(2)→ 0.

where G := coker γ and ε is the induced morphism. Consider the composite mor-
phisms

δ′ : OP3(1)
δ→ E1 � G, E′ := coker δ′,

and

δ′′ : OP3(1)
δ′→ G

ε
� OP3(2).

Here δ′′ 6= 0, since otherwise by (183) h0(E(−1)) 6= 0, contrary to the stability of
E. Hence,

coker δ′′ = OP2
a
(2)

for some projective plane P2
a in P3, and we have an induced exact triple:

(184) 0→ E → E′ → OP2
a
(2)→ 0.

Besides, (180) and (182) yield exact sequences

(185) 0→ OP3(−2)
γ′→ E3

λ→ E′ to0,

0→ E2
µ→ E3

ν→ OP3(−1)→ 0.

where E3 := coker δ and γ′, λ, µ, ν are the induced morphisms. Note that (182)
implies that h0(E2(−2)) = 0, hence by (185) the composition λ ◦ µ is a nonzero
morphism. Moreover, one easily sees that this morphism is injective. Therefore,
since E′ is a rank 2 sheaf, it follows that the composition ν◦γ′ : OP3(−2)→ OP3(−1)
is a nonzero morphism and coker(ν ◦ γ′) = OP2

b
(−1) for some projective plane P2

b

in P3. We thus obtain an exact triple

(186) 0→ E2
λ◦µ→ E′

θ→ OP2
b
(−1)→ 0,

where θ is the induced morphism. Now remark that the triple (184) does not split,

since otherwise, as E2 is locally free, the composition OP2
a
(2) ↪→ E′

θ→ OP2
b
(−1)

is nonzero which is impossible. Thus P2
a = P2

b =: P2 and the triple (184) as an
extension is given by a nonzero element

s ∈ Ext1(OP2(2), E) ' H0(Ext1(OP2(2), E)) ' H0(E|P2(−1)).

Remind that, since E is cohomology of (177) by [16, Table 5.3, page 804] it has
spectrum (−1, 0, 0, 0, 1) and then follows that

(187) h1(E(−3)) = 0, h1(E(−2)) = 1.

The zero-scheme Z = (s)0 of this section s is 0-dimensional. Indeed, otherwise
h0(E|P2(−2)) 6= 0, which contradicts to the cohomology sequence of the exact triple
0 → E(−3) → E(−2) → E|P2(−2) → 0 as h0(E(−2)) = 0 by the stability of E
and the first equalty in (187). Besides, the cohomology sequence of the last triple
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twisted by OP3(1) in view of the stability of E and the second equalty in (187)
yields:

(188) h0(E|P2(−1)) = 1.

Furthermore, applying the functor −⊗OP2 to the triple (184) we obtain an exact
sequence

0→ OP2(1)
s→ E|P2 → E′|P2 → OP2(2)→ 0.

By (188), the leftmost morphism s here is the above section of E|P2(−1), so that
coker(s) ' IZ,P2(−1), and the last sequence yields an exact triple

0→ IZ,P2(−1)→ E′|P2 → OP2(2)→ 0.

Apply to this sequence the functor Hom(−,OP2(2)). Since dimZ = 0, it follows
that Hom(IZ,P2(−1),OP2(2)) ' OP2(3), and we obtain an exact triple

0→ OP2 → Hom(E′|P2 ,OP2(2))→ OP2(3)→ 0.

Hence, dim Hom(E′,OP2(2)) = h0(Hom(E′|P2 ,OP2(2))) = 11 and therefore

P(Hom(E′,OP2(2))) ' P10.

This equality will be used below.
We now proceed to the study of the sheaf E2 defined in (181). The results

obtained here will complete the proof of Proposition 21.
Consider the monad (181), and suppose that the homomorphism

h0(ᾱ∨) : H0(V6 ⊗OP3)→ H0(V2 ⊗OP3(1))

has rank at most 4. We will show that this leads to a contradiction. Indeed,
the assumption means that the morphism ᾱ∨ factors through a morphism ϕ :
V4 ⊗OP3 → V2 ⊗OP3(1). Let ϕ̃ : H := Hom(V4 ⊗OP3 , V2 ⊗OP3)→ OP3(1) be the
morphism induced by ϕ. Since ᾱ∨ is an epimorphism, ϕ̃ is also an epimorphism.
Consider the scheme Y = P(H). Since H is a trivial sheaf of rank 8, we have

an isomorphism Y ' P3 × P7, with projections onto the factors P3 p1←− Y
p2−→ P7

and the isomorphism OY/P3(1) = p∗2OP7(1), where OY/P3(1) is the Grothendieck
sheaf, and the canonical epimorphism ε : p∗1H � OY/P3(1). Now by the universal
property of the Proj-scheme Y (see, e. g. [13, II, Prop. 7.12]), there exists a section
s : P3 → Y of the projection p1 : Y → P3 such that ϕ̃ : H → OP3(1) coincides with
the morphism s∗ε; in particular, OP3(1) = s∗p∗2OP7(1). This means that f = p2 ◦s :
P3 → P7 is a nonconstant morphism and thus dim f(P3) = 3. On the other hand,
in P7 = P (Hom(k2,k4)) the determinantal locus ∆ = {kϕ ∈ P7 | ϕ : k2 → k4 is
not injective } has codimension 3, hence M = f(P3)∩∆ 6= ∅ and, by construction,
f−1(M) is a subset of points in P3 at which ϕ̃ is not surjective, contrary to the
surjectivity of ᾱ∨.

Hence, h0(ᾱ∨) has rank at least 5, and the monad (181) implies that

h0(E2) ≤ 1.

We now analyze both cases, namely: (i) h0(E2) = 1; (ii) h0(E2) = 0.
(i) h0(E2) = 1. Since E2 is a rank 2 bundle with c1(E2) = 0 and c2(E2) = 2 (see

(181)), it follows that the zero scheme of the section 0 6= s ∈ H0(E2) is a projective
line, say, l in P3 with some locally complete intersection (shortly: l.c.i.) double
structure l(2) on it satisfying the triple

(189) 0→ Ol(2)→ Ol(2) → Ol → 0.
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We thus obtain an exact triple

(190) 0→ OP3
s→ E2 → Il(2) → 0.

Note that the set of l.c.i. double structures on a given line l ∈ G(2, 4) is the set
of epimorphisms ψ : N∨l,P3 ' 2Ol(−1) � Ol(2) (here, Nl,P3 denotes the normal

bundle of l), understood up to scalar multiple, i.e. an open dense subset Ul of
the projective space P(Hom(V2 ⊗ Ol(−1),Ol(2))) ' P7, hence dimUl = 7. Thus
space D of all possible l.c.i. double structures l(2) on lines in P3 has a projection
ρ : D → G(2, 4), l(2) 7→ l with fibre ρ−1(l) = Ul, so that

dimD = dimG(2, 4) + dimUl = 11.

Next, for a given l(2) ∈ D the set of isomorphim classes of locally free sheaves E2

defined as extensions (190) constitutes an open dense subset Vl(2) of the projective
space P(Ext1(Il(2) ,OP3)) ' P3. To compute this space, apply to the triple

(191) 0→ Il(2) → OP3 → Ol(2) → 0

the functorHom(−,OP3). We obtain Ext1(Il(2) ,OP3) ' Ext2(Ol(2) ,OP3), and there-
fore

(192) Ext1(Il(2) ,OP3) ' H0(Ext1(Il(2) ,OP3)) ' H0(Ext2(Ol(2) ,OP3)).

Applying the same functor to (189) and using the isomorphisms Ext2(Ol,OP3) '
Ol(2), and Ext2(Ol(2),OP3) ' Ol, we obtain an exact triple

0→ Ol(2)→ Ext2(Ol(2) ,OP3)→ Ol → 0

which together with (192) yields P(Ext1(Il(2) ,OP3)) ' P3, hence dimVl(2) = 3.
Now, denoting by B the space of isomorphism classes of locally free sheaves E2

defined as extensions (190), we obtain a well defined morphism τ : B → D, [E2] 7→
l(2) = (s)0 for 0 6= s ∈ H0(E2) with fibre τ−1(l(2)) = Vl(2) . Hence,

(193) dimB = dimD + dimVl(2) = 3 + 11 = 14.

Now, for any pair ([E2],P2) ∈ B × P̌3, consider the space Ext1(OP2(−1), E2) of
extensions (186):

(194) 0→ E2 → E′ → OP2(−1)→ 0.

Since E2 is locally free, one has

(195) Ext1(OP2(−1), E2) ' H0(Ext1(OP2(−1), E2)) ' H0(E2|P2(2)).

For l = (ρ ◦ τ)([E2]) denote ľ = {P2 ∈ P̌3 | P2 3 l}. Consider the two cases: (a)
P2 ∈ ľ; and (b) P2 6∈ ľ.
(a) P2 ∈ ľ. In this case one sees using (189) that T or1(Ol(2) ,OP2(2)) ' Ol(3) and
the scheme l̄ = l(2) ∩ P2 is described by the triple 0→ OY → Ol̄ → Ol → 0, where
Y is a 0-dimensional scheme of length 3 supported on l. Thus, after applying the
functor −⊗OP2(2) to the exact sequence (191), we obtain an exact triple

0→ Ol(3)→ Il(2) ⊗OP2(2)→ IY,P2(1)→ 0.

Since Y ⊂ l, it follows that h0(IY,P2(1)) = 1, hence the last triple yields h0(Il(2) ⊗
OP2(2)) = 5. Therefore, the triple

(196) 0→ OP2(2)→ E2|P2(2)→ Il(2) ⊗OP2(2)→ 0,
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obtained by applying the functor −⊗OP2(2) to (191), yields

(197) h0(E2|P2(2)) = 11.

(b) P2 6∈ ľ. In this case W = l(2) ∩ P2 is a 0-dimensional scheme of length 2 sup-
ported at the point l∩P2, and the triple (196) becomes: 0→ OP2(2)→ E2|P2(2)→
IW,P2(2)→ 0. From this triple we obtain

(198) h0(E2|P2(2)) = 10.

Consider the space Σ1 of isomorphism classes of sheaves E′ obtained as exten-
sions (194). One has a natural projection π1 : Σ1 → B × P̌3 with fibre described
as π−1

1 ([E2],P2) = P(Ext1(OP2(−1), E2)). Now by (195), (197) and (198) this fibre
has dimension 10, respectively, 9 in case (a), respectively, (b) above. Hence in view
of (193) we have

(199) dim Σ1 = 26.

Now return to the triple (184). Consider the space W1 parametrising the surjections
e1 : E′ � OP2(2) (up to a scalar multiple) for [E′] ∈ Σ1 and P2 = pr2(π([E′])),
where pr2 : B×P̌3 → P̌3 is the projection. We thus obtain a surjective morphism p1 :
W1 → Σ1 with fibre p−1

1 (E) being an open dense subset in P(Hom(E′,OP2(2))) '
P10, where P2 = pr2(π1([E′])). Thus by (199)

(200) dimW1 = 36.

On the other hand, the triple (184) means that there is a morphism

(201) q : W1 → H \ (H ∩ G(2, 1)), ke1 7→ ker(e1 : E′ � OP2(2)).

(ii) h0(E2) = 0. This means that E2 is stable, i.e. [E2] ∈ B(2). It is well-known
(see [14, §9, Lemma 9.5]) that each bundle [E2] ∈ B(2) fits in an exact sequence

0→ OP3(−1)→ E2 → IY (1)→ 0,

where Y is a divisor of the type (3,0) on some smooth quadric surface in P3.
Moreover, for given E2, this divisor is not unique, but varies in a 1-dimensional
linear series without fixed points. Therefore, for any pair ([E2],P2) ∈ B(2)× P̌3 one
can choose a nontrivial section s ∈ E2|P2(1) such that its zero scheme Z = (s)0 is
a 0-dimensional scheme of length 3, and therefore h0(IZ,P2(3)) = 7. This together
with the exact triple

0→ OP2(1)
s→ E2|P2(2)→ IZ,P2(3)→ 0

yields h0(E2|P2(2)) = 10, hence in view of (195) we obtain

(202) P(Ext1(OP2(−1), E2)) ' P9.

Now, as above, consider the space Σ0 of isomorphism classes of sheaves E′ obtained
as extensions (194) with [E2] ∈ B(2). One has a natural projection π0 : Σ0 →
B(2) × P̌3 with fibre described as π−1

0 ([E2],P2) = P(Ext1(OP2(−1), E2)). Now by
(202) this fibre has dimension 9, and we obtain

(203) dim Σ0 = dimB(2)+dim P̌3 +dimP(Ext1(OP2(−1), E2)) = 13+3+9 = 25.

Again return to the triple (184). Consider the space W0 parametrising the surjec-
tions e0 : E′ � OP2(2) (up to a scalar multiple) for [E′] ∈ Σ0 and P2 = pr2(π([E′])),
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where pr2 : B(2) × P̌3 → P̌3 is the projection. We thus obtain a surjective
morphism p0 : W0 → Σ0 with fibre p−1

0 (E) being an open dense subset in
P(Hom(E′,OP2(2))) ' P10, where P2 = pr2(π0([E′])). Thus by (203)

(204) dimW0 = 35.

On the other hand, the triple (184) means that there is a morphism

(205) q : W0 → (H \ (G(2, 1) ∩H)), ke0 7→ ker(e0 : E′ � OP2(2)).

Note that, for any E2 in (184) we have either h0(E2) = 1 or h0(E2) = 0. This
means that the morphism

q : W1 ∪W0 → (H \ (G(2, 1) ∩H))

defined in (201) and (205) is surjective. Hence (176) follows from (200) and (204).
�

8. Components of B(5)

We finally have at hand all the ingredients needed to complete the proof of our
second main result, namely the characterization of the irreducible components of
B(5). We will proof the following result.

Theorem 22. The moduli space B(5) has exactly 3 irreducible components, namely:

(i) the instanton component, of dimension 37, which consists of those bundles
given as cohomology of monads of the form

(206) 0→ V5 ⊗OP3(−1)→ V12 ⊗OP3 → V5 ⊗OP3(1)→ 0, and

(207) 0→ V2 ⊗OP3(−2)→ V3 ⊗OP3(−1)⊕ V3 ⊗OP3(1)→ V2 ⊗OP3(2)→ 0;

(ii) the Ein component, of dimension 40, which consists of those bundles given
as cohomology of monads of the form

(208) 0→ OP3(−3)→ OP3(−2)⊕ V2 ⊗OP3 ⊕OP3(2)→ OP3(3)→ 0;

iii) the closure of the family G(2, 1), of dimension 37, which consists of those
bundles given as cohomology of monads of the form

(209) 0→ OP3(−2)⊕OP3(−1)→ V6 ⊗OP3 → OP3(1)⊕OP3(2)→ 0 and

(210)
0→ OP3(−2)⊕V2⊗OP3(−1)→ OP3(−1)⊕V6⊗OP3⊕OP3(1)→ V2⊗OP3(1)⊕OP3(2)→ 0.

The first ingredient of the proof is the fact, proved by Hartshorne and Rao, that
every bundle in B(5) is cohomology of one of the above monads, cf. [16, Table 5.3,
page 804].

Recall that for each stable rank 2 bundle E on P3 with vanishing first Chern
class, the number α(E) := h1(E(−2)) mod 2 is called the Atiyah–Rees α-invariant
of E, see [14, Definition in page 237]. Hartshorne showed [14, Corollary 2.4] that
this number is invariant on the components of the moduli space of stable vector
bundles on P3. One can easily check that the cohomologies of monads of the form
(206) and (207) have α-invariant equal to 0, while the cohomologies of the other
three types of monads have α-invariant equal to 1.

Rao showed in [29] that the family of bundles obtained as cohomology of monads
of the form (207) is irreducible, of dimension 36, and it lies in a unique component
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of B(5). Since instanton bundles of charge 5, i.e. the cohomologies of monads of
the form (206), yield an irreducible family of dimension 37, it follows that the set

I := {[E] ∈ B(5) | α(E) = 0}
forms a single irreducible component of B(5), of dimension 37, whose generic
point corresponds to an instanton bundle. In addition, every [E] ∈ I satisfies
H1(End(E)) = 37; this was originaly proved by Katsylo and Ottaviani for instan-
ton bundles [24], and by Rao for the cohomologies of monads of the form (207) [29,
Section 3]. Therefore, we also conclude that I is nonsingular. This completes the
proof of the first part of the Main Theorem.

Our next step is to analyse those bundles with Atiyah–Rees invariant equal to
1.

Hartshorne proved in [15, Theorem 9.9] that the family of stable rank 2 bundles
E with c1(E) = 0 and c2(E) = 5 whose spectrum is (−2,−1, 0, 1, 2) form an
irreducible, nonsigular family of dimension 40. Such bundles are precisely those
given as cohomologies of monads of the form (208), cf. [16, Table 5.3, page 804],
which is a particular case of a class of monads studied by Ein in [11]. From these
references, we conclude that the closure of the family of vector bundle arising as
cohomology of monads of the form (208) is an oversized irreducible component of
B(5) of dimension 40.

We proved above that the bundles arising as cohomology of monads of the form
(209) form a third irreducible component of dimension 37, while those bundles aris-
ing as cohomology of monads of the form (210), denoted by H, form an irreducible

family of dimension 36. It follows that latter must lie either in G(2, 1) or in E , the
closures G(2, 1) and E , respectively, within B(5).

Proposition 23. H ⊂ G(2, 1).

Proof. Suppose by contradiction that there exists a vector bundle E ∈ H ∩ E . By
the inferior semi-continuity of the dimension of the cohomology groups of coherent
sheaves, one has that h1(E(−2)) ≥ 3. However, one can check from the display of
the monad (210) that dim H1(E(−2)) = 1 < 3. It follows that the family H must

lie in G(2, 1). �

This last proposition finally concludes the proof of Main Theorem 2. We sum-
marize all the information in the theorem, and the discrete invariants of stable rank
2 bundles with c1 = 0 and c2 = 5 in the following table.

Table 1. Irreducible components of B(5)

Component Dimension Monads Spectra α-invariant

Instanton 37
(1) (0,0,0,0,0)

0
(2) (-1,-1,0,1,1)

Ein 40 (3) (-2,-1,0,1,2) 1
Modified
Instanton

37
(4)

(-1,0,0,0,1) 1
(5)

In order to give a complete description of the vector bundles E ∈ G(2, 1), we
include here its cohomology table. Knowing the spectrum of an arbitrary E ∈
G(2, 1) (given in the table above) allows us to conclude that h1(E(k)) = 0 for
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k ≤ −3, and to compute h1(E(−2)) = 1 and h1(E(−1)) = 5. Serre duality tells us
that h2(E(k)) = 0 for k ≥ −1, while stability implies that h0(E(k)) = 0 for k ≤ 0,
and h3(E(k)) = 0 for k ≥ −4; it follows that h1(E) = −χ(E) = 8.

Table 2. hi(E(l)) for E ∈ G(2, 1)

i\l -4 -3 -2 -1 0
3 0 0 0 0 0
2 8 5 1 0 0
1 0 0 1 5 8
0 0 0 0 0 0

Remark. Inspired by the techniques introduced in the present paper, the au-
thors of [30] construct another infinite series of irreducible components of B(0, n)
whose special point corresponds to a bundle obtained as the cohomology of a monad
similar to the one in display (24), just substituting a direct sum of two rank 2 in-
stantons bundles for the rank 4 instanton bundle of charge 1 in middle term.
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