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Introduction

D. Mumford in characteristic O [9] and J. Lipman [7]
in characteristic p> 0 proved that a surface singularity X
is rational if and only if X has finitely many rank one
reflexive mbduies up to isomorphism. This implies a characteri-
zatioh‘of'dhotient surface singularities as those ones which
have fihitely many indecomposable(with respect to direct :sum)

reflexive modules (1.2).

For rational double points on € , J. Mc Kay [8] gave
a one - to - one correspondence between vertices of the extended
diagram associated to the finite subgroup Gec SL(2,C) defining X
as a quotient m2/G ., irreducible representations of G and
indecomposable reflexive modules on X. Trying to understand
geometrically this correspondence, G. Gonzalez - Sprinberg and
J.L. Verdier [4] associated geometrically to each indecomposable
reflexive module the first Chern class of the pull-back on the
minimal resolution f:§-+x. They show that the Chern class inter-
sects exactly one rational curve of the exceptional locus, and
that it determines the module. After this, H. KnSrrer [6] re-
interpeted this geometrical construction group-theoritically.
This, is a sense, completes a cycle, as the work of J. Mc Kay
was from the point of view of representation theory. Finally
M. Artin and J.L. Vérdiér [1]lgave an elegant and theoritical proof

of the fact that the first Chern class determines the module.

This led H. Kn8rrer and J.L. Verdier to ask whether it

remains true that for a general quotient surface singularity X



the first Chern class of an indecomposeable reflexive module

determines it.

We give here a negative answer to this question (3.3). To this
aim we give a numerical criterion for an invertible sheaf on a
resolution f£:X+X to be the pull-back of a reflexive rank one
module. Then we "dualize" the construction of Artin-Verdier in
order to introduce a sort of obstruction for the question to have

a positive answer (2.4).

The method relies on the techniques of cyclic covers we
developed in [3]). However, this works only for rank one modules.
Therefore one would need similar method for higher rank modules
to get more precise informations about them. Nevertheless we get
in § 4 a list of properties the pull-back by £ of an higher rank

reflexive module on a rational singularity has to fulfill.

I have to thank K. Behnke, J.L. Verdier and E. Viehweg for
useful conversations, H. Kndrrer for having kindly given me the

benefit of his experience in this area.



§1 Quotient surface singularities

Let X be a rational surface singularity on € and

U = RegX be the regular locus.

(1.1) In [3,(1.7)] we state a known fact: X 1is a quotient
singularity if and only if the canonical cover is a rational

singularity. For the same reason given there we can say:

Lemma. X 18 a quotient singularity if and only if each cover
amm— — - -— —

of X , which is &étale on U , has rational singularities.

Corollary (1.2). X 4is a quotient singularity if and only if

it has finitely many indecomposable reflexive modules (up to

direct sum).

Proof. This result is due to J. Herzog [5]. Since we do not know
any reference for a geometrical (and very elementary) proof, we

give it here.

If X has finitely many indecomposable reflexive modules, then
Wy has a finite order and we canconsider the canonical cover

m:X'+X [3,(1.4)]. Since for every reflexive module M on X',
n.M 1is reflexive, especially for the rank one ones, Pic Reg X'

has to be finite and therefore, X' has to be rational.

If X is a quotient singularity of group G , call u:c2-+x

the Galois map which is étale on U. Let i:U+X be the embedding,
V"“-1IU) and jzv->c2. One has a one-to-one correspondence be-

tween:



(1) (indecomposable) locally free sheaves on U
(ii) (indecomposable) reflexive modules on X
(iii) (G-indecomposable) locally free G-sheaves on V

(iv) (irreducible) representations of G.
The equivalences are given by:

(1) =+ (i1) F » i, F
(i1) - (1) F + i* p

(1) + (1ii) F » p* F

(111) » (1) 6 » (1,6)¢

(111) + (iv) G =+ 3.6/m-3 6 = H

where m 1is the maximal ideal of 0 in ¢2. (One has only to

observe that the reflexive hull 3j,6 of G is locally free- -
actually even free - and that G preserves the stalk at 0,

because 0 is a fix point).

(1v) » (111) H+ 3* (028 GH)



§ 2 Reflexive modules on ggotient singglarities

"Let X be a rational surface singularity, i:U+ X the

embedding of the regular locus, £:X > X any desingularization.

Lemma and definition (2.1) A sheaf M on X can be written

M= £*M
torsion

as

. where M is a reflexive module if and only if

i) M is locally free

ii) M is generated by its global sections

iii) R1f*Mv ® wy = 0, where MY is the dual of M .

If M fulfills 1).ii),iii), M is said to be full.

Proof. It should be well kndwn and is simply a reformulation of

(1, (1.7) and (1.9)]. One has the exact sequence

0+ £, M +1 M| +HL(M >REM .

U
If M is full, then R'E,M=0 by (ii) and (iii) is Serre-dual
to Hé(u). Conversely if (iii) is true, then f_ M = M is

reflexive. One has the natural map
£*M > M
which factors over

£*M
torsion

if (i) is true and becomes injective. If (ii) is true, one has

a surjection

oO; —>> M

which gives a surjection by applying f,



el = of*O; —>> M

This gives surjections

>> M

*
00';(- = of OX —>> f*M

In other words, %%%3133 is generated by the global sections of

M. Therefore, they are equal.

(2.2) Now we want to rewrite the construction of Artin~Verdier

({1, (1.2), (1.9), (1.11)]) 1in the dual language.

For a full sheaf M of rank r, take r generic sections
to define its first Chern class D as the zero locus of the

discriminant of the r sections.
. v
(#) 0 + M +§ox > 0, + 0

Taking global sections, it is not right exact. Let C be the
image of the r global sections in f*OD , ring of the norma-

lization of some curve living on X. The sequence
(x%) 0+M >80, +C+0
1

is exact because £ M’ = MY , coming from (2.1(iii)) and

1 ~
R f Mo wy =0.

Lemma (2.2). The Oy-submodule C of £,0, determines M
uniquely up to isomorphism as the module of relations of a

minimal number of sections generating C .

*
Proof. Let 0;(-2) = {3%;135 be the fundamental cycle, where
m is the maximal ideal of the singularity. Then
length (C/m.C = D- g



and one has r >D-Z. Artin and Verdier simply say:

- if r>D+*Z, then (r-D-°2) factors 0; split in M.

- if r=D.2, then M’ is simply the module of relations.

In case X 1s Gorenstein (2.1 (iii)) says that Csf*OD and

therefore the first Chern class determines the module.

(2.3) Suppose now that the first Chern class determines the inde-
composable reflexive module, that means by (2.2) determines C.

Then it determines a fortiori R1f,ﬂv.

Given now M indecomposable and full such that the first Chern
class D 1is irreducible, i.e.: D-Ei =1 and D-Ey=0 for

0
i# 1, . Assume R1f*Mv¢ 0.Take Cg C'< £, any submodule C' , and

complete the r sections of C to r' generating sections of C(C°'.

Lemma. There exists a full sheaf M' such that the following

diagram consists only of exact sequences.

0 0
¢
r';r O ~ r‘-roi
1 1
t t
0 — WV —— 5o — 0y —0
1 X
' t I
r
0 — WY —0 o 0‘,}' 0y — 0
1



Moreover one can write M'=N e ? Oy . where N is full,

indecomposable, and not isomorphic to M.

Proof. The construction (2.2) gives the existence of a locally

free sheaf M' which is generated by global sections. Since the
map § fuug » £,008wy is surjective ((2.1)(1i1)), the map
§'f*uyi > f*.(ODo w'i) is a fortiori surjective, and therefore

f£,M' 1is reflexive. May be, r' is larger than the minimal number
r" of sections of ('. But anyway, the splitting M'v=(f*N)vqr§ﬁrbx
gives an indecomposable N, otherwise each summand would give a non
trivial comstribution to the irreducible D. On the other side,

N has the same first Chern class as M , and is not isomorphic

because C is not isomorphic to C' .

(2.4) 1In order to find a counter-example to the question of
Kndrrer-Verdier, (2.3) just says that one needs an example for

which D 1is irreducible and R1f*Mv4=0.

§ 3. Rank one modules

(3.1) Let X be a rational singularity, £f:X+X be any desingu-
larization, | be any invertible sheaf such that degEiL 20 for

all exceptional curves E L will be said a.p (arithmetically

i .
pogitive)in the sequel. Since Pic U is finite and the intersection

matrix is negative definite, there is some power N and some

effective divisor A whose support is the exceptional locus

such that : LN = 0g(-R)

— '

Proposition (3.2). Let L be an invertible a.p sheaf on X



where X is a gquotient singulatity. Let LN=0§(—A) as in

(3.1). Then

i) L 4is full if and only if X(O[A]O Lilg Ayy =0 .

11) R'£,177 = -x(O{A}X L™

Here one denotes as in [3] by [%] the integral part of the

A A____I_\
@-divisor § and {ﬁ} = [ N]

(1] be the reflexive hull of f*Li. The 0 -module

Proof. Let L X

E =N;1 L[i]
0
has an Ox-algebra structure (by the identification Ox::L

(1]

[N])

which is normal because the L are reflexive. The corresponding

cover SpecyE has rational singularities. The Oﬁ - module

E=Ns! tt(1iRy)
0

has an Og - algebra structure (by the section LN

-+0§ whose

divisor is A) which is normal and has only rational singularities
([3,(1.5)] and corresponding references). Therefore the map com-

posed of SpedgE +X and f factorizes on Spech:. One gets
L[i]

{ o
0 qg=1

0

i .
RIf, L ([iﬁén .

for 0 $i s (N-1).

i) From the exact sequence
0+L+L(iB *0pa) o L(IF) + 0

one gets h (O[A] ® L([ ])) = 0 , and therefore the condition
ho(OIA] OL([ ])) = 0 implies that f,L = L and R! f.L = 0.



Assume that L 1is not generated by global sections. Then
one can write L=N(F) for a full invertible sheaf N and

an effective divisor F. Therefore one has )((0F ol )=0= x(OF) +L°F.

This implies F=0 because F-L 2 0 by assumption.

Now if L 1is full the exact sequence gives trivially the

condition wanted.

N-1 -1

ii) One has L (A) = L which gives the exact sequence

O-vLN-1_([i§:lLlé]) sl V0,8, 0L 40
N {ﬁ}
and one argués along the same line as ia i).

{(3.3) Counter example.

Take L =M defined by L. E, = 1 and L'Ei =0 for i>0.

A
Then[.ﬁl = E, and OEOQ L('Eo ) = OEO(—1). Therefore L

is full ((3.2) i)). Moreover one sees immediately that

L e we = Og(-Z) + vhere 2 is the fundamental cycle. Therefore
| =EruY 1
torsion

(2.4), one constructs M of rank 2 by the following diagram of

and R'£,L7! = h‘(wz) = 1 . According to (2.3) and

exact sequences:



4 4 4
0 > m N 0. + @ = 0
X
t t *
0 > £ - 0. -+ £,0_ -~ 0
* 1 x * D
t o, 4 4
0 + £,177 s 0 » Ogp - 0
4 3 4
0 0 0

where D is the first Chern class of L and m the maximal
ideal of Sing X. From the vertical left sequence ard from
f,,,L"1 = w, , One sees that MY is the reflekive hull of the
1-holomorphic forms on Reg X (see [2]). Therefore M 1is the

dual of the 1-holomorphic forms.

§ 4 Some properties of higher rank modules.

X 1is in this § a rational surface singularity of multiplicity u.
On a desingularization f:X+X one considers a full sheaf M
r
of rank r, L = AM, D the first Chern class, the full sheaf "dual"
M = E:igiﬁlz L =‘:M' the fundamental cycl -Z and the maximal
torsion ’ ycle

ideal as before. ye agsume M to be without 03{ summand .

One has seen in §2 and §3 that RVE,MY is an important invariant

of M which does not depend only on D. That is what we compute now.

Proposition (4.1)
1) R's MV

n

D2 -r

R'e, 171 - Rle, 10770 wy

£l
R'E MY (-2) = 0
R'EMY = h1(0, 0 W)



- Te =

i1) £ MY = £.UV(-2) = (£,M)Y
h%0, o ') =0
iii)v £,05(-2) € C < f*OD

m-C= £,0,(-2)

D-Z

WoBE

Srsbh-2

Proof. The first equality is already proven in (2.2). From the

exact sequence

0 > L7 - u *?103{ + 0
one gets the exact sequences
0+LY+MY+3+0
0-»J+r¢:»10x+n1£,£1->n1f;u"+o

From

0 +r§'0oi + Hia LV >0

one gets
0 +‘§‘ox+ M £, L >0
and moreover one has ((2.1) iii))

0+£,0' LY +R1£, 17 g wgi > 0

Assuming everthing to be projective and computing Euler-Poincaré

characteristics, one gets the second equality.



From the exact sequence

D-2

c |
o+ MY, + 080 + 0., ~C %+0
PRERE PR P

one gets n! (le )2D*2 - r .
’ Z

But one has h1(uv'z) 5R1f*uv = D*2 - r,

Therefore the map
1 v 1 v
RE MY (-2) > R £,.M

has to be zero and moreover one has h(’(nv |z) = 0, So one has

R1f,ﬂv(-2) = 0.
From
lff*o;(-z)-——»> £, 0,(~2)

| 1

:f,O; —>> €+ £,0,

one gets the factorization
C£,0p0-2)  » ¢
One has length C/£Q(~Z)= z.n-a‘:,u"
= r
$ length C/m-C = r,

Therefore £ 0_(-Z) = m*C
« D

Finally (iv)  is simply the right exactness of the sequence
((2.2) (#)) -tensorized with wy . after applying £,.
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